
Design Space Exploration of Multiple Loops on
FPGAs using High Level Synthesis

Guanwen Zhong∗, Vanchinathan Venkataramani∗,Yun Liang†, Tulika Mitra∗ and Smail Niar‡
∗School of Computing, National University of Singapore

†Center for Energy-Efficient Computing and Applications, School of EECS, Peking University, China
‡LAMIH, University of Valenciennes, France

Email: {guanwen,vvanchi,tulika}@comp.nus.edu.sg, ericlyun@pku.edu.cn, smail.niar@univ-valenciennes.fr

Abstract—Real-world applications such as image processing,
signal processing, and others often contain a sequence of compu-
tation intensive kernels, each represented in the form of a nested
loop. High-level synthesis (HLS) enables efficient hardware imple-
mentation of these loops using high-level programming languages.
HLS tools also allow the designers to evaluate design choices
with different trade-offs through pragmas/directives. Prior design
space exploration techniques for HLS primarily focus on either
single nested loop or multiple loops without consideration to
the data dependencies among them. In this paper, we propose
efficient design space exploration techniques for applications that
consist of multiple nested loops with or without data dependen-
cies. In particular, we develop an algorithm to derive the Pareto-
optimal curve (performance versus area) of the application when
mapped onto FPGAs using HLS. Our algorithm is efficient as
it effectively prunes the dominated points in the design space.
We also develop accurate performance and area models to assist
the design space exploration process. Experiments on various
scientific kernels and real-world applications demonstrate that
our design space exploration technique is accurate and efficient.

I. INTRODUCTION

Current- and next-generation applications in many embed-
ded system domains demand high performance that cannot
be satisfied with general-purpose processors. The ASICs can
provide the best performance at lowest power budget; but
they suffer from huge design efforts and lack of flexibil-
ity. Compared to ASICs, Field Programmable Gate Array
(FPGA) devices have the advantages of re-programbility and
much lower cost. In addition, high spatial parallelism and
substantially increased capacity make FPGAs amenable to
tailoring according to individual applications. Thus FPGAs
have become attractive to the designers and have gained mar-
ket traction for the past two decades. However, the complex
hardware programming models such as low-level hardware de-
scription languages (Verilog/VHDL) and synthesis flow make
FPGAs inaccessible to average developers, which hinders its
acceptability. This productivity gap has led to the emergence
of high-level synthesis (HLS) that allows designers to focus on
high-level specifications such as C/C++, SystemC, Matlab etc.
and automatically transforms such high-level specifications
into low-level implementations in the form of Register-transfer
level (RTL) circuits or gate-level netlists.

After decades of sustained endeavour, both academic
[7][8][9][24] and industrial [1][4][23][25][26] tools have
emerged as mature solutions for high-level synthesis. Not only

these tools can generate hardware implementation from high-
level programming language specifications, but they also give
the designers multiple implementation choices (e.g., loop un-
rolling factors) in the form of pragmas/directives. This allows
the designers to perform in-depth design-space exploration
(DSE) that evaluates numerous hardware implementations
through HLS tools and returns a set of Pareto-optimal points
in the multi-objective design space optimizing latency, power,
throughput and area. However, the huge complexity of the
design space coupled with the non-negligible runtime of HLS
tools renders it impossible to perform exhaustive DSE for
relatively complex applications. This makes the dream of a
push-button solution for design space exploration of entire
application un-achievable at this point.

To address this challenge, we propose an efficient DSE
technique to obtain the Pareto-optimal curve (performance
vs. area) for an application mapped onto FPGAs using HLS.
Our DSE algorithm prunes the design space by effectively
eliminating dominated configurations instead of evaluating
all the possible configurations. This pruning can significantly
reduce the number of invocations of the HLS tool. We also
develop accurate performance and area prediction models for
our DSE algorithm, further scaling down the need to invoke
HLS for the remaining design points.

More concretely, as real-world applications often contain
a sequence of computation intensive kernels represented by
nested loops, we target automated design-space exploration to
map multiple nested loops onto FPGAs using HLS. Existing
works [3][5][17][20] that target a single nested loop or mul-
tiple loops often ignore interactions and data dependencies
among the loops. In this paper, we consider the dataflow
dependencies among the loops as our experimental evaluation
reveals that such interactions among multiple loops can not
be neglected. Experimental evaluation with real-world bench-
marks show that the set of Pareto-optimal points predicted
by our solution is very close to the Pareto-optimal points
identified through exhaustive search, whereas the runtime of
our DSE algorithm is 235X faster, on an average, compared
to exhaustive search.

II. BACKGROUND AND MOTIVATION

Real-world applications in image processing, signal pro-
cessing, etc., often contain multiple (single or nested) loops.

Fig. 1: Rician Deconvolution with dataflow feature.

Using HLS tools, we can convert these loops described in
high-level languages such as C/C++ or SystemC into efficient
FPGA-based hardware implementations. Moreover, modern
HLS tools such as Xilinx Vivado [26] feature with a variety
of pragmas/directives such as loop unrolling, pipelining, etc.,
for loop performance optimizations. By using the pragmas
differently, we can have multiple different implementations
with performance and area tradeoff.

The loops contained in an application are often related via
dataflow dependencies. Fig. 1 illustrates the dataflow feature
using the Rician Deconvolution [19] application in medical
imaging domain. There are two loops in the application.
The two loops are dependent as the first loop produces the
array g, which is consumed by the second loop. Dataflow
optimization aims to minimize the initiation interval (II) of
the top-level function (e.g., rician function) containing the
loops, where the II is defined as the number of cycles between
consecutive initiations of the function [11][15][26]. In this
example, without dataflow optimization, each loop executes
in isolation and the II of the function is the sum of the
execution time of the two loops. With dataflow optimization,
loop instances from different iterations of the function can
execute in a pipelined fashion thereby reducing the II. As
throughput is the inverse of II [26], minimizing II leads to
improved throughput.

A. Motivating Example

For each individual loop in Figure 1, we optimize it through
loop unrolling. For each loop, we set the loop bound to be 6
and vary the unroll factor ({1, 2, 3, 6}). We also consider
to enable or disable the dataflow between the two loops.
Thus, there are 512 (2*4*4*4*4) design points in total. Fig. 2
presents the initiation interval versus area design space using
Vivado HLS. We define the area in terms of Weighted Area
(WA) and Area Efficiency (AE). WA and AE are defined using
the following equations:

WA = bram/BRAM + dsp/DSP + ff/FF + lut/LUT (1a)
AE = MAX(bram/BRAM, dsp/DSP, ff/FF, lut/LUT) (1b)

Fig. 2: Design space of Rician Deconvolution example.

where BRAM, DSP, FF and LUT represent the available
BRAM, DSP, Flip-Flop, and LUT resources of a given FPGA
platform, while bram, dsp, ff and lut are FPGA resources
utilized by the current pragma configuration. We define area
as,

area =

{
WA if AE ≤ 1,
α if AE > 1.

(2)

That is, when AE is less than or equal to 1, area is the sum of
the resource usage utilization ratio of different resource types;
otherwise, the design has already exceeded the FPGA resource
budget, and we set area to α. We use 4 for α in this paper.

In Fig. 2, the red stars represent the Pareto-optimal curve
without dataflow directive, while the black triangles represent
the Pareto-optimal curve with dataflow directive. The results
clearly demonstrate that data flow optimization plays a critical
role. In terms of II, the best design point on the Pareto-
optimal curve with dataflow is 30% better than that without
dataflow. However, the current DSE techniques using HLS
tools [2][3][17][20][27] primarily focus on optimizing indi-
vidual loops and ignore the dataflow feature between loops.

Table I presents the detailed II results for a subspace
of the entire design space. Dataflow = 1 means that we
enable dataflow and vice versa. The unrolling factor "2_1_1_1"
represents the unroll factor for each loop, where the first 2 and
1 are unroll factors for the outer and inter loops of loop 1.
For this subspace, we do not optimize loop 2. Thus, the unroll
factor for its outer and inner loop are 1. From Table I, without
dataflow optimization, II is equal to the sum of execution time
of loops in the application. When dataflow feature is enabled,
II is equal to the execution time of the longest loop. This is
because the two consecutive instances of the same loop can
not be executed concurrently. Thus, to minimize the II for an
application with data dependent loops, we have to optimize
the longest loop. The DSE in this case is more challenging
as a different loop can become the longest loop after the
original longest loop is optimized. In Section III, we develop
our efficient DSE algorithm to overcome this challenge.

Configuration Loop1 Loop2 Initiation IntervalDataflow Unrolling Factor
0 2_1_1_1 405 372 780
1 405 372 407
0 2_2_1_1 225 372 600
1 225 372 374
0 2_6_1_1 72 372 447
1 72 372 374

TABLE I: Latency results of loop1 for the motivating example.

Vivado HLS takes from seconds to minutes to synthesize
each configuration. The total design space exploration time for
this simple example is about 90 minutes. However, when the
complexity of the applications continues to grow, exhaustive
design space exploration becomes infeasible. Thus, we ur-
gently need a design space exploration technique to efficiently
and accurately obtain the pareto-optimal curve.

B. Problem Formulation

Let us consider an application kernel K that consists of n
loops {L1, L2, ..., Ln}. The kernel configuration CK is a set of
configurations {KC1,KC2, ...,KCt, ...,KCNK}, where NK
is the total number of kernel configurations. For a kernel con-
figuration KCt, it is represented by 〈lc1, lc2, ..., lci, ..., lcn〉,
where lci is a configuration of loop Li.

Loop Li contains mi levels of nested loops 〈Li1, Li2, ...,
Lij , ..., Limi

〉. The execution time of a loop Li is repre-
sented by Ei. In this work, for each loop, we consider loop
unrolling for performance optimization. We do not consider
loop pipelining. Thus, the initiation interval IIi of a loop
Li is Ei. Ai is the area of Li. The configuration set Ci of
Li is defined by {c1i , c2i , ..., cri , ..., c

Si
i }, where Si is the total

number of configurations of loop Li. Each configuration cri
of loop Li is represented by 〈ui1, ui2, ..., uij , ..., uimi

〉, where
uij is the loop unrolling factor configuration for the jth-level
loop Lij . UFij consists of all loop unrolling configurations
{uf1

ij , uf
2
ij , ..., uf

sij
ij } for Lij and uij ∈ UFij . sij specifies

the number of configurations for jth-level loop Lij in loop
Li. Then Si, the number of configurations of a loop Li, is
defined as

Si =

mi∏
j=1

sij (3)

The total configurations for a kernel K is calculated by,

NK =

n∏
i=1

Si (4)

Finally, the design space is doubled if we consider dataflow
feature.

2 ·NK = 2

n∏
i=1

(mi∏
j=1

sij

)
(5)

The area AK of K is calculated as

AK =

n∑
i=1

Ai (6)

The initiation interval IIK of K is defined below,

IIK =


n∑
i=1

Ei if K has no dataflow feature, (7a)

max
i=1,...,n

Ei if K has dataflow feature (7b)

Our goal is to derive the Pareto-optimal curve with initiation
interval and area trade-off.

Pareto-optimal Curve: Let D be the design space
of a kernel K consisting of all design points. Let
(KCt, IItK,AtK) denote the corresponding initiation inter-
val IItK of a kernel K and area AtK under the ker-
nel configuration KCt. We are interested in identify-
ing a curve that consists of all possible Pareto-optimal
solutions P = {(KC1, II1

K,A1
K), ..., (KCq, IIqK,A

q
K), ...,

(KCQ, IIQK ,A
Q
K)}. Q denotes the number of Pareto-optimal

solutions for a kernel K. The Pareto-optimal curve cap-
tures the different performance-area tradeoffs [6][16]. Each
(KCq, IIqK,A

q
K) in this curve has the property that there does

not exist any configuration with a triple (KCt, IItK,AtK) such
that IItK ≤ IIqK and AtK ≤ A

q
K, with at least one of the in-

equalities being strict. Thus, for any (KCt, IItK,AtK) ∈ D−P ,
there exists a (KCqK, II

q
K,A

q
K) ∈ P such that IIqK ≤ IItK

and AqK ≤ AtK, with at least one of the inequalities being
strict. The set D − P consists of all the dominated solutions,
dominated by elements in the Pareto-optimal set P .

III. AUTOMATED DESIGN SPACE EXPLORATION

The main goal of our automated DSE problem is to effi-
ciently explore the design space and provide an approximate
Pareto-optimal curve with performance (II) and area trade-
off. The exhaustive search that evaluates each configuration
using HLS tools and then builds the pareto-optimal curve is
infeasible for large applications. In contrast, we improve the
exploration time through performance estimation and efficient
search algorithms.

A. Framework Overview

Our automated DSE framework is shown in Fig. 3. The
input to our DSE is the synthesizable C code of an application.
The DSE framework consists of Code Detection, Area/Perfor-
mance Prediction, Dataflow Detection, Search Algorithm.

The Code Detection component detects the loops, number
of loop levels in a nested loop, and loop bound information.
Area/Performance Prediction component predicts the area and
initiation interval of different configurations. Dataflow Detec-
tion component checks whether the dataflow can be enabled
or not. With dataflow enabled, we use Search With Dataflow
algorithm to estimate the Pareto-optimal curve; othewise, it
will use Search Without Dataflow algorithm. The output of
the search algorithm is the pareto-optimal curve.

B. Area and Performance Prediction Models

In order to reduce the number of invocations of HLS tools,
we need to perform DSE based on area and performance
estimates. To develop accurate area/performance models, we

Fig. 3: The Automated Design Space Exploration Framework

pre-invoke HLS tools for some sample design points and then
perform estimation for the remaining points.

1) Area Prediction Model: Through empirical study, we
observe that when the configuration uij of all the nested loop
Lij except for the innermost level in a given nested (mi

levels) loop Li is fixed, increasing unrolling factors ui1 for
the innermost loop Li1 incurs linear increase in area Ai of
loop Li. Let the configuration with no optimization on the
innermost-level loop Li1 of loop Li be c1i = 〈1, ui2, ..., uimi

〉
and the configuration with the innermost-level loop completely
unrolled in loop Li be csi1i = 〈ufsi1i1 , ui2, ..., uimi

〉. Based on
this observation, we can predict area Ai(cri) as follows,

Ai(c
r
i) =

ui1 − 1

ufsi1i1 − 1
(Ai(c

si1
i)−Ai(c1i)) +Ai(c

1
i). (8)

where ufsi1i1 is the unrolling factor for the innermost-level loop
Li1 in loop Li, and cri = 〈ui1, ui2, ..., uimi

〉 is the unrolling
configuration for all the nested levels of loop Li. We obtain
Ai(c

1
i) and Ai(csi1i) through HLS tools. To estimate the area

for the entire application, we sum the area of the individual
loops in the kernel.

2) Performance Prediction Model: We have observed that
the execution time Ei of a loop Li can be estimated us-
ing iteration latency1 of its innermost-level loop Li1. We
define IL = {ILuf

1
i1

i1 , IL
uf2

i1
i1 , ..., IL

ufv
i1

i1 , ..., IL
uf

si1
i1

i1 } as a
set containing iteration latency with all available unrolling
factors UFi1 of Li1. The loop bound set of loop Li is
Bi = {Bi1, Bi2, ..., Bij , ..., Bimi

}, where Bij is the loop
bound of the jth-level loop Lij . Then, execution time Ei of a
loop Li with configuration 〈ui1, ui2, ..., uimi

〉 can be estimated

1 Iteration latency (IL) is the latency for a single iteration of the loop

as follows,

Ei =



ILui1
i1 ·

Bi1
ui1

+ c if mi=1, (9a)[((
ILui1

i1 ·
Bi1
ui1

+ c
)Bi2
ui2

+c

)
· · ·
]
Bimi

uimi

+ c if mi≥2 (9b)

where, c is a constant representing extra cost. We set c as 2
in our work to account for the additional cycles in entering
and exiting the loop. For a single-level loop Li (mi = 1), its
execution time Ei is calculated as the iteration latency ILui1

i1

with unrolling configuration ui1 multiplied by the number of
iterations after unrolling Bi1

ui1
. The execution time Ei with

mi ≥ 2 is calculated similarly.
For our performance and area estimation, we need to sample

a few configurations by invoking the HLS tools. For example,
the benchmark MTT2 has a design space with 15,552 design
points, whereas the number of pre-invocation of HLS is only
30.

For a kernel K containing multiple loops without dataflow
feature, the initiation interval IIK is calculated by Equation
7a; for a kernel K with dataflow feature, the initiation interval
IIK of the kernel is constrained by the most time-consuming
(worst-case execution time) loop as shown in Equation 7b.

C. Algorithm Description

The Dataflow Detection component checks whether
dataflow feature can be enabled for the application. Depending
on the outcome, we use different search algorithms.

1) Search Algorithm with Dataflow Feature
Algorithm 1 is used to select the Pareto-optimal design

points ~DP for a kernel K with dataflow feature. The general
idea of this algorithm is that we always focus on optimizing
the longest loop to minimize the II of the kernel. Once
the original longest loop is optimized and is no longer the
bottleneck, we switch to explore the new longest loop for
minimizing the II .

A Pareto-optimal design point here is represented as
(KCt, IItK,AtK), where KCt is a kernel configuration with
an initiation interval IItK and area AtK. This algorithm uses the
estimated execution time and area from the prediction models
mentioned in III-B.

Algorithm 1 Line 3-5 shows the initiation step of our
method. We first sort the execution time Ei of all available
configurations for each loop Li in descending order and store
it in a queue EQueue. EQueue is an ordered queue consisting
of a set of triples (Ei, Ai, c

r
i), where cri is the configuration

of loop Li with area Ai. Initially, the execution time Ei of
a loop Li is assigned as the longest execution time Emaxi of
loop Li among its available configurations.

~DP for this kernel is then searched in Line 6-18. We find
loops lm and ls with the longest Emaxlm and second longest
execution time Emaxls . Our algorithm focuses on finding all the
kernel configurations that are bottlenecked by loop lm. Until

Algorithm 1: Search algorithm with dataflow feature
Input: A kernel K containing multiple loops, FPGA

platform constraint AreaCons
Output: The design points ~DP of the kernel

1 begin
2 exit_flag ← 0;
3 foreach Li ∈ K do
4 EQueuei ← sort execution time Ei of all

configurations (Ei, Ai, c
r
i) in descending mode;

5 Emaxi ← the largest element in EQueuei;

6 while !exit_flag do
7 continue_flag ← 1;
8 lm← a loop with maxi=1,...,nE

max
i in K;

9 ls← a loop with the second longest execution
time;

10 while continue_flag do
11 if Emaxlm > Emaxls then
12 store configuration KCt, initiation

interval IItK and area AtK in ~DP as a
design point;

13 remove top element from EQueuelm;
14 update Emaxlm with the new largest

element in EQueuelm;

15 else
16 continue_flag ← 0;

17 if EQueuelm == ∅ then
18 exit_flag ← 1;

19 return ~DP ;

execution time Emaxlm is larger than Emaxls of loop ls, we select
a kernel configuration KCt consisting of current configuration
of loop lm and minimum area configurations of the remaining
loops. Based on KCt, we calculate the initiation interval IItK
and area AtK of this kernel and add (KCt, IItK,AtK) into
~DP . After this, we remove the top most element in queue
EQueuelm of loop lm to avoid storing redundant points and
update the longest execution time Emaxlm of loop lm with the
new top element in EQueuelm; otherwise, the loop with the
largest execution time will be loop ls in which case we start
exploring the new most time-consuming loop.

Since initiation interval IIK of the kernel is dominated by
the longest execution time of loop lm as shown in Equation
7b, we terminate the algorithm by returning ~DP when all
levels in loop lm have been explored, i.e. (EQueuelm = ∅).

2) Search Algorithm without Dataflow Feature
Algorithm 2 performs design space exploration for kernels

without dataflow feature. The general idea of this algorithm
is that starting from the area budget A equal to the original
kernel area AoK without any optimizations (no loop unrolling),
we increase A in steps of ∆. For each area budget A, we search
the combination of configurations of loops in the kernel with

Algorithm 2: Search algorithm without dataflow feature
Input: a kernel K, FPGA platform constraint AreaCons
Output: The design points ~DP of the kernel

1 begin
2 for A = AoK to AreaCons in steps of ∆ do
3 K1(A) = min

∀cr1∈C1

A(cr1)≤A

{
E1(cr1)

}
;

4 for A = AoK to AreaCons in steps of ∆ do
5 for i = 2 to n do
6 Ki(A) =

min
cri∈Ci

A(cri)≤A

{
Ei(c

r
i) +Ki−1(A−A(cri))

}
;

7 store the configuration, area, execution time
Kn(A) in ~DP as a design point;

8 return ~DP ;

the minimum execution time EK and store it into ~DP .
∆Ai is the area difference between Ai(c

r
i) and Ai(c

r1
i).

The step value ∆ is calculated as the minimum area difference
between two configurations of any loop in the kernel.

∆ = min
i=1,...,n

∆Ai = min
i=1,...,n
cri ,c

r1
i ∈Ci

(
Ai(c

r
i)−Ai(cr1i)

)
(10)

Let Ki(A) be the minimum execution time for a kernel K
considering loops L1, L2, ..., Li under an area budget A. Let
Ei(c

r
i) be the execution time of loop Li with the unrolling

configuration cri . Then Ki(A) can be defined recursively.

Ki(A) = min
cri∈Ci

A(cri)≤A

{
Ei(c

r
i) +Ki−1(A−A(cri))

}
(11)

That is, given an area budget A, we explore all the possible
configurations of loop Li and select the one that results in the
minimum execution time for the kernel K considering loops
L1, L2, ..., Li. The base case for loop L1 is calculated by the
following equation,

K1(A) = min
∀cr1∈C1

A(cr1)≤A

{
E1(cr1)

}
(12)

The minimum execution time for loop L1, L2, ..., Ln within
the area budget A corresponds to Kn(A). Based on the
Equation 7a the initiation interval IIK is equal to Kn(A).

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup for
the evaluation of our method. Next, we present the experimen-
tal results.

A. Experimental Setup

In order to evaluate the effectiveness of our method, we
utilize six benchmarks. Each benchmark consists of multiple
nested loops with or without dataflow feature. These bench-
marks are image processing applications used in [10] and an
automotive Multi-Target Tracking System (MTT) application
[21]. Table II summarizes the benchmarks used in our evalua-
tion. As the huge design space (around 264 points) of the MTT
benchmark surpasses the capability of exhaustive search, we
manually split it into four smaller kernels, each performing a
different stage in the application.

Benchmark Description Type Explorable Operations

Rician Image Rician
Deconvolution

Dataflow/
No Dataflow loop(4,4)1, loop (4,4)

Seidel Seidel stencil
computation No Dataflow loop(6,6), loop(6,6)

MTT1 Kernel 1 of
MTT

Dataflow/
No Dataflow

loop(3,3), loop(3,3,3),
loop(3,3,3)

MTT2 Kernel 2 of
MTT

Dataflow/
No Dataflow

loop(3,3), loop(2,3,3),
loop(2,3,2), loop(2,2)

MTT3 Kernel 3 of
MTT

Dataflow/
No Dataflow

loop(2,2), loop(3,3,2),
loop(3,2,2), loop(2,3)

MTT4 Kernel 4 of
MTT No Dataflow

loop(2), loop(3,2),
loop(3), loop(3,2,3),
loop(3,3)

1 loop(num1,num2,...,numm) represents a loop that has m-level loops
with each level containing numi configurations;

TABLE II: Benchmarks

We run our DSE algorithm on Intel Xeon CPU E5-2620
core running at 2.10GHz with 64GB RAM. The target FPGA
platform is Xilinx ZC702 Evaluation Kit [22] and we utilize
Xilinx Vivado HLS version 2013.3 to synthesize the C code
into Verilog RTL and obtain performance/area information for
all the design points of our benchmarks. Vivado HLS reports
the minimum and maximum II. We use the maximum II to
accommodate the worst case performance. The area metric
defined by Equation 2 is used for FPGA area.

B. Experimental Results

The error of the area/performance models is calculated
by the arithmetic mean of difference between real results
via Vivado HLS and predictions for all the configurations.
Experimental results show 4.05% and 3.92% error for the area
and performance prediction model for our six benchmarks,
respectively. This demonstrates the accuracy of our prediction
models.

For evaluating our approach, we exhaustively run all the
design point combinations for all benchmarks to obtain the
Pareto-optimal curve as our reference. Figure 4 shows the
Pareto-optimal curves for all benchmarks using exhaustive
search and our method. It provides an intuitive visual sum-
mary of exploration results. MTT1 benchmark has dataflow
feature and its Pareto-optimal curves applying the dataflow
or non-dataflow pragma using exhaustive method are plotted
in Figure 4c. It can be observed that the Pareto-optimal
curve with dataflow (green line with stars) has higher quality
performance-area trade-offs than the curve without dataflow

(red line with rectangles). This confirms our observations from
the motivating example in section II. The approximate Pareto-
optimal curve DSE_WITH_DF (orange line with triangles),
obtained by our method follows the trend of the Pareto-optimal
curve with dataflow Exhaustive_With_DF (green line with
stars) and is quite close to it. However, from the figure, we
can observe that the approximate Pareto-optimal curve by our
method does not cover all the Pareto-optimal design points
on the curve Exhaustive_With_DF. The loss of a small set of
Pareto-optimal points is a side-effect of errors introduced by
performance/area prediction models. The rest of the graphs in
Figure 4 illustrate similar behavior for other benchmarks.

Moreover, in order to measure the quality of an approxi-
mate Pareto-optimal curve, we borrow the metric of average
distance from reference set (ADRS) utilized by [13][20]. In our
case, we consider a two-objectives (Initiation Interval II vs.
area A) DSE problem. ADRS is used to measure the distance
between an exact Pareto-optimal set Π = {π1, π2, ...|πi =
(l, a), l ∈ II, a ∈ A} and an approximate Pareto-optimal set
Λ = {λ1, λ2, ...|λj = (l, a), l ∈ II, a ∈ A}:

ADRS(Π,Λ) =
1

|Π|
∑
π∈Π

min
λ∈Λ

δ(π, λ) (13)

where δ is defined by,

δ(π = (lπ, aπ), λ = (lλ, aλ)) = max{0, lλ − lπ
lπ

,
aλ − aπ
aπ

}.

ADRS is usually represented by percentage. The lower the
ADRS, the better is the quality of the approximate set Λ
with respect to Π. Table III summarizes the ADRS for our
method. The maximum difference among the benchmarks is
less than 4%, which means the approximate Pareto-optimal
curves obtained by our method are of high quality.

Benchmarks ADRS(%)
Rician 0.08
Seidel 0.62
MTT1 2.51
MTT2 2.67
MTT3 3.67
MTT4 3.66

TABLE III: Average ADRS of All Benchmarks

To demonstrate the efficiency of our approach, we also
compare exploration time for obtaining the approximate Pareto
curve using our approach with that of exhaustive method.
For the exhaustive method, the total exploration time consists
of the time to run Vivado HLS for all the design points.
For our approach, the total exploration time comprises of
selective invocation of Vivado HLS and the time spent on
our algorithm. It is important to note that time spent on the
algorithm is negligible when compared to that of Vivado HLS
for one configuration. In addition, we also compare with the
method proposed in Schafer’s work [2]. However, their work
[2] ignores dataflow feature. For a fair comparison, we extend
their technique with dataflow feature. The algorithm they have
proposed has two steps: (1) Exhaustively perform DSE using

(a) Rician Deconvolution (b) Seidel Application (c) MTT1

(d) MTT2 (e) MTT3 (f) MTT4

Fig. 4: Comparison of Pareto-optimal Curves with Exhaustive Method versus our Approximate DSE

Benchmarks Design Points Number of HLS invocation Exploration Time (s) Speedup
Exhaustive [2] Our Exhaustive [2] Our Exhaustive [2] Our

Rician 512 512 181 19 5349.90 1891.27 198.53 1 2.83 26.95
Seidel 1296 1296 361 31 22121.44 6161.91 529.14 1 3.59 41.81
MTT1 13122 13122 246 43 132006.40 2474.74 432.58 1 53.34 305.16
MTT2 15552 15552 374 30 148978.40 3582.69 287.38 1 41.58 518.4
MTT3 10368 10368 364 31 74273.09 2607.58 222.07 1 28.48 334.45
MTT4 5832 5832 230 32 34397.76 1356.57 188.74 1 25.36 182.25

TABLE IV: Design Space Exploration Time Comparison

HLS for each loop in a kernel and extract the Pareto-optimal
sets for individual loops and (2) Combine the configurations of
design points in the Pareto-optimal sets for individual loops
and invoke HLS again for extracting the Pareto-optimal set
for the kernel. The exploration time comparison is shown
in Table IV. Our method is, on an average, 235x faster
than exhaustive method. The speedup increases as design
space enlarges. For MTT2 kernel, the speedup is up to 520x
compared with exhaustive method. Moreover, we obtain 9x
speedup in exploration on an average compared to [2].

In summary, our technique can perform design space explo-
ration efficiency and return design points with high quality.

V. RELATED WORK

Design space exploration (DSE) for FPGAs is a multi-
objective optimization problem. The problem is to resolve
conflicting objectives by finding the points on the Pareto-
optimal curve. Typical objectives for this exploration are
performance (latency/throughput/initiation interval) and area.
Existing approaches in DSE for FPGAs can be classified into

the following two categories:

Compiler techniques: [5][12][17] estimate performance
and area at control data flow graph (CDFG) level. They
perform DSE starting from direct loop transformations and
apply diverse compiler optimization techniques to generate
different architectures with fast estimated execution time and
area. Bilavarn et al. [5] and So et al. [17] consider perfor-
mance/area trade-offs regarding loop transformations such as
loop unrolling. So et al. utilize a balance metric to prune
configuration space in their DSE algorithm, while Bilavarn et
al. perform an exhaustive search for all possible configurations
to find the Pareto-optimal curve. Holzer et al.[12] introduce
an evolutionary multi-objective optimization approach to the
find Pareto-optimal curve. However, all these works focus on
one loop.

HLS tools as a blackbox: [2][3][14][18][20][27] explore
the design space using commercial high level synthesis tool
as a blackbox. Schafer et al. propose a divide and conquer
algorithm [2] for solving HLS design space exploration prob-

lems. They first parse kernels into a set of clusters which
consist of loops, functions and arrays. Then they exhaustively
search each cluster by invoking HLS tools with all possible
configurations to find the local Pareto-optimal points. Finally,
they combine the local Pareto-optimal configurations and
invoke HLS tools again to find the global Pareto-optimal
points. As they need actual simulation/synthesis to acquire
design points at every step, their method suffers from long
simulation/synthesis runtime. Instead of invoking HLS tools
frequently, Schafer et al.[3] and Liu et al.[20] propose machine
learning algorithms for this problem. Learning-based algo-
rithms guide the design space exploration by predicting design
points. This helps to reduce the total runtime to perform design
space exploration. Compared with local-search algorithms,
learning-based methods require shorter simulation/synthesis
runtime. However, the learning-based approaches search all
possible configurations without any pruning. Apart from the
time-consuming training step to obtain a learning model, the
learning model is only trained with one application in [20].
Thus the accuracy of this learning model for a new application
with different features is not clear.

Prior design space exploration techniques using HLS
[2][3][5][12][14][17][20] focus primarily on nested loops
ignoring dataflow (producer-consumer) dependence among
them. Design space exploration for loops with dataflow de-
pendence is still not well studied. This work proposes ef-
ficient design space exploration techniques for applications
that consist of multiple nested loops with or without dataflow
dependence. In addition, instead of searching all possible
configurations [2][3][14][20], we prune the design space by
eliminating the dominated configurations. Accurate perfor-
mance and area models are also developed to assist the design
space exploration to reduce number of invocation of the HLS
tool. To show the accuracy and efficiency of our design space
exploration technique, various scientific kernels and real world
applications are tested in our work.

VI. CONCLUSION

We have presented an efficient and accurate design space
exploration technique using HLS for applications consisting
of multiple nested loops with or without data dependencies.
Experimental results demonstrate that our method can perform
DSE for applications with huge design space (more than
10,000 design points) and provide an approximate Pareto-
optimal curve within at most nine minutes. The proposed
method runs 235x faster than exhaustive search and 9x faster
than Schafer’s method [2] on an average. The quality of the
obtained Pareto-optimal curve is very close to the optimal. The
efficiency and accuracy of our method open up opportunities
for design space exploration of more complex application
kernels on FPGAs using HLS.

ACKNOWLEDGMENT

This work was partially supported by Singapore Ministry
of Education Academic Research Fund Tier 2 MOE2012-T2-
1-115 and French-Singaporean Merlion 2012 PhD Project.

REFERENCES

[1] Altium Inc. Altium Designer. http://www.altium.com.
[2] Schafer B. and Wakabayashi K. Divide and Conquer High-level

Synthesis Design Space Exploration. ACM Trans. Des. Autom. Electron.
Syst., 2012.

[3] Schafer B. and Wakabayashi K. Machine Learning Predictive Modelling
High-Level Synthesis Design Space Exploration. Computers Digital
Techniques, IET, 2012.

[4] Cadence Inc. C-to-Silicon Compiler, 2012. http://www.cadence.com.
[5] Bilavarn S. et al. Design Space Pruning Through Early Estimations

of Area/Delay Tradeoffs for FPGA Implementations. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 2006.

[6] Bordoloi U.D. et al. Evaluating Design Trade-offs in Customizable
Processors. In Design Automation Conference (DAC), 2009.

[7] Canis A. et al. LegUp: High-level Synthesis for FPGA-based Pro-
cessor/Accelerator Systems. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA
’11, 2011.

[8] Chen D. et al. xPilot: A Platform-Based Behavioral Synthesis System.
In Proceedings of SRC Techcon Conf, 2005.

[9] Cong J. et al. Platform-Based Behavior-Level and System-Level Syn-
thesis. In SOC Conference, 2006 IEEE International, 2006.

[10] Cong J. et al. Customizable Domain-Specific Computing. Design Test
of Computers, IEEE, 2011.

[11] Cong J. et al. Combining Module Selection and Replication for
Throughput-driven Streaming Programs. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’12, 2012.

[12] Holzer M. et al. Design Space Exploration with Evolutionary Multi-
Objective Optimisation. In Industrial Embedded Systems, 2007. SIES
’07. International Symposium on, 2007.

[13] Palermo G. et al. ReSPIR: A Response Surface-Based Pareto Iter-
ative Refinement for Application-Specific Design Space Exploration.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 2009.

[14] Papakonstantinou A. et al. Multilevel Granularity Parallelism Syn-
thesis on FPGAs. In Proceedings of the 2011 IEEE 19th Annual
International Symposium on Field-Programmable Custom Computing
Machines, FCCM ’11, 2011.

[15] Papakonstantinou A. et al. Throughput-oriented Kernel Porting onto
FPGAs. In Design Automation Conference (DAC), 2013 50th ACM /
EDAC / IEEE, 2013.

[16] Sbalzarini I. F. et al. Multiobjective Optimization Using Evolutionary
Algorithms. In Proceedings of the Summer Program, 2000.

[17] So B. et al. A Compiler Approach to Fast Hardware Design Space
Exploration in FPGA-based Systems. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI ’02, 2002.

[18] Xydis S. et al. A Meta-model Assisted Coprocessor Synthesis Frame-
work for Compiler/Architecture Parameters Customization. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, 2013.

[19] Zuo W. et al. Improving High Level Synthesis Optimization Oppor-
tunity Through Polyhedral Transformations. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’13, 2013.

[20] Liu H. and Carloni L.P. On Learning-based Methods for Design-
space Exploration with High-Level Synthesis. In Design Automation
Conference (DAC), 2013 50th ACM / EDAC / IEEE, 2013.

[21] Liu H. and Niar S. Radar Signature in Multiple Target Tracking System
for Driver Assistant Application. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, pages 887–892, March 2013.

[22] Xilinx Inc. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All
Programmable SoC User Guide, 2013.

[23] NEC Inc. CyberWorkBench. http://www.nec.com.
[24] Gupta S. SPARK: a high-level synthesis framework for applying paral-

lelizing compiler transformations. In VLSI Design, 2003. Proceedings.
16th International Conference on, 2003.

[25] Synopsys Inc. Synphony High-Level Synthesis Solution, 2012.
http://www.synopsys.com.

[26] Xilinx Inc. Vivado High-Level Synthesis. http://www.xilinx.com.
[27] Sotirios Xydis, Kiamal Pekmestzi, Dimitrios Soudris, and George

Economakos. A High Level Synthesis Exploration Framework with
Iterative Design Space Partitioning. In VLSI 2010 Annual Symposium,
2011.

