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Abstract—State-of-the-art mobile system-on-chips (SoC) in-
clude heterogeneity in various forms for accelerated and energy-
efficient execution of diverse range of applications. The modern
SoCs now include programmable cores such as CPU and GPU
with very different functionality. The SoCs also integrate per-
formance heterogeneous cores with different power-performance
characteristics but the same instruction-set architecture such as
ARM big.LITTLE. In this paper, we first explore and establish the
combined benefits of functional heterogeneity and performance
heterogeneity in improving power-performance behavior of data
parallel applications. Next, given an application specified in
OpenCL, we present a static partitioning strategy to execute
the application kernel across CPU and GPU cores along with
voltage-frequency setting for individual cores so as to obtain
the best power-performance tradeoff. We achieve over 19%
runtime improvement by exploiting the functional and perfor-
mance heterogeneities concurrently. In addition, energy saving of
36% is achieved by using appropriate voltage-frequency setting
without significantly degrading the runtime improvement from
concurrent execution.

I. INTRODUCTION

Over the past decade, desktop, laptops and mobile devices
have all witnessed the irreversible transition towards multi-core
and eventually many-core architectures (multiple processing
cores on the same die) due to power/thermal constraints. In the
beginning, the multi-core landscape has been dominated by ho-
mogeneous architectures consisting of a collection of identical
(and possible simple) cores. These homogeneous multi-cores
are simple to design, offer easy silicon implementation, and
regular software environments. Unfortunately, general-purpose
emerging workloads from diverse application domains have
very different resource requirements that are hard to satisfy
with a set of identical cores. In contrast, there exist many
evidences that heterogeneous multi-core solutions consisting
of different core types can offer significant advantage in terms
performance, power, area, and delay. Thus heterogeneity has
emerged as a promising solution in the face of complex,
dynamic, and diverse applications.

We can broadly classify heterogeneous multi-cores into
performance heterogeneity, where cores with the same func-
tionality (same instruction-set architecture or ISA) but differ-
ent power-performance characteristics are integrated together
and functional heterogeneity, where cores with very different
functionality (different ISA) are interspersed on the same
die. In performance heterogeneous multi-core architectures,
the difference stems from distinct micro-architectural fea-
tures such as in-order core versus out-of-order core. The
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Fig. 1: Block Diagram of Exynos 5422 SoC featuring both
performance and functional heterogeneity.

complex cores can provide better performance at the cost
of higher power consumption, while the simpler cores ex-
hibit low-power behavior alongside lower performance. An
example of commercial multi-core featuring performance het-
erogeneity is ARM big.LITTLE [11] architecture integrating
high-performance out-of-order ARM Cortex-A15 cores (big
cores) with low-power in-order ARM Cortex-A7 cores (small
cores). Functionally heterogeneous multi-cores comprise of
cores with different functionality. This is fairly common in
the embedded space where a multiprocessor system-on-chip
(MPSoC) consists of general-purpose CPU cores, GPU cores,
DSP blocks, and various hardware accelerators or IP blocks
(e.g., video encoder/decoder, imaging, etc.). The heterogeneity
is introduced here to meet the performance demand under
stringent power budget as certain workloads are more suitable
for GPUs, DSPs, or fixed-function accelerators. In this work,
we focus on programmable heterogeneous cores in mobile
platforms, namely CPU and GPU cores. Unlike performance
heterogeneity, which is transparent to the software developer,
functional heterogeneity is harder to exploit due to differences
in ISA. Fortunately, new framework such as OpenCL [6] has
been developed for writing programs that can execute across
heterogeneous processing elements including CPU, GPU, DSP,
and FPGAs. Previous works have explored the possibility
of executing OpenCL programs across CPUs and GPUs but
mostly from performance perspective [15][12][13]. Moreover,
all these works have exclusively focused only on functional
heterogeneity.

Recently, the mobile platforms (specially smartphones,
tablets, and wearables) are adopting both performance and
functional heterogeneity in the same chip. Figure 1, for in-
stance, shows a simplified block diagram for the Samsung
Exynos 5422 SoC [2] that powers the popular Galaxy S5
smartphone manufactured by Samsung. The SoC contains a
high performance multi-core ARM Cortex-A15 CPU cluster, a
low power multi-core ARM Cortex-A7 CPU cluster alongside



a six-core ARM Mali T628 MP6 GPU. Moreover, similar
to their desktop counterparts, the GPUs in these devices are
also gradually becoming fully capable of performing general
purpose computation with the help of OpenCL. The presence
of such high performance components in a portable device
enables users to run sophisticated applications such as video
editing, immersive 3D games, etc. that could not have been
possible only a few years ago. While the multi-core CPU takes
care of task/thread-level parallelism, the GPU handles data-
level parallelism. But most applications still have substantial
sequential fraction needing to be accelerated through architec-
tural approaches such as multi-issue out-of-order execution (as
in ARM Cortex-A15) that can extract instruction-level paral-
lelism from serial code transparently. The question remains
is how best to partition and execute an OpenCL program
across small CPU cores, big CPU cores, and the GPU so
as to provide best power-performance tradeoff. Also, both the
CPU and the GPU cores in state-of-the-art mobile platforms
include dynamic voltage-frequency scaling (DVES) capability
that can further improve the power-performance behavior of
the application.

In this work, we explore, for the first time, the benefits of
functional and performance heterogeneity along with DVFS in
mobile platforms for general-purpose computing workloads.
Given an application, specified in OpenCL, we statically
partition the application to run across CPU and GPU clusters
on mobile application processors in conjunction with appro-
priate voltage-frequency setting for each core cluster (small
core, big core and GPU). Our objective is to maximize the
power-performance tradeoff of the application. The concrete
contributions of this work are as follows:

e To the best of our knowledge, this is the first study
that explores both functional and performance hetero-
geneity for a single application and shows concrete
advantages of both kinds of heterogeneity depending
on the application.

e  We believe, this is also the first work that investigates
partitioning of OpenCL applications across CPU and
GPU in a mobile application processor. In mobile SoC,
the CPU and the GPU need to share resources such
as the memory bandwidth that has significant impact
on the performance of the individual components.
We carefully model the impact of resource sharing.
Moreover, embedded GPUs are not as powerful as
desktop discrete GPUs and hence the tradeoffs are
very different.

e  We develop a static partitioning algorithm that maxi-
mizes the power-performance tradeoff by taking into
consideration not only the characteristics of the differ-
ent cores but also their appropriate frequency scaling
point. As energy is the most important metric in mo-
bile platforms, DVFS in conjunction with partitioning
of the application is imperative, but has not been
examined before.

e  We implement our approach on a state-of-the-art mo-
bile application processor (Samsung Exynos 5422)
prevalent in smartphone/tablet devices and we report
power-performance results obtained directly from this
real platform rather than relying on simulations.

II. RELATED WORK

Performance and power optimization of general purpose
computing workloads on functionally heterogeneous comput-
ing systems has been extensively studied [13][15][16][21].
Traditionally, such heterogeneous systems contain multi-core
CPUs for general purpose tasks, while an integrated or discrete
GPU is used to accelerate data-parallel tasks in the applications
[15]. In the context of discrete GPU platforms, several works
[15][12][13][21][16] have been proposed to exploit the paral-
lelism in tasks to concurrently execute on both CPU and GPUs,
to improve throughput [15][12][13] and energy efficiency[15].

Qilin[15] employs an offline profiling step to create a
regression model that predicts the execution time for appli-
cations at runtime with arbitarary input size on CPU or GPU.
However, it requires extensive profiling, which is not required
in our work. Grewe et al.[12] proposed a static task partitioning
approach based on predictive modeling and program features.
The SVM based model requires only static program features
that do not need extensive profiling. A follow-up work[13] by
the same authors also incorporate the effect of GPU contention.
However, this paper focuses on executing multiple applications
on GPU simultaneously. Current embedded platforms do not
allow concurrent executions to the best of our knowledge.

In [21], the authors proposed an SVM based prediction
model according to static code structures. The applications are
then dispatched to CPU or GPU according to the predicted
speedup on the platform. However, they considered multiple
applications, unlike our work that splits a single application to
run on both CPU and GPU. FluidiCL[16] proposed an OpenCL
runtime that uses both CPU and GPU to execute a single
application and performs data transfers and merging automati-
cally. The whole kernel is launched on GPU, while sending
small chunks of workload to CPU adaptively according to
system load. Unlike [16], our approach predicts the runtime
and decides the CPU-GPU partition statically at compile time
while also exploiting DVFS to achieve energy-efficiency.

Unlike discrete GPU platforms, general purpose computing
workloads executing on integrated GPU platforms also suffer
due to shared resources[19][17][20]. The coordination of CPU
and GPU therefore needs more consideration. Wang et al.[19]
considered the total chip power budget of an AMD Trinity
single chip heterogeneous platform and proposed a runtime
algorithm for workload and power budget partitioning between
GPU and CPU to improve throughput. [20] shows that in the
CPU-GPU coordinated executions on a similar AMD platform,
there is higher possibility of CPU and GPU accessing the
same bank due to the dissimilarity of memory access patterns,
therefore resulting in memory contention. [17] addressed the
problem of shared resources for integrated GPUs in AMD
platforms and used DVFS to improve energy efficiency.

In the context executing general purpose computing ap-
plications on mobile platforms, [9] examined the Mali GPU
performance for HPC workloads, and improved its energy
efficiency. This work mainly focused on GPU, without con-
sidering the possible collaboration with CPU. [8] proposed a
workload partitioning algorithm for heterogeneous MPSoCs
with the consideration of shared resources and synchronization.
However they do not use GPU for OpenCL kernel execution.

The authors in [14] described their OpenCL framework



Fig. 2: Experimental Setup with Odroid-XU3: A state-of-the-
art mobile platform with Samsung Exynos 5422 SoC.

to support ARM processors. We use a similar open source
framework, FreeOCL [3] for the ARM CPU that acts as both
the host processor and an OpenCL device.

A technique for automatic work-group size selection for
OpenCL kernels for multicore CPUs [18] is proposed to
improve cache utilization and load balancing. Similar idea is
used in this work to not only improve performance for the
GPU, but also to ease the shared resource contention.

III. EXPERIMENTAL SETUP

The goal of this work is to explore the benefits of functional
and performance heterogeneity in mobile application proces-
sors towards improved power-performance tradeoff. We first
present our evaluation platform and the software environment.

A. Mobile Application Processor

In this work, we perform all the experiments on a real state-
of-the-art mobile application development platform — Odroid-
XU3 [5] from Hardkernel — shown in Figure 2. This platform
contains Samsung Exynos 5422 SoC (shown in Figure 1)
featuring both functional and performance heterogeneity where
all the programmable cores support OpenCL.

As mentioned earlier, the SoC implements ARM
big. LITTLE technology with a cluster of four ARM Cortex
A1S5 cores (big cores) and a cluster of four ARM Cortex
A7 cores (small cores). All the cores implement ARM v7A
ISA. The Cortex-A15 is complex out-of-order superscalar core
that can execute high intensity workloads, while Cortex-A7
is a power efficient in-order core meant for low intensity
workloads. While each core has private L1 instruction and data
caches, the L2 cache is shared across all the cores within a
cluster. The L2 caches (2MB for Al5 and 512KB for A7)
across clusters are kept seamlessly coherent. The architecture
provides DVFS feature per cluster. Note that all the cores
within a cluster should run at the same frequency level. The
A15 cluster can be clocked between 200MHz to 2000MHz at
an interval of 100MHz. Similarly, A7 cluster frequency can be
set between 200MHz to 1400MHz at an interval of 100MHz.
The voltage at each frequency level is automatically set by the
hardware. An idle cluster can be powered down if necessary.
In our current setup, the development platform runs popular
Ubuntu 14.04 LTS operating system. This OS version supports
Heterogeneous Multi-Processing that allows all the CPU cores
(both big and small cores) to be active simultaneously as well
as task migration to and from any of the CPU cores [4].

The SoC also includes ARM Mali T628 MP6 GPU im-
plementing “Midgard” architecture with six shader cores that
can execute both the graphics and general-purpose computing

workloads. Only four shader cores are used by OpenCL
runtime. The shader cores share .2 cache (128 KB). But the
CPU L2 cache is not kept coherent with the GPU L2 cache
even though the GPU is allowed to read from the CPU cache.
The main component of the shader core is a programmble
massively multi-threaded “tri pipe” processing engine. The tri
pipe contains one load-store pipeline, two arithmetic pipelines,
and one texture pipeline (unused by OpenCL). The arithmetic
pipeline is a VLIW design with SIMD vector characteristics
operating on 128-wide registers. That is, the arithmetic pipeline
has a mix of scalar and vector (SIMD) ALUs that can be fed
with a single long instruction word. The load-store pipeline
of each shader core has 16KB L1 data cache. Hundreds of
hardware threads can run concurrently in the tri pipe. If some
threads are waiting for memory, other threads can execute in
the arithmetic pipeline thereby hiding the memory latency.
A significant difference of this architecture from other GPU
architectures is that the arithmetic pipelines are independent
and can execute threads that are different, for example, in case
of divergent branches and memory stalls. The GPU can be
clocked at seven different voltage-frequency settings between
177TMHz-600MHz as shown in Table I.

TABLE I: The available voltage-frequency settings for GPU

Frequency (MHz) [ 600 543 480 420 350 266 177
Voltage (mV) [ 975 9625 9125 875 850 975  762.5

The platform provides current sensors, one each for the
A7 cluster, the A15 cluster, the GPU, and the DRAM main
memory. The current sensors can be sampled at 4Hz to
obtain continuous power readings for the different on-chip
components. The implemented Linux Kernel (v3.10.69) also
allows us to change the frequency of the different components
by editing the appropriate virtual files for the corresponding
devices in the Linux sysfs directory.

B. Software Environment

In this work, we execute an application across the CPU
and GPU cores through OpenCL. We now provide a short
background on OpenCL followed by our runtime environment
and how we partition an OpenCL kernel to execute on both
CPU and GPU cores.

OpenCL Background: The Open Computing Lan-
guage (OpenCL) [6] is an open standard for developing
parallel applications in heterogeneous multi-core architectures
including CPU, GPU, DSP, and FPGAs. Vendors who support
OpenCL for their devices are responsible for the OpenCL
runtime software and compilation tools that facilitate develop-
ment and execution of OpenCL programs on the device. Most
importantly, OpenCL allows runtime software from different
vendors to co-exist so that a single program can exploit
multiple devices.

In OpenCL model of computation, a host code segment
running on the CPU controls one or more compute devices
that perform the computations called the kernels. A compute
device can be a CPU, GPU, DSP, or even FPGAs. The host
code is responsible for setting up the devices and schedule
kernels for execution on them using OpenCL API functions.
It also needs to send and receive the data from the compute
devices before and after the execution, respectively. The kernel
or device code on the other hand is created and built on the
host using OpenCL APIs during runtime and finally scheduled
on the OpenCL device for execution.
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Each compute device (e.g., GPU) consists of compute units
(e.g., shader cores in Mali) and each compute unit consists of
processing elements (e.g., arithmetic pipelines). Each kernel
instance is called a work-item that operates on a single data
point and executes on a processing element. A group of work-
items constitutes a work-group that execute concurrently on the
processing elements of a single compute unit. The work-items
of an OpenCL program operate along the index space, termed
as NDRange, of the input data for data-parallel applications.
All the work-items execute the same code but may follow
different control paths. In order to relate OpenCL execution
model to the popular CUDA model, it is often easier to
visualize the OpenCL work-item as CUDA thread, work-group
as thread-block and NDRange as grid. Each work-item has
private memory, while each work-group has a local memory
shared across all the work-items in the work-group. All work-
groups have access to a global memory that is also accessible
by the host. The OpenCL memory model demands memory
consistency across work-items within a work-group but not
among different work-groups. This enables different work-
groups to be launched on different compute devices (e.g.,
CPU and GPU) without worrying about maintaining memory
consistency among the devices.

OpenCL Runtime: The OpenCL runtime software
for the Mali GPU is supplied by the vendor in an effort to
promote the usage of the GPU for general-purpose computing
applications. On the other hand, current mobile SoCs typically
do not ship with OpenCL support for the ARM CPU cores
[14]. In order to explore the concurrent execution of OpenCL
applications on CPU alongside the GPU, we compiled and
installed an open-source OpenCL runtime, called FreeOCL [3]
on this platform. This enabled each of the eight CPU cores
(four big and four small cores) to be used as an OpenCL
compute unit. From the perspective of the OpenCL program-
mer, there is no difference between the big and LITTLE cores.
Moreover, unlike other open-source OpenCL runtimes such as
[7], FreeOCL also enabled us to schedule and launch OpenCL
kernel concurrently on all CPU cores and GPU in this SoC.

/+*Pseudocode for splitting on CPU and GPU =*/
(global_work_size =
split_fraction) / work_group_size;

s //Parameters for workload on CPU

=

)

o

globalWorkSizeCPU =
work_group_size;

offsetCPU = 0;

//Parameters for workload on GPU

globalWorkSizeGPU = (global_work_size /
work_group_size - splittingPoint) =
work_group_size;

offsetGPU = splittingPoint * work_group_size;

//Enqueue OpenCL kernels

clEnqueueNDRangeKernel (c1CPUCommandQue,
clCPUKernel, dim, offsetCPU,
globalWorkSizeCPU, work_group_size,
NULL, NULL);

clEnqueueNDRangeKernel (c1GPUCommandQue,
clGPUKernel, dim, offsetGPU,
globalWorkSizeGPU, work_group_size,
NULL, NULL);

splittingPoint =*

0,

0,

OpenCL code partitioning across CPU-GPU: The
pseudo-code shown above describes how an OpenCL kernel
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Fig. 3: Runtime improvement with CPU and GPU Partitioning.

computation is partitioned across the CPU and the GPU cores.
Given an application, we statically determine the fraction of
work-items to be executed on each device. In order to facilitate
the execution of the OpenCL kernels, the work load (global
work_size) on both CPU and GPU should be multiples of
work-groups size (Line 2). Therefore, splittingPoint, which is
used for the actual splitting, is calculated to be the number of
work-groups that is nearest to the desired fraction of CPU work
load (split_fraction). Next, the global work-size and offset
values for the CPU and GPU are calculated based on the
splittingPoint as shown in the pseudo-code (Lines 4-8). The
partitioned application is subsequently executed by enqueuing
kernels on both devices with the new global work-size and
offset values (Lines 10-11).

C. Benchmark Applications

We use the GPU version of the popular Polybench bench-
mark suite [10]. This suite contains data-parallel applications
written in OpenCL. Each application includes a comparison
code in the end that greatly helps in verifying the output
from the parallel OpenCL kernel execution. The application
codes are minimally modified to launch on CPU-alone, GPU-
alone or on both CPU and GPU based on an input argument.
Amongst the 15 applications in this suite, only the FDTD-2D
application can not be executed on our platform due to a bug in
the original code. Also, the GRAMSCHMIDT application can
not be split for concurrent CPU-GPU execution. Therefore, we
use the remaining 13 applications for all the experiments in
this work. We select the appropriate work-group size for each
benchmark as discussed in Section V-A.

IV. ADVANTAGES OF HETEROGENEITY

We first examine the benefit of partitioning an OpenCL
application across CPU and GPU cores in a mobile application
processor. Figure 3 shows on Y-axis the runtime for execution
of OpenCL kernel on all CPU cores (4 A7 + 4 Al5), GPU
core, and optimally partitioned for performance across CPU
and GPU cores. For this experiment, we set the maximum
possible frequency for each cluster. We reinforce additional
environmental cooling to ensure that the chip never hits its
thermal design power threshold. Some applications have better
runtime on CPU, while others run faster on GPU. But most
applications benefit significantly from utilizing both the CPU
and the GPU. The secondary Y-axis shows the percentage
runtime improvement for CPU+GPU execution over the best
of CPU only and GPU only executions. The improvement can
be as high as 40% and on average 19% across all the bench-
marks. This experiment clearly establishes the advantages of
harnessing the power of both CPU and GPU cores for OpenCL
execution on mobile platforms.
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We now delve deeper to understand the impact of hetero-
geneity and the energy-performance tradeoffs. We present the
complex design space of partitioning and frequency selection
for running an OpenCL application across small cores, big
cores, and the GPU on Exynos SoC. We choose two different
benchmark applications to illustrate the tradeoff in the design
space: 2DCONYV is an application that is more suitable for the
GPU, while SYR2K is more suitable for the CPU. For both
the applications, we run the OpenCL program using different
compute devices.

e A7 only: Execute OpenCL kernel on four cores in A7
cluster. We vary the frequency setting for A7 cluster to
obtain different design points. To keep the number of
design points manageable without losing any insights,
we change the frequency at an interval of 200MHz
instead of 100MHz.

e AlS5 only: Execute OpenCL kernel on four cores in
AlS5 cluster. We vary the frequency setting for A15
cluster. Again, to keep the number of experiments
feasible, we set frequency from 800-2000MHz at an
interval of 200 MHz.

e  GPU only: Execute OpenCL kernel on GPU only. We
vary the frequency setting of the GPU.

e A7+A1S: Execute OpenCL kernel on 8 cores (4 A7
and 4 A15). In this case, the OpenCL runtime on ARM
automatically allocates the work-groups to the eight
cores depending of the relative speed of execution,
that is, we do not pre-select the partitioning of work-
load between the small and big cluster. We vary the
frequency for A7 and A15 clusters individually.

e A7+GPU: Execute OpenCL kernel on both A7 cluster
and the GPU. In this case, we need to partition the
work-items between A7 cluster and GPU. To keep
the design space plot relatively uncluttered, we only
plot the results for the Pareto-optimal partitioning
points. Both A7 cluster and GPU frequency are varied
individually.

e Al15+GPU: Similar to the previous case except that
we split the kernel across A15 cluster and GPU.

o  A15+A7+GPU: Execute OpenCL kernel on A15 clus-
ter, A7 cluster and the GPU. In this case, we need
to partition the work-items between CPU and GPU.
Note that as in the case of A7+Al5 execution, the
partitioning between A7 and A15 cluster is taken care
of by the OpenCL runtime. We will statically partition
between CPU and GPU. Again, to keep the design
space plot relatively uncluttered, we only plot the
results for the Pareto-optimal partitioning points. A7
cluster, A15 cluster, and GPU frequency are all varied
independently.

Figure 4 illustrates the energy-performance tradeoff for
2DCONYV and SYR2K applications. The X-axis plots the ex-
ecution time in seconds in log scale, while the Y-axis plots
the energy in Joules for various design points. It is clear from
the plots that the two benchmarks behave very differently. As
2DCONYV benefits from GPU significantly, we can see that
the GPU only design points are close to the Pareto-front with
very low-energy design points, but A7 only and Al5 only
executions are very far from the Pareto-optimal design points.
On the other hand, for SYR2K, A7-only executions lead to low-
energy Pareto-optimal points (though very inefficient in terms
of execution time); but A/5 only and GPU only executions
have very high energy consumption without proportionate
improvement in execution time. Indeed, it is interesting to
note that simple low-power A7 cluster is significantly better
compared to more powerful GPU core for this application.
These plots clearly illustrate the benefits of performance and
functional heterogeneity individually. In terms of performance
heterogeneity, as expected, Al5 cluster provides better ex-
ecution time at the cost of higher energy compared to A7
cluster for both benchmarks. Similarly, A7+A15 executions, as
expected, improve the execution time significantly compared to
A7 only and Al5 only (because more cores are used) at the cost
of higher energy consumption. For functional heterogeneity,
the relative benefit of GPU or CPU depends on the application
characteristics.

Now let us examine the impact of combined functional and
performance heterogeneity, which is the focus of this work.
It is evident that utilizing both functional and performance
heterogeneity leads to Pareto-optimal design points that are
superior in terms of execution time with minimal impact on
energy consumption. For 2DCONYV benchmark, engaging both
A7 and A1S5 cores with GPU leads to performance-optimal de-
sign points, while engaging only A7 cluster with GPU creates
energy-optimal choices. As SYR2k does not benefit much from
GPU execution, only performance heterogeneity with A7 and
A1S5 clusters brings us close to Pareto-optimal design front.
Including the GPU with A7 and AlS5 clusters reduces the
execution time further to reach the Pareto-optimal front. In this
case, the most energy-efficient points are simply contributed by
A7 cluster with high runtime. Moreover, looking at the points
closer to the Pareto front, 2DCONYV works well with functional
heterogeneity (A15+GPU), while SYR2K is more suitable for
performance heterogeneity (A7+A15).

Our static partitioning plus frequency selection approach
introduced in the next section can generate the Pareto-optimal
design points. However, to simplify the quantitative evaluation
of our solution, we use £D? metric (energy x delay x delay)



that encapsulates the energy-performance tradeoff. The design
space for both applications include the optimal ED? point
shown as a black circle on the Pareto front. The CPU-GPU
(A7, A15-GPU) frequency(in MHz) combination and the CPU
workload partition for the optimal ED? point for 2DCONV
and SYR2K applications is (1400, 1000-600, 21%) and (1400,
1600-600, 71%) respectively.

V. DESIGN SPACE EXPLORATION

In the previous section, we established that executing an
application concurrently after partitioning between CPU and
GPU, not only helps in reducing the execution time, but also
energy with appropriate DVFS settings. In this section, we
will discuss the proposed techniques to obtain the appropriate
partitions and DVFS settings for the optimal £D? value.

A. Work-group Size Manipulation

In OpenCL, each kernel instance is a work-item and a
group of work-items constitute a work-group (see Section III).
Before proceeding to partition the work-groups between CPU
and GPU, we first need to select the appropriate work-group
size. The challenges as well as the benefits of selecting the
right work-group size for OpenCL applications executing on
the CPU, especially to improve cache utilization, have been
discussed in [18]. The same is also true for executing OpenCL
applications on the GPU. This problem is further exacerbated
in case of SoC-class GPUs, such as the one used in this work,
due to the limited amount of cache available in these devices.
For our platform, we observe that the work-group size does not
impact the CPU performance due to sufficient cache capacity;
but it changes the GPU performance drastically. Therefore,
we use the optimal work-group size for the GPU as the work-
group size for both CPU and GPU.

The maximum work-group size allowed for Mali GPU
is 256 [1] but the maximum size might not be feasible for
some applications. The OpenCL API can be used to obtain
the maximum possible work-group size for a given kernel.
But this work-group size may not be optimal. The OpenCL
runtime can also be used to automatically select a work-group
size for the kernel if there is no data sharing among work-items
[1]. Again, as reported in [9], this does not always produce the
best results.

We employ a simple approach to select the best work-
group size for an application. We note that the preferred work-
group size is in powers of 2 [1]. We exhaustively explore
all work-group size in powers of 2 up to the maximum
possible work-group size for the application and choose the
one that provides the best performance. Figure 5 shows the
improvement in execution time with selected work-group size
compared to the default work-group size specified in the
Polybench suite. Applications 2DCONV and 3DCONYV do not
show any improvement in performance as the default work-
group size is itself the optimal value. Overall, we observe an
average 40% improvement by selecting the best work-group
size. The partitioning and frequency selection are performed
with this best work-group size.

B. Execution Time and Power Estimation

Selecting the appropriate DVFES point for the CPU clusters
and GPU requires us to model the impact of frequency scaling
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Fig. 5: Runtime improvement with best work-group size.

on power-performance behavior of an OpenCL kernel. We can
estimate the power-performance behavior of CPU and GPU
independently and include the impact of memory contention
between the two in the end.

1) CPU Estimation: In order to estimate the effect of
DVES for an application, we sample the execution time and
power consumption of the OpenCL kernel at the minimum
(200 MHz for A15, 200 MHz for A7) and maximum (2000
MHz for A15, 1400 MHz for A7) frequency for each cluster.
We then predict the performance and power for the remaining
frequency points. During the OpenCL kernel execution, all
the CPU cores are utilized to the maximum 100% as the
FreeOCL runtime schedules multiple work-groups to a single
CPU core similar to [14]. Due to 100% CPU utilization during
kernel execution, runtime can be safely modeled using a linear
relationship, as shown in equation 1.

T=a/f+8 )

where T is the execution time, f is the frequency, and «, 3
are constants obtained through interpolation from the runtime
at two extreme points.

The total power (P;t4;) of the CPU core is estimated using
Equation 2, where A is the activity factor, C is the capacitance,
V' is voltage, f is frequency and P; is the idle power at the
corresponding frequency setting.

Piota = ACV?f + P, 2)

In the first term, since we have no knowledge on the value of
C and we have a constant activity of 100%, we grouped the
two parameters together and regarded them as one constant c.
The value of c is determined by taking the average of the values
calculated from the two extreme frequency settings, used in the
execution time estimation part. The idle power P; is obtained
through experiments performed once at each frequency setting.

To evaluate the accuracy, we run the kernel at all possible
frequency values to obatin the actual runtime and power
consumption. We then compute the average estimation error for
all frequency settings for each application. Figure 6(a) and 6(b)
show this average error in execution time and power estimation
for A15 and A7 clusters, respectively. The linear model serves
well in this case and results in an average estimation error of
less than 2% in execution time and less than 6% in power
consumption.

2) GPU Estimation: Similar to the estimation for the
execution time and power consumption during CPU-only ex-
ecution, we also obtain the model for GPU-only execution.
Given an application, we sample its runtime and power at
the minimum (177 MHz) and maximum (600 MHz) GPU
frequency. Similar to the CPU-only execution, we use the
linear model in equation 1 to estimate the execution time and
equation 2 for power consumption at the other GPU frequency
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Fig. 7: IPC difference for GPU due to concurrent execution
with CPU.

settings between the two extremes. The applications are also
executed at all the GPU frequency points to obtain the actual
runtime, power consumptions and compute the estimation
error. Figure 6(c) shows the estimation error in runtime and
power estimation for GPU-only execution. The figure confirms
the applicability of the linear model and results in an average
estimation error of approximately 0.5% in runtime and 1% in
power consumption.

3) Concurrent Execution Estimation: Let us assume that
we choose to run fraction N of the work-items on the CPU
cores and rest on GPU at a particular DVFS setting. Now, we
need to estimate the execution time and power for concurrent
execution. Equation 3 estimates the runtime for the entire
application after splitting between CPU and GPU where T prs
and T py are estimated runtime for CPU-only and GPU-only
execution at the DVFS setting.

TconcuTrent = max (TCPU X Na TGPU X (1 - N)) (3)

The total power consumption is estimated by adding the
estimated power consumption of individual devices at the
DVFS setting.

Modeling Memory Contention: The blue (left)
columns in Figure 8 show the estimation error in runtime aver-
aged across various DVFS settings for concurrent execution. In
this case, we identify the best partitioning for each frequency
setting (we discuss how to derive it next), observe the power,
runtime for concurrent execution and computed the error
compared to estimated values. While the average error stays
below 10%, few applications show relatively large estimation
error. This is due to the contention for memory bandwidth
between the CPU and GPU, especially for applications with
frequent memory accesses. Therefore, this interference must be
incorporated while estimating the concurrent execution time.

We model the impact of this contention by observing the
drop in instructions per cycle (IPC) value of a compute device
when executing concurrently with another compute device. We
first execute the GPU at the lowest (177 MHz) and highest
(600 MHz) frequencies, while keeping the CPU idle. Next,
we execute the GPU at the two extreme frequencies while
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Fig. 8: Runtime Estimation error for concurrent execution
averaged across different frequency settings.
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Fig. 9: Power Estimation error for concurrent execution aver-
aged across different frequency settings.

running the CPU in parallel with its own partitioned workload.
Figure 7 shows the reduction in GPU IPC due to the sharing of
memory bandwidth with the CPU during concurrent execution
when compared to the GPU-only execution at the highest
GPU frequency. Similar results are also obtained at the lowest
GPU frequency. The drop in IPC at the two extreme GPU
frequencies is used in a linear model to account for memory
contention at other GPU frequencies. We include this con-
tention effect (drop in IPC) in estimating concurrent execution
time, thereby reducing the execution time estimation error
during concurrent execution. The orange (right) columns in
Figure 8 show the estimation error in execution time averaged
across various DVFS settings after incorporating this factor.
It can be observed that not only does the average estimation
error drops from 7.6% to 4.8%; but also there is a significant
reduction in the maximum error.

Figure 9 plots the power estimation error averaged across
all DVFS points. It can be observed that the power estimation
is quite accurate with an average estimation error of 5.1%.

C. CPU-GPU Fartitioning Ratio

We now focus on judiciously partitioning an OpenCL
kernel across the CPU and GPU based on their individual
capabilities. We use load balancing strategy for each kernel
based on its runtime for CPU-only and GPU-only executions.
This strategy partitions the workload between CPU and GPU
such that both compute devices take the same amount of
time to execute the assigned workload portion. We partition
the input data (global_work_size) of the OpenCL kernels for
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Fig. 10: ED? improvement

CPU and GPU before launching them concurrently on the two
compute devices. Equation 4 gives the fraction (split_fraction)
of the global_work_size of the application that should be
executed on the CPU for the optimal load balancing.

N=1/(1+m) (4)

where m is the ratio of the execution time between CPU-
only and GPU-only executions. We call the partitioning point
as the “splittingPoint” to denote the splitting of the original
global_work_size into two, one each for CPU and GPU.

To identify the best partitioning point as well as frequency
setting, we first estimate the CPU-only, GPU-only performance
and power as each frequency setting using Equation 1 and 2.
Now using these individual power-performance estimations,
we can choose the best splittingPoint at each frequency setting
with Equation 4. We then estimate the runtime and power
for concurrent execution with the selected splittingPoint. This
gives us the runtime and power for every point in our design
space shown in Figure 4 and hence the Pareto front.

To concretely evaluate the power-performance improve-
ment due to our approach of exploiting heterogeneity, we select
the point with the best energy-delay-squared product (ED?)
from the design space. The ED? metric gives more weight
to the execution time that ensures minimal execution time
degradation while still providing significant energy savings.
Figure 10 shows the ED? savings of the best operating
point compared to the best runtime performance scenario (best
partitioning at maximum frequency settings for all devices
as shown in Figure 3). Table II shows the DVFS settings
(A15 CPU and GPU) and CPU workload fraction for the
best ED? values. The frequency of A7 CPU is at 1400 MHz
and not shown in the table due to lack of space. Lastly,
Figure 11 shows the respective performance degradation and
energy savings at optimal ED? point compared to maximum
frequency setting. Most applications exhibit significant energy
savings with negligible degradation in execution time (less than
10%).

App. Frequency CPU App. Frequency CPU
Name (MHz) ‘Workload Name (MHz) Workload

CPU GPU Fraction CPU GPU Fraction
2DCONV 1000 600 0.21 COVAR 1800 600 0.52
2MM 1600 600 0.37 GEMM 1000 600 0.12
3DCONV 1400 600 0.29 GESUM 1600 600 0.77
3MM 1400 600 0.28 MVT 1000 600 0.30
ATAX 1200 600 0.20 SYR2K 1600 600 0.71
BICG 1000 600 0.22 SYRK 1600 600 0.70
CORR 1800 600 0.52

TABLE II: Frequency setting and CPU workload fraction for
optimal ED?

VI. CONCLUSION

We established the advantages of harnessing both func-
tional and performance heterogeneity of mobile application
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Fig. 11: Energy saving and performance degradation

processors from performance and energy perspective. We then
presented an approach to statically partition an OpenCL ker-
nel across CPU, GPU cores and select appropriate voltage-
frequency settings for different core types so as to reach
the optimal power-performance tradeoff. Our experiments on
state-of-the-art mobile platform demonstrate an average 19%
improvement in runtime across applications by employing both
CPU, GPU cores as opposed to utilizing only CPU or GPU.
Moreover, we can achieve an average of over 36% energy
savings with marginal loss to the earlier runtime improvement
by appropriately manipulating the frequency settings.
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