
Software Support for Heterogeneous Computing

Siqi Wang
School of Computing

National University of Singapore
Singapore

wangsq@comp.nus.edu.sg

Alok Prakash
School of Computer Science and Engineering

Nanyang Technological University
Singapore

alok@ntu.edu.sg

Tulika Mitra
School of Computing

National University of Singapore
Singapore

tulika@comp.nus.edu.sg

Abstract—Heterogeneous computing, materialized in the
form of multiprocessor system-on-chips (MPSoC) comprising
of various processing elements such as general-purpose cores
with differing characteristics, GPUs, DSPs, non-programmable
accelerators, and reconfigurable computing, are expected to
dominate the current and the future consumer device land-
scape. The heterogeneity enables a computational kernel with
specific requirements to be paired with the processing ele-
ment(s) ideally suited to perform that computation, leading
to substantially improved performance and energy-efficiency.
While heterogeneous computing is an attractive proposition
in theory, considerable software support at all levels is es-
sential to fully realize its promises. The system software
needs to orchestrate the different on-chip compute resources
in a synergistic manner with minimal engagement from the
application developers. We present compiler time and runtime
techniques to unleash the full potential of heterogeneous multi-
cores towards high-performance energy-efficient computing on
consumer devices.

Keywords-Heterogeneous computing, scheduler, compiler,
power/thermal management

I. INTRODUCTION

Current and emerging consumer devices include mobile
application processors for computation. State-of-the-art mo-
bile application processors are the pinnacles of the system-
on-chip (SoC) movement where multiple different function-
alities are integrated on a single chip. Examples of current-
generation commercial mobile processors include Qual-
comm Snapdragon 845 [1], Huawei Hisilicon Kirin 970 [2],
Samsung Exynos 9810 [3], and Apple A11 Bionic [4].

The common characteristic of all current- and next-
generation mobile processors is the presence of heteroge-
neous computing [5], which refers to systems that use more
than one kind of processing core on the same chip. The
diversity can come from two sources. The first is perfor-
mance heterogeneity, where cores with the same instruction-
set architecture but different power-performance character-
istics co-habit on the same die. The second is functional
heterogeneity, where cores with very different functional
characteristics such as general-purpose CPU, programmable
GPU, special-purpose accelerators, and Field-Programmable
Gate Arrays (FPGAs) appear on the same die. Recently
we have witnessed the introduction of commercial SoCs
with both performance and functional heterogeneity in the
consumer devices. The modern mobile processor SoCs typi-
cally comprise of (a) multiple clusters of general-purpose

Camera Acceleration

CPU

AI Acceleration

GPU

Others

ARM Cortex-A73
Quad (2.36 GHz)

ARMMali G72
MP12 (850 MHz)

Dual Image Signal
Processor (with face
& motion detection)

AMR Cortex-A53
Quad (1.8 GHz)

Neural	Network
Processing	Unit

(1.92TFLOPS for FP16)

DSP

Codec
. . .

Figure 1: Huawei Hisilicon Kirin970 MPSoC [2]

CPU cores with varying power-performance characteris-
tics, for example, ARM big.LITTLE architecture [6] where
high-performance, high-power cores appear alongside low-
performance, low-power cores catering to different work-
loads, (b) general-purpose Graphics Processing Unit (GPU)
cores such as NVIDIA Kepler [7], ARM Mali [8], or
Qualcomm Adreno [9], (c) Digital Signal Processor (DSP)
cores such as Qualcomm Hexagon [10], and (d) a large col-
lection of accelerators, such as Neural Network Processing
Unit (NPU), Image Signal Processor (ISP) etc. in Hisilicon
Kirin 970 [2], Neural Engine, motion coprocessor, image
processor etc. in Apple A11 Bionic [4] as shown in Fig-
ure 1. Apart from the architectural and micro-architectural
differences, these multi-cores offer additional design points
in the power-performance trade-off curve through dynamic
voltage-frequency scaling (DVFS) of the cores.

Clearly, the contemporary mobile processors are complex
yet power-efficient systems featuring heterogeneous comput-
ing that have the potential to deliver high-performance if all
the available resources can be harnessed by the software.
At any point, we need to use the cores that are most power
efficient for the current computing need without negatively
impacting the performance. For example, in a smartphone,
the low-power small cores can take care of simple tasks
— such as email client, web browsing — saving energy,
while the complex cores have to be switched on for compute-
intensive tasks — such as 3D gaming, browsing flash-based
websites — sacrificing energy. The GPU is responsible
for graphics as well as general-purpose applications with
abundant parallelism such as image processing. The FPGAs



can accelerate computations with substantial parallelism and
irregular control flow. However, the lack of software support
puts substantial burden on the programmer.

In particular, given an application specification in high-
level programming language, it is challenging to map the
application on a heterogeneous multi-core. The mapping in-
volves (a) selecting appropriate core type for each compute-
intensive kernel, (b) translating and optimizing the kernel
specification in a high-level language to an implementation
suitable for the selected core type, (c) partitioning the
application kernels or the data among multiple core types
for co-execution with improved performance or energy-
efficiency. The mapping process can be performed statically
at compile time or adapted at runtime. The runtime support
requires voltage-frequency settings for the different cores
such that the aggregate power consumption of the chip does
not exceed the power budget and still enables the application
to achieve the best possible performance [11]. Unfortunately,
the emergence of heterogeneous multi-cores is not well
matched with equal advancements in software support for
such complex systems. The complexity of the system with
different cores supporting different programming languages
and/or Application Programming Interface (API) makes soft-
ware development on embedded mobile processors a chal-
lenging and sometime daunting endeavor. Thus the software
deployed on embedded mobile processors routinely reaches
only a fraction of the expected performance promised by the
cutting-edge hardware in mobile SoCs.

In this paper, we present several techniques that have been
proposed to build the software support for heterogeneous
computing in consumer devices. As will be shown in the
following sections, software support is necessary both at
compile time as well as runtime to sufficiently exploit the
diverse set of processing cores on modern mobile SoCs. In
the rest of the paper, Section II discusses several compile-
time strategies, while Section III presents state-of-the-art
runtime power and thermal management efforts followed by
a comprehensive runtime approach for thermal management
on mobile SoCs. Section IV concludes this paper with a
brief overview of outstanding issues for future work.

II. SOFTWARE SUPPORT AT COMPILE-TIME

The diverse set of heterogeneous processing cores enable
designers to achieve decent performance within a stringent
power/thermal budget requirement. However, the delicate
choice of a certain core type or a combination of several
cores for a given application is, most of the time, not
obvious. Additionally, the reference code for an application
is usually specified in a high-level single-threaded program-
ming language such as C. It requires knowledge of the
different cores as well as time and effort to redevelop the
application in the accelerator-specific languages. If the per-
formance of the application on different cores can be made
available at an early stage, application developers can make

an informed decision regarding which core or combinations
to use and they can then concentrate on platform-specific
languages and optimizations.

In the following subsections, we present several tools that
can help designers to make such compile time choices of the
execution configuration. Lin-Analyzer [12], MPSeeker [13]
and CGPredict [14] represent cross-platform tools that pre-
dict the performance of an application on an FPGA and
a GPU respectively, from high level C code, that ease the
effort and time consuming re-development process for the
accelerator-specific languages. An OpenCL partitioning [15]
work takes this one step further by accurately predicting
co-execution performance from individual execution perfor-
mances on a CPU-GPU heterogeneous platform.

A. State-of-the-art Techniques

High-level synthesis (HLS) tools [16], which abstract
the programming effort above register-transfer level (RTL),
are commonly used in application development on FP-
GAs. However, invoking HLS induces significant design
space exploration (DSE) time overheads [12]. In order to
rapidly explore the design space to find the execution time
achievable on a certain FPGA, the estimation of FPGA
performance and area requirement is essential. Starting from
high-level specifications (in C/C++), [17] [18] exploit the
fine-grain parallelism by accelerating the kernel on sin-
gle PE. Static analysis are often used, which suffer from
inherently conservative dependence analysis. In contrast,
Lin-Analyzer [12] and MPSeeker [13] work with dynamic
traces, while MPSeeker exploits both coarse and fine-grained
parallelism.

On the other hand, modern GPUs present a highly multi-
threaded architecture that enables concurrent execution of
thousands of threads, which makes the prediction of per-
formance from a single-threaded code a challenging prob-
lem. In addition, with more architectural improvements to
boost the GPU performance, legacy analytical performance
models [19] [20] are not compatible with up-to-date GPU
architectures especially because of the complex memory
hierarchy. Machine learning models [21] require extensive
profiling and delicate choice of the training benchmarks.
In addition, the performance of the GPU can be improved
largely by platform specific optimizations. Such possibilities
are not transparent in the machine learning models.

B. FPGA Performance Estimation

MPSeeker [13] (which builds on Lin-Analyzer [12])
is a high-level analysis framework that considers both
fine- and coarse-grained parallelism on FPGAs to esti-
mate accelerator performance and resource requirement
from sequential C/C++ code without invoking an HLS
tool. The framework is open source and available from
https://github.com/zhguanw/lin-analyzer



Computational	Kernel	in	Tiled	Nested	Loop	(C/C++)

Profiling	Stage
(Trace	Generation)

Multi-level	
Parallelism	Analysis	

on	FPGAs

FPGA	Area/Performance

OUT

IN

Area	Estimation	
Model

Performance	
Estimation	Model

Figure 2: MPSeeker: An Automatic Design Space Explo-
ration framework with Multi-level Parallelism for FPGA

Computational	Kernel	in	Single-Threaded	C	Code

Trace	
Extraction

Warp	Formation
(Parallelization)

Analytical	
Prediction	
Model

Predicted	GPU	Execution	Time

OUT

IN

Computation	
Analysis

Memory	Behavior	
Analysis

Figure 3: CGPredict: An Analytical framework for Perfor-
mance Estimation from Single-threaded C Code for GPU

As shown in Figure 2, MPSeeker takes a high-level
specification (C/C++) of an algorithm in the form of nested
loops, available pragmas for optimization and resource con-
straints as inputs. A dynamic trace is generated in the
Profiling Stage, leveraging the intermediate representation
of Low-Level Virtual Machine (LLVM IR) [22] and IR
instrumentation. The Performance Estimation Model esti-
mates the kernel computation cycles through dynamic data
dependence graph (DDDG) scheduling [12] as well as data
communication cost. A machine learning technique called
Gradient Boosted Machine (GBM) is employed to predict
the resource usage in Area Estimation Model. The DSE step
is finally performed by estimating both performance and
area for each pragma combination to recommend the best
configuration in Multi-level Parallelism Analysis.

MPSeeker achieves less than 5.2% error in performance
prediction compared to Vivado HLS and on average 15%
error in resource estimation. It recommends the same or
closely similar combination of pragma settings in min-
utes instead of hours or sometimes even days taken by
exhaustive HLS-based techniques. In addition, MPSeeker
identifies bottlenecks of different FPGA implementations
when applying diverse optimizations, assists designers in
evaluating different architectural options in the context of
high-level synthesis and better understand the performance
impact of different accelerator design choices.

C. GPU Performance Estimation

CGPredict [14] is an analytical framework to estimate
the performance of a computational kernel on an embedded
GPU architecture from unoptimized, single-threaded C code.

CGPredict builds the performance model from a dynamic
execution trace of the sequential kernel. The trace is mod-
ified to expose the available thread-level parallelism that
can be potentially exploited by the GPU. At the same time,
the memory access trace is analyzed against a performance
model of the memory hierarchy that captures the interaction
between the cache, the DRAM memory, and the inherent
memory latency hiding capability of the GPU through zero-
cost context switching of the threads when necessary. As
shown in Figure 3, CGPredict takes a computational kernel
in the form of single-threaded C code as input similar to
MPSeeker and generates its execution trace through a Trace
Extraction phase. The trace obtained is a serial trace that
captures the execution information of the application. To
emulate the behavior of a GPU, a Warp Formation phase
is introduced to transform the single-threaded trace into its
multi-threaded equivalent. CGPredict then extracts compu-
tation (in the form of compute instructions) and memory
access information. Compute instructions are mapped to
CUDA PTX ISA [23] to predict the number of GPU in-
structions, and thus compute cycles in Computation Analysis
stage. To predict GPU memory cycles, CGPredict takes the
memory access information and analyzes its access patterns
and cache behavior in Memory Behavior Analysis stage. The
results from the two analysis stages complete the execution
characteristics required from the kernel for performance
prediction. Lastly, together with the architectural parameters
obtained by micro-benchmarking, an Analytical Prediction
Model is engaged to predict the final execution performance
using the computation and memory execution characteristics.

CGPredict can estimate the performance from C code
with 9% estimation error compared to the performance
of the corresponding native CUDA code on an embedded
NVIDIA Kepler GPU averaged across a number of kernels.
As CGPredict is based on analytical modeling, it can provide
insights regarding the characteristics of the kernel and the
GPU that influence performance, including coalescing of
memory accesses or shared memory usage. These insights
offer opportunities for the programmers to understand the
intrinsic strengths and weakness of the architecture in the
context of a particular kernel that can facilitate further code
optimizations.

D. Choice of Accelerator

With the help of MPSeeker [13] and CGPredict [14], we
can predict the performance of a computational kernel in
C code on the FPGA and GPU platform respectively, and
therefore assist the designers in selecting the appropriate
accelerator that gives the best performance. Here we show a
set of experiments with five benchmarks. DCT1D and MM



Table I: Accelerator Choice between GPU and FPGA

Benchmark Input GPU time (ms) FPGA time (ms)
Name Size Estimate Actual Estimated Actual

MM 1024 242.51 250.27 1180 1450
MVT 2048 48.31 42.37 9.09 10.41
GEMVER1 2048 2.61 4.57 16.55 19.81
DERICHE1 1024 0.95 1.53 2.99 3.37
DCT1D 1024 2697.75 2685.36 636.47 650.8

are taken from [24], while DERICHE1, GEMVER1 and
MVT are taken from Polybench [25]. These benchmarks
are mainly matrix calculations implemented with multiple
nested loops. To verify with the actual performance of
the kernels on the accelerators, equivalent CUDA code are
implemented manually. The verifications are carried out on
the NVIDIA embedded Kelper GPU on Jetson TK1 devel-
opment board [7] (852MHz) and Xilinx ZC702 embedded
FPGA [24] (100MHz).

Table I shows that CGPredict together with MPSeeker
can suggest the correct accelerator (GPU or FPGA) for
each application. The choice among different accelerators
is a complex confluence of the considerations of application
characteristics and architecture specifications.

For benchmark MM, GEMVER1 and DERICHE1, GPU
is a better choice than FPGA. For the accelerators used in the
experiment, GPU has much higher frequency (852MHz) and
memory bandwidth (17GB/s) compared to FPGA (100MHz,
4GB/s). The better processing capability makes GPU a better
choice for these three benchmarks. In addition, the three
benchmarks are analyzed to have coalesced memory access
pattern, which significantly reduces memory transactions of
GPU implementations and improves performance.

For MVT and DCT1D, FPGA is a better choice compared
to the GPU. Both MVT and DCT1D have uncoalesced
memory access patterns, which cause the GPU to suffer from
extensive memory transactions. Different from the GPU
implementations, the FPGA accelerator first loads input data
of several tiles into its local memory and start the compu-
tation. Therefore memory access patterns do not have large
impact on FPGA performance, as access latency of FPGA
local memory is quite small. It should be noted that GPU
performance could be improved by several optimizations
such as data layout transformation, loop tiling with shared
memory and vectorization. However, the reference CUDA
code that we are comparing against do not include such
optimizations and hence we refrain from using them.

In general, with the compile time performance prediction
tools, the designers are able to know the better choice of core
type for a certain computational kernel. With the analytical
nature of the models, designers can further optimize the
implementation to achieve better performance.

Figure 4: Benefit of Concurrent Execution of CPU and GPU

E. Partitioned Co-execution

With the help of cross-platform languages, such as
OpenCL [26], an application, without any modification, can
be executed on multiple platforms including CPUs, GPUs,
FPGAs and others. While some applications benefit from the
execution on GPUs, others may be more suited for FPGA
execution, or just on CPUs without any accelerator. On
top of functional heterogeneity as discussed in the previous
sections, we can additionally exploit the performance het-
erogeneity available on modern MPSoCs, such as the ARM
big.LITTLE platform [26]. A co-execution on all available
components of the MPSoC can therefore engage all the cores
and achieve better execution performance.

We present such an approach in [15] that statically
partitions the application to run across CPU and GPU
clusters on mobile application processors in conjunction with
appropriate voltage-frequency setting for each core cluster
(small core, big core and GPU), in order to maximize the
power-performance trade-off of the application. As shown
in Figure 4, among all the benchmarks, the improvement in
runtime by executing CPU and GPU concurrently can be as
high as 39.4% (2MM) and on average 19.2%. With the high
margin of execution improvement, the designers can have
more knobs to adjust in order to achieve better performance
under certain constraints. This work in addition shows that
designers can achieve the best performance-energy trade-off
(using the metric of interest ED2) with appropriate voltage-
frequency settings.

III. RUNTIME SUPPORT FOR DYNAMIC POWER AND
THERMAL MANAGEMENT

In the previous section, we discussed several works that
enable designers to predict the performance and in some
cases even power consumption, of the various kernels in
an application on different computation units such as GPU,
FPGA and big.LITTLE CPU cores. These early estimates
allow system designers to select the right processing core
for each of the kernels in an application to achieve high
performance in an energy-efficient manner on the heteroge-
neous platform.



On the other hand, a runtime manager has also been
proposed in the existing literature to leverage the Dynamic
Voltage Frequency Scaling (DVFS) features of the various
processing cores in a heterogeneous platform to further
reduce power consumption during runtime. This is especially
useful in consumer devices such as smartphones and smart-
watches that are constantly held or worn by users. While
solutions that target energy-efficient execution ensure long
battery life for portable battery-operated mobile devices,
techniques to ensure power-efficient execution are important
to ascertain tolerable temperature while using these devices.

A. State-of-the-art Techniques

The ever rising demand for higher performance from
mobile devices has forced designers and manufacturers to
augment increasing number and types of computation units.
This inevitably leads to higher power consumption in such
devices that needs to be carefully managed to ensure power
efficient execution and tolerable temperature while being
used [27]. This problem is further exacerbated when the
thermal behavior of the system must be maintained during
runtime while ensuring high user experience.

Dynamic voltage frequency scaling (DVFS) is a popular
technique that has been used extensively for power manage-
ment. Several rule based governors are included in operating
systems for mobile devices to manage, according to various
criteria (e.g., CPU usage), the frequency of CPU, GPU, etc.
[28]. For GPUs, the authors in [29] introduced a QoS-aware
DVFS technique for energy-efficient execution while achiev-
ing a higher QoS satisfaction rate than the default on-demand
DVFS policy. However, these governors do not directly
focus on thermal management. For CPU power and thermal
management, we have earlier proposed control-theoretic [30]
and price-theory based approaches [31] for task migration
and DVFS as well as approximation-aware scheduling and
DVFS [32] across ARM big.LITTLE clusters. The task
migration requires cross-core performance estimation [33]
to perform cost-benefit analysis of the migration.

Mobile gaming is one of the most frequently used applica-
tions on mobile devices. They are also one of the most power
hungry applications, which has led numerous researchers to
explore various power management techniques for mobile
gaming. Authors in [34] categorized several 3D mobile
games based on their performance and power characteristics.
In [35] and [36], we studied several mobile games and
proposed a DVFS-based power management approach with
options for power-performance tradeoff. However, these
works did not focus on thermal management.

The authors in [37] and more recently in [38] target
dynamic thermal management on mobile devices while
considering the temperature coupling between the processor
and the battery. However, these works do not consider the
interaction between the CPU and the integrated GPU that
directly impacts the application performance, for on-chip

thermal management. The authors in [39] focused on thermal
management for mutli-core processors while considering the
thermal coupling between adjacent cores, however, they did
not consider heterogeneous processing cores like the ones
found in mobile devices.

A recent work by Singla et al. [40] proposed a predictive
approach for thermal management of CPU and GPU in
mobile platforms. The main idea in this paper is to pro-
actively turn off the high power consuming Cortex A15
cores, one by one, if a thermal throttling is predicted by their
algorithm. The A7 cores and GPU is throttled next, if turning
off the A15 cores does not sufficiently reduce the overall
temperature. While their results show significant reduction
in on-chip temperature variance, this comes at the cost of
reduced performance especially for gaming workloads that
require both CPU and GPU. In contrast, we propose a PID-
controller based cooperative CPU-GPU thermal management
technique in [41] that significantly reduces the on-chip
temperature variance and achieves better performance than
the default Linux governor while maintaining similar peak
temperature. The next subsection briefly presents this work.

B. Cooperative Dynamic Thermal Management

In this work, we used the Arndale development plat-
form [42] with a Samsung Exynos 5250 heterogeneous
MPSoC. This SoC consists of a dual core ARM Cortex-
A15 processor and a high performance Mali T604 quad-core
GPU. In the first step, we made two observations from the
thermal profile of CPU and GPU by running an intensive
mobile game that stressed both the CPU and GPU on this
platform.

As the temperature of the SoC rises during the gameplay,
the default Linux thermal management unit (TMU) moni-
tors the CPU temperature and throttles the CPU frequency
once the temperatures rises to a pre-defined threshold (for
example, 70°C in this platform). The GPU frequency is
throttled at a later stage by its device driver and is not
coordinated with the CPU. This allows the SoC temperature
to continue to increase even after the CPU frequency is
throttled. The SoC only cools down after both the CPU and
GPU frequencies are throttled significantly. The net result of
this uncoordinated DVFS is a significant oscillation in the
on-chip temperature that may even create reliability issues.

Secondly, different from power consumption, because of
the close proximity of CPU and GPU, even a modest
increase in the temperature of one directly impacts the
temperature of the other. This is known as the thermal
coupling phenomenon that makes it difficult to predict the
thermal behavior of one processing core in isolation [43].

Considering these two observations, we proposed a con-
trol theory based cooperative CPU-GPU Dynamic Thermal
Management (DTM) technique [41]. The proposed tech-
nique attempts to maintain the overall chip temperature
at or close to a pre-defined threshold by estimating and



0

10

20

30

40

50

Epic Dday Anomaly Bikerally Robocop Farmville

FP
S 
Im

pr
ov

em
en

t (
%
)

FPS Imp. vs Linux FPS Imp. vs Singla et al.

(a) Performance improvement of cooperative solution versus other
approaches

0

5

10

15

20

25

Epic Dday Anomaly Bikerally Robocop Farmville

Te
m
pe

ra
tu
re
 V
ar
ia
nc
e

Linux Singla et al. Proposed

(b) Temperature Variance Reduction

Figure 5: Improvement in FPS and Temperature Variance.

allocating the available thermal headroom individually to
both CPU and GPU based on their utilization values. Appro-
priate temperature models were derived to predict the CPU
and GPU temperatures at a target frequency (to maintain
performance), while also considering the temperature of
the other processing core. The predicted temperature values
were fed to a “Temperature Allocator” block that calcu-
lates the reference temperatures for both CPU and GPU.
These reference temperatures were then sent to individual
PID-controllers to obtain the frequency of CPU and GPU
that achieved the desired performance without violating the
thermal constraints. The resulting temperature of both CPU
and GPU were measured after a fixed period and the entire
process was repeated.

We implemented the proposed DTM algorithm as well as
the technique proposed by Singla et al. [40] on a real mobile
development platform, the Arndale development board and
used it to control the frequency settings of CPU and GPU
while running several gaming workloads. The resulting per-
formance (frames per second metric for gaming workloads)
and the on-chip temperature were observed. As seen from
figure 5(a) and 5(b), the proposed algorithm not only reduced
the on-chip temperature variance but also achieved higher
performance than the default Linux TMU and the approach
in [40].

IV. CONCLUSION AND FUTURE OUTLOOK

In this paper, we presented our recent efforts to improve
the software support for heterogeneous computing in mobile
SoCs. The compile time strategies help to estimate the
performance of application kernels on different processing
cores such as big.LITTLE CPU, GPU and FPGA. Such
tools enable system designers to make early stage decision
on executing the kernel on the most suitable processing
core in an effort to achieve best performance while also
ensuring high energy-efficiency. On the other hand, the
runtime strategies are mainly useful for dynamic power
and thermal management in such devices without sacrificing
performance.

The research efforts presented in this paper are certainly
concrete steps in the right direction. However, more work
needs to be done in future to make heterogeneous com-
puting truly seamless for application programmers. While
the compile time strategies discussed in Section II can be
used to predict performance on the various processing cores,
an integrated compiler support is needed to compile and
map different kernels in any application on a given hetero-
geneous processing platform that consists of performance-
heterogeneous CPU cores and functionally heterogeneous
cores such as GPU and FPGA. Support for other processing
cores such as DSP and ISP, etc. also needs to be added to this
integrated compilation framework to make a truly seamless
application mapping process. Additionally, for applications
with highly input-dependent behavior, a dynamic solution to
partition and schedule the workload on the heterogeneous
cores can be more appropriate compared to the static parti-
tioning strategy for co-execution discussed in this paper. As
an example, we employ runtime work stealing approach to
distribute workloads for the Convolutional Neural Networks
inference engines to the CPU cores with vector processing
units (ARM Neon) and processing elements in FPGAs for
improved load balancing [44].

Finally, while the works presented here mostly consider
gaming applications for runtime power and thermal man-
agement, GPGPU applications such as image processing,
machine learning applications using deep neural networks,
etc. also need to be considered for power and thermal
efficient execution. Such applications are increasingly being
ported to mobile devices and demand both high performance
and power efficiency from these platforms. Apart from
DVFS based solutions, runtime task migration strategies also
need to be developed to ensure that no single processing
core is over-worked while other cores are idle and thereby
improve the overall system reliability [45].

V. ACKNOWLEDGMENTS

This work was partially funded by Singapore Ministry of
Education Academic Research Fund Tier 2 MOE2015-T2-
2-088.



REFERENCES

[1] “Qualcomm Snapdragon 845,” https://goo.gl/3eDr47.
[2] “Huawei Hisilicon Kirin 970,” https://goo.gl/zXnjfD.
[3] “Samsung Exynos 9810,” http://www.samsung.com/exynos/.
[4] “Apple A11 Bionic,” https://en.wikichip.org/wiki/apple/ax/a11.
[5] T. Mitra, “Heterogeneous multi-core architectures,” Informa-

tion and Media Technologies, 2015.
[6] “Heterogeneous Multi-Processing Solution of Exynos 5 Octa

with ARM big.LITTLE Technology,” http://goo.gl/UVAXVS.
[7] NVIDIA, “NVIDIA Tegra K1: A New Era in Mobile Com-

puting,” White Paper, 2014.
[8] “ARM Mali-T600 Series GPU OpenCL, Version 2.0, Devel-

oper Guide,” http://goo.gl/R0FKs8.
[9] “Qualcomm Adreno,” https://goo.gl/FU8rts.

[10] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng,
E. Plondke, C. Koob, A. Ingle, C. Tabony, and R. Maule,
“Hexagon DSP: An Architecture Optimized for Mobile Mul-
timedia and Communications,” IEEE Micro, 2014.

[11] M. Shafique, S. Garg, T. Mitra, S. Parameswaran, and
J. Henkel, “Dark silicon as a challenge for hardware/software
co-design,” in CODES+ISSS, 2014.

[12] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-
Analyzer: A high-level performance analysis tool for FPGA-
based accelerators,” in DAC, 2016.

[13] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and
S. Niar, “Design Space exploration of FPGA-based accelera-
tors with multi-level parallelism,” in DATE, 2017.

[14] S. Wang, G. Zhong, and T. Mitra, “CGPredict: Embedded
GPU Performance Estimation from Single-Threaded Applica-
tions,” ACM Transactions on Embedded Computing Systems
(TECS) - Special Issue CODES+ISSS, 2017.

[15] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra, “Energy-
efficient execution of data-parallel applications on heteroge-
neous mobile platforms,” in ICCD, 2015.

[16] Xilinx Inc., “Xilinx vivado high-level synthesis,” 2014,
https://goo.gl/2nvniX.

[17] X. Gao, J. Wickerson, and G. A. Constantinides, “Automat-
ically Optimizing the Latency, Area, and Accuracy of C
Programs for High-Level Synthesis,” in FPGA, 2016.

[18] P. Li, P. Zhang, L.-N. Pouchet, and J. Cong, “Resource-
Aware Throughput Optimization for High-Level Synthesis,”
in FPGA, 2015.

[19] S. Hong and H. Kim, “An Analytical Model for a GPU
Architecture with Memory-level and Thread-level Parallelism
Awareness,” in ISCA, 2009.

[20] A. K. Parakh, M. Balakrishnan, and K. Paul, “Performance
Estimation of GPUs with Cache,” in IPDPSW, 2012.

[21] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu,
“Cross-architecture performance prediction (XAPP) using
CPU code to predict GPU performance,” in MICRO, 2015.

[22] C. Lattner and V. Adve, “LLVM: a Compilation Framework
for Lifelong Program Analysis Transformation,” in CGO,
2004.

[23] NVIDIA, “Parallel Thread Execution ISA Version 5.0,”
http://docs.nvidia.com/cuda/parallel-thread-execution.

[24] Xilinx Inc., “ZC702 Evaluation Board for the Zynq-7000
XC7Z020 All Programmable SoC,” https://goo.gl/bAhHQY.

[25] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos, “Auto-tuning a High-level Language Targeted to
GPU Codes,” in InPar, 2012.

[26] Khronos Group, “OpenCL: The open standard for
parallel programming of heterogeneous systems.”
https://www.khronos.org/opencl/.

[27] K. Sekar, “Power and Thermal Challenges in Mobile De-
vices,” in MobiCom, 2013.

[28] “Android Governors,” http://goo.gl/8j1Eqo.
[29] D. You and K.-S. Chung, “Quality of service-aware dynamic

voltage and frequency scaling for embedded GPUs,” IEEE
Computer Architecture Letters, 2014.

[30] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra,
and S. Vishin, “Hierarchical power management for asymmet-
ric multi-core in dark silicon era,” in DAC, 2013.

[31] T. S. Muthukaruppan, A. Pathania, and T. Mitra, “Price theory
based power management for heterogeneous multi-cores,”
ACM SIGPLAN Notices, 2014.

[32] C. Tan, T. S. Muthukaruppan, T. Mitra, and L. Ju,
“Approximation-aware scheduling on heterogeneous multi-
core architectures,” in ASP-DAC, 2015.

[33] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra,
and S. Vishin, “Power-performance modeling on asymmetric
multi-cores,” in CASES, 2013.

[34] X. Ma, Z. Deng, M. Dong, and L. Zhong, “Characterizing the
Performance and Power Consumption of 3D Mobile Games,”
Computer, 2013.

[35] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated
CPU-GPU power management for 3D mobile games,” in
DAC, 2014.

[36] A. Pathania, A. E. Irimiea, A. Prakash, and T. Mitra, “Power-
performance modelling of mobile gaming workloads on het-
erogeneous MPSoCs,” in DAC, 2015.

[37] Q. Xie, J. Kim, Y. Wang, D. Shin, N. Chang, and M. Pedram,
“Dynamic Thermal Management in Mobile Devices Consid-
ering the Thermal Coupling Between Battery and Application
Processor,” in ICCAD, 2013.

[38] O. Sahin et al and A. K. Coskun, “On the Impacts of Greedy
Thermal Management in Mobile Devices,” Embedded Systems
Letters, 2015.

[39] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Ther-
mal and Energy Management of High-Performance Multi-
cores: Distributed and Self-Calibrating Model-Predictive Con-
troller,” TPDS, 2013.

[40] G. Singla et al, G. Kaur, A. K. Unver, and U. Y. Ogras,
“Predictive dynamic thermal and power management for
heterogeneous mobile platforms,” in DATE, 2015.

[41] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and
J. Henkel, “Improving Mobile Gaming Performance Through
Cooperative CPU-GPU Thermal Management,” in DAC,
2016.

[42] “Arndale Board 5250,” http://goo.gl/1ZCSNX.
[43] I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalaman-

chili, “Cooperative Boosting: Needy Versus Greedy Power
Management,” in ISCA, 2013.

[44] G. Zhong, A. Dubey, T. Cheng, and T. Mitra, “Synergy: A
HW/SW Framework for High Throughput CNNs on Embed-
ded Heterogeneous SoC,” arXiv preprint arXiv:1804.00706,
2018.

[45] C. Bolchini, M. Carminati, T. Mitra, and T. S. Muthukarup-
pan, “Combined on-line lifetime-energy optimization for
asymmetric multicores,” in DFT, 2016.


