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HiMap: Fast and Scalable High-Quality Mapping
on CGRA via Hierarchical Abstraction

Dhananjaya Wijerathne, Zhaoying Li, Anuj Pathania, Tulika Mitra, Lothar Thiele

Abstract—Coarse-Grained Reconfigurable Array (CGRA) has
emerged as a promising hardware accelerator due to the excel-
lent balance between reconfigurability, performance, and energy
efficiency. The performance of a CGRA strongly depends on
the existence of a high-quality compiler to map the application
kernels on the architecture. Unfortunately, the state-of-the-art
compiler technology falls short in generating high-performance
mapping within an acceptable compilation time, especially with
increasing CGRA size. We propose HiMap – a fast and scalable
CGRA mapping approach – that is also adept at producing close-
to-optimal solutions for regular computational kernels prevalent
in existing and emerging application domains. The key strategy
behind HiMap’s efficiency and scalability is to exploit the regu-
larity in the computation by employing a virtual systolic array
as an intermediate abstraction layer in a hierarchical mapping.
HiMap first maps the loop iterations of the kernel onto a virtual
systolic array and then distills out the unique patterns in the
mapping. These unique patterns are subsequently mapped onto
sub-spaces of the physical CGRA. They are arranged together
according to the systolic array mapping to create a complete
mapping of the kernel. Experimental results confirm that HiMap
can generate application mappings that hit the performance
envelope of the CGRA. HiMap offers 17.3x and 5x improvement
in performance and energy efficiency of the mappings compared
to the state-of-the-art. The compilation time of HiMap for near-
optimal mappings is less than 15 minutes for 64x64 CGRA, while
existing approaches take days to generate inferior mappings.

I. INTRODUCTION

THE demand for hardware accelerators is rising with the
increasing performance and low power requirements in

modern application domains such as machine learning, signal
processing, and multimedia. Even though the Application
Specific Integrated Circuit (ASIC) accelerators offer the best
performance and power efficiency, the rigid implementation
makes it a less attractive accelerator choice. Reconfigurable
accelerators are getting popular because they offer reason-
able performance and power efficiency while being flexible
enough to support different applications. Field Programmable
Gate Arrays (FPGAs) and Coarse-Grained Reconfigurable
Arrays (CGRAs) have emerged as prominent reconfigurable
accelerators. The bit-level reconfigurability in FPGAs offers
more flexibility but comes at a higher cost of area and power.
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Fig. 1: An abstract block diagram for a 4x4 CGRA.

CGRAs offer word-level reconfigurability and therefore are
more power-efficient than the FPGAs [1]. Another major
difference between the two is that the FPGAs primarily rely on
spatial mapping, while most CGRAs support spatio-temporal
mapping due to the per-cycle reconfigurability. There have
been many recent works on CGRAs in the industry [1]–[3]
and academia [4]–[11].

Figure 1 shows a CGRA consisting of an array of Processing
Elements (PE) connected in a 2D mesh network. Each PE
typically comprises an Arithmetic Logic Unit (ALU), crossbar
switches, an internal Register File (RF), and a configuration
memory. On-chip memory banks feed the data in and out
of the array during execution. A PE executes an operation
on the data it receives from the neighboring PEs, register
files, or outside memory banks in each cycle. It either keeps
the results in the RF or sends them to the neighboring PEs
or both. The configuration memory instructions control the
operation execution (ALU configurations) and data routing
between PEs (switch and RF port configurations). The CGRA
compiler statically determines which operation should execute
in which PE at which cycle (placement) and the data routes
between the PEs according to the data dependencies (routing).

CGRAs are widely used to accelerate compute-intensive
loop kernels. CGRA compilers exploit the inter-and intra-loop
parallelism in the loop kernels via software pipelining [12].
Software pipelining allows independent operations (operations
without data dependency) in different iterations to run par-
allelly. Typically loop body of the kernel consists of many
operations with irregular dependencies among them (intra-
iteration dependencies). Existing compiler algorithms focused
on mapping such irregular loop kernels on CGRA resources.
They model this as a graph mapping problem between the Data
Flow Graph (DFG) representing the loop body and the Modulo
Routing-Resource Graph (MRRG) representing the hardware
resources and their connections [13]. Due to the inherent
complexity of the graph mapping problem, the compilation
time increases substantially with the size (in terms of the
number of nodes and edges) of the graphs (DFG and MRRG).
Therefore, existing CGRA mapping techniques were evaluated
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for (i0 = 0; i0 < N; i0 += b) :L1

for (j0 = 0; j0 < M; j0 += b) :L2

for (k0 = 0; k0 < K; k0 += b) :L3

C[i0+0][j0+0] = C[i0+0][j0+0] + A[i0+0][k0+0]*B[k0+0][j0+0];

…………….

C[i0+0][j0+0] = C[i0+0][j0+0] + A[i0+0][k0+b-1]*B[k0+b-1][j0+0];

…………….

…………….

C[i0+b-1][j0+b-1] = C[i0+b-1][j0+b-1] + A[i0+b-1][k0+b-1]*B[k0+b-1][j0+b-1];

(a) Tiled and unrolled loop code for GEMM kernel.
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0, ASAP=0, Iter=421
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1, ASAP=1, Iter=421

 MUL,
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 MUL,
18, ASAP=2, Iter=821

 ADD,
3, ASAP=3, Iter=422

 MUL,
2, ASAP=2, Iter=422

 MUL,
8, ASAP=4, Iter=442

 MUL,
20, ASAP=4, Iter=822

 ADD,
5, ASAP=5, Iter=423

 MUL,
4, ASAP=4, Iter=423

 MUL,
10, ASAP=6, Iter=443

 MUL,
22, ASAP=6, Iter=823

 STORE,
61, ASAP=-2, Iter=

 ADD,
7, ASAP=3, Iter=441

 MUL,
12, ASAP=4, Iter=461

 MUL,
24, ASAP=4, Iter=841

 ADD,
9, ASAP=5, Iter=442

 MUL,
14, ASAP=6, Iter=462

 MUL,
26, ASAP=6, Iter=842

 ADD,
11, ASAP=7, Iter=443

 MUL,
16, ASAP=8, Iter=463

 MUL,
28, ASAP=8, Iter=843

 STORE,
66, ASAP=-2, Iter=

 ADD,
13, ASAP=5, Iter=461

 MUL,
30, ASAP=6, Iter=861

 ADD,
15, ASAP=7, Iter=462

 MUL,
32, ASAP=8, Iter=862

 ADD,
17, ASAP=9, Iter=463

 MUL,
34, ASAP=10, Iter=863

 STORE,
71, ASAP=-2, Iter=

 ADD,
19, ASAP=3, Iter=821

 MUL,
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 ADD,
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 MUL,
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 ADD,
23, ASAP=7, Iter=823

 MUL,
40, ASAP=8, Iter=1223
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 ADD,
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 ADD,
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 MUL,
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 ADD,
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 MUL,
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 ADD,
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 MUL,
52, ASAP=12, Iter=1263

 STORE,
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 ADD,
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 ADD,
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 ADD,
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 STORE,
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 ADD,
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 ADD,
45, ASAP=9, Iter=1242

 ADD,
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 ADD,
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 ADD,
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 ADD,
53, ASAP=13, Iter=1263

 STORE,
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 LOAD,
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 LOAD,
55, ASAP=-2, Iter=

 LOAD,
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 LOAD,
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 LOAD,
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 LOAD,
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 LOAD,
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 LOAD,
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 LOAD,
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 LOAD,
64, ASAP=-2, Iter=

 LOAD,
65, ASAP=-2, Iter=

 LOAD,
67, ASAP=-2, Iter=

 LOAD,
68, ASAP=-2, Iter=

 LOAD,
69, ASAP=-2, Iter=

 LOAD,
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 LOAD,
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 LOAD,
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 LOAD,
74, ASAP=-2, Iter=

 LOAD,
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 LOAD,
77, ASAP=-2, Iter=

 LOAD,
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 LOAD,
81, ASAP=-2, Iter=

 LOAD,
82, ASAP=-2, Iter=

 LOAD,
83, ASAP=-2, Iter=

 LOAD,
84, ASAP=-2, Iter=

 LOAD,
86, ASAP=-2, Iter=

 LOAD,
88, ASAP=-2, Iter=

(b) DFG of GEMM kernel for block size b = 3.

Fig. 2: Example of a multidimensional kernel.

using small loop kernels on CGRAs with a relatively small
number of PEs [4], [6], [9]–[11].

Multi-dimensional loop kernels, i.e., loops with multiple
nested levels, are ubiquitous in many popular applications.
These kernels often have few operations in the loop body but
unrolled kernels exhibit abundant Instruction-Level Parallelism
(ILP). Hence, these kernels are well suited to be accelerated on
CGRAs with a large number of PEs. Moreover, dependencies
between operations belonging to different iterations (inter-
iteration dependencies) limit the exploitable parallelism in
multi-dimensional kernels. Interestingly, unlike intra-iteration
dependencies, inter-iteration dependencies have regular pat-
terns formed from the multi-dimensional iterators.

Figure 2a shows the tiled and fully unrolled General Matrix
Multiply (GEMM) loop kernel as an example of a multi-
dimensional kernel. Loop tiling breaks down the kernel’s
iteration space into smaller-sized blocks [14], [15]. The block
size (tile size) b determines the size of the fully unrolled data
flow graph of the loop body. Kernel DFGs with smaller block
sizes have few parallel instructions compared to bigger block
sizes. For example, GEMM kernel DFG with a block size of
3 (Figure 2b) consists of 54 compute instructions while DFG
with a block size of 8 consists of 1024 compute instructions.
Smaller DFG kernels underutilize the CGRA resources, es-
pecially in bigger CGRAs. State-of-the-art CGRA mapping
algorithms can handle modest-sized kernels but cannot find a
valid mapping when the DFG size grows (beyond 500 nodes)
because of the large number of nodes and complex depen-
dencies between them [4], [11], [16], [17]. Therefore, the
state-of-the-art compilers can compile only small block sizes,
which results in an order of magnitude lower performance than
the maximum achievable performance.

We propose a hierarchical mapping approach, HiMap,
that can achieve the ideal performance envelope for multi-
dimensional kernels. HiMap solves the mapping problem hier-
archically by doing abstraction at both kernel and architecture
levels. Kernel DFG is abstracted into a graph of iterations,
where each iteration constitutes multiple DFG nodes. This
graph of iterations is called Iteration Space Dependency
Graph (ISDG). The target CGRA is also abstracted into a
virtual array where each virtual processing element constitutes
multiple CGRA PEs. This virtual array is called Virtual
Systolic Array (VSA). Using those two abstractions, HiMap

solves the mapping problem in two levels; mapping the ISDG
onto the VSA and mapping operations in each iteration to
CGRA PEs. HiMap maps ISDG onto VSA using a space-time
transformation incorporated from systolic design methodology.
After ISDG to VSA mapping, operations in each iteration
are mapped onto actual CGRA PEs using a heuristic-based
mapping approach.

We have first explored and presented a preliminary version
of the hierarchical mapping idea in [18]. The main focus of
[18] is generating scalable mapping inside the PE array with
little attention to the impact of external communication (data
feeding and unloading) for the mapping. Systolic data flow,
which is the basis of HiMap mapping, requires a specific
communication mechanism for feeding and unloading data.
This communication mechanism entails the data layout in
the local memory and connectivity between local memory
and PE array. The data layout refers to the placement of
array variables and the element order within the data memory.
The data layout depends on the corresponding systolic map-
ping. Therefore, different computation mappings require data
layouts with different reordering of original array variables.
The connectivity between local memory and PE array largely
influences the feasibility of the resultant mapping. The limited
memory connectivity can result in low performance or even
make it unfeasible to support some kernels.

In this paper, we explore the impact of the external commu-
nication of the target architecture on kernel performance. We
have enhanced the hierarchical mapping algorithm to consider
local memory resource constraints and automatically generate
the corresponding data layout. We evaluate the performance
under different memory resource configurations. We have de-
tailed the modifications required on local memory organization
of existing CGRA architectures to enable systolic data flow.

II. BACKGROUND AND RELATED WORK

HiMap utilize systolic design methodology in the hier-
archical mapping approach. It uses systolic mapping as an
intermediate overlay to guide the CGRA mapping. This section
provides background details on systolic design methodology
and CGRA mapping.

A. Systolic Arrays

Systolic arrays are hardware structures that are used for the
fast and efficient execution of regular algorithms. An array
of processing elements are connected in algorithm-specific
ways to perform computations on different input data repeat-
edly. Researchers have proposed many systolic architectures
to accelerate various multi-dimensional kernels [19]–[22]. In
systolic arrays, data flows regularly and rhythmically, passing
through processing elements before it returns to memory.
Systolic arrays achieve full utilization of the compute and
memory resources when executing the kernels, hence offering
high power efficiency.

Initial systolic architectures were designed manually in
special-purpose systems for specific tasks [21], [22]. Many
spatial dataflow accelerators also use systolic arrays [23]–[25].
They specifically target kernels in the deep learning domain.
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for (i0 = 0; i0 < N; i0 += 2)  :L1

for (j0 = 0; j0 < M; j0 += 2)  :L2

for (k0 = 0; k0 < K; k0 += 2)  :L3

C[i0+0][j0+0] = C[i0+0][j0+0] + A[i0+0][k0+0]*B[k0+0][j0+0];

C[i0+0][j0+0] = C[i0+0][j0+0] + A[i0+0][k0+1]*B[k0+1][j0+0];

C[i0+0][j0+1] = C[i0+0][j0+1] + A[i0+0][k0+0]*B[k0+0][j0+1];

…………….

C[i0+1][j0+1] = C[i0+1][j0+1] + A[i0+1][k0+1]*B[k0+1][j0+1]

(a) GEMM Kernel Source Code (b = 2)
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(c) Systolic Mapping
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Fig. 3: Systolic Data Flow for GEMM kernel.

These dataflow accelerators also consist of an array of PEs
connected in a mesh-like network, which is similar to PE orga-
nization in conventional CGRAs. Unlike conventional CGRAs,
the network in these accelerators is not fully reconfigurable.
Moreover, PEs only support a limited number of operations,
such as Multiply-And-Accumulate (MAC).

B. Systolic Mapping

Figure 3c shows the systolic data flow for GEMM kernel
DFG (Figure 3a and 3b) on a 2x2 systolic array. Iterations in
the kernel are mapped and executed on Systolic Processing
Elements (SPE). One main feature in systolic mapping is that
dependent iterations are mapped to neighboring SPEs in either
space or time dimension. This feature allows for multiple data
reuse as the data flows through the array. Systolic mapping
allows reused data to flow within the array using internal
registers. Thus it is more efficient than repeatedly accessing
the same data from the memories where data is stored initially.
In Fig. 3c, input-reused data flow through neighbor SPEs in
the y-dimension (green solid edges) and t-dimension (purple
dot edges) while output-reused data flow in the x-direction
(red dash edges).

In the quest of automating systolic array generation, authors
of [26] propose a systolic mapping algorithm to assign each

point in the iteration space of a multi-dimensional kernel
to a space-time position (time slot and coordinates of the
processing element) on a systolic array. Each point in iteration
space corresponds to an iteration Ci, indexed by respective
iteration variables. Iteration vector I(Ci) is the vector of
iteration variables. Systolic mapping algorithm in [26] obtains
a direct mapping function between the iteration vector I(Ci) of
a multi-dimensional kernel and the space-time position P (Ci)
of the iteration Ci on a systolic array. Space-time position
P (Ci) is denoted by a tuple (t, x, y) where t is the time slot
(time position) and x, y are the coordinates of the systolic
processing element (space position). The general form of the
systolic mapping function (φ

′
) for transforming l-nested loop

to a two-dimensional systolic array is

φ
′
: P (Ci) =

H
S

× I(Ci) (1)

I(Ci) =


i1

:

il

 P (Ci) =


t

x

y


H
S

 =


h1 . . . hl

s11 . . . s1l

s21 . . . s2l


(H,S) is the space-time mapping matrix. H refers to time
hyperplane where H × I(Ci) gives the time position of the
iteration Ci. S refers to space hyperplane where S × I(Ci)
gives space position of the iteration Ci on the systolic array.
(H,S) is calculated using a heuristic search algorithm [26]
that satisfies the necessary conditions to assure correct trans-
formation. The conditions are:

1) H has to preserve data dependency relations between
iterations. If Ci has a data dependency from Cj ⇒ H×
(I(Ci)− I(Cj)) > 0.

2) Two iterations must not map to the same SPE at the same
time. H×I(Ci) = H×I(Cj) and S×I(Ci) = S×I(Cj)
cannot be both true at the same time.

3) Condition for the number of registers between two SPEs.
4) Condition for avoiding collisions in data links.
Valid (H,S) for the GEMM kernel is shown in Figure 3c.

According to function φ
′
, iteration I(Ci) = (011)T maps onto

space-time position P (Ci) = (211)T . The dependent iterations
are placed nearby in a way that dependent data flow through
neighboring SPEs.

Recent works on FPGA compilation exploit systolic-based
execution for compute-bound kernels [27]. PolySA [28] uses
systolic array mapping techniques to implement CNN and MM
kernels on FPGA. Authors of [29] implement CNN on FPGA
using systolic architecture.

C. External Communication of Systolic Arrays

In systolic arrays, each iteration of the kernel is executed
on an SPE. If an iteration requires outside data, I/O memory
should supply the data to the corresponding SPE. The way data
should be placed and ordered in I/O memory depends on the it-
eration to systolic array mapping (space-time mapping matrix)
and each iteration’s input/output requirements. The authors of
[19] studied systolic memory communication related to Warp
systolic array. External communication of systolic array, i.e.,
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input/output data transfer between local memory and PE array,
occurs in a mapping-dependent deterministic fashion.

Figure 3c shows the I/O dataflow of the GEMM kernel. The
data elements of matrix A should arrive from boundary PEs
in the north (N ) direction, while initial data of matrix C come
from the boundary PEs in the west (W ) direction. The values
of matrix B are preloaded through the local memory of each
PE and stay stationary. The output values of matrix C leave
from the boundary PEs in the east (E) direction. Boundary
PEs should be connected with auto sequencing first-in-first-
out (FIFO) memories to maintain data streams entering and
leaving the PE array. The data layout of the above mapping is
shown in Figure 3d. Elements in matrix A, C, and B should
be placed in top FIFOs, left FIFOs, and local PE memory. The
output elements of matrix C will be stored in the right FIFOs.

Systolic mapping entails constraints on the memory re-
source type and the connectivity between local memory and
PE array. Consequently, the above mapping is infeasible on a
CGRA architecture with simple dual-port memories without
FIFO functionality. Furthermore, the above mapping is also
infeasible on a CGRA where only one side of boundary PEs
are connected to local memory [5].

D. CGRA Mapping

Given an application with a compute-intensive loop kernel
and a CGRA architecture, the CGRA compiler needs to
generate a kernel schedule such that application throughput
is maximized. The loop kernel is represented as a DFG where
the nodes represent the operations and edges represent the
data dependencies among operations. CGRA mapping process
consists of:

1) Placement - Assigning DFG operations to functional
units in space and time so that dependency constraints
are met

2) Routing - mapping data signals between producer and
consumer DFG operations using wires and registers.

The CGRA compilers exploit ILP in compute-intensive loop
kernels through a software pipelining technique called modulo
scheduling [12]. Software pipelining extracts iteration-level
parallelism since ILP in a single basic block is not adequate.
It allows independent operations in successive iterations to run
simultaneously by overlapping operations in consecutive itera-
tions. The objective of the modulo scheduling is to generate a
repeating schedule such that multiple iterations are initiated in
a pipelined fashion. A new loop iteration can initiate execution
in every Initiation Interval (II). Thus, the modulo scheduling
aims to minimize the II value. Figure 4a shows a simple
DFG of a loop kernel. Initially, CGRA resources and DFG
characteristics determine the lower bound of II, i.e., minimal
II (MII). MII is the smallest possible value in which a modulo
schedule exists. It is computed as the maximum value of both
resource-constrained II and recurrence-constrained II [12].

The compiler represents the CGRA architecture using Mod-
ulo Routing Resource Graph (MRRG) [30]. MRRG models the
basic CGRA components (ALUs, RFs, and switches) and their
connections in a time-space view. In other words, MRRG is
a time-extended resource graph of the CGRA. The time axis
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(d) Execution of DFG
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(e) CGRA data path configurations

Fig. 4: Illustration of CGRA Mapping Process.

is restricted to II cycles since the goal is to find the repeating
schedule. This schedule is also called a modulo schedule.
Figure 4b shows an MRRG with II = 2 of a linear CGRA
with three PEs. The compiler mapping algorithm aims to find
a valid mapping (modulo schedule) of the DFG on the MRRG.
Valid mapping is defined as placement and routing with no
resource usage conflict. The compiler starts mapping DFG on
an MRRG with MII, and II is increased until the valid mapping
is obtained. Figure 4c shows a valid modulo schedule for II=2.
The execution of the CGRA schedule is shown in Figure 4d.

Routing is the most time-consuming part of the mapping
process. The CGRA mapper needs to establish valid routes
between producer and consumer operations. The data signals
are routed between functional units through switches and RFs.
Therefore, the mapper needs to decide the switch and RF port
configurations at each cycle. Figure 4e shows how data routes
are established in a CGRA architecture with two switches and
one RF. The figure shows how the data dependency between
operation 1 and operation 3 is routed (green edges).

The existing CGRA mapping algorithms can be categorized
into three main categories based on their approach. They
are either heuristic-based [4], [6]–[8], [13], [17], [31], graph-
based [9], [10], or ILP-based [11]. These approaches work well
for accelerating loop kernels with irregular data dependencies.
However, the authors of these compilers only evaluate them
for loop kernels with relatively small DFGs and small CGRA
sizes (4x4, 8x8) [4], [6], [9]–[11].

III. TARGET CGRA ARCHITECTURE

Figure 5 shows the target CGRA architecture along with
the system-level setup. The CGRA accelerates the compute-
intensive kernel in an application while the host processor runs
the rest of the application. The host processor also manages the
data transfer between off-chip memory and CGRA memories.
DMA engine and memory controller facilitates the transfer
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Fig. 5: Target CGRA architecture.
of data between the off-chip main memory and on-chip
memories.

As explained in the previous section, systolic data flow
entails a few constraints on local memory connectivity and
memory type. Accordingly, we designed the local memory
organization of the CGRA to support systolic data flow. The
target CGRA accesses input/output (I/O) data from two types
of on-chip memories, boundary FIFO memories, and constant
units. In the following, the term I/O memory resources refer
to those two types of on-chip memories. Systolic mapping
of kernels requires simple streaming data access in FIFO
order. Therefore, boundary PEs are connected with FIFO
memories. The top row and leftmost column of boundary
PEs are connected to load FIFOs that hold input data. FIFOs
connected to the bottom row and rightmost column of the
boundary PEs store the result data (store FIFOs). Therefore,
switches in boundary PEs have connections to load and store
FIFOs. The configuration memory produces the read/write
signals to FIFOs to sequence the data flow. Each PE consists of
a constant unit that holds the pre-loaded input data in a single
register or register file with multiple registers. Constant units
improve the memory capability of the array, and it is useful
to achieve higher utilization when the kernels are memory-
bound. If the total number of operations is larger than the
total number of input and output elements in a kernel, then
the kernel is compute-bound; otherwise, it is memory-bound.

CGRA consists of an array of processing elements con-
nected in a 2D mesh network. Each PE consists of an
ALU, RF, crossbar switches, and configuration memory. The
execution model of the CGRA is similar to what is explained
in the introduction.

IV. MOTIVATING EXAMPLE

HiMap is a hierarchical mapping approach that uses ab-
stractions at both kernel and architecture levels. Kernel DFG
is abstracted into Iteration Space Dependency Graph (ISDG),
and the CGRA is abstracted into Virtual Systolic Array (VSA).
It first maps ISDG onto the VSA. Then, it identifies the unique
iterations in terms of computation and data routing. It does
detailed CGRA mapping only for the unique iterations, which
it then replicates to create the final CGRA mapping.

We first present example mapping schedules of a two-
dimensional kernel on linear (one-dimensional) CGRA arrays
to show the effectiveness of our approach. BiCG is a two-
dimensional kernel of BiCGStab Linear Solver [32]. Figure 6a
shows the source code of the tiled BiCG loop kernel where

for (i0 = 0; i0 < N; i0 += b1) : L1

for (j0 = 0; j0 < M; j0 += b2) : L2 

for (i = i0; i < i0 + b1; ++i) : L3

for (j = j0; j < j0 + b2; ++j) : L4

s[j] = s[j] + r[i]*A[i][j];

q[i] = q[i] + A[i][j]*p[j]; 

(a) Source code (b) DFG

(c) Conv. CGRA Schedule
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(d) HiMap CGRA Schedule

Fig. 6: Illustration of HiMap CGRA schedule of BiCG kernel.
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(b) Data layout corresponds to
schedule in Figure 6d
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Fig. 7: Impact of memory resources on HiMap CGRA sched-
ule of BiCG kernel.

(b1, b2) is the block size and (N,M) is the problem size.
The loop blocking (tiling) breaks down the loop into smaller-
sized blocks when the problem size is bigger. We fully unroll
the inner loops L3 and L4 to generate the DFG. The outer
loops L1 and L2 invoke the inner two loops to complete the
execution.

Figure 6b shows the simplified DFG of unrolled L3 and
L4 loops for b1 = b2 = 4. Ellipses highlight the cluster
of operations that correspond to each iteration in the two-
dimensional iteration space formed by loops L3 and L4.
Thus, ellipses and connections between them form the ISDG.
Figures 6c and 6dshow conventional and HiMap mapping
schedules on the target 8x1 linear CGRA with each PE is
connected with two FIFOs for data loading. The colored nodes
belong to the current computation block, while the white nodes
represent the next block of computation. The Block Initiation
Interval (IIB) is the time interval between the initiation of
two successive blocks of computations. The lower the IIB
value, the higher the CGRA PE utilization and thus higher
throughput.
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The conventional mapping schedule is irregular as the map-
per does not see the regularity of the dependencies among op-
eration clusters [4], [6]. Therefore, the conventional approach
takes a long time to find an optimal placement and routing.
HiMap exploits the regularity of iteration level dependencies
to generate a regular schedule. It creates 4x1 Virtual Systolic
Array (VSA) by clustering 8x1 CGRA. Each systolic PE (SPE)
in VSA contains a sub-CGRA of size 2x1. Afterward, HiMap
places iterations on SPEs such that dependent iterations are
nearby either in time or space. HiMap yields higher throughput
as the IIB value is lower than the conventional mapping.
Even though there are 16 iterations, 9 of them are unique
based on both routing and computation in the HiMap schedule.
The number inside each ellipse, along with unique colors,
identifies the unique iterations. For example, iterations with ID
2 consume data from the north iteration and produce data to the
south and south-east iterations. Iterations with ID 3 consume
data from the northwest iteration and produce data to the south
and southeast iterations. Legend NSWE is used to depict north,
south, west, and east directions. HiMap identifies and performs
detailed mapping for these unique iterations. Then the unique
iteration mappings are replicated to generate the final CGRA
mapping schedule. Increasing block size does not necessarily
increase the number of unique iterations, HiMap compilation
time is not increased with the block size. Therefore, HiMap is
capable of mapping bigger block sizes to fit bigger CGRAs.

Figure 7a demonstrates the impact of memory resources
on kernel performance. It shows HiMap mapping schedule
of BiCG kernel on a CGRA with limited I/O memory as
shown in 7c (each PE connected with one FIFO instead of
two in the previous case). According to the mapping schedule,
PE 0 does the computation of s[j] + r[i] ∗ A[i][j] which is
related to one iteration of BiCG kernel. When there are two
FIFOs connected to one PE, elements r[i] and A[i][j] can be
placed in different FIFOs allowing single-cycle access for both
data elements. In that case, only two cycles are needed to
complete multiplication and addition operations. However, in
the schedule on CGRA with limited I/O memory, PE 0 needs
two cycles to access r[i] and A[i][j] as both data elements
are placed in a single FIFO. Thus, it increases the number of
cycles to 3 to complete one iteration. Consequently, IIB of the
schedule is increased to 12, decreasing the kernel performance.
Figures 7b and 7c show the input data layout corresponding
to the HiMap schedules in 6dand 7a, respectively. Some array
variables (A, s, p) are distributed among different FIFOs, while
some FIFOs contain data from multiple array variables. The
data layout depends on the corresponding CGRA schedule.
The host processor should move the data to FIFOs according to
this data layout for correct execution. Therefore, the mapping
algorithm should generate the data layout at compile time to
achieve correct system-level execution.

V. PROBLEM FORMULATION

This section presents the definitions and problem formu-
lation for the hierarchical application mapping approach on
CGRA.

Data-Flow Graph (DFG): We define DFG D = (VD, ED)
as a directed acyclic graph with VD representing operations

(a) DFG (b) ISDG (c) IDFGs

Fig. 8: Illustration of graph definitions for BiCG kernel.

and ED representing dependencies between operations of
the tiled and unrolled multi-dimensional kernel. (b1, b2, .., bl)
represents block size where l is the tiled loop level. Figure 8a
shows the fully unrolled DFG of BiCG kernel (b1 = b2 = 4).

Iteration Space Dependency Graph (ISDG): ISDG is
a directed acyclic graph D

′
= (C, E) where the vertices C

represent the cluster of nodes belonging to the same iteration
and the edges E represent the dependencies between clusters
(C ⊆ P(VD) where P() represents the power set) [33]. Two
clusters are connected if and only if there is a node in one
that is connected to a node in the other. Figure 8b shows the
ISDG of the BiCG kernel. Each iteration in C is indexed with
i. I(Ci) represents the iteration vector of Ci. ISDG is a multi-
dimensional block where block size (b1, b2, .., bl) determines
the dimensions.

Intra-Iteration Data-Flow Graph (IDFG): We define an
IDFG to capture the interaction of operations in a single
iteration. IDFG is a directed acyclic graph D

′′

i = (VD′′i
, ED′′i

)
with VD′′i representing two types of nodes: computation nodes
(V F
D
′′
i

), and input/output nodes (V I
D
′′
i

), and with edges ED′′i ⊆
ED representing the dependencies. V F

D
′′
i

are the nodes within

the iteration Ci ∈ C and the V I
D
′′
i

are the nodes outside Ci
that directly connects to the nodes inside Ci. Each iteration
cluster Ci ∈ C is associated with an IDFG D

′′

i . Three IDFGs
of the BiCG kernel are shown in Figure 8c.

CGRA Graph: CGRA is defined as a graph G = (VG, EG).
The size of the CGRA PE array is c×c. VSA G

′
is formed by

clustering CGRA PEs into sub-CGRAs (G
′′

) of size s1 × s2.
Modulo Routing Resource Graph (MRRG): MRRG

HIIB = (VH , EH) is a resource graph of the CGRA that is
time extended to IIB cycles [13]. VH consists of two types of
nodes: ALUs (V FH ) in each PE and ports (V PH ) in interconnects
and RFs [13]. As the CGRA schedule repeats after IIB cycles,
the resources at cycle IIB − 1 have connectivity with the
resources at cycle 0 in the MRRG. H

′
= (VH′ , EH′ ) is

defined as the time extended resource graph of the VSA G
′

(VH′ ⊆ P(VH)). H
′′
= (VH′′ , EH′′ ) is defined as the time

extended resource graph of the sub-CGRA G
′′

.
Utilization: We define CGRA resource utilization U as the

ratio between the number of operations in DFG D and the
number of PEs in MRRG. U = |VD|/|V FH |.

Data Domain: Let R = R0, R1, .., Rm−1 be the memory
references in the DFG D. The data domain M is defined as
a set of all memory elements accessed by all the memory
references through outer loop iterations.

Data Placement: Let dr be a data element accessed by
memory reference r ∈ R. Data placement of a memory
reference r is described as a function P (r) = (xr, yr, tr)
∀r ∈ R, where (xr, yr) is the index of the I/O memory that
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Fig. 9: Overview of the HiMap algorithm.

dr is mapped to and tr is the cycle that dr is accessed. I/O
memory index is the same as the index of the PE that I/O
memory is directly connected to.

I/O Memory Constraint: The validation of the data place-
ment is interpreted as the number of parallel data elements
accessed by a PE should be less than or equal to the available
number of I/O memory resources connected to that PE.

Problem Definition: Given a kernel and a CGRA, the prob-
lem is to construct a time extended MRRG HII = (VH , EH)
of the CGRA for which there exists;

1) a mapping φ = (φV , φE) from D = (VD, ED) to HII

which maximizes the utilization U
2) a valid data placement P (r) for all r ∈ R.

HiMap decomposes the problem into two hierarchical prob-
lems: find a mapping φ

′′
from IDFG (D

′′
) to time extended

sub-CGRA (H
′′

) and find a mapping φ
′

from ISDG (D′) to
time extended VSA (H

′
) in a way that they collectively solve

the original problem.

VI. HIMAP MAPPING ALGORITHM

Algorithm Overview: HiMap is an iterative algorithm that
terminates when a valid mapping is found. The goal of the
algorithm is to maximize the resource utilization of the target
CGRA. Figure 9 shows the four main parts of the algorithm:

1) Intra-Iteration Data-Flow Graph to sub-CGRA mapping,
2) Iteration Space Dependency Graph to Virtual Systolic

Array mapping,
3) Inter-iteration routing and I/O memory constraint check,
4) Unique iteration replication and data placement.

Algorithm 1 presents the pseudo-code of HiMap algorithm
while Algorithm 2 shows the corresponding subroutines. Step
1 (Line 4-5) determines node placement within sub-CGRA,
and step 2 (Line 7-15) determines the placement of the
iterations on VSA. Using these two placements, HiMap can
determine the CGRA schedule with all the nodes placed on
the target CGRA. Step 3 (Line 15-26) checks the validity of
that CGRA schedule in terms of routing and I/O memory
resource constraints. Step 3 identifies unique iterations, and
inter-iteration routing is done only for those unique iterations.
Step 1 generates multiple sub-CGRA mappings sorted based
on their utilization. Steps 2 and 3 iterate through the sub-
CGRA mappings till it finds a valid CGRA mapping of
unique iterations. Step 4 replicates unique iteration mappings
to generate the final valid mapping. Step 4 also generates the
corresponding data layout. We use a running example, BiCG
kernel mapping on linear (8,1) CGRA (Figure 6), to explain
the HiMap algorithm.

Algorithm 1: HiMap Algorithm
1 Inputs: Kernel : K, CGRA : G = (VG, EG), Space-time Mapping Matrix :

(H,S), Block Sizes (b3, b4, .., bl)
2 Outputs: CGRA Mapping : φ, Data Placement : γ
3 D

′′
= (V F

D
′′ , E

F

D
′′ )= getIDFG(K)

4 IDFGMappings = IDFG MAP(D
′′

) . Get mappings of the IDFG on multiple
sub-CGRAs

5 BoxDims = Sort(IDFGMappings) . Sort mappings based on utiization
6 foreach (s1, s2, t) ∈ BoxDims do
7 b1 = c/s1, b2 = c/s2, IIB = t.(b3.b4..bl)
8 D = (VD, ED) = GenerateDFG(K, b1, b2, b3, .., bl)
9 D

′
= (C, E) = ClusterDFG(D)

10 HII = CreateMRRG(G, IIB )
11 foreach Ci ∈ C do

12 P (Ci) =

H
S

× I(Ci) . Systolic Mapping of each iteration

13 foreach ni ∈ Ci do
14 P (ni) = (P (Ci)× (t s1 s2)

T + P
′
(n))

mod (IIB − −)T
15 .
16 foreach Ci ∈ C do
17 if D

′′
i /∈ D

′′
υ then

18 D
′′
υ = D

′′
υ ∪D

′′
i ,

19 Cυ = Cυ ∪ Ci . Determine unique IDFGs
20 Dυ = (VDυ , EDυ )← ∅ . Create minimal DFG
21 foreach (ni, nj) ∈ ED do
22 if ni ∈ Cυ & nj ∈ Cυ then
23 EDυ = EDυ ∪ (ni, nj), VDυ = VDυ ∪ ni ∪ nj
24 if ni /∈ Cυ & nj ∈ Cυ then
25 EDυ = EDυ ∪ (γ(ni), nj)
26 success = ROUTE(Dυ) & IO CONSTRAINT CHECK(Dυ)
27 if success then
28 φ = REPLICATE(); . Replicate the mapping
29 γ = DATA PLACEMENT();

A. IDFG to sub-CGRA mapping

This step aims to determine the possible placement of nodes
in one iteration on time extended sub-CGRA. Only intra-
iteration edges, i.e., edges between nodes within an iteration,
are routed when determining the correct placement. This step
ignores inter-iteration edge routing. Inter-iteration edges are
routed in step 3. HiMap obtains a mapping (φ

′′
) of IDFG

computation nodes on a sub-CGRA in a way that sub-CGRA
resource utilization is maximized. However, step 3 could fail
to find valid mapping due to routing or I/O memory resource
constraints for the highest utilized sub-CGRA mapping. There-
fore, multiple mappings are generated for different sub-CGRA
sizes with different utilization. Figure 10 shows two possible
IDFG to sub-CGRA mappings of BiCG kernel.

Function getIDFG() generates the IDFG D
′′

by analyzing
LLVM IR of the loop kernel [34]. Function IDFG_MAP()
performs the IDFG to sub-CGRA mapping, which includes
operation placement and intra-iteration dependency routing.
First, it performs topological sort of the operations in IDFG
based on their dependencies. Different possible rectangular
sizes (s1, s2) and time depths are considered for sub-CGRA
size (s1, s2 ≤ |V FD′′ |, t ≤ |V

F
D′′
|/(s1.s2) + tMax). The sub-

CGRA is unrolled in the time dimension to create time ex-
tended sub-CGRA (H

′′
). The time depth (t) of H

′′
is initially

set to its resource minimum value |V F
D′′
|/(s1.s2) (Line 4).

HiMap uses a heuristic-based iterative algorithm for IDFG
to sub-CGRA mapping (Line 4-16). The goal is to assign
operations to PE ALU (V F

H′′
) and route the data signals

between operations using the switch and register file ports
(V P
H′′

). Each node v ∈ V F
D′′

is assigned to node hF ∈ V F
H′′

,
that results in least accumulated cost when routing data
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Algorithm 2: Main Subroutines of HiMap Algorithm
1 Function IDFG_MAP(D

′′
)

2 TopologicalSort(D
′′

), S ← (1, 2, .., |V F
D
′′ |), T ← (0, 1, ..., tMax)

3 foreach (s1, s2, t0) ∈ S2 × T do
4 G

′′
= CGRAcluster(G, s1, s2), t = |V F

D
′′ |/(s1.s2) + t0

5 H
′′

= TimeExtend(G
′′
, t) . Time extend the sub CGRA

6 while !success OR !MaxIterations do
7 foreach v ∈ V F

D
′′ do

8 foreach h ∈ H
′′

do
9 foreach p in Parents(v) do

10 L[h] =

L[h] ∪ LeastCostPath(φ
′′
(p), h)

11 (hl, pathl) = min(L);
12 assign(hl, pathl); . Assign a placement and

routing
13 if Cl = oversubscribe(H) is empty then
14 success = 1; IDFGMapps = IDFGMapps ∪φ

′′
s1,s2,t

;
15 else
16 IncreaseCosts(Cl) ; success = 0;
17 return IDFGMapps
18 Function ROUTE(Dυ)
19 H = CreateReducedMRRG(G)
20 while !success OR !MaxIterations do
21 foreach v ∈ V FD do
22 foreach h ∈ H do
23 foreach p in Parents(v) do
24 L[h] = L[h] ∪ LeastCostPath(φ(p), h)
25 (hl, pathl) = min(L);
26 assign(hl, pathl); . Assign a placement and routing
27 if Cl = oversubscribe(H) is empty then
28 success = 1;
29 else
30 IncreaseCosts(Cl) ; success = 0;
31 return success;
32 Function IO_CONSTRAINT_CHECK(Dυ)
33 foreach Rj ∈ R0, R1, .., Rm−1 do
34 (xd, yd, td) = P (Rj) = P (Ci)× (t s1 s2)

T + P
′
(ni);

parallel access[xd][yd][td] + +;
35 foreach x, y ∈ c× c do
36 foreach t ∈ (0, .., lat) do
37 if maxParAcc < parallel access[x][y][t] then
38 maxParAcc = parallel access[x][y][t];
39 if g(x, y) < maxParAcc then
40 return fail;
41 return success;

from parent nodes of v. Routing is done utilizing ports in
hP ∈ V P

H′′
. HiMap uses Dijkstra’s shortest path algorithm for

establishing routes while allowing ports to be oversubscribed
if necessary. All ports are initially assigned the same cost. At
the end of each iteration, the costs of oversubscribed ports
are increased for future iterations (inspired by SPR [6]). The
higher cost in oversubscribed ports encourages the mapper
to avoid oversubscribed ports when possible. We deem the
mapping a success if none of the ports is oversubscribed.
Mapping also terminates after user-defined maximum itera-
tions. Then it starts with increased time depth or a different
sub-CGRA size. Time depth is increased until user defined
tMax value. Finally, function IDFG_MAP() returns all valid
mappings candidates for different sub-CGRA sizes (s1, s2) and
time depths (t). For example, GEMM kernel has only two
IDFG nodes (|V F

D′′
| = 2). Therefore only two rectangular sizes

are considered for GEMM sub-CGRA (s1, s2) = (1, 1), (1, 2).
The maximum time depth (t) allowed is configurable through
parameter tMax (t ≤ |V F

D′′
|/(s1.s2) + tMax). For example, if

tMax value is 3, the sub-CGRA mapping candidates would be
(s1,s2,t) = (1,1,2), (1,1,3), (1,1,4), (2,1,2), (2,1,3), (2,1,4).

PE 0 PE 1

PE 0 PE 1

x

+ +

x

PE 0 PE 1

SPE 0

t

PE 0

PE 1

PE 0

PE 1

x

+

+

x

PE 0

SPE 0

t
(a) (s1, s2, t = 1, 1, 4).

PE 0 PE 1

PE 0 PE 1

x

+ +

x

PE 0 PE 1

SPE 0

t

PE 0

PE 1
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PE 1

x

+

+

x
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SPE 0

t
(b) (s1, s2, t = 2, 1, 2).

Fig. 10: IDFG to Sub-CGRA mappings of BiCG IDFG.

B. ISDG to VSA Mapping

For each valid sub-CGRA mapping (s1, s2, t), HiMap cre-
ates Virtual Systolic Array (VSA) on c × c CGRA (Line 7-
9). Each systolic PE (SPE) in VSA contains a sub-CGRA.
Therefore, VSA size is equal to (c/s1, c/s2). For example, for
the BiCG mapping with the sub-CGRA size of (2,1), VSA
size is (4,1) on an (8,1) linear CGRA.

In the systolic mapping algorithm, multi-dimensional kernel
ISDG is mapped onto two-dimensional VSA using a transfor-
mation function φ

′
(Equation 1). For a correct transformation,

in the case of two-dimensional VSA, the first two dimensions
(b1, b2) in the kernel ISDG should be similar to the two
dimensions in VSA [26]. Therefore, block size (b1, b2) is
chosen similar to the VSA size to fit ISDG on the VSA
(Line 7-8). In the case of one-dimensional VSA, as in our
example, only the first dimension b1 should be similar to the
VSA dimension. Figure 11 shows the linear (4,1) VSA on
an (8,1) linear CGRA. b1 needs to be equal to 4 to fit the
ISDG onto VSA. We use array padding to avoid partial tiles
when the block sizes do not evenly divide the trip counts
of the target application kernel [15]. Then, HiMap constructs
the DFG D and ISDG D

′
according to the determined block

sizes [33]. ISDG is then placed on the VSA using a systolic
mapping approach. HiMap utilize the function φ

′
(Equation 1)

to determine the space-time position of the iterations on the
VSA (Line 12).

Figure 11 shows the ISDG to VSA mapping for BiCG
kernel on a linear (4,1) VSA. Figure 3c shows the ISDG to
VSA mapping for the GEMM kernel on a two-dimensional
VSA. Valid (H,S) is also shown in Figure 11. In Figure 11,
iteration I(Ci) = (01)T of BiCG kernel maps on to space-
time position P (Ci) = (11)T according to function φ

′
. Notice

that both mappings can start a new computation to utilize all
the SPEs in every time unit. A new computation is executed
after 4-time units in BiCG mapping and 2-time units in
GEMM mapping. Therefore, those mappings have 100% SPE
utilization. We call the duration between the initiation of two
computations as the initiation interval of the ISDG mapping on
VSA (IIS). As mentioned before, ISDG is transformed onto
two-dimensional VSA where (b1, b2) was determined accord-
ing to the spatial dimensions of VSA. The remaining block
sizes (b3, b4, .., bl) of the ISDG determines the time dimension
of the transformation. Therefore, IIS depends on block sizes
(b3, b4, .., bl) and is equal to (b3 × b4 × .. × bl). The block
sizes can affect the final performance, especially in systems
with hardware-controlled memories such as caches [14], [35].
[35] shows that optimal tile sizes can achieve 10% average
performance improvement over cubic tiling (equal tile size in
all dimensions). However, with software-controlled memories
in CGRA, the effect of tile size is limited compared to



9

SPE 0 SPE 1 SPE 2 SPE 3

SPE 0 SPE 1 SPE 2 SPE 3

SPE 0 SPE 1 SPE 2 SPE 3

SPE 0 SPE 1 SPE 2 SPE 3

SPE 0 SPE 1 SPE 2 SPE 3

SPE 0 SPE 1 SPE 2 SPE 3

SPE 0 SPE 1 SPE 2 SPE 3

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

𝐻
𝑆

=
1 1
0 1

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7

SPE 0 SPE 1 SPE 2 SPE 3

x

t

00

ISDG

ISDG to VSA mapping

Fig. 11: ISDG to VSA mapping for BiCG kernel (b1=b2=4).

the hardware caches. In experiments, we choose the trivial
configuration for the remaining block sizes b2 = b3 = b4.

There could be multiple valid systolic mappings for a given
kernel with different SPE utilizations (|C|/|V F

H′
|). Also, there

could be valid systolic mappings with the same SPE utilization
but with different dataflows. For example, the GEMM kernel
dataflow shown in Figure 3c is widely known as weight-
stationary dataflow (considering matrix B as weight matrix).
The GEMM kernel can have output-stationary dataflow with
different (H,S). HiMap can support both dataflows given the
corresponding (H,S) as input. In experiments, HiMap use the
space-time mappings that achieve the highest SPE utilization.

C. Routing and I/O Memory Constraint Check

Step 1 determines node placement within sub-CGRA, and
step 2 determines the placement of the ISDG on VSA. Using
these two placements, HiMap can determine the schedule with
all nodes placed on the target CGRA. For example, Figure 12a
shows the possible schedule of BiCG kernel corresponding to
the sub-CGRA mapping shown in Figure 10b and the ISDG to
VSA mapping shown in Figure 11. The space-time placement
of each DFG node ni ∈ VD on the CGRA is given by
the function P (ni) where P

′
(ni) is the relative placement

of the node ni within sub-CGRA, P (Ci) is the position of
the corresponding iteration on VSA, t is the time depth and
(s1, s2) is the sub-CGRA size.

P (ni) = P (Ci)× (t s1 s2)
T + P

′
(ni) (2)

This schedule could be invalid due to two types of resource
constraints in the target CGRA: 1) Failure to route the inter-
iteration dependency edges due to routing resource constraints.
2) Failure to access the input/output data due to I/O memory
resource constraints. HiMap checks these constraints parallelly
because both constraints should be satisfied for a valid map-
ping.

Inter-iteration Dependency Routing: For the dependency
routing, function createMRRG() constructs the MRRG by
extending the CGRA resource graph to IIB cycles. The value
of IIB is equal to IIS × t where IIS is the initiation interval
of ISDG to VSA mapping, and t is the depth of sub-CGRA
mapping (Line 7). The modulo schedule, i.e, the placement
(P
′′
(ni)) of each DFG node ni ∈ VD on the MRRG is

given by P
′′
(ni) = P (ni) mod (IIB − −)T (Line 14).

mod (IIB − −)T performs the modulo operation only on
the time dimension. Figure 12b shows the BiCG kernel modulo
schedule, i.e., DFG placement on MRRG of the linear CGRA.

(a) DFG execution schedule (b) DFG on MRRG

Fig. 12: Inter-iteration dependency routing for BiCG kernel.

HiMap only determines the detailed routing of edges be-
tween the nodes in unique iterations. Unique iterations capture
all the different routing possibilities between all iterations in
the final mapping. Thus, HiMap can replicate unique iteration
mappings to create the final mapping. HiMap determines
the set of unique IDFGs distinguished by the dependency
edges in and out of the iteration cluster. Input and output
nodes (V I

D′′
) in IDFG represent the source and destination

of the dependencies. Two IDFGs are the same if the relative
placements (relative to corresponding destination and source
node) of all input and output nodes (V I

D′′
) of the IDFGs are

the same.
HiMap needs to segregate the interaction between unique

iterations to determine the detailed routing. For that HiMap
creates a minimal DFG (Dυ), which captures the interaction
between unique iterations. Minimal DFG is created by remov-
ing all the nodes in duplicated iterations. Figure 13 shows
the minimal DFG corresponding to BiCG DFG. To create
the minimal DFG, first, all the nodes in unique iterations are
added to the node-set of initially empty minimal DFG. If both
source and destination nodes of an edge belong to unique
iterations, those edges are added to the edge set of minimal
DFG. It forms an intermediate minimal DFG as shown in
Figure 13. However, it omits edges between some unique
iterations. Edges are omitted when a destination node of an
edge does not belong to the unique iteration set. For example,
in Figure 13, the edge between nodes belonging to yellow
and blue color iterations is omitted in intermediate minimal
DFG. To add omitted edges, for each edge in original DFG
(u, child(u)), when a destination node do not belong to an
unique iteration (child(u) /∈ Dυ), it recursively visits child
destination nodes until it finds a node which belongs to unique
iterations (v ∈ Dυ). Then the omitted edge (u, v) is added to
the edge set of minimal DFG (Line 20-25).

Minimal DFG is then mapped onto a reduced MRRG. The
reduced MRRG dimensions depend on the number of unique
iterations in each ISDG dimension and the sub-CGRA size.
For example, BiCG minimal DFG is mapped onto a reduced
MRRG as shown in Figure 14a. Since each dimension has 3
unique iterations and sub-CGRA size is (2,2), the size of the
reduced MRRG is (x = 2 × 3, IIB = 2 × 3). The function
ROUTE() attempts to do detailed routing of the minimal DFG
on the reduced MRRG (Line 17). It also employs cost-based
Dijkstra’s shortest path algorithm for routing. The approach is
similar to how routing is done in the IDFG_MAP() function,



10

Fig. 13: Minimal DFG of BiCG kernel.
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Fig. 14: Data path configurations of BiCG kernel.

as explained in step 1. If the routing fails due to routing
resource congestions after user-defined maximum iterations,
it repeats steps 2 and 3 with a new sub-CGRA mapping
obtained in step 1. Lower utilized sub-CGRA mappings make
more routing resources available (in the time dimension) and
resolve routing resource congestions. A successful outcome
of function ROUTE() contains the port configurations of all
interconnects and RFs. Figure 14a shows the detailed routing
of the minimal DFG of the BiCG kernel on the reduced
MRRG.

I/O Memory Resource Constraint: The target CGRA
access input/output data from two types of I/O memory
resources, FIFOs connected to boundary PEs and constant
units. HiMap checks whether the I/O memory requirement
of the schedule matches the available I/O memories of the
target CGRA. This constraint check is done on the schedule
generated from step 2. If the available I/O memory resources
are not sufficient, HiMap rejects the schedule and repeats step
2 with the next sub-CGRA size.

Each memory reference r ∈ R0, R1, .., Rm−1 in the
unrolled kernel is directly connected with a DFG node in
the kernel. The space-time placement of memory reference
r is similar to the space-time placement of the directly
connected DFG node. Therefore, the placement of memory
reference r (P (r)) is equal to the directly connected DFG
node placement. If ni is the directly connected DFG node to
memory reference r,

P (r) = (xr, yr, tr) = P (Ci)× (t s1 s2)
T + P

′
(ni) (3)

Let dr is a data element that memory reference r is
accessed. (xr, yr) is the index of the I/O memory that dr is
mapped to and tr is the cycle that dr is accessed. The valida-
tion condition of the data placement function P (r) is checked

by the function IO_CONSTRAINT_CHECK() (Line 31). It
checks whether the number of I/O memories connected to each
PE is less than or equal to the maximum number of parallel
data accesses in that PE. The maximum number of parallel
data accesses is equal to the number of data elements mapped
to the same IO memory index (xr, yr) in the same cycle.
Function g(x, y) return the number of I/O memories connected
to each PE indexed by coordinates (x, y). If the schedule is
invalid due to limited I/O memory resources, HiMap repeats
steps 2 and 3 with a new lower utilized sub-CGRA mapping
obtained in step 1. Those sub-CGRA mappings are time
extended, so parallel accesses are serialized to reuse the limited
I/O resources in the time dimension.

D. Unique Mapping Replication and Data Placement

Replicating Unique Iteration Mappings: Once the sched-
ule is validated w.r.t both routing and I/O memory resources,
the resource configurations of all PEs can be obtained by
replicating unique iteration mappings. The function ROUTE()
obtains both ALU and routing configurations for unique iter-
ations. These unique iteration mappings are arranged together
to create the final valid mapping (φ) of D on CGRA. HiMap
replicate each unique iteration mapping one or more times in
the final mapping. The replication position, i.e., the space-time
position where each unique iteration mapping is replicated,
can be determined by the ISDG/DFG placement on MRRG
(P
′′
(ni)). Figure 14b shows the replicated mapping of the

DFG of BiCG kernel on the MRRG. Notice how ALU and
port configurations that correspond to each unique iteration
(shown in unique colors) is replicated in the final mapping.
According to the generated mapping, each PE has a repeating
instruction stream with a length equal to IIB .

Data Placement: Notice that HiMap schedule has no
address generation instructions. Data is either streamed in
and out of the CGRA through boundary FIFOs or loaded
through the constant units. CGRA PEs access the stream of
data in I/O memories by enabling read/write signals. The host
processor manages the data movement between the CGRA
I/O memories and main memory using DMA. Hence the
host processor requires a mapping between each memory
reference in the unrolled kernel and the corresponding CGRA
I/O memory. Therefore, HiMap needs to generate a data layout
that consists of the I/O memory ID of each memory reference
and the order of the referenced data elements arranged inside
the I/O memory. The data layout is derived using the data
placement function P (r) = (xr, yr, tr). (xr, yr) gives the
index of I/O memory where each memory reference r is
mapped. To determine the data elements order inside the I/O
memory, function DATA_PLACEMENT() arrange the memory
references in ascending order according to the value tr.

Figure 15 shows the HiMap data mapping of GEMM kernel
(b = 2). Figure 15a shows the input and output variables corre-
sponding to the GEMM kernel. Figure 15b shows the DFG of
the GEMM kernel while Figure 15c shows the corresponding
CGRA schedule on 2x2 CGRA. Figure 15d shows the data
layout generated from HiMap. Arrays A and C are mapped
onto boundary FIFOs, and B is mapped onto the constant
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Fig. 15: HiMap Data Mapping for GEMM.

unit in each PE. Figure shows the data elements accessed
by the memory references at outer loops iteration vector
(i0, j0, k0) = (0, 0, 0). The data elements C[1] and C[3] are
mapped onto FIFO (0,1) because the directly connected DFG
nodes are mapped onto PE (0,1). C[1] is placed before C[3]
in the FIFO (0,1) because the directly connected DFG nodes
are mapped at t=3 and t=5 in the CGRA schedule.

VII. EXPERIMENTAL EVALUATION

We now evaluate HiMap for multi-dimensional kernels on
different CGRA sizes. Each PE in the CGRA contains RF with
four registers, an ALU, a constant unit, a configuration mem-
ory that holds up to 32 instructions, and a crossbar switch. Left
and top boundary PEs are connected to load FIFOs, whereas
right and bottom boundary PEs are connected to store FIFOs,
as shown in Figure 5. We implement the CGRA architecture
in Verilog HDL and synthesize it on a 40 nm process using
Synopsys toolchain to estimate the power consumption. The
maximum clock frequency is 510 MHz. We implement HiMap
in C++ to accept the C source code of the target kernel as
input and generate IDFG by analyzing the LLVM bitcode of
the kernel. HiMap constructs the unrolled DFG and ISDG
using the method proposed in [33]. We perform functional
validation of the resultant mappings through cycle-accurate
software simulation of the executions on CGRA architecture.

Benchmarks: We choose nine multi-dimensional (Dim >
1) compute-intensive loop kernels from MachSuite [36],
MiBench [37] and Polybench [32] benchmark suites, as listed
in Table I. For kernels without inter-iteration dependencies, we
can potentially execute all the iterations in parallel. For kernels
with single dimension (Dim = 1) iteration dependencies, the
only option is to place the iterations along the time dimension.
Consequently, for these two types of kernels, we cannot get
any benefit through virtual systolic mapping of the iterations,
and we can apply existing software pipelining techniques
to extract instruction-level parallelism [12]. Therefore, for
evaluation, we choose multi-dimensional (Dim > 1) kernels
with inter-iteration dependencies.

Baselines: We evaluate HiMap against two state-of-the-
art CGRA compilation algorithms, HyCUBE [4] and CGRA-
ME [16]. HyCUBE compiler uses a heuristic-based mapping

TABLE I: Characteristics for multi-dimensional kernels.

Benchmark
Loop levels

(Dim)
Description

Max unique

iterations

ADI 2 Alternating Direction Implicit solve 3

ATAX 2 Matrix Transpose and Vector Multiplication 9

BICG 2 BiCG Sub Kernel of BiCGStab Linear Solver 9

MVT 2 Matrix Vector Product and Transpose 9

CONV2D 2 2-D Convolution with 2x2 filter 9

GEMM 3 General Matrix Multiply 27

SYRK 3 Symmetric rank-k operation 27

Floyd–Warshall 3 Shortest path and transitive closure 34

TTM 4 Tucker Decomposition 45algorithm, which is an augmented version of SPR (Schedule,
Place, and Route) [6]. CGRA-ME uses simulated annealing
and ILP-based mapping approach [11]. It suffers from a much
longer compilation time than HyCUBE. Consequently, it fails
to generate valid mappings for most kernels on CGRA size
bigger than 8x8. Therefore, we report the best utilization
results from the two frameworks and call it the “Best of
HyCUBE & CGRA-ME (BHC)” mapping result.

Utilization Comparison: Figure 16 shows the CGRA com-
pute resource utilization (U ) comparison (quality of mapping)
between BHC and HiMap mapping approaches on different
CGRA sizes. The utilization of HiMap is higher or equal
(average 2.8x better) compared to BHC for all benchmarks in
all CGRA sizes. HiMap achieves 100% compute utilization,
i.e., performance envelope of CGRA for five kernels. Compute
resource utilization for kernel ADI is 83%, while for kernel
CONV2D it is 70%. For kernels BiCG, and FW the utilzation
is 66%. Kernels ADI, CONV2D, BiCG, and FW consist of
five, seven, four, and two compute operations in one iteration.
For these kernels final valid mapping is obtained with sub-
CGRA mappings with (s1, s2, t) = (2, 1, 3), (2, 1, 5), (2, 1, 3),
and (1, 1, 3), respectively. The utilization of these sub-CGRA
mappings is 5/6 (83%), 7/10 (70%), 4/6 (66%), and 2/3
(66%). The utilization of the final valid mapping is similar to
the utilization of corresponding sub-CGRA mapping because
HiMap replicates the sub-CGRA mappings to obtain the final
valid mapping. HiMap fails to find valid routing with 100%
utilized sub-CGRA mappings due to high routing resource
congestions in these three kernels. Lower utilized sub-CGRA
mappings make more routing resources available (in the time
dimension) and resolve routing resource congestions. Register
file (RF) utilization (average number of RF registers in use
per cycle) of valid HiMap mappings are 5%, 50%, 59%, 65%,
78%, 32%, 32%, 58%, 70% for ADI, ATAX, BICG, MVT,
CONV2D, GEMM, SYRK, FW, TTM respectively. Kernels
with high utilized final mappings and relatively complex data
dependencies result in higher RF utilization. In future works,
we will explore the possibility of merging sub-CGRA map-
pings in the time dimension to further improve the utilization
of hierarchical mapping.

Performance and Power Efficiency Comparison: Fig-
ure 16 shows the performance and power efficiency of BHC
and HiMap across different CGRA sizes. The performance
of both HiMap and BHC increases with the CGRA size.
However, on average, the performance of HiMap is 17.4x
higher than the performance of BHC. The power-efficiency
of HiMap increases with the CGRA size and achieves 5x
better power efficiency than BHC. The power efficiency of
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Fig. 16: Comparison of BHC and HiMap for different CGRA
sizes along X-axis.

the BHC approach decreases with an increase in the CGRA
size as the power increase in bigger CGRAs is more than
the corresponding performance benefit of under-utilized BHC
mappings.

Impact of I/O Memory Resources: As HiMap is I/O
memory aware mapping technique, we explore the impact of
I/O memory resources on kernel utilization and performance.
We compare kernel performance on CGRAs with two different
I/O memory configurations illustrative of different memory
capabilities. I/O-1 is similar to the previous configuration
where each boundary PE is connected to load/store FIFOs,
and each PE contains a constant unit as shown in Figure 5.
Therefore, in I/O-1, each boundary PE has two I/O memory
resources (FIFO and constant unit), and every other PE has
one I/O memory resource (constant unit). In I/O-2, boundary
PEs do not have constant units. Therefore, I/O-2 has one I/O
memory resource per PE. Thus, I/O-2 has low I/O memory
resources compared to I/O-1.

Figure 17 shows the PE utilization and performance of
HiMap schedule on the two different I/O memory config-
urations. The results show that I/O memory resources are
critical to PE utilization and performance. The I/O-resources
limit the utilization of kernels ADI, ATAX, MVT, GEMM,
SYRK, and TTM. For the I/O-2 configuration, valid mapping
is obtained with lower utilized sub-CGRA mappings than
the I/O-1 configuration. Those sub-CGRA mappings are time
extended, so parallel accesses are serialized to reuse the I/O
memory resources in the time dimension. For I/O-2 config-
uration, valid sub-CGRA sizes are (s1, s2, t) = (2, 1, 4) for
ADI and (s1, s2, t) = (1, 1, 3) for the other kernels. Since
BICG, CONV2D, and FW kernel utilization is already limited
by routing resources, there is no impact from the limitation of
I/O memory resources to those two kernels.

Compilation Time: Figure 18 provides the compilation
time for the main steps of the HiMap algorithm on 8x8 CGRAs
with different I/O constraints (I/O-1 and I/O-2). IDFG to sub-
CGRA (step 1) generates multiple valid sub-CGRA mappings.
Therefore, the mapping time depends on the complexity of the
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Fig. 17: Utilization and performance comparison for different
I/O memory resources.

Fig. 18: Compilation time analysis on 8x8 CGRA (tMax = 3,
MaxIterations = 10).
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Fig. 19: Compilation time comparison of BHC and HiMap
algorithms for different block sizes (c = b1 = b2 = b3 = b4)
along X-axis.

IDFG. ADI, BICG, and CONV2D have more IDFG nodes
compared to other benchmarks. Therefore, the compilation
time for step 1 of those benchmarks is higher than the other
benchmarks. ISDG to VSA (step 2) and routing and I/O
constraint check (step 3) iterate over sub-CGRA mappings
generated in step 1. Step 3 terminates (fails) when the available
routing or I/O resources are insufficient to establish a valid
mapping. When the number of failures increases, more time
is spent on steps 2 and 3. Figure 18 also shows the number of
failures in step 3 along with the number of routing failures and
I/O constraint check failures. ADI, BICG, and CONV2D fail
more times than the other benchmarks. Therefore more time
is spent on steps 2 and 3 for those benchmarks. In step 3, the
routing function dominates the compilation time over the I/O
constraint check function because of the iterative nature of the
routing algorithm. The number of failures in I/O-2 is higher
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Fig. 20: Performance-per-watt comparison of CGRA and
FPGA (for same block sizes).
than I/O-1 for all benchmarks except BICG and CONV2D.
Therefore, compilation time for I/O-2 is higher than for I/O-1
on those benchmarks.

Figure 19 shows the compilation time comparison between
HiMap and BHC on CGRA with I/O-1 memory configuration.
We keep the block size (b=b1=b2=b3=b4) equal to the CGRA
size (c × c) for both approaches (b = c). BHC fails to find a
valid mapping beyond the block size of 8, 5, and 4 for MVT,
GEMM, and TTM, respectively (timeout after three days). The
maximum compilation time for HiMap is less than 15 minutes,
even for a block size of 64 on 64x64 CGRA. BHC takes nearly
one day to find a mapping with a block size of 4, 5, and 8
for TTM, GEMM, and MVT, respectively. The compilation
time for HiMap is not much affected by the block size as
the number of unique iterations remains constant as block
size increases. The maximum number of unique iterations
identified by HiMap is shown in Table I.

Comparison with FPGA: We also compare the CGRA
performance-per-watt with HiMap against Xilinx Zynq ZC702
FPGA. The Vivado High-Level Synthesis (HLS) tool estimates
the performance and power values for the FPGA. The FPGA
runs at a maximum clock rate of 200 MHz, and power
consumption is around 120 mW∼130 mW for the different
kernels. We fully unroll the kernel with the maximum possible
block sizes until we exceed the FPGA resources. The HLS
compiler map all the operations in the unrolled DFG onto the
compute resources (DSP, LUT), and the resource utilization
increases with the DFG size. For a fair comparison, we also
use the same block size for the CGRA. Figure 20 shows
the performance-per-watt of FPGA and CGRA (with I/O-
1 memory configuration) normalized w.r.t. the CGRA. On
average, the CGRA achieves 1.9x better performance-per-watt
compared to the FPGA. The FPGA falls behind the CGRA
because the loop initiation interval of the mappings generated
from HLS is higher than the HiMap for all the benchmarks. In
addition, the overhead of fine-grained reconfigurability results
in a slower clock frequency and higher power in FPGA.

Comparison with Specialized Architectures: We compare
the HiMap mappings with the dataflow of manually designed
specialized architectures. Due to reconfiguration overhead in
CGRA, the performance and power efficiency are always lower
in CGRAs compared to specialized architectures. Therefore,
for a fair comparison, we compare the compute utilization
of the dataflow mappings. Google Tensor Processing Unit
(TPU) [25], and Microsoft Catapult [38] are prominent neural
network accelerators. Both accelerators utilize systolic array
microarchitecture to accelerate the GEMM kernel. The TPU
systolic array employs weight-stationary dataflow, where filter
weights are kept stationary in each PE. This dataflow is similar

to the dataflow shown in Figure 3c when array B is con-
sidered a weight matrix. The Catapult systolic array employs
output-stationary dataflow, where the partial output sums are
accumulated in each PE. Both dataflows achieve 100% MAC
utilization. We can represent both dataflows using a space-time
mapping matrix (H, S). We use those (H, S) values to compile
the GEMM kernel using HiMap. The resultant mappings
achieve 100% utilization on I/O-1 CGRA. This proves the
dataflow similarity of HiMap and manually designed systolic
arrays. We also compare the HiMap CONV2D mapping with
a DNN accelerator [24] which accelerates convolutional 2D
kernel. The dataflow of the DNN accelerator is called output-
oriented mapping (OOM). The space-mapping (S) of OOM is
similar to the mapping obtained from HiMap. However, this
specialized architecture can achieve 100% compute utilization
while HiMap can achieve 70% utilization on I/O-1 CGRA. The
DNN accelerator has multi-level data sharing network between
PEs. This dedicated multi-level routing network allows com-
plex dependency routing and enables high utilized mapping. In
contrast, the limited network resources in a 2D mesh network
in target CGRA causes routing failures and end up with low
utilized mappings.

VIII. CONCLUSION

We introduced HiMap, a fast and scalable approach for
mapping multi-dimensional kernels on bigger CGRAs. HiMap
exploits the regular nature of the inter-iteration dependencies
through hierarchical mapping. It first maps the iterations in
a kernel onto a VSA to identify unique iterations. It then
maps the unique iterations onto the CGRA individually, which
then replicates and stitches together to generate the final
complete mapping. HiMap achieves 17.3x performance and 5x
performance-per-watt improvement with minimal compilation
time than the state-of-the-art.
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