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Abstract—Coarse-Grained Reconfigurable Array (CGRA) has
emerged as a promising hardware accelerator due to the excel-
lent balance among reconfigurability, performance, and energy
efficiency. The CGRA performance strongly depends on a high-
quality compiler to map the application kernels on the archi-
tecture. Unfortunately, the state-of-the-art compilers fall short in
generating high quality mapping within an acceptable compilation
time, especially with increasing CGRA size. We propose HiMap — a
fast and scalable CGRA mapping approach — that is also adept at
producing close-to-optimal solutions for multi-dimensional kernels
prevalent in existing and emerging application domains. The key
strategy behind HiMap’s efficiency and scalability is to exploit
the regularity in the loop iteration dependencies by employing a
virtual systolic array as an intermediate abstraction layer in a
hierarchical mapping. Experimental results confirm that HiMap
can generate application mappings that hit the performance
envelope of the CGRA. HiMap offers 17.3x and 5x improvement
in performance and energy efficiency of the mappings compared
to the state-of-the-art. The compilation time of HiMap for near-
optimal mappings is less than 15 minutes for 64x64 CGRA while
existing approaches take days to generate inferior mappings.

I. INTRODUCTION

The demand for hardware accelerators is rising with the
increasing performance and low power requirements in modern
application domains such as machine learning, signal process-
ing, and multimedia. Reconfigurable accelerators are getting
popular because they offer reasonable performance and energy
efficiency while being flexible enough to support different
applications. Field Programmable Gate Arrays (FPGAs) and
Coarse-Grained Reconfigurable Arrays (CGRAs) have emerged
as prominent reconfigurable accelerators. The bit-level recon-
figurability in FPGAs offers more flexibility but comes at
a higher cost of area and power. CGRAs offer word-level
reconfigurability and therefore are more power-efficient than
the FPGAs [1]. There have been many recent works on CGRAs
in industry [1]-[3] and academia [4]-[8].

Figure 1 shows a CGRA consisting of an array of Processing
Elements (PE) connected in a 2D mesh network. Each PE
typically comprises of an Arithmetic Logic Unit (ALU), an
internal Register File (RF), and a configuration memory. On-
chip memory banks feed the data in and out of the array
during execution. A PE executes an operation on the data it
receives from the neighboring PEs or outside memory banks
in each cycle. It either keeps the results in the RF or sends
them to the neighboring PEs through output registers or both.
The instructions in the configuration memory control both
the operation execution (ALU configurations) and data routing
between PEs (switch and RF port configurations). The CGRA
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Fig. 1. An abstract block diagram for a 4x4 CGRA.
compiler statically determines which operation should execute
in which PE at which cycle (placement) and the data routes
between the PEs according to the data dependencies (routing).

CGRAs are widely used to accelerate compute-intensive
loop kernels. CGRA compilers exploit the inter- and intra-
loop parallelism in the loop kernels via software pipelining [9].
Typically loop body of the kernel consists of many operations
with irregular dependencies among them (intra-iteration de-
pendencies). Existing compiler algorithms focused on mapping
such irregular loop kernels on CGRA resources. They model
this as a graph mapping problem between the Data Flow Graph
(DFG) representing the loop body and the Modulo Routing-
Resource Graph (MRRG) representing the hardware resources
and their connections [10]. Due to the inherent complexity of
the graph mapping problem, the compilation time increases
substantially with the size (in terms of the number of nodes and
edges) of the graphs (DFG and MRRG). Therefore, existing
CGRA mapping techniques were evaluated using small loop
kernels on CGRAs with a relatively small number of PEs.

Multi-dimensional loop kernels, i.e., loops with multiple
nested loop levels, are ubiquitous in many popular applications.
These kernels often have few operations in the loop body but
unrolled kernels exhibit abundant instruction-level parallelism.
Hence, these kernels are well suited to be accelerated on
CGRAs with a large number of PEs. However, due to the in-
adequacy of compilers, the performance of the mapping is way
below the ideal performance achievable. Moreover, dependen-
cies between operations belonging to different iterations (inter-
iteration dependencies) limit the exploitable parallelism in
multi-dimensional kernels. Interestingly, unlike intra-iteration
dependencies, inter-iteration dependencies have regular patterns
as they are formed from the multi-dimensional iterators.

We propose a mapping approach, HiMap, that can achieve
the ideal performance envelope for multi-dimensional kernels.
Unlike conventional approaches, HiMap exploits the regularity
of inter-iteration dependencies by first solving the mapping
problem at the iteration level. HiMap creates a Virtual Systolic
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Array (VSA) on top of the target CGRA. Then HiMap maps
the iterations onto the VSA such that dependent iterations
are placed nearby in space or time using a systolic map-
ping algorithm. Even though all the iterations have the same
computations, the data dependencies among iterations make
the routing different. However, there is a limited number of
unique iterations in terms of both computation and routing.
This paves the way to scalability as HiMap only has to generate
detailed CGRA mappings of the few unique iterations. It can
then replicate the unique iteration mappings to generate the
complete CGRA mapping. HiMap achieves an average 2.8x
better resource utilization compared to the conventional map-
ping approach on eight multi-dimensional kernels while achiev-
ing the optimal solutions for five of them. HiMap achieves
17.3x performance and 5x performance-per-watt improvement
compared to the state-of-the-art. It takes only a few minutes
to generate quality mappings, while the conventional mapping
approaches take days to produce inferior mappings.

II. MOTIVATING EXAMPLE

We first present an example mapping schedule of a two-
dimensional kernel on a linear (one-dimensional) CGRA array
to show the effectiveness of our approach. BiCG is a two-
dimensional kernel of BiCGStab Linear Solver [11]. Figure 2a
shows the source code of tiled BiCG loop kernel where (b1, b2)
is the block size and (N, M) is the problem size. The loop
blocking (tiling) breaks down the loop into smaller sized blocks
when the problem size is bigger. We fully unroll the inner loops
L3 and L4 to generate the DFG. The outer loops L1 and L2
invoke the inner two loops to complete the execution.

Figure 2b shows the simplified DFG of unrolled L3 and L4
loops for b1 = b2 = 4. Ellipses highlight the cluster of opera-
tions that correspond to each iteration in the two-dimensional
iteration space formed by loops L3 and L4. Figures 2c and 2d
show conventional and HiMap mapping schedules of the DFG
on a 8x1 linear CGRA, respectively. The colored nodes belong
to the current block of computation, while the white nodes
represent the next block of computation. The Block Initiation
Interval (Ip) is the time interval between the initiation of two
successive blocks of computations. The lower the I value,
the higher the CGRA PE utilization and thus higher throughput.

The conventional mapping schedule is irregular as the map-
per does not see the regularity of the dependencies among
operation clusters. Therefore, the conventional approach takes
a long time to find an optimal placement and routing. HiMap
exploits the regularity of iteration level dependencies to gener-
ate a regular schedule. It creates 4x1 VSA by clustering 8x1
CGRA. Each systolic PE (SPE) in VSA contains a sub-CGRA
of size 2x1. Afterward, HiMap places iterations on SPEs such
that dependent iterations are nearby either in time or space.
HiMap yields higher throughput as the I/ value is lower than
the conventional mapping. Even though there are 16 iterations,
9 of them are unique based on both routing and computation in
HiMap schedule. The number inside each ellipse identifies the
unique iterations. For example, iterations with ID 2 consume
data from the north iteration and produce data to the south and
south-east iterations. Iterations with ID 3 consume data from

for (i0 = 0; 0 < N; i0 += b1) {:L1
for (jO = 0; j0 < M; jO +=b2) {:L2
for (i=1i0;1<i0 + b1; ++i){:L3
for (j =j0;j <jO +b2; ++j) {:L4
s[j] =s[j] + r{il*A[iGT;
qli] = qfi] + A[][1*p[il;
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Fig. 2. Illustration of HiMap CGRA schedule of BiCG Kernel.

the north-west iteration and produce data to the south and south-
east iterations. HiMap identifies and performs detailed mapping
for these unique iterations. Then the unique iteration mappings
are replicated to generate the final CGRA mapping schedule.

As the block size increases beyond 4 (bl > 4 and b2 > 4),
the number of unique iterations remains 9 because the unique
iterations except those in corners (2, 3, 4, 7, and 8) will repeat
in the mapping schedule. Since increasing block size does not
necessarily increase the number of unique iterations, HiMap
compilation time is not increased with the block size. Therefore,
HiMap is capable of mapping bigger block sizes to fit bigger
CGRAs. Bigger block sizes offer more parallelism that can be
exploited in bigger CGRAs and also reduce the number of on-
chip memory accesses because expanded DFG allows better
reuse of data within the PE array.

III. RELATED WORKS

We can classify the existing CGRA mapping algorithms
into three main categories: heuristic-based [6], [10], [12],
[13], graph-based [5], [14], [15], or ILP-based [16]. Graph-
based approaches formulate DFG to MRRG mapping using
existing problems in graph theory. ILP-based methods define
the mapping problem using a set of ILP constraints and solve
the formulation using ILP solvers. However, these approaches
are generally evaluated for loop kernels with relatively small
DFGs and small CGRA sizes (4x4, 8x8). HiMap is motivated
by systolic architectures [17]-[20] that maximize data reuse
through regular systolic data flow [19] and thus minimize
memory accesses [21]. It also results in conflict-free on-chip
memory access and eliminates the need for conflict removal
mechanisms [22]. However, CGRAs are far more flexible than
systolic arrays. We can consider a systolic array as one specific
instance of various possible CGRA mappings. HiMap generates
this instance on CGRA and achieves the best of both worlds.
For example, the dataflow of the systolic array in Google Tensor
Processing Unit (TPU) [23] is the same as the dataflow of
CGRA configured with the GEMM [24] kernel using HiMap.
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Fig. 3. Illustration of graph definitions for BiCG kernel.
IV. PROBLEM FORMULATION

Data-Flow Graph (DFG): We define DFG D = (Vp, Ep)
as a directed acyclic graph with Vp representing operations
and FEp representing the dependencies between operations.
(b1, ba, .., by) represents the block size where [ is the tiled loop
level. Figure 3a shows the DFG of BiCG kernel (b1 = b2 = 4).

Iteration Space Dependency Graph (ISDG): ISDG is a di-
rected acyclic graph D' = (C, ) where vertices C represent the
cluster of nodes belonging to the same iteration and the edges
& represent the dependencies between clusters (C C P(Vp)
where P() represents the power set) [25]. Two clusters are
connected if and only if there is a node in one that is connected
to a node in the other. Figure 3b shows the ISDG of BiCG
kernel. Each iteration in C is indexed with i and C! represents
the iteration vector of C;.

Intra-iteration Data-Flow Graph (IDFG): We define an
IDFG to succinctly capture the interaction of operations in
a single iteration. IDFG is a directed acyclic graph D;/ =
(Vpr, B u) with V,» representing two types of nodes: com-
putatlon nodes (V /,) and input/output nodes (V ,,) and with
edges E,» C Ep representmg the dependencies. V ., are the

nodes w1th1n the iteration C; € C and the VI , are the nodes
outside C; which directly connects to the nodes inside C Each
iteration cluster C; € C is associated with an IDFG DZ- . Three
IDFGs of BiCG kernel are shown in Figure 3c.

CGRA Graph: CGRA is defined as a graph G = (Vg, E¢).
The size of the CGRA PE array is ¢ x c. VSA G is formed by
clustering CGRA PEs into sub-CGRAs (G”) of size s1 X so.

Modulo Routing Resource Graph (MRRG): MRRG
Hir = (Vy, Eg) is a resource graph of the CGRA that is time
extended to I1p cycles [10]. Vi consists of two types of nodes:
ALUs (V) in each PE and ports (V) in interconnects and
RFs [10]. As the CGRA schedule repeats after I/p cycles, the
resources at cycle I1p — 1 have connectivity with the resources
at cycle 0 in the MRRG. H = (Vy+, Ey) is defined as the
time extended resource graph of the VSA G (Vyr C P(Vir)).

= (Vi ,Epr) is defined as the time extended resource
graph of the sub-CGRA G

Utilization: We define CGRA resource utilization U as the
ratio between the number of operations in DFG D and the
number of PEs in MRRG. U = |Vp|/|VF].

Problem Definition: Given a kernel and a CGRA, the prob-
lem is to construct a time extended MRRG H;; = (Vy, Ex)
of the CGRA for which there exist a mapping ¢ = (¢v, ¢g)
from D = (Vp, Ep) to Hy; which maximizes the utilization
U. HiMap decomposes the problem into two hierarchical prob-
lems: find a mapping ¢ from IDFG (D) to time extended

Step 1 (Line 3-4) | [Step 2 (Line 6-17)]
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Fig. 4. Overview of the HiMap algorithm.
Algorithm 1: HiMap Algorithm

1 Kernel : K, CGRA G = (Vg E@). Space-time Mapping Matrix : (H, S), (b3, by, by)
"
D vE BF getIDFG(K)
= ' Epr )=

1"

N

3 IDFGMappings = MAP(D )
4 BoxDims = Sort(IDFGMappings)
5 foreach (s1, sg, t) € BoxDims do

> Get mappings of the IDFG on multiple sub-CGRAs
> Sort mappings based on utiization

6 by =c/s1,by = c/sg. IIg = t.(bg.by..b])
7 D = (Vp, Ep) = GenerateDFG(K, by , ba, b3, .., by)
’
8 D = (C, &) = ClusterDFG(D)
9 Hpy =CreateMRRG(G, I I g)
10 foreach C; € C do
1 ck = Z x cf 1> Systolic Mapping of each iteration
12 foreach n; € C; do
’
P _ P T P T
13 ni = (C; X (ts1s2)” +n' ) mod (IIg 00)
14 foreach (C;, C7~) €& do
15 (t", z ,yT)=le»ch’P
16 if1((t7 == 1) && (|z"| + |y"| < 1)) then
17 ‘ AddFomardlngPalh() > Break multi-cycle multi-hop paths
18 foreach C; € C do
R
19 it D, ¢ D then
"
20 ‘ D, = D u D ,Cy = Cp UCy > Determine unique IDFGs
21 Dy = (VDU s EDU ) — 0 > Create minimal DFG
22 foreach (n;, n;) € Ep do
23 ifn,; € Cv & nj € Cy then
24 | Ep, =Ep, Y (nin;),Vp, =Vp, Un;Un;
25 if ng eECU&n] ECU then
26 ‘ Ep, = Ep, U (v(n;),nj)
27 success = ROUTE(D»U) > Route minimal DFG on MRRG
28 if success then

29 ‘ REPLICATE();
"
30 Function MAP(D )

> Replicate the mapping

"
31 TopologicalSort(D ), S « (1,2, .., [VE,, ), T « (0,1, ..., M)
D
32 foreach (s1, sg, tg) € S$2 X T'do
33 G’ = CGRAcluste(G, 51, s9), t = |[VE,, | /(s1.59) + tg
D
7" "
34 H = TimeExtend(G , t) > Time extend the sub CGRA
35 while /success OR !Maxlterations do
36 foreach v € VF,, do
D 2
37 foreach h € H do
38 foreach p in Parents(v) do
"
39 \ L[h] = L[h] U LeastCostPath(¢ (p), h)
40 (hy, pathy) = min(L);
M assign(hy , pathy); B Assign a placement and routing
42 if C; = oversubscribe(H) is empty then
"
43 success = 1; IDFGMapps = IDFGMapps u¢>§1 s, £
44 else
45 ‘ IncreaseCo»ls(C’l) 3 success = 0;

46 return IDEGMapps

sub-CGRA (H") and find a mapping ¢ from ISDG (D’) to
time extended VSA (H ) in a way that they collectively solve
the original problem.

V. HIMAP MAPPING ALGORITHM

Algorithm Overview: HiMap is an iterative algorithm that
terminates when a valid mapping is found. The goal of the
algorithm is to maximize the resource utilization of the target
CGRA. Figure 4 shows the three main parts of the algorithm:
1) IDFG to sub-CGRA mapping, 2) ISDG to VSA mapping,
and 3) identifying unique iterations, routing, and replication.
Algorithm 1 presents the pseudo-code of HiMap algorithm.
Step 1 (Line 3-4) maps operations in single iteration to sub-
CGRA and generates multiple sub-CGRA mappings sorted
based on their utilization. HiMap maps IDFG to sub-CGRA
before mapping the ISDG to VSA because ISDG and VSA
sizes depend on the sub-CGRA size. Step 2 (Line 6-17) and
3 (Line 17-29) iterate through the sub-CGRA mappings till it
finds a valid CGRA mapping.



IDFG to sub-CGRA mapping: HiMap obtains a mapping
(¢”) of IDFG computation nodes on a sub-CGRA in a way that
sub-CGRA resource utilization is maximized. However, multi-
ple mappings are generated for different sub-CGRA sizes with
different utilization since step 3 could fail to find valid CGRA
mapping for the highest utilized sub-CGRA mapping. Function
MAP () performs topological sort of the operations in IDFG
based on their dependencies. Different possible rectangular
sizes (s1, s2) are considered for sub-CGRA (s1, s < |V5,, ).
The sub-CGRA is unrolled in the time dimension to create time
extended sub-CGRA (H"). The time depth of H' is initially
set to its resource minimum value (Line 33).

HiMap uses a heuristic based iterative algorithm for IDFG
to sub-CGRA mapping (Line 33-45). The goal is to assign
compute operations to PE ALU (Vg,,), load/store operations
to memory ports and route the data signals between operations
using ports (V;/,). Each node v € Vg,, is assigned to node
htf € VI?,,, that results in least accumulated cost when routing
data from parent nodes of v. Routing is done utilizing ports in
nt e V;,,. HiMap uses Dijkstra’s shortest path algorithm for
establishing routes while allowing ports to be oversubscribed
if necessary. All ports are initially assigned the same cost. At
the end of each iteration, the costs of oversubscribed ports are
increased for future iterations (inspired by SPR [13]). This
encourages routing to avoid oversubscribed ports. We deem
the mapping a success if none of the ports are oversubscribed.
Mapping also terminates after user-defined maximum iterations.
Then it starts with increased time depth or a different sub-
CGRA size. Finally function MAP () returns all valid mappings
for different sub-CGRA sizes (s1, s2) and time depths (?).

ISDG to VSA Mapping: For each valid sub-CGRA size
(81, 82), HiMap creates Virtual Systolic Array (VSA) on ¢ X ¢
CGRA (Line 6-8). Each systolic PE (SPE) in VSA contains a
sub-CGRA. Therefore VSA size is equal to (¢/s1,¢/s2). The
block size (b1, b2) is chosen similar to the VSA size to fit ISDG
on the VSA (Line 6-7). Then HiMap construct the DFG D
and ISDG D’ according to the determined block sizes [25].
ISDG is then placed on the VSA using a systolic mapping
approach. In the quest of automating systolic array generation,
authors of [17] propose an algorithm to obtain a direct mapping
function between the iteration vector C/ and the space-time
position C of the iteration C; on a systolic array. The general
form of the systolic mapping function (¢/) for transforming
[-nested loop to a two-dimensional systolic array is

¢ :CP = [H} x ¢l 1)

S
Z.1 t h1 hL
CiI =|: C,LP = |z [{S‘I} = |[s11 ... S11
1 Y S21 S21

(H,S) is the space-time mapping matrix. HiMap utilize the
function ¢ to determine the space-time position of iterations
on VSA (Line 11). (H,S) is input to HiMap algorithm, and
it is pre-calculated using a heuristic search algorithm [17] that
satisfies the necessary conditions to assure correct transforma-
tion. There could be multiple valid systolic mappings for a
given kernel with different SPE utilizations (|C|/ |V§/ ). HiMap

for (i0 = 0;i0 < N; i0 += b1) { :L1

for (j0 = 0; j0 < M; jO += b2) {:L2
for (kO = 0; kO < K; k0 +=b3) { :L3
for (i1 =i0; i1 <i0 + b1; ++i1) {:L4
for (j1 = j0; j1 <O + b2; ++j1) {:L5
for (k1 =Kk0; k1 < k0 + b3; ++k1) {:L6
C[i1](j1] = Ci1][j1] + A[i1][k1]*B[k1][j1];
o
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Fig. 5. HiMap CGRA schedule for GEMM kernel.

chooses the mappings that achieve the highest SPE utilization.
Figure 5c shows the systolic mapping for GEMM kernel DFG
(Figure 5b and 5a) on 2x2 CGRA. The sub-CGRA size is 1x1.
Thus, VSA size is 2x2. Valid (H,S) for GEMM kernel is
also shown in Figure 5c. According to function ¢l, iteration
C! = (011)T maps on to space-time position CI’ = (211)7.
Notice how dependent iterations are placed nearby in a way
that dependent data flow through neighbor SPEs. II° is the
initiation interval of the systolic mapping on VSA. IT° depends
on block sizes (b3, by, .., b;) and is equal to (b X by X .. X by).
In case of two-dimensional kernels 71° = 1. Therefore, IIg of
three or higher dimensional kernels depends on the block sizes
(bs, by, .., by), which is a user input to the HiMap algorithm.

The approach of replicating iteration mappings in step 3 de-
mands all dependent iterations are placed in nearby SPEs, ie.,
single-cycle single-hop placement. However, for some kernels
with complex inter-iteration dependencies, it is impossible to
find such systolic mapping (e.g., Floyd-Warshall kernel [18]).
For such mappings, HiMap modify the IDFGs by adding
pseudo input-output nodes to intermediate iterations that multi-
cycle multi-hop paths need to go through (Line 17). It imitates
multi-cycle multi-hop paths as a combination of single-cycle
single-hop paths between iterations.

Identifying unique iterations, routing and replication:
HiMap constructs the MRRG by extending the CGRA resource
graph to I1p cycles. The value of IIp is equal to I1° x t
where t is the depth of sub-CGRA mapping (Line 6). Then,
it determines the absolute placement (n”’) of each DFG node
v € Vp on the MRRG based on /the relative placement of
IDFG nodes within sub-CGRA (n? ) and the position of the
iterations (CT) on VSA (Line 13). Then HiMap determines the
set of unique IDFGs distinguished by the dependency edges in
and out of the iteration cluster. Input and output nodes (Vé,,) in
IDFG represent the source and destination of the dependencies.
Two IDFGs are the same if the relative placements (relative to
corresponding destination and source node) of all input and
output nodes (VDI/,) of the IDFGs are the same.

HiMap only determines the detailed routing of nodes be-
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Fig. 6. (a) DFG (b) Intermediate DFG (c) Minimal DFG.

tween unique iterations because it can be replicated to create
the final mapping. For that HiMap creates a minimal DFG
(D,,) that captures the interaction between unique iterations by
removing nodes in duplicated iterations. Figure 6¢ shows the
minimal DFG corresponding to DFG in Figure 6a. First, all the
nodes and edges in unique iterations are added to the initially
empty minimal DFG. It forms an intermediate minimal DFG
excluding edges between unique iterations (Figure 6b). Then,
missing edges are added to the minimal DFG (Line 21-26). Af-
terwards, the function ROUTE () attempts to do detailed routing
of the minimal DFG on the CGRA (Line 27). The approach
is similar to the way routing is done in the MAP () function.
A successful outcome of function ROUTE () contains the port
configurations of all interconnects and RFs corresponding to
unique iterations. Then both ALU and routing configurations
are replicated according to the ISDG placement to create the
mapping (¢) of D on CGRA. According to the generated
mapping, each PE has a repeating instruction stream with a
length equal to I1. However, HiMap keeps unique instructions
in the configuration memory of each CGRA PE to avoid
configuration memory bloat. PE program counters generate the
instruction stream according to the mapping schedule.

VI. EXPERIMENTAL EVALUATION

We now evaluate HiMap for multi-dimensional kernels on
different CGRA sizes. Each PE in the CGRA contains a RF
with four registers (two r/w ports), an ALU, a configuration
memory that holds up to 32 instructions, and a crossbar switch.
To eliminate memory access bottlenecks in some kernels, each
PE also contains a data memory that holds up to 64 data
elements. We implement the CGRA architecture in Verilog
HDL and synthesize it on a 40nm process using Synopsys
toolchain to estimate the power consumption. The maximum
clock frequency is 510 MHz. We implement HiMap in C++
to accept the C source code of the target kernel as input
and generate IDFG by analyzing the LLVM bitcode of the
kernel. HiMap constructs the unrolled DFG and ISDG using
the method proposed in [25]. We perform functional valida-
tion of the resultant mappings through cycle-accurate software
simulation of the executions on CGRA architecture.

Benchmarks: Table I shows categorization of compute-
intensive loop kernels from MachSuite [26], MiBench [27] and
Polybench [11] benchmark suites based on the loop dimension-
ality (Dim) and the existence of inter-iteration dependency. For
kernels without inter-iteration dependencies, we can potentially
execute all the iterations in parallel. For kernels with single
dimension (Dim = 1) iteration dependencies, the only option is

TABLE 1
LOOP KERNEL CATEGORIZATION.

No inter-iteration dependency With inter-iteration

Dim =1/2/3 Dim = 1 Dim =2 Dim =3 Dim = 4
I};/;di})‘tst‘rjt;t\ex %::um:;dc &:;a:dd "% | Machuite: acs expand key, Polybench: adi.
take diff, get delta matrix weight, Spmv. v“?ﬂjl_. atax, bicg, mvt; Polybench:
knn md, update weights MiBench: basic math usdrt, | ¢y gommyer, | ECMM- Polybench:
viterbi éonr; rob. e susan 'acol;iDZd T | syrk, mm, nmy )
MiBench. fnc fdet islow Polybench: stencil jacobild, | \pop e | floyd-warshall. | g7

- Jpeg K ; N cholesky, symm, gesummv, . " | Machsuite: fft. e
PolyBench: huffman durbin, dynprog, nw, stencil 2d. Conv3D
e 2, eramschmidy, reg detect. | 2P

TABLE I
CHARACTERISTICS FOR MULTI-DIMENSIONAL KERNELS.

Loop levels Max unique

Benchmark (Dim) Description iterations
ADI 2 Alternating Direction Implicit solve 3
ATAX 2 Matrix Transpose and Vector Multiplication 9
BICG 2 BiCG Sub Kernel of BiCGStab Linear Solver 9
MVT 2 Matrix Vector Product and Transpose 9
GEMM 3 General Matrix Multiply 27
SYRK 3 Symmetric rank-k operation 27
Floyd-Warshall 3 Shortest path and transitive closure 34
TTM 4 Tucker Decomposition 45

to place the iterations along the time dimension. Consequently,
for these two types of kernels, we cannot get any benefit
through virtual systolic mapping of the iterations, and we
can apply existing software pipelining techniques to extract
instruction-level parallelism [9]. Therefore, for evaluation, we
choose eight multi-dimensional (Dim > 1) kernels with inter-
iteration dependencies, as listed in Table II.

Baselines: We evaluate HiMap against two state-of-the-
art CGRA compilation algorithms, HyCUBE [6] and CGRA-
ME [28]. HyCUBE compiler uses a heuristic-based mapping
algorithm, which is an augmented version of SPR (Schedule,
Place, and Route) [13]. CGRA-ME uses simulated annealing
and ILP-based mapping approach [16]. It suffers from a much
longer compilation time than HyCUBE. Consequently, it fails
to generate valid mappings for most kernels on CGRA size
bigger than 8x8. Therefore, we report the best utilization results
obtained from the two frameworks and call it “Best of HyCUBE
& CGRA-ME (BHC)” mapping result.

Utilization Comparison: Figure 7 shows the CGRA re-
source utilization (U) comparison (quality of mapping) between
BHC and HiMap mapping approaches on different CGRA sizes.
The utilization of HiMap is higher or equal (average 2.8x
better) compared to BHC for all benchmarks in all CGRA sizes.
HiMap achieves 100% utilization, i.e., performance envelope
of CGRA for five kernels. Resource utilization for kernel ADI
is 83%, while for kernels BiCG, and FW it is 66%. Kernels
ADI, BiCG, and FW consist of five, four, and two compute
operations in one iteration, respectively. For these kernels final
valid mapping is obtained with sub-CGRA mappings with
(s1,82,t) = (2,1,3), (2,1,3), and (1,1, 3), respectively. The
utilization of these sub-CGRA mappings is 5/6 (83%), 4/6
(66%), and 2/3 (66%). The utilization of the final valid map-
ping is similar to the utilization of corresponding sub-CGRA
mapping because HiMap replicates the sub-CGRA mappings to
obtain the final valid mapping. HiMap fails to find valid routing
with 100% utilized sub-CGRA mappings due to high routing
resource congestions in these three kernels. Lower utilized sub-
CGRA mappings make more routing resources available (in the
time dimension) and resolve routing resource congestions. In
future works, we will explore the possibility of merging sub-
CGRA mappings in the time dimension to further improve the
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Fig. 8. Compilation time comparison of BHC and HiMap algorithms for
different block sizes (c = by = by = b3 = by) along X-axis.
utilization of hierarchical mapping.

When we increase the CGRA size, HiMap increases the size
of the DFG by increasing the block size, while BHC maps the
small DFG keeping the block size small. BHC fails to find a
solution when the number of DFG nodes is higher than 400 due
to scalability issues. As the number of PEs in bigger CGRAs
are higher than the number of nodes in the smaller DFGs,
the resource utilization remains low for BHC even when the
mapping for each block is optimal.

Performance and Power Efficiency Comparison: Figure 7
shows the performance and power efficiency of BHC and
HiMap across different CGRA sizes. The performance of both
HiMap and BHC increases with the CGRA size. However, on
average, the performance of HiMap is 17.3x higher than the
performance of BHC. The power-efficiency of HiMap increases
with the CGRA size and achieve 5x better power efficiency
compared to BHC. The power-efficiency of the BHC approach
decreases with an increase in the CGRA size as the power
increase in bigger CGRAs is more than the corresponding
performance benefit of under-utilized BHC mappings.

Compilation Time: Figure 8 shows the compilation time
comparison between HiMap and BHC. We keep the block size
(b=b1=bo=bs=b4) equal to the CGRA size (c x c¢) for both
approaches (b = ¢). BHC fails to find a valid mapping beyond
the block size of 8, 5, and 4 for MVT, GEMM, and TTM,
respectively (timeout after 3 days). The maximum compilation
time for HiMap is less than 15 minutes, even for a block size
of 64 on 64x64 CGRA. BHC takes nearly one day to find a
mapping with a block size of 4 for TTM and block size of 5, 8
for GEMM, MVT. The compilation time for HiMap is not much
affected by the block size as the number of unique iterations
remains constant as block size increases. The maximum number

of unique iterations identified by HiMap is shown in Table II.

VII. CONCLUSION

We introduced, HiMap, a fast and scalable approach for map-
ping multi-dimensional kernels on to bigger CGRAs. HiMap
exploits the regular nature of the inter-iteration dependencies
through hierarchical mapping and achieves 17.3x performance
and 5x performance-per-watt improvement with minimal com-
pilation time compared to the state-of-the-art.
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