
TIME-PREDICTABLE SOFTWARE-DEFINED ARCHITECTURE WITH SDF-BASED
COMPILER FLOW FOR 5G BASEBAND PROCESSING

Vanchinathan Venkataramani? Bruno Bodin?† Aditi Kulkarni? Tulika Mitra? Li-Shiuan Peh?

? School of Computing, National University of Singapore
†Yale-NUS College, National University of Singapore
{vvanchi, bruno, aditi, tulika, peh}@comp.nus.edu.sg

ABSTRACT

The advent of 5G networks motivates the need for high-
performance, low-power, time-predictable hardware that can
handle the aggressive real-time latency and throughput re-
quirements of baseband processing. With newer generations
like 5G, programmable hardware that can adapt readily to
network specification updates becomes a critical requirement.
We introduce a software-defined array-based many-core ar-
chitecture, called SPECTRUM, that couples lightweight pre-
dictable hardware components with a compiler flow that
orchestrates the on-chip hardware resources. This design,
by construction, provides timing guarantees with a pro-
grammable architecture. Our architecture and compiler flow
are designed to support basestation baseband processing com-
putation represented using deterministic Synchronous Data
Flow (SDF) model of computation. SDF is commonly used
to represent signal processing applications and fits well with
real-time systems requirements. We demonstrate substantial
power savings with SPECTRUM compared to existing DSPs
while meeting the performance requirements.

Index Terms— Time-predictability, many-core architec-
ture, LTE/5G baseband processing, synchronous dataflow.

1. INTRODUCTION

The evolution towards 5G cellular network technology has
brought considerable challenges in signal processing both at
the user equipment and at the base stations. 5G is envisioned
to achieve at least 10x throughput improvement compared to
the 4G standards and sets exact latency requirements. While
previous generations like Long Term Evolution (LTE) are de-
signed to handle primarily downlink communications with
mobile smartphones, 5G is expected to handle multiple use-
cases: massive Machine Type Communication (mMTC), en-
hanced Mobile Broadband (eMBB) and Ultra-Reliable and
Low Latency Communication (URLLC) [1]. Application sce-
narios that require URLLC include remote surgery and driver-
less cars, while mMTC is fueled by industrial automation
and Internet of Things (IoT) [2, 3]. Uplink communications
with guaranteed latency and throughput are crucial as these

use-cases demand continuous data upload. We present an
array-based processing architecture and the associated com-
piler flow for 5G baseband processing in the base stations.

Current base station deployments utilize custom DSP
cores in conjunction with ASIC hardware accelerators to meet
the performance requirements of baseband processing [4, 5].
However, these domain-specific architectures are hard to pro-
gram, inflexible to evolving standards, and incur enormous
Non-Recurring Engineering (NRE) costs [6]. Though FPGAs
are flexible, their limited performance, energy-efficiency, and
to some extent programmability challenges make them a less
attractive alternative. Prior attempts towards baseband pro-
cessing on GPU [7] or general purpose processor [8] were
unable to provide real-time latency guarantees as the underly-
ing hardware is composed of components with inherently un-
predictable timing such as processors (with complex dynamic
scheduling of instructions and speculation in out-of-order
execution), hardware-managed caches, and networks-on-chip
with dynamic routing. Additionally, the high Thermal Design
Power (TDP) of these architectures in the order of hundreds
of watts contributes to huge energy operating costs and pre-
vents their usage in base station deployments [9]. These
shortcomings of the existing architectures have generated
increasing interest in novel alternative architectural designs
that are flexible to changes, meet computation demands, and
provide real-time guarantees.

We propose SPECTRUM [10], an array-based many-core
architecture, targeted to meet the requirements of the uplink
baseband processing at the base station by exploiting inherent
thread-level parallelism of the computation. SPECTRUM is
comprised of an array of lightweight processing elements,
memories and networks that are fully exposed to the soft-
ware for configuration. The high computational demands
are satisfied by deploying a large number of simple in-order
cores in parallel, each equipped with additional custom in-
structions [11] carefully chosen to accelerate the frequent
computational patterns in baseband processing workloads.
These simple cores with custom instructions are paired with
on-chip per-core software-controlled scratchpad memories
(SPM) [12] that are both amenable to easy software timing



A

B

C

r s

t

u

v

w

x

y

z

A
B

C

r s

t

u

v

w
x

y

z

Fig. 1. Synchronous Data Flow (SDF) graph example.

analysis [13]. The communications among the array tiles are
orchestrated by a completely software-scheduled, lightweight
Network-on-Chip (NoC) leading to timing predictability of
the entire SPECTRUM architecture. At the same time, the
simplicity of the hardware enables low-power operations
keeping the TDP of the design to only a few watts.

The key to the success of SPECTRUM’s software-defined
architecture is the ability of the compiler to efficiently map
diverse signal processing workloads on the platform. The
toolchain accepts as input a specification of the array-based
architecture including the array size, the SPM size, the NoC
connection among the array tiles etc. The signal processing
application (in this case the 5G baseband processing appli-
cation) is specified in the form of a Synchronous Data Flow
(SDF) [14] model of computation. The compiler takes care
of the mapping of the computation and data as well as the
scheduling of the communications. Experimental evaluations
show that the software toolchain maps the uplink baseband
processing application successfully, meets the throughput and
latency requirements, and achieves 2.39x lower power than
existing DSP cores based design with hardware accelerators.

2. SYNCHRONOUS DATA FLOW (SDF) FOR
BASEBAND PROCESSING

Digital Signal Processing (DSP) applications typically con-
tain a set of cooperating tasks that execute periodically. The
Synchronous Data Flow (SDF) [14] model of computation
suitably represent these applications. Static analysis of the
SDF can generate a deterministic schedule of the tasks [15],
making SDF a preferred model especially in real-time sys-
tems. A number of DSP and multimedia applications have
been represented as SDF [16, 17].

Figure 1 shows an example of an SDF. The actors or ver-
tices (A,B,C) in the SDF graph correspond to the computa-
tional kernels of the application. The edges are communica-
tion buffers between the actors. Buffers are labeled with the
number of data packets (known as tokens in the SDF parlance)
produced and consumed by each actor (r, s, . . . , z). An ac-
tor is fired (executed) when all the input data tokens required
(values specified in the arrowhead of each incoming edge) are
received in its incoming buffers. Once an actor is fired, it con-
sumes the input data tokens and produces appropriate number
of output data tokens denoted by the arrow tail of each out-
going edge. For example, in Figure 1, when actor A fires it
consumes r packets and produces s, t packets that in turn will
be consumed by the actors B and C, respectively.

Figure 2 shows the SDF corresponding to uplink base-
band processing [8]. In uplink baseband processing, indepen-

Match Filter+IFFT
+Channel Est. + FFT

Combiner Weight
+ Antenna Combiner

IFFT De-interleave
+ Symbol Demap

…

…

…

…

64

64

128

128

128
128

Match Filter + IFFT
+ Channel Est. + FFT

IFFT

Combiner Weight
+ Antenna Combiner

De-interleave
+ Symbol DemapP3,0 P3,1 P3,18

P2,0 P2,1 P2,11

P1,0 P1,1 P1,18

P0,0 P0,1 P0,15

Fig. 2. SDF model of uplink baseband processing for 4x4
MIMO, 64 QAM, 1200 Subcarriers and 10 users.

dently encoded data, called streams or layers (LAY) are trans-
mitted by multiple User Equipments (UE) such as mobile or
IoT devices. The radio receiver at the base station obtains
combined signals from multiple UEs via receiver antennae
(ANT), filters them, removes cyclic prefix, and performs FFT
to convert back the signal from time to frequency domain. In
the frequency domain, user extraction recovers individual UE
signals and baseband processing is initiated. The baseband
processing per UE has three main components: Channel es-
timation, Data Demodulation, and Decoding. It is customary
to use ASICs for Decoding to achieve required performance
[18] as these have fixed algorithms that rarely change.

Multiple actors executing the same computation but op-
erating on different data in parallel define a phase in the ap-
plication. We divide baseband processing into four phases
consisting of 16, 19, 12 and 19 actors, respectively, to exploit
task-level parallelism. We describe how an SDF application
is mapped onto our SPECTRUM architecture later in Section
4. The execution time of each actor is obtained by Worst-case
Execution Time (WCET) computation [19] (includes memory
access latency) on the in-order core deployed in SPECTRUM.

3. SPECTRUM ARCHITECTURE

SPECTRUM is a time-predictable software-defined many-
core architecture intended for streaming DSP applications
including uplink baseband processing with real-time latency
and throughput requirements. The input data flows through
the chip and gets processed by the cores but never spills
to the off-chip memory. In conventional shared memory
multi-core architectures, hardware autonomously moves data
between on-chip cache and off-chip memory at runtime cre-
ating uncertainty in execution time at the application level.
Additionally, the NoC suffers from timing unpredictability
arising from dynamic routing apart from increased traffic due
to coherence messages. Finally, significant overheads and
non-deterministic execution are caused by synchronization in
parallel processing.

Figure 3 presents the high-level view of SPECTRUM
architecture that employs software-defined, time-predictable



145

Block Diagram - Tile

Custom 
In-order core

SPM-I

0 1 15

16 17 31

240 241 255

…

…

…

X X

X X

X X

X

X

X

Banked 
SPM-D

CrossBar
Switch

Config. Mem

Fig. 3. High-level view of SPECTRUM architecture.

designs in all components. The current prototype consists
of 256 tiles arranged in a 16x16 2D mesh connected by 8
switches per tile. We explain the different components and
how time-predictability is achieved in SPECTRUM below.

Memory: We utilize software-controlled Scratchpad
Memory (SPM) as the on-chip memory for instructions and
data. SPM is explicitly managed by the compiler [12, 20] or
programmer (using domain knowledge). Thus, for a given
mapping, the access latency is deterministic. We statically
map the entire kernel code in the instruction SPM as we have
sufficient capacity. Next, we obtain the data requirements for
the worst-case input. The private/stack variables are mapped
in each tasks local SPM. As the shared variables within a
phase for this application have only read-only accesses, we
create separate copies in the data SPM of each core accessing
a shared variable.

Compute: The in-order cores include one-off customiza-
tion for accelerating common computational patterns in base-
band processing using specialized functional units for power-
performance efficiency. We execute one task per core on the
single-issue in-order cores. Additionally, the data and instruc-
tion accesses have deterministic latency as explained earlier.
Thus, we are able to obtain the WCET of each computation
kernel accurately and precisely using [13, 19].

Communication: The bufferless software-controlled
NoC routers are essentially comprised of just a crossbar
switch, whose connections are set according to the configu-
ration memory associated with each switch each cycle. Since
there is no runtime routing or flow control logic, we need to
set the configuration memory ensuring that the packets reach
the correct destination without encountering any network link
contention along the way. We obtain the switch configura-
tions assuming worst-case baseband processing traffic using
the SPECTRUM compiler flow explained in Section 4. As the
router behavior is determined statically to handle all possible
workloads, we ensure time-predictability.

Thus, SPECTRUM is designed to handle the worst-case
workload, ensuring that the latency and throughput con-
straints are always satisfied.

4. SDF-BASED COMPILER TOOLCHAIN

SPECTRUM is supported by a software toolchain that auto-
mates task/NoC scheduling. Our earlier toolchain proposed
in [10] was specific to the uplink baseband processing appli-

Application 
model (SDF)

System 
specification

Communication 
scheduling

Crossbar 
Config.

Task Mapping 
& Routing

Proposed Framework

Task 
schedule

Fig. 4. SDF-based compiler toolchain for task and communi-
cation scheduling.

cation. The four different phases were executed in a pipelined
fashion with the number of tasks (per phase) determined to
match the performance requirements [21]. All tasks within
a phase synchronize on the system clock after computa-
tion, then the data packets are sent to destination tasks using
precomputed NoC switch configurations. Finally, the sys-
tem throughput was decided based on the critical phase of
the pipeline. This pipelined nature leads to system under-
utilization as the phases exhibit different execution times.

Instead, we propose a generic compiler toolchain that
takes as input the baseband processing application code, its
SDF representation, and a specification of the architecture.
The toolchain then generates the task mapping and the com-
munication schedule (Figure 4). SDF-based scheduling can
capture execution time variations better as it does not re-
quire synchronized execution of the phases; the tasks can
execute independently and concurrently as long as the data
dependencies are satisfied.

In our toolchain shown in Figure 4, the task-to-core map-
ping and communication routes are iteratively obtained for
each SDF actor, similar to the approach proposed in [22]. As
multiple paths exist between the source and destination cores,
we chose the route with the minimum routing cost, defined
as a weighted sum of (i) the latency between communicating
tasks and (ii) the number of shared links.

Once the task mapping and communication routes are set,
we need to schedule packet transfers, i.e., determine a valid
time to send the packets. The SDF model can be used to gen-
erate a finite list of task execution and precedence constraints
known as the expansion graph [23]. This information is suf-
ficient to produce a valid schedule that ensures that link con-
tentions do not happen and the data dependencies between
tasks are met. We model this problem using an Integer Lin-
ear Programming formulation with minimization of total ex-
ecution time as the objective where task executions are con-
strained by data dependencies and link utilization.

Finally, the packet sending time obtained from solving the
ILP formulation is utilized to create the switch configurations
and added to the software code. At run-time, the configura-
tion memory is automatically loaded ensuring that the packet
transfers happen accurately.

5. EXPERIMENTAL EVALUATION

In 5G, multiple use-cases with different workload specifi-
cations and/or performance requirements are also expected
to be handled by the same base station [1]. The specifica-



tions for massive Machine Type Communication (mMTC),
enhanced Mobile Broadband (eMBB) and Ultra-Reliable and
Low Latency Communication (URLLC) can differ in terms
of MIMO (1x1, 2x2 or 8x8) as well as modulation scheme
(QPSK, 64QAM, 256QAM). For each of these use-cases, if
the workload processing time does not meet this deadline, it is
dropped leading to substantial packet loss that cannot provide
the ultra-reliable connectivity. Thus, we statically map the
different use-cases onto isolated regions of the SPECTRUM
chip automatically using our compile toolchain, such that the
latency and throughput requirements can be successfully met
for the worst-case workload.

Benefit of the SDF compiler toolchain: When compared
to the previous work on SPECTRUM [10], the SDF toolchain
improves system utilization. The benefit comes mainly from
the fine-grained, interleaved schedule of task executions and
communications, and thus a reduced total execution time
of the application. This compact schedule enables using a
800MHz clock frequency instead of 900MHz obtained pre-
viously (Table 1). Thus, application mapped using the SDF
compiler toolchain on SPECTRUM achieves 1.13x power
reduction. Detailed explanation and evaluation of various
aspects of SPECTRUM can be found in [10].

Comparison with Existing Hardware Architectures:
In this work, we present evaluation for eMBB use-case with
4x4 MIMO and 64QAM (worst-case workload with highest
data throughput of 233.6 Mbps [21]), as the power/performance
numbers on proprietary hardware platforms were only avail-
able for this specification. For SPECTRUM, we obtain ap-
plication performance using modified gem5 cycle-accurate
micro-architectural simulator [24] and power consumption
from RTL synthesis. Table 1 states the performance of
SPECTRUM, Intel Xeon Gold 6126 (Skylake-SP) many-
core CPU and DSP+accelerator platform [5, 25]. Skylake-SP
experiences significant drop rate of 33% with average power
of 215W due to timing unpredictability and thermal throt-
tling of the chip due to the intensive workload. Though
DSP+accelerator platform [25] meets the performance re-
quirements, they rely heavily on custom hardware accelera-
tors and also consume 2.39x higher power than SPECTRUM.

Table 1. Power-performance comparison for 4x4 MIMO
SPECTRUM

[10]
SPECTRUM

+ SDF Toolchain
C66x DSP Cores
+ Accelerators Skylake-SP

Drops 0% 0% 0% 33%
Avg.

Power 6.1 W 5.4 W 12.9 W 215 W

RTL Design, Synthesis and Layout: The SPECTRUM
architecture has been implemented in RTL. Figure 5(a) shows
our floorplan comprising 256 tiles arranged in a 16x16 grid.
Each tile (Figure 5(b)) consists of an Amber25 processor core
[26], 16KB SPM for instruction, 32KB SPM for data and 8
software-scheduled network switches where two networks are
connected to each of the four SPM banks of data. Both the
Amber core and the NoC switches are synthesized, carried to
layout, with support for up to 1.5 GHz system frequency. A

SPECTRUM tile consumes 82.1 mW power at 800MHz on
commercial 40nm process with power breakdown as: Data
SPM 58%, Instruction SPM 33%, Core 4%, NoC Switches
3%, and others 2%.

Core
4%

Switch
3%

Data 
SPM
58%

Instr 
SPM
33%

Others
2%

164

(a) (b)

(c)

Fig. 5. SPECTRUM [10] (a) 16x16 floorplan (b) Tile layout
(Area per tile is 1.4mm x 0.7mm)

6. RELATED WORK

There are existing time predictable single-core (e.g., PRET
[27]) and many-core architectures (e.g., Kalray [28], T-
CREST [29]). LTE-specific architectures have been stated
earlier in Section 1. Among many-core designs, Kalray [28]
requires sophisticated software timing analysis using network
calculus for its interconnect. T-CREST [29] contains caches
in addition to SPM supported by software-based coherence
leading to difficulty in programmability. SPECTRUM is
designed with scalable predictable light-weight components
that are easy to program including task, data placement and
NoC communication simplifying timing analysis.

Software-scheduled NoCs have been proposed for effi-
ciency and quality of service. The AEthereal NoC [30] re-
alizes timing guarantees with slot tables that implement time-
division multiplexing (TDM) across different traffic flows.
SPECTRUM, with its domain-specific knowledge, can em-
ploy fully software-scheduled NoCs.

A number of frameworks have been developed to compile
dataflow models and perform task mapping on many-cores
and heterogeneous architectures [16, 31]. In this work we
additionally optimize for communications to obtain the con-
figuration of the programmable routers.

7. CONCLUSION

We proposed a sophisticated SDF-based compiler toolchain
that automatically maps the LTE/5G baseband processing
application on SPECTRUM, a time-predictable array-based
many-core architecture. We show that our toolchain for
SPECTRUM meets the real-time performance guarantees of
the baseband processing and delivers 2.39x power reduction
with respect to DSP cores with ASIC hardware accelerators.

8. ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its Industry-
IHL Partnership Grant NRF2015-IIP003.



9. REFERENCES

[1] ITU, “Setting the Scene for 5G: Opportunities & Chal-
lenges,” 2018, https://bit.ly/2MO2Swv.

[2] Imtiaz Parvez, Ali Rahmati, Ismail Guvenc, Arif I Sar-
wat, and Huaiyu Dai, “A survey on low latency towards
5g: Ran, core network and caching solutions,” IEEE
Communications Surveys & Tutorials, 2018.

[3] Philipp Schulz, Maximilian Matthe, Henrik Klessig,
et al., “Latency critical IoT applications in 5G: Per-
spective on the design of radio interface and network
architecture,” 2017.

[4] “Alcatel-Lucent 9926 digital 2U eNodeB baseband
unit,” Alcatel-lucent product brief, 2009.

[5] Raguram Damodaran, Timothy Anderson, Sanjive
Agarwala, et al., “A 1.25 ghz 0.8 w c66x dsp core in
40nm cmos,” in VLSID, 2012.

[6] Huawei, “Base station operation increases the efficiency
of network construction,” https://bit.ly/2GtCd6N.

[7] Qi Zheng, Yajing Chen, , et al., “Using graphics pro-
cessing units in an lte base station,” in JSPS 2015.

[8] Magnus Själander, Sally A McKee, Peter Brauer, et al.,
“An lte uplink receiver phy benchmark and subframe-
based power management,” in IEEE ISPASS, 2012.

[9] “Temperature Control Solution of Communication Base
Station,” 2011, https://bit.ly/2Bpa9jH.

[10] Vanchinathan Venkataramani, Aditi Kulkarni, Tulika
Mitra, et al., “Spectrum: A software defined predictable
many-core architecture for lte baseband processing,” in
LCTES 2019.

[11] Pan Yu and Tulika Mitra, “Scalable custom instructions
identification for instruction-set extensible processors,”
in CASES 2004.

[12] Vanchinathan Venkataramani, Mun Choon Chan, and
Tulika Mitra, “Scratchpad-memory management for
multi-threaded applications on many-core architec-
tures,” in TECS 2019.

[13] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,
et al., “The worst-case execution-time problemoverview
of methods and survey of tools,” in TECS 2008.

[14] Edward A Lee and David G Messerschmitt, “Syn-
chronous data flow,” in Proceedings of the IEEE 1987.

[15] Edward Ashford Lee and David G Messerschmitt,
“Static scheduling of synchronous data flow programs
for digital signal processing,” IEEE TC 1987.

[16] José Luis Pino, Soonhoi Ha, Edward A Lee, et al., “Soft-
ware synthesis for DSP using Ptolemy,” in Journal of
VLSI signal processing systems for signal, image and
video technology 1995.

[17] Sander Stuijk, Marc Geilen, and Twan Basten, “SDFˆ 3:
SDF for free,” in ACSD 2006.

[18] Sandro Belfanti, Christoph Roth, Michael Gautschi,
et al., “A 1Gbps LTE-advanced turbo-decoder ASIC in
65nm CMOS,” in VLSIC, 2013.

[19] Xianfeng Li, Yun Liang, Tulika Mitra, et al., “Chronos:
A timing analyzer for embedded software,” Science of
Computer Programming, 2007.

[20] Vanchinathan Venkataramani, Anuj Pathania, and Tu-
lika Mitra, “Unified thread- and data-mapping for multi-
threaded multi-phase applications on spm many-cores,”
in DATE 2020.

[21] 3GPP, “Evolved Universal Terrestrial Radio Access (E-
UTRA); Physical layer procedures,” Technical Specifi-
cation (TS) 36.213, 3rd Generation Partnership Project
(3GPP), 03 2017, Version 14.2.0.

[22] Stephen Friedman, Allan Carroll, Brian Van Essen,
et al., “SPR: an architecture-adaptive CGRA mapping
tool,” in FPGA 2009.

[23] Sundararajan Sriram et al., Embedded Multiprocessors:
Scheduling and Synchronization, 2nd edition, 2009.

[24] Nathan Binkert et al., “The gem5 simulator,” ACM
SIGARCH 2011.

[25] Silexica, “Multi-core software design for an lte base
station, white paper,” 2016, https://bit.ly/2TyE7sx.

[26] “Amber ARM-Compatible Core,” 2010,
https://bit.ly/32DNRWO.

[27] Stephen A Edwards and Edward A Lee, “The case for
the precision timed (pret) machine,” in DAC, 2007.

[28] B. D. de Dinechin, “Consolidating High-Integrity, High-
Performance, and Cyber-Security Functions on a Many-
core,” in DAC 2019.

[29] Martin Schoeberl, Sahar Abbaspour, Benny Akesson,
et al., “T-crest: Time-predictable multi-core architec-
ture for embedded systems,” JSA, 2015.

[30] Kees Goossens, John Dielissen, and Andrei Radulescu,
“Æthereal network on chip: concepts, architectures, and
implementations,” IEEE D & T of Computers, 2005.

[31] Maxime Pelcat, Karol Desnos, Julien Heulot, et al.,
“Preesm: A dataflow-based rapid prototyping frame-
work for simplifying multicore dsp programming,” in
EDERC 2014.


