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Abstract—TinyML systems are enabling machine learning
(ML) inference at the edge. However, there exists little quanti-
tative analysis of such systems. This paper presents a systematic
performance and power characterization of diverse TinyML
applications on micro-controllers (MCUs), spanning neural net-
work models, software libraries, operating systems, and hardware
architectures. We focus on the impact of the multiple layers of
abstractions that provide higher programmability at the expense
of performance and energy efficiency. We propose a model
to estimate the costs of different abstraction layers and make
recommendations for minimizing those costs. Our findings can
help designers with Neural Architecture Search (NAS) and CNN
inference optimization on edge devices.

Index Terms—TinyML, MCU, general matrix multiplication

I. INTRODUCTION

Machine learning (ML) inference in the cloud is the most
prevalent approach today. However, inference on edge devices
closer to the data source is becoming increasingly important
due to security and privacy concerns. Moreover, processing the
data at the edge saves network bandwidth and energy. Finally,
some applications require a real-time response that cannot be
guaranteed with unpredictable network delay and availability.
TinyML [1] is a special class of inference on ultra resource-
constrained edge devices that can achieve data collection and
processing in real-time with very little power [2].

There exists a large body of work on power and perfor-
mance analysis of ML training systems [3], [4] to provide
insights into future system design. There is, however, very little
quantitative analysis of the capabilities of existing TinyML
systems. Even though [5]–[7] analyze deep neural network
(DNN) implementation on MCU or Edge TPU, they do not
adopt a full-stack view to study the limitation of DNN im-
plementation on edge devices. A systematic and fine-grained
power-performance characterization can help us identify the
bottleneck of the current TinyML system and improve the
performance of the edge device.

More importantly, various TinyML optimizations compli-
cate the performance analysis. Severely resource-constrained
devices require significant neural network models, software,
and hardware-level optimizations to support complex ML
applications. For instance, model-level optimizations, such as
weight pruning and quantization, reduce memory footprint
and inference computation complexity with negligible loss
of accuracy. Architecture-specific libraries and compilers like
TensorFlow Lite Micro (TFLM) [8] framework for micro-
controllers and CMSIS-NN library [9] for ARM Cortex-

M processors influence inference latency. Moreover, micro-
controller architecture and platform details also substantially
impact the power-performance behavior of ML inference.

While each level (model, framework, compiler/library, ar-
chitecture) can significantly affect the performance of TinyML
applications, their subtle interactions also have considerable
importance due to the ultra resource-constrained nature of
these devices. Thus the final inference performance is simulta-
neously determined by the whole stack, from model structure,
compilation and software optimization, and architecture. For
instance, matrix multiplication implementation of DNN layers
using single instruction multiple data (SIMD) instructions can
significantly accelerate model inference and improve energy
efficiency. In this case, latency/energy benefit is obtained from
hardware-specific model design or optimization.

We provide a systematic power and performance analysis of
TinyML systems, considering deep neural networks, the soft-
ware library, the operating system, and hardware architectures.
This analysis identifies the bottleneck of the existing systems
and indicates how to optimize the system further.

We evaluate five representative TinyML applications [10],
[11] on different MCU platforms regarding inference latency,
power efficiency, and energy consumption. We explore the
impact of abstraction layers (operating system and ML frame-
work) on model inference. Next, we investigate the general
matrix multiplication (GEMM) implementation in software
libraries and suggest strategies to optimize the corner cases.
We study how hardware characteristics affect inference perfor-
mance and provide insights on supporting larger NN models
in ML frameworks. Finally, we propose a model to predict the
ML inference performance on MCUs considering the impact
of the full stack. Our study provides insights into future system
optimizations and can be easily integrated into the platform-
specific neural architecture search (NAS) process, for example.

II. RELATED WORK

Table I shows a comparison of related works in system
benchmarking for ML applications with our study.

There is much systematical analysis of DNN training plat-
forms to identify the weaknesses and strengths of various
targeted hardware architectures under different model struc-
tures. In terms of ML inference on edge devices, there is very
little quantitative analysis, which to some extent impedes the
TinyML system development. Banbury et al. [2] point out that
the main difficulty is the lack of a universally acknowledged



benchmark, and they present four TinyMLPerf benchmarks.
They provide a way to benchmark TinyML systems but do
not analyze the system behaviors.

Based on the observation on MCU platforms that model
latency is proportional to model operation count, Banbury et
al. [5] propose MicroNet models and achieve state-of-the-art
performance for three TinyMLPerf benchmark tasks. Heim
et al. [6] show that perceptible performance metrics, like
inference latency and energy consumption, should be a viable
proxy for model design and present a toolchain for TensorFlow
Lite (TFLite) [12] model implementation on MCU platforms.
Yazdanbakhsh et al. [7] evaluate three Edge TPUs and present
a learned ML model to predict inference latency for convo-
lutional kernels. While these works only focus on MCUs or
Edge TPU, Baller et al. [13] provide an inclusive analysis of
deep learning inference performance on various edge devices,
like GPU, NPU, and MCU. Their analysis mainly focuses on
model latency/energy with or without utilizing AI units. Wang
et al. [14] provide quantitative power-performance analysis
of different components on mobile SoCs for deep learning
inference and propose synergistic engagement of all the com-
ponents concurrently to improve throughput [15]. Compared
with these works, we systematically analyze the overhead
and limitation of model inference on MCUs from a full-
stack perspective, discuss how to improve the performance
and provide a prediction model.

TABLE I
SUMMARY OF STATE-OF-THE-ART

Platforms Highlight
[5] MCU State-of-the-art MicroNets based on differen-

tiable NAS for three TinyML tasks.
[6] MCU A toolchain of TFLite model implementation

on MCUs using Mbed OS for NAS.
[7] Edge TPU 1. Microarchitectural insights of Edge TPUs.

2. Prediction model for faster evaluation of
accelerators.

[13] Four SoC,
one MCU

Performance comparison of four SoCs and one
MCU for different models and frameworks.

Our
work

MCU Recommendation to overcome the perfor-
mance costs from a full-stack view.

III. EXPERIMENTAL SETUP

To evaluate the model inference performance on edge de-
vices, we select five representative TinyML applications and
evaluate them on multiple MCU platforms.

MCU Platforms. Considering the compute capability and
memory availability, we select four MCU platforms in Table
II for the evaluation. The mature toolchains supporting model
inference on these MCUs also facilitate our evaluation. We
adopt Arduino Nano 33 BLE Sense [16], SparkFun Edge
Apollo3 Blue [17], Nucleo-144 STM32F746ZG [18], and
Nucleo-64 STM32L476RG [19] (Fig. 1). Their 32-bit ARM
processor cores, Cortex-M4F or Cortex-M7F, are designed for
cost and energy-efficient micro-controllers. Cortex-M7F can
dual issue specific pairs of ALU instructions to achieve better
performance. The devices vary in clock speeds, SRAM sizes,
etc., which contributes to a compelling study of how hardware
architectures affect inference performance. We will use their

acronyms in Table II (MCU-S, MCU-M, MCU-B, MCU-D)
to represent them for simplicity in the rest of the paper.

TABLE II
MCU ARCHITECTURE INFORMATION

Arduino Nano
33 BLE Sense

Nucleo-64
STM32L476RG

SparkFun
Edge

Nucleo-144
STM32F746ZG

Acronym MCU-S MCU-M MCU-B MCU-D
Processor Cortex-M4F Cortex-M4F Cortex-M4F Cortex-M7F
Frequency 64 MHz 80 MHz 96 MHz 216 MHz
Bandwidth 67.3 MB/s 86.9 MB/s 88.6 MB/s 251.6 MB/s
SRAM 256 KB 128 KB 384 KB 320 KB
Flash 1 MB 1 MB 1 MB 1 MB

TinyML Benchmarks. We use five benchmarks [10], [11]
presented in Table III. These applications vary in input types,
model structures, and computation intensity. Evaluating them
on edge devices facilitates understanding the fine-grained
impact of model structures on inference characteristics.

Model Implementation. We use TFLite to obtain the quan-
tized int8 version. Next, TensorFlow Lite Micro (TFLM) [8]
and CMSIS-NN library are adopted to run these applications
on MCUs. TFLM does not need operating system support
to run complex TinyML applications on resource-constrained
MCUs, reducing the memory requirement. CMSIS-NN kernels
leverage SIMD instructions to implement matrix multiplica-
tion, improving the inference latency and energy.

Experimental Measurement. We use Mbed Timer API and
clock registers to measure inference latency on Mbed OS and
Bare Metal, respectively. We use SmartPower2 [23] to record
the average power during model execution and then multiply
it with inference time to obtain the energy. We use J-Trace
Pro Debug Probe in ARM Keil MDK Professional Edition to
trace MCU processor registers (e.g., CYCCNT register) and
count the instructions executed during model evaluation.

Fig. 1. Picture of Arduino Nano 33 BLE Sense, Nucleo-64 STM32L476RG,
SparkFun Edge Apollo3 Blue, Nucleo-144 STM32F746ZG, J-Trace Pro
Debug Probe, and SmartPower2 (from left to right).

IV. IMPACT OF ABSTRACTION LAYERS

We first explore the impact of multiple abstraction layers
of the operating system and DNN framework on model infer-
ence performance on MCUs. The real-time operating system
(RTOS) on embedded devices provides an interface between
hardware peripherals and software programs. With multiple
abstractions and implementation of Application Programming
Interfaces (APIs), it greatly facilitates neural network infer-
ence programming. However, redundant support of APIs, like
driver APIs and platform APIs, unavoidably causes application
performance and energy efficiency degradation. Similarly, the



TABLE III
MODEL DESCRIPTION OF MAIN BENCHMARKING APPLICATIONS

Micro Speech Person Detection Keyword Spotting Image Classification Anomaly Detection
Description Recognizing two wake

words
Recognizing Person 10 keyword spotting

—— ”No”, ”Up”,...
Small image classification Detecting anomalies in

machine operating sounds
Model —— MobileNet [20] DS-CNN [21] ResNet [22] Deep AutoEncoder
Layers Conv+FC Conv+13 DSC+FC Conv+4 DSC+FC 9 Conv+FC 10 FC
Dataset Speech Commands COCO Speech Commands Cifar10 ToyADMOS
#MACC 336k 7158k 2657k 12502k 264k
OPs 676k 15029k 5541k 25271k 538k
TFLite Model 18.7 KB 300.6 KB 59.6 KB 98.5 KB 277.0 KB

deep learning framework provides a unified way for neural
network definition, interpretation, and execution, to improve
program portability and generalization on different devices.
However, programmability and generalization lead to higher
inference latency and energy inefficiency.

We use Micro Speech as an example to show the impact
of the above abstractions. Micro Speech consists of typical
convolution and fully connected layers. Table IV summarizes
the characteristics of different implementation choices on
MCU-M: 1 naive model implementation in C without OS,
DNN optimization libraries, and framework support, 2 C
code with CMSIS-NN optimization, 3 C code with CMSIS-
NN optimization on Mbed OS, 4 C code with CMSIS-
NN optimization on simplified Mbed OS, and 5 TFLM
framework with CMSIS-NN optimization on Mbed OS.

For implementation choice 1 , we implement the model
inference in pure C code and execute it bare-metal, i.e., we
do not use any deep learning library, framework, or rely on an
operating system. For implementation choice 2 , we utilize
CMSIS-NN kernels, which provide optimized implementation
of convolution and fully connected operations. The inclusion
of optimized kernels leads to around 10x improvement in
runtime and energy efficiency. The reason is that CMSIS-NN
utilizes SIMD instructions and matrix multiplication to reduce
memory access and enable data reuse, significantly improving
the model inference performance.

TABLE IV
OVERHEAD ANALYSIS OF ABSTRACTION LAYERS BASED ON

MICROSPEECH ON MCU-M
Latency

(ms)
SRAM
(KB)

Binary
(KB)

Energy
(mJ)

1) Unoptimized code+Bare-Metal 488.3 6.6 37 54.2
2) CMSIS-NN+Bare-Metal 46.2 4.1 28 5.1
3) CMSIS-NN+Mbed OS 47.5 8.1 83 8.4
4) CMSIS-NN+Simpl. Mbed OS 47.5 7.7 53 5.6
5) TFLM+CMSIS-NN+Mbed OS 48.9 11.8 99 9.5

Next, we explore the impact of the operating system in
implementation choice 3 where we run the application
with CMSIS-NN optimization on Mbed OS. Although Mbed
OS support does not affect the latency much, adding OS
support increases SRAM and Flash memory requirements by
approximately 98% and 196%, respectively. Besides, as bare
metal implementation does not need extra peripheral settings
of Mbed OS, the latter also requires 65% additional energy.

Thus, without extra peripherals and abstractions layer sup-
port, bare metal implementation allows small MCU platforms
to support large models with less energy. To quantize the
overhead of unnecessary peripheral support, we remove all
unnecessary peripheral APIs support of Mbed OS to obtain
a simplified operating system in implementation choice 4 .
Compared with that of full-fledged Mbed OS, model inference
on simplified Mbed OS achieves considerable improvement in
memory and energy and offers a good compromise between
programmability and efficiency.

Finally, to evaluate the overhead of deep learning framework
on model inference, we use TFLM for model representa-
tion and interpretation instead of direct implementation in C
for implementation choice 5 . TFLM on Mbed OS causes
around 3% increase in inference time, energy, and memory
requirements. Clearly, the advantages of TFLM abstraction far
outweigh the overhead on performance efficiency.

Conclusion and Recommendation. Our study on the im-
pact of operating system and ML framework on inference
latency/energy and memory requirements quantifies the trade-
off between programmability and efficiency. Specifically, the
OS causes considerable overhead in terms of memory and
energy. However, it can be mitigated to a large extent by
carefully removing the support for redundant peripherals from
the OS even if it requires some engineering effort. On the other
hand, the deep learning framework itself adds little overhead
and substantially reduces the designer’s effort.

V. OPTIMIZATION LIBRARY LIMITATION

We now study a widely used and representative deep learn-
ing library CMSIS-NN on MCUs to analyze its performance
limitations due to the interaction between the optimizations
and the underlying architecture. Based on the study, we pro-
vide suggestions for NAS to avoid resource under-utilization
due to inappropriate model parameter settings and further
optimizations to utilize the limited resource.

A. SIMD Optimization Usage
Matrix multiplication is the most important and computa-

tionally intensive kernel for neural network inference [24].
Currently, many industry-standard backend NN libraries, such
as CMSIS-NN, CMix-NN [25], X-CUBE-AI [26], and PULP-
NN [27], utilize matrix multiplication to enable ML on
resource-limited edge devices. In CMSIS-NN implementation,
matrix multiplication kernels are used for most neural net-
work layers (convolution, depthwise separable convolution,



and fully connected layer). However, this conversion is not
always suitable.

Fig. 2 shows how 2D convolution operation with 2x2 filter
weights can be lowered to matrix-vector multiplication. Input
activations are replicated to create a matrix where each row
corresponds to the elements in one convolution window (2x2
window). Therefore, one output activation can be generated by
performing the dot product of the flattened filter weights with
every row of the matrix. Similarly, 3D convolution and depth-
wise separable convolution (DSC) can be converted to general
matrix multiplication (GEMM). Input activation replication is
also known as input expanding, and this transformation is
performed using the image-to-column (IM2COL) process.

W1 W2
W3 W4

I1 I2
I4 I5

I3
I6

I7 I8 I9

O1 O2
O3 O4

I1 I2 I4 I5
I2 I5I3 I6
I4 I5 I7 I8
I5 I6 I8 I9

W1
W2
W3
W4

O1
O2
O3
O4

Input Activations Weights Output Activations

2-D Convolution

Matrix Multiplication

im2col

Fig. 2. An example of 2-D convolution implementation.

The actual implementation in CMSIS-NN is more com-
plicated. For example, in the implementation of convolution
operator, CMSIS-NN uses partial IM2COL, in which only
a limited number of input columns are expanded to avoid
high memory overhead. The matrix-multiplication kernel used
by convolutions is implemented with a 2x2 kernel, which is
carefully designed to fit the limited architectural registers of
Cortex-M processors. Its computation is based on the dedi-
cated Multiply-and-Accumulate (MAC) instruction SMLAD.
Computations that cannot utilize matrix-multiplication kernels
due to tricky data alignment from inappropriate parameter
settings are implemented through regular ALU instructions
MLA and ADD. Compared with SIMD instructions, regular
ALU instructions need more time for MAC computation.
More extensive usage of SIMD instructions in convolution
corresponds to improved runtime.

The following example layers of Person Detection ap-
plication show this limitation of CMSIS-NN GEMM-based
optimization. We list #MACC, #MEM, and latency of four
Conv1x1 layers (A-D) in Table V. #MACC is the number
of MACC operations while #MEM denotes the number of
memory access operations. Both numbers are calculated based
on the model description. As the executable memory needed
by this application exceeds the SRAM size of MCU-M, we
only show experimental results on other three MCUs.

As shown in Table V, layer B needs to execute nearly
twice memory access and MACC operations compared to layer
A. However, B’s latency is only 0.69x times that of A’s on
MCU-B. On the other two platforms, this ratio is even lower.
The small number of input channels of layer A fails to take
advantage of GEMM conversion. Most of its computation
has to be handled by normal ALU instructions without any

SIMD optimization. In this case, layer A needs more inference
time than some layers like layer B with large input channels,
even though they have higher #MACC and #MEM. A similar
observation applies to layer C and layer D.

TABLE V
CONV1X1 LAYER LATENCY ON MCU PLATFORMS

#MACC #MEM MCU-S MCU-B MCU-D
Layer A 295k 627k 66 ms 31 ms 11 ms
Layer B 590k 1198k 40 ms 21 ms 6 ms

Ratio(B/A) 2x 1.91x 0.61x 0.69x 0.53x
Layer C 295k 608k 28 ms 15 ms 5 ms
Layer D 590k 1184k 31 ms 16 ms 4 ms

Ratio(D/C) 2x 1.95x 1.09x 1.04x 0.92x

Conclusion and Recommendation. Due to constant matrix
multiplication kernel size, some computation of layers with
inappropriate shapes has to be completed using normal instruc-
tions. However, naive computation without matrix multiplica-
tion kernels support increases inference latency due to slower
MAC calculation and memory access. Careful parameter set-
ting to enable converting all model computation to matrix
multiplication can greatly facilitate inference performance.

B. Kernel Implementation Overheads

In this section, we investigate the overheads of CMSIS-NN
kernel implementations for convolution, fully connected, and
depthwise separable convolution layers.

Fig. 3 shows the inference latency of layers from five
TinyML applications in Table III on MCU-S. The X-axis
represents the number of MACC operations in each layer.
Convolution layers typically require fewer parameters (weights
and biases) than fully connected layers. Therefore operational
intensity [28] (number of operations per memory access) of a
fully connected layer is smaller than that of a convolutional
layer. This indicates that if both the fully connected and
convolution layers have the same number of MACC, the fully
connected layer will have more memory accesses and then
take more inference time. However, as shown in Fig. 3, the
latency of the convolutional layer becomes higher than that
of the fully connected layer with the same number of MACC
operations. This inconsistency is also caused by the GEMM
conversion in the CMSIS-NN kernel implementations.

Fig. 3. Layer Latency on MCU-S.

As mentioned earlier, most NN libraries including CMSIS-
NN, lower all three layers (convolution, fully connected,
and depthwise separable convolution) to matrix multiplication



kernels. Convolution and DSC layers require the IM2COL
process for input expansion. However, as fully connected layer
implementation is inherently a matrix multiplication, it can be
converted to matrix multiplication without input expansion.
GEMM conversion in CMSIS-NN kernels generates overhead
for convolution layer inference latency and memory footprint.
The operational intensity of convolution decreases due to input
expansion, which makes it easily limited by memory band-
width. Moreover, reordering and expanding partial inputs also
incur more time and memory costs than direct convolution.
Even with partial IM2COL, extra memory cost is unavoidable.

With the same number of MACC operations, depthwise
convolutions cause more overhead in the IM2COL process
than convolutions. Although GEMM conversion decreases the
operational intensity of the depthwise convolutions and the
convolutions to a different extent, depthwise convolutions still
exhibit higher latency per MACC than convolutions.

Next, we calculate the operational intensity of five appli-
cations based on model description and draw the roofline
model of MCU-S in Fig. 4. The Y-axis on the left repre-
sents application performance (million operations per second,
MOPS) and the right one denotes MOPS utilization, the ratio
of application MOPS to peak MOPS. We utilize applica-
tion’s MOPS utilization to measure the computation capacity
utilization efficiency on the platform. Based on the roofline
model, these applications are all computation-bound. However,
due to IM2COL overhead and decreased operational intensity
from GEMM conversion, most applications, especially Person
Detection, cannot fully utilize platform compute capability.
For instance, the MOPS utilization of Person Detection and
Image Classification are only 69.8% and 84.2%, respectively.
Besides, Anomaly Detection consisting of fully connected
layers achieves only 72.1% MOPS utilization, because of the
incomplete utilization of SIMD optimization as mentioned
in Section V-A. The layer inference computation without
matrix-multiplication kernels requires more load instructions
with one-byte inputs or weights access, significantly wasting
memory bandwidth.

Fig. 4. Roofline model of MCU-S.

In order to investigate how GEMM conversion affects
energy efficiency, we compare latency/energy for five appli-
cations on MCU-S, as shown in Fig. 5. The applications with
more latency consume more energy due to the near-constant
power during inference. Therefore, the overhead caused by
GEMM conversion at runtime impedes energy efficiency.

Recommendation. In view of the cost of GEMM conver-
sion in NN library kernels, direct convolution implementation
with SIMD optimization should be explored as a promising
alternative. For example, Zhang et al. [29] demonstrate that
an implementation of direct convolution achieves better per-
formance than existing state-of-the-art CPU-based convolution
implementations. Gural et al. [30] propose memory-optimal
direct convolutions by performing computations in place on
resource-constrained devices.

VI. ARCHITECTURAL IMPACT

We now characterize the influence of hardware characteris-
tics on power and performance in ML inference on MCUs.

A. Energy Efficiency

Fig. 5 shows the latency/energy comparison for applications
on different MCUs. We cannot measure the power of MCU-B
due to SmartPower2’s restrictions, i.e., higher output voltage
than what MCU-B can accept. So, we only report energy
numbers of other three MCUs. MCU-D achieves the least
model latency but the highest energy. Overall, the energy
is proportional to the inference latency for all the MCUs.
Anomaly detection has the lowest latency/energy and Image
classification has the highest latency/energy. This is due to the
near-constant power during inference. For instance, in Fig. 6,
MCU-S power changes very little for different applications
due to its relatively simple architecture.

Fig. 5. Application latency/energy numbers on MCUs.

Fig. 6 shows the performance per watt for three MCUs,
where the data for MCU-B is not shown as we cannot measure
its power. The performance per watt of MCUs always follows
the order: MCU-S>MCU-M>MCU-D. The high performance
per watt of MCU-S is due to its low frequency and small
memory. Although the SRAM size of MCU-M is only half of
that of MCU-S, its higher frequency causes lower performance
per watt. Moreover, as Cortex-M4F is designed for high energy
efficiency, its performance per watt is higher than that of
Cortex-M7F (MCU-D).

Recommendation. Executing the same model on an MCU
with low computation/memory capability can achieve higher
performance per watt.

B. Frequency and memory bandwidth

Next, we investigate the influence of hardware character-
istics on inference performance. Table VI shows application



Fig. 6. Power and Performance per watt of MCUs.

throughput and hardware characteristics on MCUs, with MCU-
S as the baseline. We observe that throughput is proportional
to the bandwidth and frequency of MCU platforms. Note that
MCU-D can dual-issue certain pairs of ALU instructions; so
the throughput increase on MCU-D is twice its frequency
increment compared to MCU-S. Also, as fully connected lay-
ers have more memory access per operation, higher memory
bandwidth of MCU-D makes it achieve much lower latency.
In contrast, convolution operations do not benefit much from
high bandwidth. Therefore, among all the applications, Image
Classification, which mainly consists of convolution layers,
attains the best relative throughput on MCU-B and the worst
relative throughput on MCU-D. Since the performance of
Image Classification is more limited by compute capability
instead of memory bandwidth, the impact of MCU memory
bandwidth on application performance is weakened.

TABLE VI
APPLICATION THROUGHPUT AND HARDWARE CHARACTERISTICS

COMPARISON ON MCUS (TAKING NUMBERS ON MCU-S AS BASELINE)
MCU-M MCU-B MCU-D

Anomaly Detection 1.43 1.64 6.89
Micro Speech 1.27 1.53 6.67

Keyword Spotting 1.38 1.84 6.82
Person Detection % 1.77 6.63

Image Classification 1.36 2.14 5.99
Average Throughput 1.36 1.78 6.60
Processor Frequency 1.25 1.50 3.38
Memory Bandwidth 1.30 1.32 3.75

Recommendation. Neural networks with more fully con-
nected or DSC layers are better suited for MCUs with large
memory bandwidth. Models with more convolutions are better
suited for MCU platforms with high frequency.

C. Memory Limitation

The ability of an MCU platform to support a specific ML ap-
plication is dependent on memory requirements. Specifically,
the application’s working memory and executable binary have
to reside in the platform’s SRAM and Flash memory, respec-
tively. We investigate these limitations with TFLM framework,
the representative runtime for DNN on MCU.

The TFLM model’s working memory mainly comprises
intermediate tensors and persistent buffers, while generated
binary includes model weights, graph definition, and operator
implementation code [5]. To further explore factors affecting

model working memory and binary size, we select three mod-
els, MicroNet-KWS-L, MicroNet-KWS-M, and MicroNet-
KWS-S for Keyword Spotting [5]. Their specifications, in-
cluding layer composition, TFLite model size, and #MACC,
are listed in Table VII. We choose similar model structures
and operators to eliminate the influence of software libraries
on memory requirements for different operation implemen-
tations. We report the inference performance and memory
requirements on MCU-S and MCU-D, considering memory
availability and processor diversity as shown in Table VIII.

TABLE VII
THREE MICRONET MODELS FOR KEYWORD SPOTTING

MicroNet-KWS-L MicroNet-KWS-M MicroNet-KWS-S
Model 659 KB 182 KB 115 KB
Arena 205 KB 105 KB 70 KB
Layers Conv+7 DSC+FC Conv+5 DSC+FC Conv+5 DSC+FC

#MACC 65714k 15556k 8327k

TABLE VIII
THREE MICRONET MODEL INFERENCE ON TWO MCUS

Applications MCU-S MCU-D

MicroNet-KWS-L
Working Memory 254 KB 215 KB

Binary 793 KB 738 KB
Latency 3790 ms 566 ms

MicroNet-KWS-M
Working Memory 152 KB 112 KB

Binary 316 KB 261 KB
Latency 1118 ms 172 ms

MicroNet-KWS-S
Working Memory 116 KB 76 KB

Binary 248 KB 193 KB
Latency 646 ms 99 ms

Working Memory. TFLM defines a contiguous memory ar-
ray called “arena” for intermediate model results and persistent
variables. During initialization, TFLM sets up the memory by
overlapping memory allocations that are not simultaneously
needed during the same operator evaluation. Therefore, the
arena size is the maximal working memory needed by inter-
mediate tensors during operator execution. It is determined by
the model width, i.e., the layer with most inputs, weights, and
activations. Hence, if the SRAM size is greater than the tensor
arena size, the application performance cannot be improved
further. Table VII lists the arena size of three MicroNets
models, which are close to the SRAM size needed on MCU-
D in Table VIII. A balanced model structure design in NAS
may overcome the SRAM size limitation while maintaining
sufficient accuracy. Some recent works apply operator reorder-
ing [31] or memory swapping [32] to reduce working memory
or virtually expand working memory, respectively.

Executable Binary. To further minimize the binary size
to support model inference on MCUs with constrained flash
memory, we investigate the composition of the executable
binary and its relationship with the model structure. The gen-
erated binary is composed of the TFLite model and operator
implementation code. Model structures like model depth and
weight count are relative to the TFLite model size. The opera-
tor implementation code size is determined by model operator
type and count. As shown in Table VIII, after excluding the
TFLite model size, the remaining binary size is about 79 KB



for all three models on MCU-D. This is the implementation
code size for convolutions, depthwise separable convolutions,
and fully connected operations. Compared with MCU-D, there
is an extra 40 KB and 55 KB overhead in working memory
and executable binary, respectively, on MCU-S. This is due to
Arduino Nano 33 BLE Sense platform-specific overhead.

Inference Latency. As the TFLite model is a composition
of model graph definition and model weights, its size can,
to some extent, reflect the inference latency. For the three
models based on the same structure, model inference latency
is proportional to the TFLite model size. For instance, the
TFLite model size of MicroNet-KWS-L is 5.75 times that
of MicroNet-KWS-S. Accordingly, the inference runtime of
the large model on MCU-S is 5.86 times that of the small
model, while on MCU-D, this number is 5.71. Compared with
#MACC, TFLite model size is a better indicator of inference
latency. However, for five applications with different structures
in Table III, we do not observe an obvious relationship
between latency and TFLite model size.

Recommendation. Balanced neural network model struc-
ture choice during NAS such that the largest layer can fit into
on-chip memory is important for memory-constrained devices.

VII. PERFORMANCE PREDICTION

We now present an analytical approach for MCUs to predict
the latency of each layer by taking into account the impact of
the model, software, and hardware. Prior works such as [5]
assume that the model operation count can be regarded as
an indicator for model performance. However, our evaluations
found that a full-stack analysis is necessary for accurate pre-
diction by capturing the impact of model parameters, software
optimizations, and hardware characteristics.

A. Analytical Approach

Our analytical approach estimates inference time by estimat-
ing different types of assembly instructions executed during
model inference. As shown in Fig. 7, we take in Model Spec-
ification, Operator Implementation, and Architecture Speci-
fication as inputs. We first generate the Low-Level Virtual
Machine (LLVM) bitcode of operator implementation and ob-
tain the corresponding intermediate representation (IR). Then
based on IR, our LLVM pass counts assembly instructions for
Data Movement and Data Computation, and loop iterations.
Next, based on these data and architectural specifications,
we estimate the inference time for Data Movement, Data
Computation, and Loop Execution during layer inference. This
estimated time constitutes the main latency of layer inference.

Fig. 7. Analytical approach for performance prediction.

Inputs. 1 Model Specification. Layer parameters such as
filter height and width describe the layer structures, which
offer us a high-level understanding of the compute and mem-
ory needs of the layers without any software optimization.
2 Operator Implementation. CMSIS-NN kernels provide

different optimization implementations for different operators.
As mentioned in section V-B, convolutions need IM2COL
process to align data for matrix multiplication while fully
connected layers do not need this extra input expansion. 3
Architecture Specification. With pipeline processing, Cortex-
M4 CPUs can execute one ALU instruction or normal SIMD
instruction each cycle. The integer-only model implementation
based on CMSIS-NN kernels may need memory read or
write instructions with different memory access sizes, like
LDR, STR, LDRSB, STRSB, etc. Moreover, based on different
destinations, memory read/write instructions require different
execution cycles. For instance, on MCU-S, reading four bytes
from flash memory needs five cycles, while writing one byte to
SRAM needs one cycle. Therefore, both memory access size
and data location of the memory access instructions should be
considered. Profiling tools, like J-Trace Pro Debug Probe, can
determine the number of execution cycles of these assembly
instructions on a given MCU device.

Operator Latency. We divide operator latency into the fol-
lowing three parts. 1 Loop Execution Overhead. The number
of control instructions required to manage the entire workflow
correlates with the layer parameters. The layer with more
computation requiring more GEMM conversion will cause
more overhead from loop execution. We assume five cycles
of overhead per iteration based on experimental evaluation,
including the overhead of necessary jump instructions and
potential instruction reloading under failed branch speculation.
2 Computation Time. There is a high correlation between IR

and actual assembly instructions for computation operations.
We directly use the IR instructions count for computation time.
3 Data Movement Time. We consider two data movement

operations, loading or storing model weights, activations and
loading or storing other variables defined in the program.
The memory read/write instructions to load or store model
weights, activations are easily recognized through data size
and location, which are clearly shown in IR. In contrast, for
the load/store of remaining variables, the LLVM IR cannot
represent the process of loading these variables from SRAM
to registers; so, we count the IR instruction PHI to estimate
this overhead of data transmission. One PHI instruction cor-
responds to one variable load instruction from SRAM.

B. Performance Prediction Results

Fig. 8 shows the predicted and actual latency for FC, Conv,
Conv1x1, and DWC layers on MCU-S. Clearly, our analytical
approach can accurately predict layer inference latency. The
absolute difference between predicted and actual latency is
insignificant as shown in the Figure; the relative difference is
12.24% across all layers, and the mean absolute error (MAE)
is 4.59%. We do not present results for softmax, add, and



reshape operators as they occupy only a tiny fraction of model
inference latency.

Besides, the predicted latency shows a similar trend to actual
latency for all layers. Moreover, the predicted error decreases
for large FC, Conv, and DWC layers with more computation.
For instance, for the FC layer with a predicted error of 5.31%,
its actual latency is 63 µs while the predicted one is 66 µs.
This slight difference in absolute latency causes a high relative
prediction error. For larger layers, the relative prediction error
is very low. All these observations reveal the effectiveness and
robustness of our proposed performance prediction model.

Fig. 8. Predicted and real latency of layers on MCU-S.

Based on predicted layer latency, we calculate model latency
for five applications, with prediction error shown in Fig. 9.
Among five applications, the maximal difference between
predicted and actual latency is 5.12%, and MAE is 3.57%.
Fig. 9 also shows prediction error percentage based on model
#MACC or operation count (OPs). We obtain this number
through linear regression analysis between model latency and
#MACC or OPs. It is observed that our prediction considering
influence from full stack provides far more accurate results.

Fig. 9. Model prediction comparison on MCU-S.

VIII. CONCLUSION

In this paper, we present a systematic full-stack power-
performance analysis of TinyML applications on multiple
MCU platforms. Our analysis is performed from three different
perspectives: the abstraction layers, the optimization library,
and the hardware architectural impact. These observations
provide insights and suggestions for NAS and system opti-
mizations, as shown in each section. Finally, based on the
analysis, we design a full-stack model to quickly estimate the
latency of ML models accurately.
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