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Abstract—Wearable devices are now leveraging multi-core
processors to cater to the increasing computational demands
of the applications via multi-threading. However, the power,
performance constraints of many wearable applications can
only be satisfied when the thread-level parallelism is cou-
pled with hardware acceleration of common computational
kernels. The ASIC accelerators with high performance/watt
suffer from high non-recurring engineering costs. Configurable
accelerators that can be reused across applications present a
promising alternative. Autonomous configurable accelerators
loosely-coupled to the processor occupy additional silicon area
for local data and control and incur data communication
overhead. In contrast, configurable instruction set extension
(ISE) accelerators tightly integrated into the processor pipeline
eliminate such overheads by sharing the existing processor
resources. Yet, naively adding full-blown ISE accelerators
to each core in a many-core architecture will lead to huge
area and power overheads, which is clearly infeasible in
resource-constrained wearables. In this paper, we propose
Stitch, a many-core architecture where tiny, heterogeneous,
configurable and fusible ISE accelerators, called polymorphic
patches are effectively enmeshed with the cores. The novelty of
our architecture lies in the ability to stitch together multiple
polymorphic patches, where each can handle very simple ISEs,
across the chip to create large, virtual accelerators that can
execute complex ISEs. The virtual connections are realized
efficiently with a very lightweight compiler-scheduled network-
on-chip (NoC) with no buffers or control logic. Our evaluations
across representative wearable applications show an average
2.3X improvement in runtime for Stitch compared to a baseline
many-core processor without ISEs, at a modest area and power
overhead.
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I. INTRODUCTION

We are witnessing the transition from single-core to
multi-core architectures [1, 2, 3] in the wearable domain
to support the increasing computational requirements of
the applications. Many-core architectures enable improved
power-performance by exploiting the available thread-level
parallelism in many wearable applications. Still they often
need to be supplemented with application-specific hardware
accelerators, with prohibitively high non-recurring engineer-
ing (NRE) cost, to reach the target power-performance
objectives. In order to effectively amortize the NRE cost
through re-use, configurable accelerators can be incorpo-
rated with general purpose CPUs. However, loosely-coupled
accelerators with rich computing resources, local storage
and local control consume large on-chip area that is pre-
cious for wearables. On the other hand, tightly-coupled

accelerators eliminate these overheads by closely integrating
into the processor pipeline and leveraging the processor
resources. Instruction Set Extensions (ISE) is one form of
tightly-coupled accelerator, which is normally implemented
in customized circuits [4, 5, 6, 7, 8] for efficient execu-
tion of application-specific custom instructions; but suffers
from limited flexibility. Fortunately, ISE accelerators can
be implemented with a configurable fabric and coupled
with a general-purpose processor core [9, 10, 11, 12] to
reconcile the conflicting demands of performance, area, and
flexibility. A custom instruction encapsulates an application-
specific computational pattern and an application is typically
accelerated with a few custom instructions implemented on
the configurable fabric.

In this paper, we revisit the ISE support in the context
of many-core architectures for wearables. We observe that
wearable applications offer substantial potential for accel-
eration with application-specific custom instructions. The
most straightforward approach to take advantage of both
thread-level parallelism and custom instructions is to add an
ISE accelerator fabric per core. The common computational
patterns within a thread mapped to a particular core can then
be accelerated by the configurable fabric associated with that
core. Unfortunately, the overhead to add a complete, com-
plex accelerator per core is too expensive both from power
and area perspectives. In particular, as we are focusing on
resource-constrained wearable devices, it is simply infeasible
to add a per-core accelerator to a many-core architecture.

Instead, we leverage the many-core nature of the architec-
ture itself to introduce application-specific custom instruc-
tions efficiently, bootstrapping ISEs with the thread-level
parallelism of multi-cores. Instead of a huge complex ISE
accelerator at each core, we propose the insertion of tiny,
heterogeneous, fusible and configurable accelerators, called
polymorphic patches, one per core. Each patch handles very
simple custom instructions. We introduce heterogeneous
patches where each patch supports a unique set of com-
putational patterns. The choice of these patches is obtained
through comprehensive profiling of the representative wear-
able applications. Also the proportion of each patch type
in the architecture, i.e., number of cores with a particular
patch type and their placements, are carefully orchestrated
to cover a wide range of potential computational patterns.

The novelty of our proposed Stitch architecture is that
the patches can be stitched (fused) together to form virtual,
complex, configurable accelerator fabric through software



directives. We exploit the observation that different threads
in wearable applications have imbalance in acceleration
needs; so the idle patches associated with threads/cores that
do not need acceleration can be utilized by other threads
to create large, virtual accelerators for the critical threads.
The virtual connections among the patches are realized
efficiently with a compiler-scheduled, bufferless network-
on-chip (NoC) with zero control logic. The combination of
patches form unique complex accelerators that can execute
a set of more complex computational patterns compared to
the original patches. Combination of different patch types
supports a variety of complex computational patterns.

Our evaluations across representative wearable applica-
tions show that the Stitch architecture obtains an average of
2.3X higher performance compared to a baseline many-core
processor without application-specific custom instructions,
at a modest area (only 0.17mm2, 0.5% of the entire chip) and
power overhead (23%). The corresponding performance/watt
and area/watt improvements are 1.77X and 2.28X, re-
spectively. Comparing with state-of-the-art wearable smart-
watches, Stitch achieves on average 1.65X throughput im-
provement (6.04X boost in performance/watt) across rep-
resentative wearable applications with only 140mW power
consumption.

The remainder of this paper is organized as follows.
Section II presents the background. Section III describes
the Stitch architecture in detail and the compiler support
is described in Section IV. Section V presents a case
study of a gesture recognition wearable application on the
Stitch architecture. Section VI presents and discusses the
architectural evaluations, and RTL timing, area and power
results. Related works are discussed in Section VII and
Section VIII concludes the paper.

II. BACKGROUND

Conventional wearable devices leverage ultra-low power
single-core SoCs (system-on-chip) that only support limited
functionality, such as data sensing, data preprocessing, and
result display. Most of the computation is offloaded to the
high-performance paired smart phones, gateways or cloud
servers. However, emerging wearable applications require
real-time response with high sensing fidelity. So the com-
putation has to be performed on the wearable device to
avert the wireless communication delay. For example, real-
time image recognition and augmented reality are supported
by smart glasses. Most smartwatches support real-time
gesture recognition, offline navigation, and transportation
applications. In addition, many software development kits
allow the programmers to create their own applications in
wearables [13, 14, 15, 16]. As a result, more powerful
processors are being leveraged inside wearable devices to
provide real-time in-situ computation capability across di-
verse application scenarios.

Figure 1. Accelerators with different couplings.

A. Advent of multicores and manycores in wearables

A transition from ultra-low power single-core to more
powerful multi-core SoCs for wearable devices has been
witnessed as compute performance requirements grow in
emerging wearable applications. Before August 2013, smart-
watches typically utilized the single-core ARM processors
(such as the ARM Cortext-M3, M4 in Sony Smartwatch)
with low power consumption. Samsung released the first
standalone smartwatch utilizing dual-core ARM cortex-A7
processors with the tag-line ‘leave your phone at home’
in November, 2014 [17]. Nowadays, the state-of-the-art
smartwatches such as Samsung Gear S3, Motorola Moto 360
2nd edition leverage quad-core ARM cortex-A7 processors
(Qualcomm Snapdragon 2100 [18]) to enable real-time in-
situ computation. Even with the improvement in compute
performance, wearable devices are still subjected to very
stringent power budget (hundreds of milliwatts) due to
limited battery capacity. Hence, performance/watt is not
scaling up with the increase in core count and performance.

A similar trend has also been witnessed in sensor nodes
and application-specific wearables. High performance archi-
tectures for low-power sensor nodes for health-monitoring
applications have been proposed [3]. [19] proposes a het-
erogeneous many-core architecture for object recognition.
[20] proposes an ultra-low-energy convolution engine to
accelerate convolutional neural networks in many-core wear-
ables. [21] efficiently leverages many-core accelerators for
faster image processing in wearables. A 64-core platform
is proposed in [22] for biomedical signal processing. In
contrast, our Stitch architecture is not application-specific
and can be configured in software to work across a diverse
set of wearable applications.
B. Accelerators in wearables

Application-specific ASIC accelerators are attractive from
the performance/watt point-of-view; but including them sac-
rifices the flexibility of the architecture in handling diverse
wearable applications. Due to the prohibitively high non-
recurring engineering (NRE) cost and exacting time-to-
market constraints, it is not practical or feasible to design
an accelerator for each wearable application starting from
scratch.

In order to effectively amortize the NRE cost through
re-use, configurable fabrics are utilized and incorporated
with general purpose CPU. The configurable accelerators
can be broadly classified into two classes: loosely-coupled
accelerators and tightly-coupled accelerators. As shown in



Figure 1, the loosely coupled accelerators (e.g., [23, 24,
25, 26, 27, 28, 29, 30, 31, 32]) typically require local
register files, control and data memories, and high data
transfer bandwidth, which significantly increases the design
complexity and area overhead. On the other hand, the
tightly coupled accelerators (e.g., [9, 33, 34, 35, 36, 37])
conserves precious on-chip area by closely integrating into
the processor pipeline and sharing the processor resources
(e.g., instruction fetch, decode, register file, and even on-chip
memory). Tightly-coupled accelerators are more suitable for
wearables to achieve high performance/watt with the consid-
eration of stringent area and power budget. Instruction Set
Extensions (ISE) is one form of tightly-coupled accelerator,
where a configurable accelerator fabric is integrated within
the general-purpose processor pipeline for efficient execution
of application-specific custom instructions. A custom in-
struction encapsulates an application-specific computational
pattern and an application is typically accelerated with just
a few custom instructions. Stitch uses ISE accelerators for
efficient execution of wearable applications.

III. STITCH SYSTEM ARCHITECTURE
The current prototype of Stitch architecture consists of 16

tiles connected through a mesh network-on-chip as shown
in Figure 2. Stitch adopts the message-passing programming
paradigm as opposed to shared memory to avoid cache
coherence overhead. Each tile contains a simple in-order
CPU integrated with a polymorphic patch (for acceleration)
through a crossbar controller, separate instruction and data
caches, scratchpad memory (SPM) for the accelerator, NIC
(network interface controller) plus a NoC router.

Figure 2. High-Level view of the Stitch architecture.
There are three different types (color coded in the fig-

ure) of polymorphic patches in the Stitch architecture.
These patches are connected by a reconfigurable compiler-
scheduled NoC, separate from the conventional NoC be-
tween the cores. During execution, the patches can be
stitched together into larger, virtual fused patches to enable
execution of complex custom instructions. The fusion is
achieved by configuring the compiler-scheduled NoC appro-
priately so that the operands are delivered across multiple
hops between the stitched patches, executing the custom
instruction within a single-cycle.
A. Polymorphic Patch Design

The polymorphic patches are configurable accelerators
used to improve the execution time of commonly occurring

computational patterns encapsulated as custom instructions.
Figure 3 shows the design of the different polymorphic
patches. Each patch contains an ALU (denoted by A)
followed by a local memory access (denoted by T) unit
(LMAU). The LMAU is physically a 2x1 multiplexer that
directly connects to the local memory (scratchpad memory)
port. The {AT-MA}, {AT-AS} and {AT-SA} patches, in
addition, incorporate a multiplier (denoted by M) followed
by an ALU (A), ALU (A) followed by a shifter (denoted by
S) and a shifter (S) followed by an ALU (A), respectively.
Each patch supports four input operands and two output
operands. The output can be written to the register file of the
corresponding core or can be transmitted to the next patch
with which it is fused for the custom instruction execution.

A patch can accelerate a number of different but simple
computational patterns. The exact choice of different oper-
ations as well as the connection from the input operands to
the operators is determined by the MUX settings within the
patch. The MUX settings are configured through the control
bits from the custom instruction currently executing on the
patch. This configurability of the patches enables execution
of different custom instructions (for example + followed by
<< or − followed by >>) on the same patch and hence
the name polymorphic patch. Each patch requires 19-bits
for control signals, which is carried by a two-word size
custom instruction. A pair of homogeneous or heterogeneous
patches can be fused together to create a larger, virtual fused
patch.

Given a computational pattern, different patches would
enable different degrees of acceleration. Figure 4 demon-
strates the execution of the computational pattern (repre-
sented as a dataflow graph (DFG)) accelerated by the dif-
ferent patches. The patch {AT-MA} requires 4 cycles with 4
instructions (2 custom instructions and 2 shift instructions as
shown in Figure 4(b)). In contrast, it only needs 2 cycles with
2 custom instructions to execute the given computational
patten by mapping it onto the patch {AT-AS} (Figure 4(c)).

The main feature of Stitch is that it allows any patch to
fuse with another far-away patch, forming a fused patch to
execute complex custom instructions. Figure 4(e) shows that
the given computational pattern can be executed in a single-
cycle by the fused patch {AT-AS, AT-AS}. Figure 4(d) shows
that the given DFG cannot be accelerated further with the
fused patch {AT-MA, AT-AS} when compared to the single
patch {AT-AS}. The fused patch across multiple tiles finishes
the execution within a single cycle strictly following the
original instruction pipeline (single-cycle execution) without
additional synchronization. Section III-B will detail how the
patches are stitched.

The polymorphic patch design is motivated by the charac-
teristics of ‘hot’ computational patterns across a set of rep-
resentative wearable kernels [38]. First, we identify a pattern
as ‘hot’ if it occurs above an occurrence rate threshold of
5%. The operations inside the ‘hot’ computational patterns



Figure 3. Design of different patches

Figure 4. Computational pattern accelerated by different patches

are classified into four groups: arithmetic and logical op-
erations (type A), shift (type S), multiplication operations
(type M), and load/store (local scratchpad memory access)
operations (type T). The move instructions are not classified
into any group because they can be converted into wiring
when synthesized.

Then, we design the patches based on the most common
operation-chains representing the critical paths of the ‘hot’
computational patterns through multiple-rounds of Longest
Common Substring (LCS) identification. The input of the
LCS in round n is the output for round (n-1) excluding
the most common substring generated from the LCS in
round (n-1). As a result, different common operation-chains
are generated with the occurrence rate in each round. For
example, {AT}: 95.7%, {MA}: 47.8%, {AA}: 34.8%, {AS}:
21.7%, {SA}: 21.7%. {AT} appears 95.7% across all the
selected kernels. Therefore, {AT} should be supported by
all the cores to enable the acceleration of various kernels
running on different cores. {MA} needs to be supported by
half of the cores while {AS} and {SA} should be supported
by a quarter of the cores. Finally, 8 {AT-MA}, 4 {AT-AS},
and 4 {AT-SA} patches are distributed to the 16 cores in
Stitch (Figure 2). Note that the operation-chain {AA} is
supported by enabling the intermediate connection between
{AT} and {MA} inside the patch {AT-MA}, which provides
more parallelism and flexibility.

B. Single-cycle Reconfigurable Compiler-Scheduled NoC
Fused patches are enabled by the mesh NoC that com-

prises of only wires: interconnects and crossbar switches, but
no buffers or logic. The wires are embedded with clockless
repeaters, to enable single-cycle multi-hop traversal like
that in SMART NoCs [39], without the complex flow
control/routing logic and buffering. Instead, reconfiguration
is carried out by the compiler, and the network is configured
before each application initiates execution.

Figure 5. Reconfigurable compiler-scheduled inter-patch NoC.

Network. The detailed microarchitecture of the Stitch
NoC switch can be seen in Figure 5. Each output of the
crossbar switch is driven by clockless repeaters [39] that can
be configured to either let the signals bypass asynchronously
to the next hop (N, E, W, S), or to stop and receive the
incoming data in the patch. This enables data to be sent
across multiple tiles without latching. The switch has six
input and six output ports. Each input/output link is 166
bits wide, carrying four 32-bit words for data delivery
(corresponding to maximum four input operands) and 38
bits control signals (to support stitched patches where each
of them requires 19-bit control). The four data values can
either come from the local register file (REG) or another
patch through one of the four direction inputs. The patch is
configured according to the control signals carried by each
custom instruction.

The NoC switch in each tile is configured before appli-
cation execution by setting the memory mapped crossbar
configuration register through a memory store operation.
Figure 5 shows two patches (patch2 and patch10) are
stitched together to form a larger patch {AT-AS, AT-AS}
(Figure 4(e)). patch6 is configured to provide bypass paths



from patch2 to patch10 and vice versa. Figure 2 shows
the placement of the patches where patchi belongs to tilei
and the tiles are numbered starting with 1 from the top-left
corner. patch2 processes the data taken from tile2 register
file and sends the result via its output port to the input port
of patch10 (green line), which processes the data. Finally,
the post-processed data is sent to patch2 and the related
registers are updated (indicated by the purple line). The
entire computation plus data transfer completes within one
cycle as verified by our RTL synthesis results.
C. SPM Assistance

It is well known that the inclusion of load/store operations
during the ISE generation leads to significant performance
boost [40, 41, 42]. Stitch achieves this by locating the
variables involved in the custom instructions in a specific
address space belonging to the local memory of the patch.
We implement the local memory as a scratchpad memory
(SPM) integrated with the CPU and accessible by both the
CPU and the patches (Figure 2). With an in-order, single-
lane pipeline, only the CPU functional unit or the patch is
active at any point in time avoiding memory inconsistency.
The SPM is an extension of the main memory in terms of
the address space and the SPM data can never be cached.
The sequencer inside the CPU identifies if the address of a
memory access request belongs to the SPM address space or
not. The patches can also access the SPM via the LMAU as
shown in Figure 3. The address spaces for SPMs on different
patches are disjoint from each other. Each core is restricted
to access only its own SPM. The data allocated onto different
SPMs belongs to different variable regions (e.g., the arrays
of RealBitData[] and ImagBitData[] in FFT kernel can be
mapped onto two different SPMs).

Many applications access small portions of the memory
address space multiple times in a frequently executed part of
the code [41]. Mapping these data to the SPM address space
and keeping them always on-chip make it possible to include
the load/store operations inside the custom instructions. The
address mapping can be done by the compiler given the
target variables [42, 43]. We analyze a set of wearable
kernels [38] and it turns out that 4KB SPM space is sufficient
for all the kernels (from 256 bytes in AES kernel to 4096
bytes in Histogram kernel), which leads to a 4KB SPM
integrated to each core in Stitch. Introducing the SPM in
our architecture implies reduction in the cache size per
core, which may incur higher cache miss rate. However, the
variables mapped into the SPM address space are usually the
‘hot’ ones intensively accessed during the entire execution,
which in turn compensates for the cache miss overhead.
Our evaluation shows only 1.5% performance degradation
on average when replacing the 4KB Data Cache with a
4KB SPM. Note that Stitch is based on the message-passing
architecture instead of conventional shared memory, which
eliminates the coherence overhead both in multiple private
caches and multiple local SPMs.

As the load and store operations are part of the stitched
larger single-cycle custom instruction, the addresses and
data will not arrive synchronized to the global clock. Thus,
to enable the SPM to be accessed asynchronously, i.e., as
and when the address and data arrives, we added logic to
generate a valid signal that does not violate SRAM’s inter-
nal timing requirements while being delayed appropriately,
similar to [44].

IV. COMPILER SUPPORT

Stitch provides compiler support consisting of automated
ISE identification process [8], a graph-based mapper [5, 11]
to synthesize ISEs onto patches, an ISE selector, a back-
end to generate the final executable binary with the corre-
sponding control signals, and a generator for the appropriate
stitching of patches for kernels to maximize the overall
throughput of the application.

We implement an automated compiler tool chain in-
tegrated with a modified GNU Assembler to enable the
compiler support of Stitch as shown in Figure 6. Given a
multi-kernel application, it is first compiled to assembly code
by the GNU gcc front-end. Meanwhile, the bottlenecked
kernels and ‘hot’ basic blocks are detected through profiling
each kernel by our tool chain. Then, the tool chain identifies
the ‘hot’ basic blocks. Afterwards, the ‘hot’ basic blocks are
represented as dataflow graphs (DFGs). ISE identifier then
generates the custom instruction candidates from the DFGs
under the 4-input/2-output (i.e., 4 input ports and 2 output
ports to the register file) constraint. Given the structure of
different patches in Stitch architecture, a greedy heuristic
mapping algorithm [11, 45] maps each ISE candidate onto
every patch. In this way, we can get the speedup of each
kernel using each patch and combination of any two different
patches. The tool chain then replaces the computational
patterns with the corresponding custom instructions selected
by the ISE selector in the assembly code, and generates
multiple executable versions of the original kernel with the
patch control signals through a modified GNU Assembler.
At last, a stitching algorithm determines the appropriate
kernel mapping, version selection, patch stitching, and inter-
patch NoC configuration aiming for the maximal overall
throughput.

Mapping a multi-kernel application onto the 16-core stitch
architecture and stitching appropriate patches together for
each kernel is an NP-hard problem with huge design space.
Therefore, we design a simple greedy approach (Algo-
rithm 1) to quickly generate quality, feasible solutions indi-
cating the kernel mapping and the stitching of the patches.
Algorithm 1 arbitrates the access to patches among cores at
compiler time. The patch or stitched patches require preset
configuration of the inter-patch NoC before an application is
launched and does not change during execution. The input
to the algorithm is the Stitch architecture and a multi-kernel
application A with different speedup for each kernel ∈A
accelerated by specific patch or fused patch. The problem



Figure 6. Compiler tool chain for the Stitch architecture.

is to accelerate the kernels using appropriate patches and
construct the valid configuration for the compiler-scheduled
NoC to stitch the patches for maximal overall throughput.
Our proposed algorithm improves the application throughput
by allocating the patches to accelerate the bottleneck kernels
iteratively until all the patches are used up (lines 3-16) or
the bottleneck kernel cannot be sped up any more (lines 6-
7). The function Bottleneck(A ) gets the current bottleneck
kernel of the application A according to their execution
time. BestPatches(kernel, kernel.checkedPatches) returns
the patch or a pair of patches that can achieve the best
speedup for kernel. Note that the returned patches should
not appear in kernel.checkedPatches that contains all the
checked patches for kernel. When the patches are avail-
able for a bottleneck kernel, FindPath(patches, stitching)
attempts to find a valid path to stitch the patches using
Dijkstra’s shortest path algorithm (O(N2)) and finally add
it into the collection of the valid paths stitching (lines 12).
If no available path is found for the selected patches, the
other patches will be considered as new candidates. After a
valid path is generated for kernel, we map the kernel onto
the tile that contains one of the patches (line 15).

Algorithm 1: Stitching Algorithm.
1 Input: A , Stitch architecture
2 Result: stitching that connects appropriate patches for all kernels in A

3 while there is patch available do
4 kernel = Bottleneck(A );
5 patches = BestPatches(kernel, kernel.usedPatches);
6 if patches = /0 then
7 return stitching;
8 path = FindPath(patches, stitching);
9 if path = /0 then

10 kernel.checkedPatches.add(patches);
11 Continue;
12 stitching.add(path);
13 foreach k ∈A do
14 k.checkedPatches.add(patches);
15 LocateKernel(kernel);
16 UpdateExecutionTime(kernel);

V. APPLICATION CASE STUDY

We present a case study to illustrate the features of the
Stitch architecture and the impact of Stitch on the real-time
response of an overall system.

We choose finger gesture recognition as our driving ap-
plication, which captures accelerometer and gyroscope sig-

nals as inputs and performs FFT (Fast Fourier Transform),
Update feature, Filter, and IFFT (Inverse FFT) followed
by a classification to identify the finger gesture [46]. The
application is implemented as multiple kernels connected
in a pipelined manner (Figure 7) for maximal throughput.
The processing of FFT, IFFT is realized as multiple kernels
(threads) executing in parallel to handle the signals from
two different sensors along three dimensions. The IFFT
kernels incorporate additional processing, such as another
Update feature processing, resulting in longer execution
time compared to the FFT kernels. In [46], which was
prototyped on the Shimmer wearable device [47], with com-
pute offloaded to a paired smartphone through bluetooth, a
sampling frequency of accelerometer and gyrometer signals
of 128Hz was needed to ensure 98% gesture recognition
accuracy. This translates to a 7.81ms deadline constraint for
real-time response.

We implemented the finger gesture recognition application
of [46] on a TI SensorTag [48] that is worn on a user’s
wrist (see Figure 8). When the user draws alphabets in the
air, the application recognizes the gesture as representing
each alphabet letter. The SensorTag has ARM Cortex-M3
as the processor, like most ultra-low-power wearables in the
market today, that delivers insufficient performance for our
gesture application – the SensorTag takes 577ms to detect
and recognize a gesture, which is insufficient accuracy and
fidelity, far from the 7.81ms real-time target deadline for
this application. We thus also profile this application on
an Odroid XU3 development platform, which is similar
to the state-of-the-art processors (Snapdragon Wear 2100)
embedded in today’s high-end smartwatches, such as Huawei
Watch2 and Asus Zenwatch 3, and our proposed Stitch
architecture, to explore their impact on the application
performance.

We observe that the real-time response requirement is not
attainable with the quad-core (ARM Cortex-A7) processor
in the Odroid XU3 development platform, but Stitch is able
to meet it at 7.62 ms < 7.81 ms (Table I). Note that the cycle
count of Stitch is obtained using modified gem5 (detailed in
Section VI-C) simulator (that is validated against RTL with
simple programs) and combined with clock frequency and
power numbers generated from RTL synthesis (detailed in
Section VI-D) for average power consumption estimation.



Figure 7. Finger gesture recognition applications running on Stitch with appropriate patches fused together.

Figure 8. Finger gesture recognation application running on TI SensorTag.

SensorTag 4-core ARM
Cortex-A7

Stitch w/o
fusion Stitch

Meeting
Throughput 7 7 7 3

Time per
gesture (ms) 577 13 11.49 7.62

Average power
consumption (mW) 8.78 469 108 139.5

Processor
Freq. (MHz) 48 1200 200 200

Process
technology - 28nm 40nm 40nm

Table I
POWER-PERFORMANCE BEHAVIOR OF FINGER GESTURE RECOGNATION

APPLICATION ON DIFFERENT ARCHITECTURES

Figure 7 shows why the application benefits from the Stitch
architecture. The IFFT and Update feature kernels are
identified as the bottleneck kernels and are accelerated using
different pairs of the heterogeneous patches. Specifically, the
Update feature kernel stitches patch2 and patch10 together
while Stitch’s NoC is configured to bypass patch6 to enable
fast data transfer between them. Note that the core in tile10
still runs an FFT kernel but without acceleration by patch10.
As a result, the throughput improves by 1.71X with respect
to the quad-core A7 and the real-time response requirement
is satisfied. The corresponding performance/watt goes up to
6.2X with respect to the state-of-the-art wearable processors.
Note that if each kernel only leverages the patch integrated in
the local tile (without fusion), the throughput and normalized
performance/watt will be much lower (i.e., 11.49 ms per
gesture and 4.1X w.r.t. state-of-the-art wearable processor.
See Stitch w/o fusion in Table I).

VI. EXPERIMENTAL EVALUATION

This section presents a detailed experimental evaluation
of Stitch architecture for its suitability in wearable devices.
RTL synthesis and high level architectural simulations with
representative wearable applications are used for the evalu-
ations.

A. Wearable Applications

We evaluate Stitch with representative wearable applica-
tions. A finger gesture recognition application [46] (APP1)
is used in Section V. We also evaluate a CNN-based image
recognition application [49] (APP2), typically used in wear-
ables such as smart glasses, consisting of two pooling layers,
one fully connected layer, and three convolutional layers.
The convolutional layers are parallelized into 13 kernels
(threads) and other layers are encapsulated as individual
kernels as shown in Figure 9. In addition, two wearable
applications from the IoT benchmark suite [38] are selected:
An SVM-based machine learning application (APP3) recog-
nizing and encrypting anomalous images; A transportation
context-detection application [50] (APP4) decrypting the
encrypted sensoring data and identifying the context using
the dynamic time warping algorithm, before encrypting the
output.

All the applications are implemented with 16 kernels
(as shown in Figure 9) to maximize the throughput and
fully explore the benefit of Stitch architecture. Note that
the multi-kernel applications are multi-threaded from the
single-threaded version using a subset of MPI directives
(lightweight message passing library [51]) and can run on
any platform supporting MPI.

B. Architectural Simulation Setup

We use the gem5 multi-core architectural simulator [52]
for the performance evaluation. We use architectural simula-
tor rather than FPGAs because gem5 allows convenient mod-
ification of architectures, especially for the cycle-accurate
emulation of the single-cycle multi-hop NoC that is difficult
to be evaluated using FPGAs. Stitch is also implemented
in RTL to evaluate power, area using Synopsys Design



Figure 9. Representative wearable applications.

Compiler with 40nm standard cell library. Stitch consists
of 16 in-order ARM cores (open-source ARM Amber core
in RTL [53]) connected in a 2D mesh NoC (Garnet [54])
with 8KB Instruction Cache, 4KB Data Cache, 4KB SPM
(Figure 2). Each tile incorporates one patch integrated with
the core, and a compiler-scheduled NoC with no buffers
and control logic (separate from the conventional NoC
connecting the cores) connects all the patches. The detailed
parameters of the simulated system of Stitch are listed in
Table II.

General
purpose

Cores 16 ARM in-order (single-issue)
cores 200MHz

Cache &
SPM

2-way 8KB ICache, 2-way 4KB
DCache, 64Bblock, LRU, 4KB
SPM, 1-cycle access latency

Inter-core
Network

2-D Mesh, 16B-it, 1/5-flit
control/datapackets, 5-stage router,
1-cycle link

Memory 512MB, 30-cycle DRAM
access latency

Stitch
added

Inter-patch
Network

2-D Mesh, crossbar switch is driven
by clockless repeaters, bufferless,
6 input x 6 output, 4-word/38-bit
data/control (166-bit wide)

patch
8 {AT-MA}, 4 {AT-AS}, 4 {AT-SA}
19-bit control signal, 4-input/
2-output to register file

Table II
RTL AND SIMULATION PARAMETERS FOR Stitch.

For our baseline, we use a 16-core message-passing
based architecture that has no customization (patches or
compiler-scheduled NoC). The baseline has a larger 8KB
data cache instead of an SPM*. In order to show the
advantages of our polymorphic patches specifically designed
for wearable applications, we compare Stitch with a recently
proposed message-passing based many-core architecture,
LOCUS [51], where each core is deployed with a conven-
tional ISE accelerator. The conventional ISE accelerator used

*There is no significant difference in performance between 8KB Data
Cache and 4KB Data Cache + 4KB SPM in performance without custom
instructions (only 1.5% performance degradation when replacing the 4KB
Data Cache with SPM under appropriate data mapping strategy)

in LOCUS is a configurable special functional unit [11]
capable of executing different custom instructions without
incorporating load/store operations.
C. Architectural simulation results

Before diving into the throughput improvement of wear-
able applications, we first show how the individual kernels
benefit from Stitch. Figure 11 shows the performance im-
provement across different representative wearable kernels
running on a single core. Different kernels would benefit
from different patches. For example, dtw benefits most from
the patch {AT-AS}, while the patch {AT-MA} achieves the
highest performance gains for 2dconv. On an average, 1.56X
performance improvement can be achieved by accelerating
each kernel using single appropriate patch. In addition, an
appropriate combination of patches can further improve the
performance. Kernel fft achieves higer performance gains of
1.99X by stitching patch {AT-MA} and {AT-SA} together to
form a fused patch {AT-MA,AT-SA} compared to the 1.37X
performance improvement delivered by a single patch. The
kernel astar does not show any significant improvement by
stitching patches due to the smaller size of its identified com-
putational patterns. Figure 11 also shows the performance of
ISE accelerator in LOCUS. The patch performs better than
the ISE in LOCUS because the patches introduce scratchpad
memory to enable inclusion of load/store operations inside
custom instructions.

Figure 10 demonstrates how the patches are fused together
in the Stitch architecture to improve the overall throughput
for different applications. Different applications lead to
different stitching of the polymorphic patches based on
Algorithm 1. In APP2 for example, the fusion of patch
{AT-AS} and patch {AT-MA} is the most suitable one for
the kernel 2dconv. However, there are seven 2dconv kernels
identified as bottlenecks, while only four pairs of {AT-
AS} and {AT-MA} patches are available on the entire chip.
Therefore, the {AT-SA} patches are also utilized and stitched
together to accelerate the remaining 2dconv kernels.

The normalized throughput boost across wearable applica-
tions with respect to the baseline (16-core message passing
without any ISE acceleration) is shown in Figure 12. LOCUS
(16-core message passing with conventional full-blown ISE
accelerator per core) obtains an average 1.14X throughput
boost while Stitch achieves 1.53X speedup even without fu-
sion (Stitch w/o Fusion), where a kernel running on a certain
tile just utilizes the local patch without stitching with the
others. The difference between the two (LOCUS and Stitch
w/o Fusion) confirms that the design of our polymorphic
patches accommodates the characteristics of the wearable
applications. By fusing together the appropriate patches,
Stitch further improves the throughput by an average 2.3X.
Stitch performs much better for APP2 and APP4 than APP1
and APP3 because the workload across the different cores in
APP2 and APP4 is much more imbalanced. Stitch performs
better than LOCUS because the stitching of heterogeneous



Figure 10. Stitching on Stitch architecture to adapt to different applications

Figure 11. Normalized performance improvement of ISE in LOCUS, single
patch, and stitched patches across representative wearable kernels compared
to software-only implementation.

patches enables acceleration of larger patterns whereas the
ISE in LOCUS employs identical per-core accelerator.

Figure 12. Normalized throughput improvement of different architectures
w.r.t the baseline 16-core message passing architecture without any accel-
erator.
D. RTL timing, area and power

The Stitch architecture is implemented in RTL and synthe-
sized using Synopsys Design Compiler. We tightly integrate
the polymorphic patch with the pipeline of the open-source
ARM Amber core [53], in parallel with the execute stage of
the Amber processor pipeline. The design is implemented
in Verilog and simulated with Synopsys VCS-MX. We use
40nm standard cell library for synthesis.

The synthesis results are shown in Figure 13. The power
consumption of Stitch is around 140mW at 200MHz with
its polymorphic patches and the inter-patch NoC accounting
for 23% of the total power. Area is efficiently utilized in
Stitch by stitching the patches together to accelerate the
critical kernels. Figure 13 shows that the area overhead
of the polymorphic patches and the inter-patch NoC in
Stitch is only 0.5% of the chip area. We also synthesize the
accelerators across different architectures (Table III). Stitch
consumes only 0.169mm2 area, while the accelerators in

LOCUS consume 1.29mm2 area that is 7.64 times larger
compared to Stitch.

Figure 13. Power and area breakdown.

LOCUS Stitch
w/o fusion Stitch

actual area (µm2 ) 1,288,044 49,872 168,568
area (%) 3.68% 0.15% 0.50%

Table III
AREA COST FOR ACCELERATORS IN DIFFERENT ARCHITECTURES.

NoC timing analysis. Table IV shows the synthesis
results of the polymorphic patches and the inter-patch NoC.
The patch {AT-MA} has the longest latency of 1.38ns among
all the patches. [39] showed that the clockless repeated links
can traverse up to 11mm within 1ns in a 45nm process. The
number of hops traversed between two stitched patches is
restricted to at most six to limit the length of the critical path.
Including more hops can stretch the critical path from 1.36ns
(single {AT-SA} including the NoC overhead : 2×0.17) to
4.63ns (one {AT-MA} and one {AT-AS} stitched together),
which leads to 200MHz clock frequency for single-cycle
execution of all custom instruction on the Stitch architecture.
Specifically, the critical path of Stitch is in the patch and
inter-patch NoC with a cumulative path delay of 4.63ns
which goes through the inter-patch NoC switch1 (0.17ns)
→ patch {AT-MA} (1.38ns) → switch1 again (0.17ns) →
3 hops with 3 switches (0.3ns + 3×0.17ns) → patch {AT-
AS} (1.12ns) → (0.3ns + 3×0.17ns) → inter-patch NoC
switch1 (0.17ns). The 200MHz clock frequency in Stitch
is lower than the processors in mobile and desktop plat-
forms. However, it is appropriate for wearable devices with
stringent power dudget. In Figure 12, all the architectures
were set to run at 200 MHz. If we let LOCUS run at
its maximum frequency of 400 MHz [51] and compare
it with Stitch running at 200MHz, Stitch still wins in



both performance (average 1.03X speedup across different
kernels) and performance/watt (average 1.16X improvement
across representative applications).

patch
AT-MA

patch
AT-AS

patch
AT-SA

NoC
switch 3 hops

Delay(ns) 1.38 1.12 1.02 0.17 0.3
Area(µm2) 4152 2096 2157 7423 -

Table IV
DELAY AND AREA OF DIFFERENT COMPONENTS.

Power-efficiency and Area-efficiency Both power and
area are effectively utilized in Stitch. Figure 14 demon-
strates the normalized power-efficiency (performance/watt)
and area-efficiency (performance/area) of Stitch with re-
spect to the baseline. On average, Stitch achieves 1.77X
better power efficiency than the baseline. The average area-
efficiency improvement (2.28X) is close to the through-
put improvement (2.3X). This confirms that only trivial
area overhead (0.5% chip area) is paid in introducing the
polymorphic patches and the inter-patch NoC into Stitch
architecture.

Figure 14. Normalized power- and area-efficiency of Stitch w.r.t the
baseline 16-core message passing architecture without any accelerator.

E. Comparison with Processors in State-of-the-art Wearable
Devices

We compare Stitch with the state-of-the-art wearables
to illustrate its potential. Figure 15 shows the normalized
throughput, power, and performance/watt with respect to
quad-core ARM Cortex-A7 used in the state-of-the-art wear-
ables. We use Ordroid XU3 board to collect the execution
time and power of the quad-core Cortex-A7 running at
1.2GHz (the experiment set up is explained in Section V).
The execution time of Stitch is obtained from gem5 running
at 200MHz, while the RTL simulation gives its power
consumption. On average, Stitch architecture achieves 1.65X
and 6.04X improvement in terms of throughput and perfor-
mance/watt, respectively, compared to the state-of-the-art.

VII. RELATED WORK
We contrast Stitch against other configurable accelerator

architectures, before delving into Stitch’s NoC architecture
and comparing it with prior art.

A. Configurable Accelerator Architectures
A number of architectures have been proposed recently to

incorporate reconfigurable fabrics with or within the proces-
sor datapath to accelerate different granularity of compute
patterns. We separate prior research in this area into three

Figure 15. Normalized throughput, power, and performance/watt w.r.t
quad-core ARM Cortex A7 in state-of-the-art wearables.

categories: those where the accelerator is loosely coupled
with the processor pipeline, where the accelerator is tightly
coupled and integrated within the processor pipeline, and
where accelerators are shared across multiple workloads or
cores.

Loosely coupled accelerators: As defined in Section
2, loosely coupled accelerator architectures have a distinct
control and datapath from the main processor pipeline.
Generally, a register file is needed to store the execution
status, a local data memory is needed to feed the data,
and a DMA controller is usually associated to transfer the
data between the local data memory and DRAM or cache
hierarchy. RISPP[23] architecture introduces the notion of
atoms (basic datapath) and molecules (combination of atoms
corresponding to specific compute kernel) implemented in
a loosely coupled fabric. Different molecules are formed
dynamically to accelerate specific kernels based on a com-
bination of static and runtime analysis. RISPP dynamically
adapts the tradeoff between performance and resource re-
quirements for video codec applications. Plasticine [24]
uses multiple configurable pipelined compute SIMD lanes
to accelerate parallel compute patterns. Plasticine targets
a specific application domain and the program must be
written in a parallel pattern-based language. Both RISPP and
Plasticine use complex accelerators with higher area, power
budgets whereas Stitch uses tiny accelerators. Moreover, they
are restricted to private accelerators per core, while Stitch
can fuse together accelerators from different cores.

In addition, the Coarse-Grained Reconfigurable Arrays
(CGRAs) provide word-level functional units to accelerate
application loops with less configuration complexity and
higher frequency compared to the FPGAs. Some of the
CGRA architectures (e.g., Morphosys [25], EGRA [26],
PACT-XPP [27], Elastic CGRA [28], CGRA express [29])
are loosely coupled with the processor. Morphosys [25]
leverages a sophisticated interconnect network to effectively
accelerate sub-tasks with different characteristics in appli-
cations. EGRA outperforms traditional CGRA design by
utilizing heterogeneous cells to enable expression-grained
acceleration. Similar to other loosely coupled accelera-
tors (PipeRench [30], Polymorphic pipeline array [31],
Veal [32]), both Morphosys and EGRA require local register
files, control and data memories, and high data transfer



Processor
Integration Granularity Heterogeneity Sharability in

many-core Technology Node Accelerator Area
Cost (mm2)

Accelerator Area
Overhead

RISPP loose kernel 3 7 FPGA-based - large
Plasticine loose kernel 7 7 28nm 112.8 large

MorphoSys loose kernel 7 7 350nm 180 large
EGRA loose kernel 3 7 90nm 3.7 medium

BERET tight traces 3 7 65nm 0.4 small
CCA tight op-chains 3 7 130nm 0.48 small

C-Cores tight kernel 3 7 45nm 0.326* small
QsCores tight C-expression 3 7 45nm 0.77 small

DySer tight inner most
loop 7 7 55nm 0.92 medium

LOCUS tight op-chains 7 7 32nm 2.3 medium
Stitch tight op-chains 3 3 40nm 0.17† tiny

Table V
DIFFERENT ARCHITECTURES INCORPORATED WITH RECONFIGURABLE FABRICS

bandwidth, which significantly increases the design com-
plexity and area overhead. In contrast, Stitch conserves
precious on-chip real estate by closely integrating into the
processor pipeline and leveraging the resources (e.g., fetch,
decode, register file, and scratchpad memory) inside the CPU
processor pipeline.

Tightly coupled accelerators: ADRES [33] and
DySER [55] are CGRA-like accelerators tightly integrated
into the processor pipeline and meant for accelerating the in-
ner most loop bodies. Similarly, GARP [34] and Tartan [35]
are tightly coupled within the processor and utilize FPGA-
like and coarse-grained reconfigurable fabric, respectively, to
provide the reconfigurability. All of these works target high-
performance computing platforms, and thus the reconfig-
urable fabric area is larger, supporting very complex custom
instructions compared to the tiny polymorphic patches in
Stitch.

On the other hand, BERET [36], CCA [9], and C-
Cores [37] tailor the reconfigurable fabrics based on the
application characteristics. BERET architecture uses a set
of heterogeneous subgraph execution blocks (SEBs) and a
big dataflow graph (including control flow) is mapped to a
subset of the SEBs. CCA contains different functional units
connected in a triangular shape. The frequently occurring
compute patterns (operation-chains) can be mapped onto it
for acceleration. C-Cores are integrated into the processor
pipeline and are patchable to adapt to different versions of
the applications. Each application corresponds to different
C-Cores, which would increase the area overhead when
more applications are involved. ECOcores [56] improves
the energy-efficiency and performance for irregular code
by incorporating selective de-pipelining and cachelets on
top of C-Cores. QsCores [57] are tightly integrated with
the general-purpose processor via scan chains. QsCores can
support large computation pattern including hundreds of
operations, control flows, and irregular memory accesses
prescribed as a single pattern in [58]. However, the QsCores

*C-Cores are customized accelerators per application. In order to be
fair, we cite the highest area of the c-core (for application : vpr) that they
have synthesized.

†This number is for the accelerators overhead of the entire 16-core
instead of per-core in Stitch.

cannot cooperate together across different tiles. Our recently
proposed LOCUS [51] many-core architecture for wearables
combines individual JiTC [11] cores in a 2D mesh where
each core consists of a general-purpose processor and a con-
figurable special functional unit (SFU) capable of executing
different custom instructions.

All of the above architectures focus on a single core
and it is expected that each core in a multi-core will be
extended with the same reconfigurable logic. For example,
all the SEBs in BERET are included in each core and no
stitching across cores is supported. The patching in C-Cores
can also only occur inside a single tile, and thus cannot
deliver scalable performance with increasing core counts like
Stitch.

Shareable accelerators for multiple cores: There have
been attempts to share a reconfigurable fabric/co-processor
among multiple cores [59, 60, 61] to avoid the per-core
area overhead. But, in general, the co-processor is loosely
coupled with the cores and is meant to accelerate large
computation kernels. The sharing cannot scale well for
many-core architectures and the co-processor is too large
for wearable devices. Instead, Stitch distributes the patches
across cores and stitches them together if necessary to offer
virtual but exclusive accelerator per core. Fusion of proces-
sor cores has been explored in CoreFusion architecture [62]
where multiple simple cores are fused together to create
a wider processor pipeline that supports better instruction-
level parallelism. In Stitch, the cores are not fused, only
the patches are fused to accelerate certain computational
patterns.

Table V summarizes and classifies the related works
in terms of their level of integration with the processor,
targeted code granularity, heterogeneity of accelerator units,
and whether they share accelerators across cores. Loose
vs. tight integration with the processor pipeline naturally
leads to different acceleration granularity; Loosely coupled
architectures, through taking advantage of the local data
memory, enable acceleration of whole kernels [23, 24, 25,
26], while the tightly coupled architectures support fine-
grain acceleration (e.g., inner most loop [55], operation-
chains [9]). Stitch tightly integrates the patches with the



processor pipeline to exploit the acceleration of operation-
chains. Some accelerators comprise identical functional units
to simplify the design [9, 24, 25]. However, heterogenous ac-
celerators [9, 23, 26, 36, 37] cater to the diverse acceleration
requirements across applications, which is the motivation
behind the heterogeneous patches in Stitch.

B. On-chip network architectures

Cong et al. [63] pointed out the need for predictable
latency in NoCs that connect multiple accelerators and
proposes the global management and reservation of circuit-
switched paths in the NoC to match the accelerator tim-
ing. Stitch’s NoC provides predictable latency between the
patches by relying on the compiler for setting up the NoC
switches while ensuring no contention, and thus can avert the
need for buffering or control logic within the NoC, resulting
in an ultra-low-overhead NoC for accelerators in wearables.

There have been many prior designs of bufferless NoCs.
Without buffering in the NoC, flits that contend with others
can no longer be temporarily stored at the routers. Some
choose to deflect the contending flits to other ports, mis-
routing them [64, 65] while others drop the contending
flits [66, 67], with a regular NoC as the backup [67] or
buffering and retransmitting the dropped flits at the net-
work interface [66]. Like Stitch, [65, 68] embeds clockless
repeaters to enable single-cycle across multiple hops in a
bufferless NoC. However, all the above bufferless NoCs are
dynamically controlled, whereas Stitch has no control logic
as the compiler ensures flits will not contend at runtime.

Stitch’s NoC is similar to other statically-scheduled NoCs.
The MIT Raw [69] utilizes a compiler-scheduled NoC to
transfer operands among multiple cores. The configuration
of a router inside the static NoC is indicated by a 64-
bit instruction word from a 8096-entry instruction memory.
Hycube’s NoC [70] which connects tiles within a CGRA
accelerator similarly depends on the scheduler for setting up
the NoC, and also uses a configuration memory to store the
NoC configuration. Stitch uses control wires instead that can
be naturally encoded by the ISE compiler, and thus needs
just one configuration register per router. The register is pre-
set before launching each application. [71] proposes a static
reconfigurable NoC that also leverages clockless repeaters,
that can be configured beforehand and bypass buffering and
arbitration stages at intermediate routers during runtime.
Instead, Stitch eliminates the buffers completely for realizing
the ultra-low-overhead inter-patch NoC.

VIII. CONCLUSION

We propose Stitch, a many-core architecture where tiny
heterogeneous, configurable and fusible ISE accelerators
(polymorphic patches) are effectively enmeshed with the
cores. Each patch can handle very simple ISEs and multiple
polymorphic patches are able to be stitched together across
the chip to create large, virtual accelerators for complex ISEs

by using an ultra lightweight compiler-scheduled network-
on-chip without any buffers or control logic. Our evalua-
tions across representative wearable applications show an
average 2.3X throughput boost for Stitch compared to a
baseline many-core processor without ISEs, at a modest area
and power overhead. Compared to the processors used in
the state-of-the-art wearable smartwatch, Stitch architecture
achieves average 1.65X throughput boost and 6.04X perfor-
mance/watt improvement.
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