
HyCUBE: A 0.9V 26.4 MOPS/mW, 290 pJ/cycle,
Power Efficient Accelerator for IoT Applications

Bo Wang, Manupa Karunarathne, Aditi Kulkarni, Tulika Mitra, Li-Shiuan Peh
School of Computing, National University of Singapore

Abstract—IoT devices use ultra-low-power micro-controllers
that cannot handle the performance demands of emerging
compute-intensive applications. Accelerators can be added to
improve system power-performance efficiency. We present Hy-
CUBE, a Coarse-Grained Reconfigurable Array (CGRA) accel-
erator chip that realizes 127× improvement in power efficiency
compared to TI Sensortag IoT platform. HyCUBE has a buffer-
less Network-on-Chip (NoC), enabling single-cycle data traversal
to boost throughput and a software-scheduled architecture,
automatically extracting application parallelism. Our 40nm test
chip delivers peak efficiency of 26.4 MOPS/mW with 290 pJ/cycle,
realizing a power efficiency improvement of 28.6× and 26.5×
compared to Xilinx Zynq FPGA and ARM Cortex-A7 core.

Keywords— CGRA; accelerator; IoT; power efficient

I. INTRODUCTION

Internet of Things (IoT) place enormous performance-per-
mW demands on the devices that have to run diverse IoT
applications ranging from face recognition [1] to healthcare
diagnostics [2]. Among IoT applications, high parallelism and
loop-intensive processing are increasingly prominent. How-
ever, the ultra-low-power processors in IoT devices have
difficulty keeping up with the applications’ demands. For
instance, Fig. 1 shows a heart rate monitoring application,
TROIKA [3], running on a wearable platform, TI Sensortag
with ARM Cortex-M3 core. As profiled, TROIKA is a loop
intensive application where the innermost loops from the two
kernels consume 37.9% and 37.5% of the total execution
time, respectively. However our measurements show that the
Sensortag can only support up to 48MHz frequency while
consuming 350mW when running TROIKA, thus delivering
a peak efficiency of 0.21 MOPS/mW, which do not suffice to
support such a throughput critical application.

CGRAs are promising accelerators for IoT devices. Unlike
FPGAs, where bit-level reconfiguration leads to high area
and power overheads, CGRAs support much more efficient
configuration at word level. Prior CGRA architectures have
demonstrated good power efficiency. For instance, Samsung’s
SRP CGRA [4] achieves 22.56 MOPS/mW efficiency in post-
layout simulation. The works in [5], [6], [7] rely on large
number of PEs for acceleration, which is not practical for IoT
devices which are area constrained. Besides, this leads to low
PE utilization and poor power efficiency.

Enhancing PE utilization and throughput is critical for
realizing power-efficient CGRAs. This paper presents the
HyCUBE CGRA accelerator chip targeting IoT applications.
It has two key features: (1) A low-power NoC that offloads
communications from the ALUs, delivering data across the

(a)

(b)

Fig. 1. (a) TI Sensortag IoT platform running TROIKA and (b) profiling of
the innermost loops in two kernels.

chip within a single cycle, improving PE utilization and
throughput, (2) A software-scheduled architecture extracting
parallelism and orchestrating the cycle-by-cycle schedule of
the PEs and NoC, enabling lightweight hardware design. Our
40nm test chip shows a power efficiency of 26.4 MOPS/mW
with energy consumption of 290 pJ/cycle, which is on average
127.5×, 28.6× and 26.5× higher than Sensortag, Xilinx Zynq
FPGA and ARM A7 core, respectively.

II. HYCUBE ACCELERATOR DESIGN

A. Execution Model

Fig. 2(a) shows the architecture of HyCUBE, which consists
of a 4 × 4 PE array, 2 dual-port data memories (DMs),
16 configuration memories (CMs) and an SPI interface for
communication with host. HyCUBE is statically scheduled,
thus the compiler [8] determines the PE and the cycle where
each operation is scheduled. The instructions are encoded
with routing information that can be used for communication,
concurrently to the computations. Inter-PE communication is
realized by crossbar switch circuits and links between the PEs,
which forms a bufferless NoC. Moreover, HyCUBE’s unique
ability to communicate to distant PEs in a single cycle is
enabled through the NoC that can bypass intermediate nodes
in multi-hop path. The compiler thus exploits such connections
to increase instruction-level parallelism (ILP) in kernels.

Initially, the compiler analyzes the control and data depen-
dencies of the kernels and constructs a control-data depen-
dency graph (CDFG). Then compilation models architecture



32b PE00 PE01 PE02 PE03

CM0 CM1 CM2 CM3

2K
B

 D
M

 1

32b PE10 PE11 PE12 PE13

CM4 CM5 CM6 CM7

32b PE20 PE21 PE22 PE23

CM8 CM9 CM10 CM11

32b PE30 PE31 PE32 PE33

CM12 CM13 CM14 CM15

2K
B

 D
M

 2
MOSI
MISO

CS
SCK

O
ff-

ch
ip

 H
os

t w
ith

 S
PI

 In
te

rf
ac

e

Hycube Accelerator

SP
I C

on
tr.

SP
I C

lo
ck

 D
om

ai
n Core Clock Domain

2K
B

 D
M

Data to mem

M
ux

Data from mem

D
em

ux

Data from PE

Data from SPI

Data to PE

Data to SPI

Memory Interface

16b

(a)

(b)

[2
4:

21
]

[2
5]

[2
9:

26
]

[3
4:

30
]

[6
1:

35
]

[6
2]

[6
3]

A
LU

 T
re

g 
en

ab
le

R
eg

. o
r b

yp
as

s 
fli

t
fr

om
 E

/W
/N

/S
6x

7 
cr

os
sb

ar
 s

el
.

En
ab

le
 fl

it 
to

E/
W

/N
/S

A
LU

 o
pe

ra
tio

n 
se

l.

C
on

st
an

t v
al

ue

C
on

st
an

t v
al

ue
 v

al
id

N
eg

at
ed

 p
re

di
ca

te

Instruction Format

[2
0:

0]

Fig. 2. (a) Architecture of HyCUBE accelerator and (b) its memory interface
with instruction format

as a time-extended resource graph – MRRG[9], that includes
single-cycle multi-hop connectivity. Finally, the compiler maps
the CDFG to the MRRG exploiting higher degree of ILP and
generates instruction streams for configuration.

Once the instruction and data are ready, they are loaded via
SPI to memories. Thereafter, each PE will read its CM and
execute the instruction. After the execution, the host reads back
the computed data, again using the SPI.

B. Detailed Architecture of HyCUBE Accelerator

As Fig. 2(b) shows, the memory interfaces with both SPI
and PEs so initial data and configuration loaded from SPI
can be propagated to all PEs. HyCUBE has a custom 64b in-
struction format where crossbar selection, bypass enabling and
ALU operations can be configured (Fig. 2(b)). The accelerator
has two clock domains, a core clock domain including PEs
and memory, and an SPI clock domain synchronized by the
host. When crossing the domains, the 16b data from memory
is buffered in a FIFO before being accessed by SPI and vice
versa. The 2KB DM bank is organized as 512 × 32 where
each 32b word can be partially updated by an 8b data chunk
to accommodate 1B/2B/4B data sizes. Each 192B CM is able
to store 24 instructions to orchestrate PE execution. A PE
either executes computation or helps to bypass the received
data to a distant PE. When computation completes, the DMs
can be updated by the leftmost PEs where all other PEs have
to transfer the output to one of them at first.

ALU

R0
0
1

R1
0
1

R2
0
1

R3
0
1

Treg

North
Out

East
Out

South
Out

West
Out

North
In

East
In

South
In

West
In

I1 I2 P

Bypass

Bypass

Bypass

Bypass

Asynchronous
Repeater

Xbar

4x16 LUT

Fig. 3. Circuit diagram of HyCUBE tile

C. Tile design

To minimize critical path, each PE is grouped with its NoC
crossbar switch to form a tile. A tile propagates flits to its
neighbours for communication. A flit word incorporates 32b
data and a predication bit P for control divergence. The circuit
diagram of tile is depicted in Fig. 3. It comprises 4 input
registers (R0∼R3), a 6×7 crossbar circuit (Xbar), an ALU
and a lookup table (LUT).

The registers cache an incoming flit from N/S/E/W direction
if it is locally consumed. Otherwise the flit bypasses the
register and is directly routed to a neighbour PE without
buffering. The crossbar is able to select incoming data from
neighbours and eject it to N/S/E/W/PE direction. It can eject
2 operands (I1, I2) and the predication bit (P ) to ALU
for computation. The ALU then sends the result to Xbar
or a single register Treg. A tiny LUT maintains the start
and end locations of loops so the loop pointer can access
easily for innermost loop acceleration. The output channel is
connected with asynchronous repeaters (buffers). Conventional
NoCs employ output registers so that flits can be buffered for
each hop. As HyCUBE offloads flow control to the compiler,
buffers and output registers are no longer necessary. Hence,
the data path from ALU to output is no longer re-timed and
the propagation is not terminated until the flit is latched by
a tile. This facilitates traversal across multiple hops within a
single cycle [10], which will be elaborated in Section D.

Fig. 4 plots the simulated power breakdown of the tile
circuit. The result shows the NoC crossbar and the ALU
dissipating 36.3% and 14.7% of total power, respectively.



Clock
network
42.7%

Others
6.4%

Crossbar
36.3%

ALU
14.7%Tile power breakdown

@  TT/1.1V/25C

Fig. 4. Power breakdown of a tile circuit

D. Software-scheduled NoC for single cycle traversal

The statically-scheduled HyCUBE chip comes with a com-
piler tool chain which takes C programs as input, runs profiling
to identify frequently occurring kernels, then automatically
extracts parallelism as CDFGs and schedules them onto the
chip, storing the cycle-by-cycle scheduling into the 16 CMs.
The NoC is then orchestrated cycle-by-cycle by the CMs.
Each cycle, HyCUBE PE reads a 64b instruction which
encodes the configuration for ALU and crossbar. This static
scheduling obviates the power and area overheads consumed
by scheduling, route computations and flow control.

Xbar
10

Xbar
00 R

Xbar
20R

Xbar
30R

Xbar
31RR R R R R

(a)

Xbar
10

Xbar
00

Xbar
20

Xbar
30

Xbar
31RR

(b)

Fig. 5. 4-hop paths in (a) conventional NoCs and (b) HyCUBE NoC

In conventional CGRAs, it takes multiple cycles for data
to travel between two distant PEs as data is registered ev-
ery time when reaching a PE. Fig. 5(a) shows a 4-hop
data path between PE00 and PE31. The intermediate nodes,
PE10∼PE30 are merely used for communication rather than
computing, leading to low PE utilization and throughput.
Fig. 5(b) shows the output from PE00 is directly sent to
PE31 in a single cycle in HyCUBE, forming a critical path
through the intermediate hops. As HyCUBE NoC cancels data
re-timing along PE10∼PE30, it can use all the nodes for
compiler mapping after one cycle. Fig. 6 compares the critical
path (4-hop latency) in HyCUBE against that in conventional

Fig. 6. Comparison of 4-hop latency in conventional NoC and HyCUBE.

PE
array
64%

Others
11.2%

Memory
23.6%

NoC
link
0.4%

SPI
0.8%

 CGRA* power breakdown
72mW @ TT/1.1V/25C

Fig. 7. Power breakdown of HyCUBE CGRA circuit

TABLE I
COMPARISON OF SIMULATED POWER EFFICIENCY ON VARIOUS CGRAS

NoCs. While it prolongs the cycle time, it shortens the 4-
hop latency by 47.5%. As 4-hop is able to cover the chip
edge, HyCUBE constrains the maximum number of hops
to 4 as trade-off between throughput and frequency. The
timing loops occurring at place-and-route can be broken up
with appropriate configuration of backend tools. As prior
CGRAs [4][5][6][7][11] only published simulation results, we
compare them with HyCUBE’s post-layout results at nominal
voltages based on the FFT benchmark in Table I. HyCUBE
throughput (MOPS) is calculated by multiplying operations
per cycle by frequency, while the efficiency (MOPS/mW) is
obtained by dividing throughput by power. HyCUBE achieves
a throughput of 6482.8MOPS and power efficiency of 90
MOPS/mW at 1.1V, 4× and 1.4× as high as [4] and [11],
respectively. Fig. 7 shows the simulated power breakdown of
the CGRA circuit. The PE array and memory consume most
of the power (64% and 23.6%, respectively) while the link
(sans crossbar) only dissipates 0.4% of the total power.

III. MEASUREMENT RESULTS

The HyCUBE test chip was fabricated in 40nm CMOS
technology with core area of 2.86 mm2. Fig. 8 shows the

Hycube chip
TI Sensortag

SPI interface

Fig. 8. Prototype of HyCUBE chip interfacing with TI Sensortag



TABLE II
CHIP MEASUREMENT COMPARISON OF PERFORMANCE-PER-MW

Fig. 9. Measured frequency and power of HyCUBE chip

Fig. 10. Measured throughput of HyCUBE chip

prototype of the HyCUBE accelerator interfacing with the
host, Sensortag via SPI.

Fig. 9 depicts the operating frequency with voltage scaling.
The frequency varies from 753MHz to 346MHz when the
supply goes from 1.1V to 0.8V. Fig. 10 plots the measured
throughput and power efficiency. The HyCUBE chip achieves
the maximum throughput of 5380MOPS at 1.1V and the
minimum of 2630MOPS at 0.8V. The peak power efficiency
is observed at 0.9V, as high as 26.4MOPS/mW with an
energy of 290 pJ/cycle based on the FFT benchmark. For
the TROIKA application, the chip (24.8MOPS/mW at 0.9V)
outperforms 117×, 7.2× and 81.7× compared to TI Sensortag
(0.21MOPS/mW), Xilinx Zynq FPGA (3.02MOPS/mW) and
ARM Cortex-A7 core (0.3MOPS/mW), respectively. We
choose ARM Cortex-A7 core for comparison as it was de-
veloped for wearable and IoT devices. Further peak power
efficiency comparison (Table II) is made among 4 bench-
marks. From the table, HyCUBE improves power efficiency by
28.6× and 26.5× on average compared to Zynq FPGA and
Cortex-A7 core, respectively. Note that the power of FPGA
and Cortex-A7 are underestimated as they merely include
core power whereas HyCUBE includes entire on-chip power.
Fig. 11 shows the die photo with summary.

IV. CONCLUSION

We propose HyCUBE, a novel CGRA chip with 16 PEs,
where communication is handled by a bufferless NoC that is

2310 um

20
30

 u
m

1840 um

1560 um
 

4X4 PE array 
with 16 CMs

DM1

DM2

SPI

Fig. 11. Die photo of the HyCUBE chip with summary

scheduled and controlled by the accompanying compiler, lead-
ing to high PE utilization at low power. Chip measurements
show the HyCUBE chip has power efficiency improvement of
127.5×, 28.6× and 26.5× compared to the commercial IoT
platform TI Sensortag, Xilinx Zynq FPGA and ARM A7 core,
respectively.

REFERENCES

[1] S. Kodali et al., “Applications of deep neural networks for ultra low
power IoT,” in ICCD, pp. 589–592, Nov 2017.

[2] A. Limaye et al., “HERMIT: A benchmark suite for the internet of
medical things,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4212–
4222, 2018.

[3] Z. Zhang et al., “TROIKA: A general framework for heart rate moni-
toring using wrist-type photoplethysmographic signals during intensive
physical exercise,” IEEE Trans. on Bio. Engineering, vol. 62, no. 2,
pp. 522–531, 2015.

[4] C. Kim et al., “ULP-SRP: Ultra low power Samsung Reconfigurable
Processor for biomedical applications,” in FPT, IEEE, 2012.

[5] J. Wei et al., “An efficient implementation of FFT based on CGRA,”
ICCSNT, vol. 2018-Janua, pp. 493–497, 2018.

[6] Y. Kim et al., “Hierarchical reconfigurable computing arrays for efficient
CGRA-based embedded systems,” DAC, 2009.

[7] O. Atak et al., “BilRC: An execution triggered coarse grained reconfig-
urable architecture,” IEEE Trans. on VLSI Sys., vol. 21 (7), 2013.

[8] M. Karunaratne et al., “Hycube: A CGRA with reconfigurable single-
cycle multi-hop interconnect,” in 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, IEEE, 2017.

[9] B. Mei et al., “DRESC: A retargetable compiler for coarse-grained
reconfigurable architectures,” in 2002 IEEE International Conference
on Field-Programmable Technology, 2002.(FPT). Proceedings., pp. 166–
173, IEEE, 2002.

[10] T. Krishna et al., “Breaking the on-chip latency barrier using SMART,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 378–389, Feb 2013.

[11] N. Farahini et al., “39.9 GOPs/watt multi-mode cgra accelerator for a
multi-standard basestation,” in ISCAS, pp. 1448–1451, IEEE, 2013.


