SPECTRUM: A Software Defined Predictable
Many-Core Architecture for LTE Baseband Processing

Vanchinathan Venkataramani, Aditi Kulkarni, Tulika Mitra, Li-Shiuan Peh
National University of Singapore
{vvanchi, aditi, tulika, peh}@comp.nus.edu.sg

Abstract

Wireless communication standards such as Long Term Evo-
lution (LTE) are rapidly changing to support the high data
rate of wireless devices. The physical layer baseband pro-
cessing has strict real-time deadlines, especially in the next-
generation applications enabled by the 5G standard. Existing
base station transceivers utilize customized Digital Signal
Processing (DSP) cores or fixed-function hardware accelera-
tors for physical layer baseband processing. However, these
approaches incur significant non-recurring engineering costs
and are inflexible to newer standards or updates. Software
programmable processors offer more adaptability. However,
it is challenging to sustain guaranteed worst-case latency
and throughput at reasonably low-power on shared-memory
many-core architectures featuring inherently unpredictable
design choices, such as caches and network-on-chip.

We propose SPECTRUM, a predictable software defined
many-core architecture that exploits the massive parallelism
of the LTE baseband processing. The focus is on designing
a scalable lightweight hardware that can be programmed
and defined by sophisticated software mechanisms. SPEC-
TRUM employs hundreds of lightweight in-order cores aug-
mented with custom instructions that provide predictable
timing, a purely software-scheduled on-chip network that
orchestrates the communication to avoid any contention
and per-core software controlled scratchpad memory with
deterministic access latency. Compared to a many-core archi-
tecture like Skylake-SP (average power 215W) that drops 14%
packets at high traffic load, 256-core SPECTRUM by defini-
tion has zero packet drop rate at significantly lower average
power of 24W. SPECTRUM consumes 2.11x lower power than
C66x DSP cores+accelerator platform in baseband process-
ing. SPECTRUM is also well-positioned to support future 5G
workloads.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6724-0/19/06...$15.00
https://doi.org/10.1145/3316482.3326352

CCS Concepts + Computer systems organization —
Real-time system architecture.

Keywords Time-predictable architecture, LTE, 5G, base-
band processing, many-cores, low-power

ACM Reference Format:

Vanchinathan Venkataramani, Aditi Kulkarni, Tulika Mitra, Li-
Shiuan Peh. 2019. SPECTRUM: A Software Defined Predictable
Many-Core Architecture for LTE Baseband Processing. In Pro-
ceedings of the 20th ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES °19), June
23, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3316482.3326352

1 Introduction

The last decade has seen unprecedented growth in the num-
ber of wireless-enabled devices including Internet of Things
(IoT) end-nodes and handhelds. These devices expect the
newer generation of cellular networks to support their low-
latency, high data-rate requirements. Long Term Evolution
(LTE) is the current communication standard utilized in the
cellular networks and 4G LTE is the fastest connection avail-
able for wireless networks. The current LTE lays the founda-
tion for the upcoming 5G networks [16], the specifications
of which are being finalized. The vision of 5G is to achieve
1000X throughput improvement and 100 billion connections.
Most importantly, there will be strict deadlines on access
latency for latency-critical and mission-critical applications
enabled by 5G networks such as the tactile Internet, intelli-
gent transportation, telesurgery, and real-time control. These
will require ultra-reliable connectivity, low end-to-end la-
tency provided with an extremely high level of certainty [48].
For example, the latency requirement for factory automation
applications is between 0.25-10 ms with a packet loss rate of
1077 [53].

The LTE architecture [12] establishes a wireless radio con-
nection between a UE (User Equipment, e.g, mobile phone)
and an eNodeB (Evolved Node B) base station from the mo-
bile operator. The eNodeB then connects to the core network
and the Internet through the backhaul. The wireless radio
communication latency is defined as the packet transmission
time between UE and eNodeB and is mainly due to the phys-
ical layer communication, which in turn, is the sum of the
transmit time at the UE, the propagation delay over the radio

https://doi.org/10.1145/3316482.3326352
https://doi.org/10.1145/3316482.3326352

interface, and the processing time at the base station (eN-
odeB). Our focus is on real-time guarantees for the physical
layer processing at the base station.

Existing base stations utilize customized DSP cores in con-
junction with fixed-function ASIC accelerators for baseband
processing as DSPs by themselves cannot meet the perfor-
mance [9]. These solutions incur significant Non Recurring
Engineering (NRE) costs that cannot be easily amortized.
According to Huawei’s Wireless Network Market Insight sta-
tistics, global mobile operators have about 6 million physical
base stations [41], which is orders of magnitude smaller than
5 billion mobile phones and 20 billion IoT devices acting as
UEs. Moreover, ASICs do not provide any flexibility in the
context of continuously evolving wireless network standards.
While FPGAs do offer flexibility (unlike ASICs), they are still
hard to program, cannot meet the performance-power-area
goals, and testing, verification contribute significantly to
the NRE cost. Thus, there is increasing interest from the
telecommunications equipment manufacturers to use soft-
ware programmable solutions that can be easily updated
with the changing standards.

Prior studies have attempted to map the LTE physical layer
processing at base stations on GPUs [68] or general purpose
CPUs [55, 57]. However, these architectures are built with
components (processor, caches, networks) that provide high
performance at the cost of low time-predictability, making it
difficult to meet the real-time latency guarantees as well as
throughput constraints [55]. Besides, thermal design power
(TDP) of these architectures are rather high, a key concern
for mobile operators as temperature control accounts for 45%
of total energy [4].

The shortcomings of the existing approaches led us to
the design of SPECTRUM, a predictable many-core architec-
ture tailor-made for cellular base stations. This architecture
exploits the abundant parallelism in baseband processing
with many lightweight in-order cores, several completely
software-controlled on-chip networks (NoC), and software
programmable scratchpad memories (SPM). Our concrete
contributions are the following:

e We believe SPECTRUM is the first many-core architec-
ture to provide holistic software-defined time-predictable
design (end-to-end) in every component (compute,
memory, NoC) and their interactions (e.g., data trans-
fer between SPMs via NoC); hence it does not need any
backup mechanism (e.g., dynamic routing) to handle
uncertainties.

o As all the components in SPECTRUM are inherently
predictable and operate under software control, the
worst-case execution time of the baseband computa-
tion can be easily estimated through static analysis and
hence we can provide guaranteed worst-case latency
for processing at the base station for latency-critical
applications.

e SPECTRUM is completely software programmable in
high-level programming languages with standard multi-
threaded libraries. The compiler/runtime management
layer orchestrates configurations and application ex-
ecution hiding complexities from the programmer,
thereby improving productivity in the face of updates
in LTE standards.

e SPECTRUM consumes 2.11x lower power than existing

C66x DSP cores based platform that is hard to program

and relies heavily on custom hardware accelerators

for meeting the baseband processing requirements.

SPECTRUM provides guaranteed latency with 0% packet

drop, while contemporary many-cores like Intel Xeon

Gold (Skylake-SP) incur 14% packet drops at high net-

work traffic.

SPECTRUM avoids hardware complexity by relying on

sophisticated software techniques to provide high per-

formance at low power of 24W compared to Skylake-

SP at 215W.

2 LTE Baseband Processing

The uplink physical layer baseband processing at the base
station transceiver (eNodeB) is one of the most computation-
ally demanding components in the LTE protocol [22, 36]. We
describe how the uplink data sent through the wireless trans-
mitter of the UE is processed at the base station transceiver.
For details, see [14].

2.1 Overview

For the uplink data signals from the UE to the base station,
the LTE standard uses Single Carrier Frequency Division
Multiple Access (SC-FDMA) modulation scheme. Figure 1
describes the overview of frequency allocation in LTE base
stations. Each LTE base station is allocated a frequency band
between 1.25 MHz to 20 MHz, split into 15 KHz sub-carriers
(SC). The time domain is split into frames (lasting 10 ms), and
each frame is further divided into ten sub-frames. Each sub-
frame of 1 ms duration comprises two slots (0.5ms per slot),
each containing seven SC-FDMA symbols. This includes six
data symbols (SYM) and one reference symbol for channel
estimation. The minimum unit allocated to a UE is called a
Physical Resource Block (PRB), consisting of 12 sub-carriers
(frequency domain) lasting one sub-frame (1 ms in the time
domain). As per [14], the frequency spectrum is divided into
100 PRB, totaling 1200 sub-carriers, that can be allocated to
a maximum of 10 UEs.

2.2 LTE Uplink Baseband Processing

The current LTE standard requires a throughput of one sub-
frame per ms. Assuming 20ms worst-case end-to-end la-
tency for mission-critical applications [53] leaves us with a
bound of 2.5ms [14, 27] on subframe processing latency. If a
subframe processing time does not meet the deadline, it is

frequency Reference Symbol S 1
Symbol ot
sub l e - I~ Subframe (1ms)

CarrierT I I

f

PRB UET
|
I I time

Figure 1. Frequency allocation in LTE

dropped [10] leading to substantial packet loss that cannot
provide the ultra-reliable connectivity demanded by latency-
critical applications.

We use the LTE PHY benchmark [55] from Ericsson as our
baseline reference implementation. The benchmark captures
the characteristics of time-varying realistic uplink work-
loads such as variations in the number of UEs, PRBs allo-
cated to each UE, modulation scheme of each UE, etc. The
WiBench project [67] restricts the number of UEs to one and
is not suitable for realistic LTE uplink workloads. OpenAir-
Interface [10], a standard-compliant open-source software-
based implementation of LTE needs to interface with the
UEs in real-time and hence cannot be incorporated with
our gem5 [23] architectural simulation environment used to
evaluate SPECTRUM.

In a typical base station performing uplink baseband pro-
cessing [55], the radio receiver obtains combined signals
from multiple UEs, filters them, removes the cyclic prefix
and performs FFT to convert back from time to the frequency
domain. In the frequency domain, user extraction recovers
individual UE signals and baseband processing is initiated.

Figure 2 shows the baseband processing per UE that has
three main components (i) Channel estimation, (ii) Data De-
modulation, and (iii) Decoding, each comprising multiple
computational kernels. Of these three components, the De-
coding component with Turbo Decoding and Cyclic Redun-
dancy Check (CRC) kernels have fixed algorithms that do not
change rapidly with each generation of baseband processing.
Hence, it is customary to use ASICs for this component to
achieve better power-performance efficiency [20, 58]. We
thus design SPECTRUM to target the other two components.

Channel Estimation. User signals experience distortion
and propagation losses during transmission. A weight fac-
tor is calculated based on the reference symbol to recover
the other symbols in the sub-frame. The weight factor is
computed in Channel Estimation where for each UE, the
reference symbol per sub-carrier undergoes matched filter
computation followed by inverse FFT (IFFT) transforming the
input back to time domain. In windowing, a subsequence of
the time domain samples is extracted. FFT is then used to
transform the data back to frequency domain. As UE signals
are received by different receiver antennae in base stations,

the original user signal is recovered by combining signals
received from different antennae and adjusting for channel
conditions. This is performed in the combiner weights kernel.
For a MIMO system, channel estimation must be performed
for each receiver antenna and layer, the results of which are
used to calculate combiner weights.

Data Demodulation. The combiner weights are used to
merge the signals from multiple antennae in antenna combin-
ing. An IFFT is then performed to convert the signal back to
the time domain. Next, in de-interleave, the bits are brought
back to the correct sequence. This step is performed as the
sequences of bits is dispersed to minimize the effect of burst
errors (introduced in transmission) before sending data to
the base station. Finally, the original bits are recovered by
mapping the output into the corresponding constellation
in soft symbol demap. Existing modulation schemes include
QPSK, 16QAM, 64 QAM and 256QAM. For example, with
64QAM demodulation scheme, each symbol is decoded into
six bits.

| et l———————— ': nrT——-——-——-——-—-=--
I s | Antenna ! 1
ync and _ 1| Output

: Input Data —* Buffering | Combining i Data 1

] 1

! | L]

l Combiner |l | 1

I . I IFFT, ! '

I We;ghts | (LAYxSYM) i CRC i

| $| : :

I Matched I - : - ! I 1

I Filter FFT | ||l De-interleaving || | Turbo]

Il (anTxLAvxsC (ENTXCAV | (EVEEESL) 1|_Decoding |!
1

| — ! S
I 1

il FFET, Windowing | SOth symbol || 1| syncand ||

Ml (anTxLay) (ANTXLAYxXSC) | (St} 1| Buffering |!

i I (LAYXSCXSYM) ! !

. . | Data 1 . 1

l _CEaTe_I E_StTa_tlT_ Demodulation :_ _D_eio_dl_n_g_ !

Figure 2. Per-UE data processing flow. The parallelization
factor per kernel is indicated within brackets.

2.3 Parallelization Strategies

In LTE baseband processing, after the user extraction phase,
processing for different UEs (Figure 2) can proceed in parallel.
LTE PHY benchmark from Ericsson [55] parallelizes Matched
Filter, IFFT,, Windowing, FFT (MIWF) across Layers (LAY)
and Antennae (ANT), and Antenna Combining and IFFT;
across Layers and SC-FDMA data Symbols (SYM). We identi-
fied additional parallelization factors in each kernel through
code analysis. From this analysis, we observe that all the
kernels in channel estimation and data demodulation except
FFT and IFFT can be parallelized across sub-carriers (SC).
The parallelism factor per kernel is stated within brackets
in Figure 2. For example, using maximum values of different
parameters as per LTE specifications [15] (SC-1200, SYM-
6, ANT-8, and LAY-8), FFT has a maximum parallelization
factor of 8 ANT X 8 LAY = 64.

3 Architecture Design

We propose SPECTRUM, a predictable software defined many-
core architecture for LTE baseband processing to achieve the
latency and throughput objectives. The streaming subframe
data arrives to SPECTRUM system along multiple high-speed
SerDes (Serializer, Deserializer) links from the RF (Radio Fre-
quency) module. The data flows through and gets processed
by SPECTRUM cores but never spills to the off-chip memory.
After physical layer processing, the data is passed on to the
higher layer of the protocol stack.

SPECTRUM differs from conventional shared memory
multi-/many-core architectures along multiple dimensions.
In shared memory architectures, the hardware automati-
cally brings the data into the caches using an underlying
replacement policy. Thus, based on the kernel access pat-
terns, the data may frequently move between on-chip cache
and off-chip memory. Additionally, output produced by a
kernel is used in subsequent stages. This generates a number
of coherence messages, increasing the NoC traffic. Finally,
significant overheads and non-deterministic execution can
occur due to synchronization with parallel processing. Thus,
it is challenging to provide real-time guarantees in conven-
tional shared-memory architectures. In contrast, SPECTRUM
is designed to handle the worst-case workload configuration,
ensuring that the latency and throughput constraints are al-
ways met. SPECTRUM orchestrates the data placement and
movement carefully through software and ensures that the
data always stays on-chip.

An overview of the SPECTRUM architecture is presented in
Figure 3. The current prototype consists of 256 tiles arranged
in a 16x16 2D mesh connected by 8 software-scheduled NoCs.
Section 4 explains our architectural parameter choices. Fach
tile employs time-predictable design decisions in all compo-
nents including (i) light-weight in-order cores with custom
instructions, (ii) software-scheduled network switches with
dedicated links for inter-core communications, and (iii) soft-
ware controlled scratchpad memory for instructions, data.
We describe these components and then present our soft-
ware scheduling approach to ensure efficient use of these
resources.

3.1 Lightweight In-order Cores

SPECTRUM deploys lightweight, time-predictable, single-
issue in-order cores [2] with local scratch-pad memory (SPM)
for both instruction and data. It relies on massive parallelism
to meet performance. The input data signals in LTE pro-
cessing are complex numbers consisting of 16-bit real and
16-bit imaginary components [10, 14, 55]. The baseband pro-
cessing primarily operates on these complex numbers and
involves operations such as complex addition, subtraction,
multiplication, scaling, and conjugation and radix-2 butter-
fly operations. We identify these operations through careful
profiling of the kernels and realize them as custom instruc-
tions through custom functional units that are added to the

processor pipeline (Figure 4). Note that the chosen custom
instructions are committed in silicon and are immutable. For
example, we add a custom functional unit to compute the
product (a*c—bsd)+(axd+b=*c)i of two complex numbers
a + bi and ¢ + di. This custom unit implemented with four
multipliers and two adders, reduces the latency to one inte-
ger multiplication followed by one addition. The speedup
due to customization varies from 1.5x to 7.5x for different
tasks (Section 4.3). As SPM accesses have fixed latency and
individual tasks run on single-issue in-order cores, we are
able to estimate the worst-case execution time (WCET) easily
and accurately [43, 66].

3.2 Software programmable memory

SPECTRUM uses software controlled scratchpad memory
(SPM) [19] in each core for on chip instruction and data stor-
age. SPMs have been extensively used as an alternative to
caches in embedded systems for their timing predictability,
area- and energy-efficiency. An SPM consists of an array
of SRAM cells with no tag arrays. Each SPM is mapped to
an exclusive portion of the entire memory address space.
Thus, given a memory access, there is a one-to-one map-
ping to a particular SPM. But a core can access data in its
own SPM as well as remote SPMs (access latency includes
NoC latency), through load/store instructions. However, the
compiler should map the data and the instructions in the
SPMs across the chip appropriately to ensure the locality of
the memory accesses. Given the data, instruction mapping,
each memory access has deterministic latency. In the cur-
rent prototype, we introduce 4-way SPM banking for lower
area, power and support multiple writes per cycle boosting
throughput. The set of bits selected by Local Bank ID Calcu-
lator and Destination Bank ID Calculator to determine the
local/destination bank ID are configurable.

For the baseband processing application, the code for each
kernel is statically mapped into the instruction SPM. For
data, we first map all private/stack variables in each thread’s
local SPM. Next, we observe that the shared variables within
a phase always have read-only accesses. Thus, we replicate
each shared variable in the data SPM of all the cores that
access that variable.

3.3 Software-scheduled Network-on-Chip

The physical layer processing proceeds in phases where
each phase consists of a set of tasks executing in parallel.
The different phases are executed in a pipelined fashion on
SPECTRUM with a set of cores exclusively assigned to each
phase. We use double buffering for data communication from
one phase to another. We copy all the required data produced
in phase i to the SPMs of the cores in phase i + 1 using
software-scheduled NoC with deterministic data transfer
cost between SPMs before executing phase i+1 computations.
This explicit data copy also ensures that all data accesses are
serviced from the local SPM.

CrossBar
SWitCh4 M
> (5X5)

UX
3

CrossBar X
(4 entries)

%&: 2 (15 [+ 16 +[1)bits

Switch,
Ctrl | Validity | Select

0 1 15 Custom
R SPM-D
In-order
Ban
core
SPM-I
16 ’J 17 . ’J 31
Local
es
@ Bank ID
Calculator ||| Dest.
32 33 47 no. Addr.
Dest. 32-bit
Bank ID Data
Calculator valid
224 225 239 Delay
Ctr.
240 241 255

4 Layers

Figure 3. Schematic of SPECTRUM: a Software Defined Predictable Many-core architecture

Stagel: Fetch

Stage2: Decode

Stage3: Execute

barrel
hift
function

alu
function

Figure 4. Pipeline of lightweight in-order core with custom instructions. The highlighted components in blue are modified for

customization.

The software scheduled NoC with buffer-less switches con-
nected in a flat mesh topology forms the backbone of SPEC-
TRUM (Figure 3). The connections settings at each switch are
configured by the software scheduler and are stored in the
switch’s configuration memory. In typical NoCs employing
sophisticated routers [45, 56], the data packet header con-
tains the destination address and the router logic determines
the crossbar switch’s configuration. Multiple buffer queues
(called virtual channels [29] (VC)) are typically employed at
each router input port to temporarily store the data when
there is contention. Such NoCs do not guarantee predictabil-
ity as contention can lead to packets being stalled. Buffers
and routing logic also add complexity and overhead to the
NoC. In SPECTRUM, as software guarantees contention-free

transmission, buffering is not needed within the NoC and
time predictable data movement is guaranteed. Different
routing protocols are realized by the software choosing al-
ternative routes through NoC, maximizing utilization of the
wires. Effectively, this reduces the NoC to its bare minimum
in hardware, with just wires and switches. This leads to
lower power consumption, opportunities to schedule as per
application needs and ease of perform analysis for real-time
guarantees.

Switch configuration. The configuration memory con-
tains four entries (Figure 3): 5 * 3 = 15 control bits, 16-bit
validity counter and 1 select bit per entry. The control bits de-
termine the connection of the five input links (North, South,
East, West, Packet) to five outputs (North, South, East, West,

SPM), while the validity counter determines the longevity
of the connection. The crossbar connections change to the
next entry in the configuration memory on expiry of the
validity counter. In SPECTRUM, each packet is a single flit
taking one cycle per hop; thus we use packet and flit inter-
changeably. The select (SEL) bit in the multiplexer (MUX)
determine which switch is connected to the SPM bank. The
configuration memory is memory mapped and hence the
application configures it only once throughout its lifetime
using store instructions based on the network schedule.

Topology. We chose to connect the bufferless switches
in a flat mesh topology. A generalized flat mesh enables sim-
ple reconfiguration of communication patterns that change
dramatically in different versions of baseband processing. Its
grid layout provides many alternative paths, so the software
is highly likely to find an available route. For LTE and 5G
benchmarks, our offline communication synthesis algorithm
completes within 60 seconds (executed on single-core in In-
tel Xeon Gold 6126) and never fails to find an available route.
Though clustered or hierarchical topology provides better
average latency than mesh, it may not match the actual com-
munication patterns of the application as the cores involved
in a phase may not fit within the predetermined cluster size.
Section 4.6 shows our software-defined bufferless mesh NoCs
taking up just 3% of SPECTRUM’s power due to their sim-
plicity, while providing a predictable, configurable fabric for
achieving the real-time targets.

Network width. In LTE baseband processing, communi-
cating tasks send the SPM address and 32-bit complex data.
If we deploy 32KB data SPM, it can be accessed with 15 bit
address. For N-way banked SPM and 4-byte data granularity,
15 - (log,4) - (log2N) address bits are sent. For 4-way banked
SPM, the NoC is 32 + (15-2-2) = 43 bits wide.

Network count. As mentioned earlier, SPECTRUM works
best with applications leveraging pipelining. Since two phases
(e.g. Phase i to phase i + 1 and phase i + 1 to phase i + 2) can
send data in the NoC at the same time, contention occurs
when two packets need to utilize the same link. To avoid
contention, we connect two switches to each SPM. Thus
SPECTRUM deploys 4 banks and 8 networks, so that differ-
ent phases can use dedicated channels for simultaneous data
transfers. For example, tasks in phase 1 can send data to
phase 2 through networks 4 — 7 while phase 2 can send data
to phase 3 through networks 0 — 3.

3.4 Inter-phase communication scheduling

We describe the communication pattern seen in baseband
processing and present our network scheduling strategy.

3.4.1 Application model.

In baseband processing application, we define kernel as the
smallest computational component. For example in Figure 2,
the kernels are stated within rectangular boxes, i.e. Matched
Filter, IFFT,, etc. A number of kernels are combined to form

a task, which are executed sequentially in a core. Since, par-
allelism is present in this application, tasks containing the
same set of kernels can execute in parallel as there are no
dependencies. Thus, we group tasks executing the same set
of kernels, but operating on different input data as a phase.
Section 4.3 states the details on how we group kernels to
form tasks and the number of tasks executed in a given phase.

3.4.2 Task mapping.

To confine data traffic within a NoC region, tasks belonging
to a given phase and consecutive phases are placed in adja-
cent cores. Since two switches are connected to an SPM, con-
tention resolution can be separately solved for tasks within
a phase. For example, in Figure 5 (a), tasks belonging to two
phases P; : Py, ..., Py5 and P3 : Ps, ..., P33 are placed on con-
secutive cores. Tasks in P, utilize two networks (denoted as
B0 and B1) for communication. If there was another phase
Py, tasks in P; would have used network banks B2 and B3
for sending data.

3.4.3 Communication patterns.

In our application, each task has initial computation followed
by communication per iteration. As the phases are pipelined,
the output produced from compute in each iteration may
need to be sent to the next phase. This communication la-
tency can be hidden if it is less than compute latency. Let S
denote the set of source tasks that sends data to destination
tasks D. As all the tasks in a phase execute the same code
(but operate on different data), each s € S writes one or more
data to a given d € D sequentially until all destinations are
covered.

3.4.4 Objective of Communication Scheduler.

The software scheduler defines NoC routing by setting the
NoC switch’s configuration appropriately (see Section 3.3).
The scheduler needs to ensure that (i) the packets reach the
correct destination, (ii) there is no network contention, and
(iii) the packets incur low latency.

3.4.5 Approach

The software scheduler computes the configuration memory
settings utilizing the communication pattern, arrival cycles,
and YX routing. All sources are clock synchronized to send
the data in the same cycle. Unique routing paths, dedicated
channels for communication across phases and delayed injec-
tion guarantee contention-free routing in buffer-less crossbar
switches. Given a memory request, we first determine if it is
alocal or remote access (Figure 3). For remote access, we cre-
ate a packet with the data to be sent, the destination address,
valid bit and counter value. The packet is injected into the
network when the counter reaches the 16-bit delay counter
value set using a special instruction.

3.4.6 Contention Resolution.

Definition 3.1. Contention is present in NoC link /, if two
or more data packets access [at the same time.

For example, in Figure 5 (a), sources Py, ..., P25 utilize two
networks (denoted as B0 and B1) to send data to each of the
destinations Psy, ..., P33. Figure 5 (b) shows the number of
hops required by the source threads to reach Ps;; under YX
routing. Here Py,, P24 contend at the destination as they both
want to write to the SPM in the same cycle. In general, two
packets Pp, and P, sent at the same time from sources m and
n respectively, can never contend in the NoC if they take a
different number of hops to reach destination d.

= g equals l,; = m and n take the same number
of hops to reach d. O

We utilize Theorem 3.3 to design an algorithm that de-
lays packet injection and guarantees contention free routing
(Algorithm 1). We first find the ideal latency between each
source and destination pair (hops under YX routing scheme)
and add them to the priority queues (one SPM per bank ID
at the destination). As stated in Theorem 3.3, packets sent
with the same bank should reach the destination at different
cycles to avoid contention. Thus, for each bank id, we exam-
ine the entries in the priority queue and increase the latency
if any other source reaches the destination in the same cycle.
This value is denoted as computed latency. Finally, the delay

————>sources_ value is obtained as the difference between computed latency
i p &l p s1i 4 2] a and ideal latency. In Figure 5 (b), P24 is delayed by one cycle
ST 220 211 ! as it contends with P,z. Py is next delayed by one cycle as it
1R Py Rt Pyt f20 1 f2 (3| 2113 icts wi
1822 [Fag [Foa | Fos i now conflicts with Poy.
Pso | P31 [P3y | Pa3 —+td+ d
L— destinations Latency to d After delay Algorithm 1: Packet injection delay computation
(a) Task mapping (b) Direct communication Input :S - set of sources, d - destination, NB - number of
SPM banks
23 313 4 Output: Delay - packet injection delay per source
110/1]2 1101212 21113 1 //Initialize priority queue PQ with size NB
2 foreach s inS do
d d d ; .
3 bid « getBankID (s);
Latency to Inter After delay Total Latency to d 4 hops « getLatency (s, d);
(c) Communication using intermediate node 5 PQ[bid].push(hops, s)
6 end
Figure 5. Resolving network contention using delayed 7 for bid < 0 to NB do
packet injection. 8 max_val «— —1;
9 while PQ[bid] # 0 do

Lemma 3.2. Any packet arriving at switch s will follow the
same path and number of hops to reach destination d under
the deterministic YX routing protocol.

Proof. Each switch in a 2D mesh can be represented as (i, j)
with i denoting the row id and j denoting the column id
of the switch. In YX routing, packets first traverse along
the Y-axis to reach the destination’s row. Next, they traverse
along the X-axis to reach the destination. Based on this, every
packet that reaches switch s will follow the exact path to
reach destination d. O

Theorem 3.3. Two packets P,,, P, sent at the same time from
sources m, n can never contend in the NoC if they take different
number of hops to destination d.

Proof. Let l,,; be the number of hops to reach d from source
m. Let I,,4 be the number of hops to reach d from source n.
Let switch x be the first point at which packets P, and P,
contend. Any packet from x to d will follow the same path
and number of hops under YX routing protocol (Lemma 3.2).
Let this value be dist. As m and n start at the same time, they
can contend only if (I,,,4 — dist) = (I,q — dist) (By Definition
3.1).

=
=]

(hops, s) « PQ[bid].top();

Delay [s]«— MAX(max_val, hops) — hops;
max_val « MAX(max_val, hops) + 1;
PQ[bid].pop();

end

P <
[

-
-

end

e
a u

return Delay;

Although Algorithm 1 can be used to calculate the delay
counter values, having one delay value that works for every
destination increases the communication latency dramati-
cally. Hence, we may be required to store the delay counter
values for each destination core in every source’s SPM. Alter-
natively, we may also run the algorithm online to calculate
the delay value every time the destination changes. But this
approach has huge timing overhead. Inspired by Valiant
Load Balancing [63], to ensure that one injection delay value
(per task) works across destinations, we propose that all the
sources belonging to a phase send the data first to an inter-
mediate core. For an application in which tasks belonging
to consecutive phases are mapped on adjacent cores, the
intermediate node is chosen to be the core that is closest to

the middle column (amongst the set of source cores that has
the largest row ID). The data packets are then re-routed from
here to the appropriate destination. Thus, tasks belonging to
different phases have different intermediate nodes. In Figure
5(c), the intermediate core for communication between tasks
in phases P, and Ps is chosen to be Py3. Note that as stated
in Section 4.3, the total latency when using an intermediate
core may be slightly more than directly sending data to the
destination (Figure 8(c)).

With this strategy, the crossbar switches for all sources
are configured to receive from the south port to the north
port except in case of the last row in the source core set. The
cores to the left of the intermediate node are set to send data
from West->East while the cores to the right of the inter-
mediate nodes are set to send data from East->West. Once
the data is received by the intermediate node, it is routed
to the destination. At the destination, switch configuration
is (North/South/East/West)-> SPM. Thus, only four entries
are required in the switch’s Config. Memory. Note that our
algorithm receives only one packet per cycle. Algorithm 1
has linear-time complexity on the number of destinations.
The configuration of the NoC and the SPM are performed
only once per application task graph when the system is
installed in a basestation and/or when there is an update in
the LTE standard.

In baseband processing application, all the tasks within a
phase send data simultaneously to a destination. Consecutive
data from a source can only be sent when all the previous
packets have reached the destination. Given this communi-
cation pattern, we claim that Algorithm 1 provides a data
injection schedule that yields minimum latency under fixed
YX-routing scheme.

3.5 Run-time Power Optimization

We describe the mechanism utilized in saving power at run-
time within the core and the NoC.

Core. Computations in tasks are based on the subframe
input. With pipelining, each core starts execution at a regular
interval and finishes within the pipeline cycles, irrespective
of the input. Thus, cores can be woken up at the pipeline in-
terval and put to sleep mode immediately after computations
are completed, saving power.

NoC. When tasks produce data packets, they set the valid
bit and write data into the buffer. The packet is then injected
into the network and the valid bit is reset when the counter
value is reached. The NoC switches are gated and utilized
only when packets are produced.

3.6 Software Toolchain

SPECTRUM is supported by a software tool-chain (Figure 6)
that automates the mapping of the baseband processing
workload to a large extent. Within a generation (4G), up-
dates (e.g., change in modulation scheme to 256 QAM [15])

would involve simply mapping the new task graph to SPEC-
TRUM through our tool chain. Across generations (4G to 5G),
if performance cannot be satisfied, we need to use higher
clock frequency and/or map computations corresponding
to different UEs (that are completely independent) within a
sub frame to different chips (baseband processing is embar-
rassingly parallel across users without any dependencies).
Details on LTE application mapping using this toolchain are
presented in Section 4.3.

@ Task Graph. Whenever there are updates or new
communication standards, the task graph is generated for
the baseband processing specification (application model
described in Section 3.4.1). The throughput is determined by
the execution cycles for the longest phase in the pipeline,
while the latency is determined by the summation of the
execution cycles of the individual phases. The minimum
pipeline cycles that are required to meet the performance
requirement is obtained using the number of phases, latency
and throughput requirements. Note that the complex number
operations are realized using custom instructions.

@ Phase Profiling. For each phase in the application,
per-task memory profiling is performed for local SPM alloca-
tion and obtaining communication patterns (using variables
accessed by consecutive phases), followed by per-thread
WCET computation [59]. Based on memory profiling, data
and instructions are allocated in SPM appropriately (details
in Section 3.2). Next, the minimum parallelization factor, i.e.,
the number of cores allocated per phase, that provides rea-
sonable slack for communication while meeting performance
requirements is determined.

@ Task Mapping. Next, we map the tasks in sequential
order of phases. In each phase, tasks are first mapped onto
cores belonging to the same row (from column zero) in the
2D mesh. Cores present in the next row are utilized when
there are no more cores available in that particular row.
Thus, tasks belonging to the same phase are mapped in close
proximity. We follow the same mechanism for the other
phases by continuing from the next unallocated core.

@ NoC Scheduling. The intermediate node is first iden-
tified as the core that has the largest row ID and is closest to
the middle column. Next, algorithm 1 with intermediate node
strategy, takes in the communication pattern (obtained using
memory profiling) as input to generate the values for switch
configuration memories and delay to attain contention-free
NoC routing. Finally, instructions for configuring network
switches and Bank ID are generated. Note that the deter-
ministic latency for SPM-SPM data transfers that cannot be
hidden behind computation cycles with double buffering is
added to the worst-case execution cycles for a phase.

@ WCRT. Finally, the Worst-case Response Time is cal-
culated to validate that the application mapping can meet
the latency and throughput requirements.

Profiling: memory, |} v phase

Task Graph i comm., WCET

®

DSE for .
Parallelism factor |: Task Mapping

WCRT <«— NoC scheduling

©) @

Figure 6. Software Tool chain for application mapping on
SPECTRUM

Example. Figure 7(a) shows a scaled down version of the
LTE baseband processing task Graph containing four phases
Py — P5 (4, 2, 6 and 4 tasks). This task graph is mapped onto
consecutive cores (Figure 7(b)) present in a 4x4 tile, each
containing two SPM banks connected using four software
scheduled NoCs after phase profiling step. As only consec-
utive phases communicate with each other in pipelined ex-
ecution, we configure tasks in Phases Py, P; to receive data
from networks 0,1 and tasks in Phase P, to receive data from
networks 2,3. Figure 7(c) shows the NoC schedule when P,3
is used as the intermediate node for communication from
Pz — P3.

4 Evaluation
4.1 Simulation methodology

To ensure tractability and fidelity of simulating SPECTRUM
running the LTE benchmark, we took a two-step approach:
(i) implement and verify the functionality and correctness of
each micro-architectural component and obtain traces, (ii)
the traces are then fed into a scalable event-based simula-
tor that models all hardware components. As SPECTRUM
is software orchestrated and every hardware component is
predictable, trace-driven simulation faithfully models the
architecture and application.

Micro-architectural Simulation. To validate the func-
tional correctness of our simulator while keeping the simula-
tion time reasonable, we realize a 4x4 version of SPECTRUM
on gem5 [23] micro-architectural simulator. The gem5 simu-
lator was modified to handle custom instructions, SPM and
software scheduled NoC. Thus, different system components
like light-weight in-order core (ARM ISA, MinorCPU, sin-
gle issue) with custom instructions, 32KB data SPM, 16KB
instructions SPM, crossbar switch based NoC routing are
accurately modeled and verified on Syscall Emulation (SE)
mode. The task execution cycles, the timing behavior of hard-
ware components like memory access, NoC hop latency, etc.
are obtained from gemS5. These values are then used to build
the trace based simulator, which was verified cycle by cycle
against the gem5 simulation.

Trace-based Simulation. Having predictable software
defined components allow us to rely on a trace-driven simu-
lation that faithfully models the architecture and application

in a reasonable time. We implement a priority-queue based
event-driven simulator to model the application execution
and communication.

LTE Specifications. In this work, we target the require-
ments from Section 2.1 of LTE standard [15]. As per this stan-
dard, the base station should have the capability to handle
10 users at a time. Each user can be encoded using different
modulation schemes namely: QPSK, 16QAM, 64QAM and
256QAM. We assume that UE and radio receivers in base
stations have 8 antennae each and thus use 8x8 MIMO. Each
user can have up to 100 Physical resource Blocks. Each PRB
consists of 12 subcarriers leading to a total of 1200 subcarri-
ers.

LTE Traffic Generation. We evaluate the performance
of SPECTRUM on realistic subframe workload by combining
user activity traces from mobile applications and channel
quality indicator estimates from ns-3 [47]. The mobile traffic
trace was obtained by tracking background network traffic
on an Android phone with no user interaction, while the
foreground traffic was generated by allowing random users
to upload files of different sizes at random intervals. The
packet traces were obtained for over 16 hours. Finally, the
network traces and channel quality indicators were used in
a Proportional Fair algorithm [21] to produce per subframe
network schedule. We consider different traffic situations:
(i) Low load with an average throughput of 81.03 Mbps, (ii)
High load with average throughput of 445.26 Mbps. We also
evaluate performance on a synthetic worst-case workload
with the highest throughput of 774.4 Mbps [12, 42]. This
workload allocates all 1200 sub-carriers to one UE per sub-
frame, 8x8 MIMO, 256QAM and introduces the maximum
computation cost.

Evaluation metric. We define drop rate as the percent-
age of subframes that cannot be processed as the time from
arrival until processing completion is greater than the la-
tency requirement. For LTE network standard, the latency
requirement is 2.5 ms.

4.2 Comparison with alternative platforms

Current state-of-the-art baseband processor deployments
based on ASIC or DSP cores are proprietary and detailed
information is not publicly available. Thus, we rely on quali-
tative comparisons like power consumption and flexibility in
handling newer standards, when details are unavailable for
ASIC and DSP. Additionally, we perform a thorough evalua-
tion against commodity Intel Xeon Gold 6126 (Skylake-SP)
many-core architecture. We chose Skylake-SP to show that
even a server-grade platform may not be able to meet the
performance requirements due to unpredictable components
present in the system.

Application specific architectures. For stand-alone base
stations, Alcatel-Lucent 9926 Base Band Unit with ASIC [1]
has 370W TDP for the entire system including the trans-
mitter and receiver power and conservatively 185W for the

P2->P3 communication

Delay=1 | Delay=0
Pos | Poz | Pos s | cos
BO B1
P11 PZO P21 Delay=0 | Delay=0| Delay=1 | Delay=0
Bl BO Bl <:> C->E EW->S N,E->W N->W
P23 P24 P25 N,E->C N,E->W | NE->W N->E
N->E N,EW->C [NEW->C | NW->C
Py | Ps, | P
31 32 33 N,W->E N,W->E

(a) Task Graph

(b) Task Mapping

(c) NoC scheduling
(Config. Mem and Delay)

Figure 7. Scaled-down Task mapping example

receiver. However, ASICs have non-recurring engineering
costs as they are non-programmable leading to a high cost
for upgrades. FPGA based solutions for baseband process-
ing [3, 5] have good flexibility. However, their adoption by
industry in base stations did not gain traction due to lower
power-efficiency and relatively high cost [13, 68]. Also, FP-
GAs suffer from programmability challenges.

A number of DSP based PHY deployments exist [6-8, 11,
33]. DSPs are difficult to program [50]. and rely heavily on
accelerators for key kernels [6, 8, 33], restricting flexibility.
For example, QorlQ Qonverge B4860 platform [8] (30W power)
deploys additional accelerators when compared to the older
version for matrix inversion, multiplication to meet the per-
formance needs. On the other hand, [7, 11] are deployed to
support smaller network ranges like Femto, Micro or Pico
cells and 3GPP/LTE standards compared to SPECTRUM that
supports 8x8 MIMO with 4G/5G.

Table 1 states the performance of DSP only and (DSP +
accelerator) platforms [33] for downlink processing with 4x4
MIMO [54]. Downlink processing has significantly lower
computational complexity than uplink processing targeted
by SPECTRUM. Hardware accelerators are crucial to meet
performance for DSPs and DSP+accelerator platform con-
sumes 2.11x higher power than SPECTRUM.

Programmable architectures. To compare SPECTRUM
against contemporary many-core architectures, we have im-
plemented completely parallelized LTE baseband applica-
tion on Intel Xeon Gold 6126 (Skylake-SP) and evaluated
the performance using the different LTE traffic loads (specs
available in Table 2). Table 2 shows that the Skylake-SP plat-
form suffers up to 14% drop rate on real loads and have
100% drop rate for the worst-case load, as opposed to SPEC-
TRUM with 0% drop rate. Besides, Skylake-SP also consumes
215W power, as opposed to 24W for SPECTRUM. Moreover,
cache-based many-cores (Skylake-SP) show huge variations
in execution time, even when running constant workload.
We demonstrate this timing unpredictability by utilizing the
worst-case workload trace. We modify the subframe arrival
rate to 100 ms, to provide sufficient time for Skylake-SP to
complete processing. In this experiment, Skylake-SP takes

10

between 2-80ms per subframe, with more than 6.6% sub-
frames missing 2.5 ms latency. With a faster arrival rate of 1
ms, Skylake-SP drop rate reaches 100% due to queuing delay
between the arrival of a subframe and processing completion
(Table 2). In contrast, SPECTRUM has zero execution time
variation for constant workload and 0% drop rate.

[24, 68] studied the feasibility of using GPUs for physical
layer baseband processing with extensive parallelization and
achieve high GPU utilization. [68] showed that GTX680 GPU
containing 1536 CUDA Cores at 1 GHz, consumes an average
power of 188W at 28nm process technology for 75Mbps up-
link data rate, i.e., 1x1 MIMO. SPECTRUM, on the other hand,
supports 8x8 MIMO with 256QAM achieving 774.4Mbps up-
link data rate.

4.3 LTE standards changes and updates

We now use the tool chain in Figure 6 to perform design
space exploration and obtain the architectural parameters
of SPECTRUM that meets the requirements with the least
power consumption.

Core: Custom instructions. We implemented six com-
mon complex number operations in gem5 simulator as ex-
plained in Section 3.1. Phases MIWF, CWAC, IFFT, and DD
have a speedup of 4.4x, 7.5x, 4.6x and 1.5x when compared
to a standard in-order core, due to custom instructions.

Core count and frequency. The LTE baseband process-
ing workflow (Figure 2) is mapped into four phases. Phase
1 consists of Matched Filter, IFFT, (IFFT), Windowing and
FFT (MIWF). Phase 2 is composed of Combining Weights
and Antenna Combining (CWAC). Phase 3 is IFFT; while
Phase 4 is De-interleaving and Soft Symbol Demap (DD).
We group these kernels together as they can be parallelized
along similar parameters. We parallelize CWAC and DD
along subcarriers comprising multiple UEs. However, for
IFFT and MIWF, we parallelize and execute each user one
after another.

The slots have an arrival rate of 0.5ms. Every subframe
has a hard 2.5ms real-time deadline and baseband process-
ing needs to achieve a throughput of 1ms. As we employ
pipelining with four stages, each phase needs to finish within
0.5ms. We find the minimum number of threads per phase

Table 1. Power-performance Comparison for 4x4 MIMO

SPECTRUM | C66x DSP Cores | 06X DSP Cores
+ Accelerators
#Cores 66 16 4
Accelerators None None Six
Latency (ms) 2.5 13.95 2.15
Frequency 0.9 GHz 1 GHz 1.3 GHz
259 +
Area (mmz2) 64.68 103.68 HW Accel (N.A)
Avg. Power 6.1W 17.28 W 129 W
Process Technology 40nm 40nm 40nm

Table 2. Power-performance Comparison

SPECTRUM | Skylake-SP

Low Load (Drop-rate) 0% 1%

High Load (Drop-rate) 0% 14%
Worst-case Load

(Drop-rate) 0% 100%

Avg. Power 24 W 215 W

#cores 256 48

Frequency (MHz) 900 2600

Process Technology 40nm 14nm

that meets this requirement, by obtaining the execution time
for different parallelization degrees using WCET analysis
assuming 1.5GHz maximum system frequency. Figures 8(a)
and 8(b) show the reduction in execution time with an in-
creasing number of threads in the four phases. From this
exploration, we observe that Phase 1 requires a minimum of
64 cores to meet the 0.5ms deadline while Phase 2, Phase 4
require 75 threads each. Phase 3 requires 24 threads.

A total of 238 cores is required for baseband processing.
Thus, we decide on a 16x16 configuration in SPECTRUM.
The unused cores are power gated. We map and run MIWF
threads on cores 0-63, CWAC threads on cores 64-138, IFFT
threads on cores 144-167 and DD threads on cores 176-250.
We next find the lowest frequency that can achieve the real-
time target. From Figures 8(a)(b), 900 MHz is the lowest
possible frequency that is able to meet the deadline.

Uncore: SPM and NoC. We map data and instructions to
local SPM, using replication of read-only variables to ensure
that there are no off-chip or remote accesses. Every destina-
tion receiving data from the previous phase employs double
buffering. Thus, a destination continues to perform compu-
tations for slot i while source sends data for slot i + 1. In case
threads require space more than local SPM size, dynamic
overlay technique may be applied. Moreover, tasks may also
be split into multiple threads to fit within local SPM.

Reduction in communication latency is primarily related
to the number of concurrent data transfers and memory
banks. Figure 8(c) shows the communication latency for 2, 4,

11

8, 16 networks in MIWF and IFFT phases. The communica-
tion latency in the other two kernels can be overlapped while
the computation of the next iteration takes place. We choose
four SPM banks with dedicated send and receive networks
(in total 8 networks) to meet the deadline.

NoC scheduling algorithm: Figure 8(c) shows the com-
munication latency when using an ideal zero contention
based scheduling algorithm and the proposed intermediate
destination-based algorithm. The ideal delay was individu-
ally found for each source, destination pair. From this figure
we see that the proposed algorithm using intermediate desti-
nation has network latency close to the ideal approach. The
total communication cycles spent in phases MIWF and IFFT
consume 6.3% and 8.4% of the total pipeline cycles, while
the total communication cycles spent in the ideal approach
in phases MIWF and IFFT consume 5.3% and 8.1% of the
pipeline cycles respectively. Our simple intermediate desti-
nation algorithm not only restricts the number of configu-
ration memory entries in a switch to four but also enables
SPECTRUM’s offline communication synthesis to complete
within 60 seconds.

Configuration Setup. Loading instructions in SPM and
Config. Mem. is one-off for the entire lifetime of a baseband
processing standard. The NoC crossbar switch connections
loaded in Config. Mem. changes from one configuration to
another based on an automata. Thus, run-time configuration
takes zero cycles.

Overall runtime. We configure the system parameters
obtained from design space exploration and obtain the com-
putation and communication latency for the different phases
running at 900 MHz. Figure 8(d) presents the overall exe-
cution time of each of the phases in baseband processing,
which meet the throughput and latency constraints.

4.4 System Utilization

Figure 9 reports an average system utilization of 24.41%,
49.31% for low and high network loads. The worst-case load
with 774.4 MBps data rate has an average system utilization
of 64.7%. The highest core utilization comes from MIWF
phase (0-63). This is because, MIWF phase executes FFT and

EMIWF (Phasel) X IFFT (Phase3) @ CWAC (Phase2) X DD (Phased)
3.5 0.3
. @
§ 28 0.2
%
x 2.1 0.2
«
[
S 14 L 01 |
o
8o7 % T 0.1 i
¥ ® @
0.0 0.0 -
0 8 16 24 32 40 48 56 64 0 200 400 600 800 1000 1200

Number of Threads

(a)

Number of Threads

(b)

I MIWF (Ideal) X MIWF (Int. Dest)

OIFFT (Ideal) + IFFT (Int. Dest) I Compute @ Communicate
"
2 _ 010 0.5
55 i
£E 204
EZ 0.05 %
s T % %o
0.00 =
0.10
" (l; 202
9 S
c o
&8 oos 201
£z Pttt
£ x 0.00 0.0
o 1 2 4 8 16 MIWF CWAC IFFT DD
Number of SPM banks Phase name

(c) (d)

Figure 8. Execution cycles of (a) MIWEF, IFFT (b) CWAC, DD phases with varying parallelism with chosen design point circled
in green (c) Communication cycles for MIWF and IFFT using different SPM banks (d) Per phase run-time on a 900 MHz system

IFFT kernels, which consume the maximum latency. It has
higher utilization than the IFFT phase as it additionally ex-
ecutes Match Filter and Windowing kernels. In low-load
scenario, there is variation in core utilization among threads
executing CWAC (64-138) and DD (176-250) phases. CWAC,
and DD phases are parallelized along subcarriers. Hence,
variation in core utilization is attributed by variation in sub-
carriers allocated per subframe. The SPECTRUM parameters
are chosen to satisfy worst-case traffic load and hence the
drop rate is 0% irrespective of the traffic load. The idle cores
are put to sleep to save power.

- 500 — 500
& 5 400
400
2 =3
+= 300 = 300
3 3
2 a
go 200 '§n 200
g 100 © 100
Ll F oo
Subframe Subframe
X 100 X 100
£ %0 £ 80
< <
S 60 .S 60
=] =]
8 a0 = 8 40 — =
R g 2
3 3 ‘
s 0 s 0
o 0 30 60 90 120 150 180 210240270 © 0 30 60 90 120 150 180 210 240 270
CoreID Core ID
(a) Low load (b) High load

Figure 9. Utilization under different traffic loads

4.5 Scaling to new standards

SPECTRUM can easily be adapted for emerging wireless tech-
nologies like 5G. The 5G specifications are not yet avail-
able. We use one of the proposals for ultra-low latency 5G
communication [49] for our evaluation. In this proposal,
the slot arrival rate is 0.1ms as opposed to 0.5ms for 4G
LTE. A subframe consists of two slots each containing three
OFDM_Symbols and a total of 560 subcarriers. The data rate
is approximately 1.9Gbps. To meet the low-latency and high-
throughput requirements, user-level parallelism is addition-
ally exploited in MIWF where each (antenna, layer) combina-
tion runs on two cores. In IFFT, each (layer, symbol) pair runs

12

ﬂ‘|1

"lllllli[l \I\HIUMIHHIHI\I I

m

|
|
I
f
i h I
|
\

IWII!IIHIHNIIIIIJI" I »}; } I

(@) (b)

Total Power per tile = 92.4 mW
Others Core
2%

Switch

Instr 3%

SPM

33., / /[

Data
SPM
58%

(c)

Figure 10. SPECTRUM (a) 16x16 floorplan (b) Tile layout
(Area per tile is 1.4mm X 0.7mm) (c) Power consumption per
tile at 900 MHz, 8 networks, 4 SPM data banks

on individual cores. SPECTRUM requires 16x16 tiles running
at 1500MHz to achieve the latency and bandwidth require-
ments with phases MIWF, CWAC, IFFT and DD requiring
128, 75, 16 and 37 cores, respectively. The flexibility offered
by SPECTRUM allows us to exploit user-level parallelism
whenever required to meet the new latency constraints. The
compiler transparently takes care of the SPM management
and inter-phase communication scheduling.

4.6 RTL design, synthesis and layout

The SPECTRUM architecture has been implemented in RTL.
Figure 10(a) shows our floorplan comprising 256 tiles ar-
ranged in a 16x16 grid. Each tile (Figure 10(b)) consists of
an Amber25 processor core[2], 16KB SPM for instruction,
32KB SPM for data and 8 network switches where two net-
works are connected to each of the four SPM banks of data.
Every network switch is bufferless and software-scheduled,
and thus is just datapath: a 5x5 crossbar switch with select
signals pulled from a 32x4 bits configuration memory. The

configuration memory stores network switch schedules and
the associated delay for synchronization and avoiding con-
tention. The RTL design is simulated and synthesized with
Synopsys VCS-MX and Design Compiler, with place and
route performed using Cadence Encounter. We use Synopsys
Prime Time for timing analysis. The width and height of
each tile after PnR is 1.4mm x 0.7mm, while the entire 16x16
tiles occupy 22.4mm x 12.3mm.

RTL timing and power analysis. Both the Amber core
and the NoC switches are synthesized and carried to lay-
out within the desired frequency of 900MHz. However, the
critical path in our design is limited by the Instruction SPM
that requires minimum cycle time of 1.26ns as per the 40nm
process. We obtained timing and power values of custom-
designed SPMs from our industry partner on a commercial
16nm process and use the power numbers by scaling from
16nm to 40nm. These cells have a critical path of 0.66ns meet-
ing our target frequency. The average power per tile with
an activity factor of 0.5 is plotted in Figure 10(c). 16x16 tile
SPECTRUM consumes an average 23.65W power at 900MHz
on a commercial 40nm process. The tile power breakdown
is: Data SPM 58%, Instr. SPM 33%, Core 4%, NoC Switches
3%, and Others 2%.

Component-wise analysis. The hardware components
for compute, memory and communication have been cho-
sen to ensure that there is an end-to-end predictability. We
perform component-wise power and area evaluation. The
in-order core proposed in this work with custom instructions
consumes 6% more area and 5% more power when compared
to an unmodified in-order core. There are no changes in the
number of register ports as the output of complex instruc-
tions are 32-bits long and only one complex operation is
performed at a time. Conventional routers with 4 buffers per
port have 20% more power and area than crossbar switches
proposed in this work with Config. Mem. 32KB Data SPM
consumes 39% lesser power and area when compared to
direct-mapped caches of similar size containing (17+1) bit
tag. 16KB Instr SPM consumes 20% lesser power and 17%
lesser area when compared to direct-mapped caches the
same size containing (18+1) tag bits. The comparisons were
evaluated on 40nm TSMC process at 900MHz.

5 Related Work

Existing architectures. Existing time-predictable single-
core architectures include PRET [32] while time-predictable
many-core architectures include Kalray [30], T-CREST [51],
Merasa[62]. LTE-specific architectures were discussed in
Section 4.2. Among many-cores, Kalray [30] requires sophis-
ticated software timing analysis using network calculus for
providing real-time guarantees as its interconnect is dynam-
ically routed. T-CREST [51] contains caches apart from SPM
supported by software-based coherence leading to difficulty
in programmability. Merasa [62] uses non-scalable bus-based

13

shared caches. WCET analysis on multi-core architectures
with shared resources [28] has made tremendous progress in
recent years but the precision of the results are not sufficient.
Whereas, SPECTRUM is designed with scalable predictable
light-weight components that are easy to program including
task, data placement and NoC communication.

Memory management. For the memory hierarchy, cache
locking and software-controlled SPM are the approaches
used to provide predictability. [18, 31, 35, 44, 59, 61] present
optimal scratchpad allocation for program code/data, while
[34, 65] explore instruction/data cache locking for WCET
minimization. For multi-cores, cache isolation through parti-
tioning is promising [17, 37]. Unlike these approaches, that
handle single-threaded applications, [64] defines the exact
data placement into each SPM, and controls local/remote
SPM access timing through the NoC configuration for multi-
threaded applications. However, SPECTRUM’s data scheduler
is tailored for baseband processing application.

Software-controlled and Real-time NoCs. Software-
scheduled NoCs have been proposed in the past for effi-
ciency and quality of service. The MIT Raw on-chip network
was the first to use compiler-scheduled flow control in on-
chip networks [60], with its successor in the many-core chip
from Tilera, TILEPro64, which has the backup of five dynam-
ically routed networks when faced with unknown traffic
pattern to aid the software-scheduled, circuit-switched net-
work. SPECTRUM, with its domain-specific application of
baseband processing, can afford to have all its NoCs to be
software-scheduled.

Real-time NoCs have been explored in the past [40]. In
Time Division Multiplexing (TDM) hard real-time NoCs
like [39], a periodic schedule is obtained where each source
node is allocated a time slot in which it is allowed to in-
ject data into the NoC. Distributed TDM real-time NoCs
like [52] have a per-router periodic schedule. Periodic sched-
ules lead to wastage of available bandwidth when the applica-
tion traffic is not perfectly matched to the periodic schedule.
SPECTRUM’s NoC is fully programmable and controlled by
software, so the compiler can generate any schedule for each
node and router that need not be periodic. As SPECTRUM
targets a specific application of baseband processing, we
need not resort to periodic slot-by-slot TDM as it has full
knowledge of the application flows and can orchestrate the
traffic at each router, cycle-by-cycle, for each phase of the
application. Hence, as shown in Section 4.3, SPECTRUM con-
sumes a maximum of 1% additional cycles than ideal NoC
latency while ensuring hard real-time predictability.

The NoC configuration is customized for applications at
chip design time with NoC synthesis algorithms [38, 46, 52]
that take in worst-case network traffic as input, then fabri-
cated in silicon. In baseband processing, network traffic is
heavily dependent on the number of communicating tasks,
which changes across different versions.

[25, 26] tackle the problem of worst-case execution time
analysis of a conventional wormhole NoC, ensuring pre-
dictability when multiple applications share the NoC. Con-
trarily, SPECTRUM is designed for known application of cel-
lular baseband processing, and hence the NoC can be tailored
just for the application without worrying about interference
between applications.

6 Conclusion

Software programmable processors offer more adaptability
with the rapidly changing requirements of wireless network
standards but suffer from timing unpredictability. We pro-
pose SPECTRUM, a completely time-predictable software-
defined many-core architecture that exploits massive par-
allelism of the LTE baseband processing computation and
the streaming nature of its data flow to meet real-time guar-
antees for all possible workloads. It is power-efficient and
consumes 23.65 W for 256 cores.

Acknowledgment

We would like to thank Dr. Raghavendra Kanakagiri for his
help in setting up the evaluation platform and the insight-
ful discussions. This work was supported by the National
Research Foundation, Prime Minister’s Office, Singapore un-
der its Industry-THL Partnership Grant NRF2015-ITP003 and
Huawei International Pte. Ltd.

References

[1] 2009. Alcatel-Lucent 9926 digital 2U eNodeB baseband unit. Alcatel-
lucent product brief.

[2] 2010. Amber ARM-Compatible Core. https://opencores.org/project,
amber.

[3] 2011. LTE baseband targeted design platform. Xilinx product
brief. http://www.origin.xilinx.com/publications/prod_mktg/LTE-
Baseband-SellSheet.pdf.

[4] 2011. Temperature Control Solution of Communication Base Station.
https://bit.ly/2Bpa9jH.

[5] 2012. LTE baseband targeted design platform. Xilinx prod-
uct brief. https://www.intel.com/content/dam/altera-
www/global/en_US/pdfs/literature/po/wireless-channel-card.pdf.

[6] 2012. Octean Fusion-M CN73XX. https://bit.ly/2TypyW7.

[7] 2013. 66AK2Hxx Multicore DSP+ARM Keystone II SoC.
https://bit.ly/2zgPDjO.

[8] 2013. QorIQ

https://bit.ly/2uT6lnp.

2013. SoC and ASIC Design At Ericsson. https://bit.ly/2TOMLmP.

0] 2014. Open Air Interface. http://www.openairinterface.org/.

2016. Transcede t3K Concurrent Dual-Mode SoC Family Communia-

tion Infrastructure. https://intelly/20vK4aY.

2017. LTE 3GPP releases Overview. https://bit.ly/2DNNnoh.

2018. Personal Communication with base station manufacturer.

3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA); Phys-

ical channels and modulation. Technical Specification (TS) 36.211. 3rd

Generation Partnership Project (3GPP). Version 14.2.0.

3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA); Physi-

cal layer procedures. Technical Specification (TS) 36.213. 3rd Generation

Partnership Project (3GPP). Version 14.2.0.

Qonverge B4860 Baseband Processor.

14

[16] 3GPP. 2018. Universal Mobile Telecommunications System (UMTS);
Base Station (BS) radio transmission and reception (FDD). Technical
Specification (TS) 25.104. http://www.3gpp.org/release-15 Version
15.4.0 Release 15.

[17] Sebastian Altmeyer et al. 2014. Evaluation of cache partitioning for
hard real-time systems. In ECRTS.

[18] Oren Avissar, Rajeev Barua, and Dave Stewart. 2002. An Optimal

Memory Allocation Scheme for Scratch-pad-based Embedded Systems.

ACM Trans. Embed. Comput. Syst. 1, 1 (Nov. 2002), 6-26.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and

Peter Marwedel. 2002. Scratchpad Memory: Design Alternative for

Cache On-chip Memory in Embedded Systems. In Proceedings of the

Tenth International Symposium on Hardware/Software Codesign (CODES

’02). ACM, New York, NY, USA, 73-78.

Sandro Belfanti, Christoph Roth, Michael Gautschi, Christian Benkeser,

and Qiuting Huang. 2013. A 1Gbps LTE-advanced turbo-decoder ASIC

in 65nm CMOS. In VLSI Circuits (VLSIC), 2013 Symposium on. IEEE,

C284-C285.

Paul Bender, Peter Black, Matthew Grob, Roberto Padovani, Nagab-

hushana Sindhushayana, and Andrew Viterbi. 2010. CDMA/HDR:

A bandwidth-efficient high-speed wireless data service for nomadic

users. In The Foundations Of The Digital Wireless World: Selected Works

of A Viterbi. World Scientific, 161-168.

Sourjya Bhaumik, Shoban Preeth Chandrabose, Manjunath Kashyap

Jataprolu, Gautam Kumar, Anand Muralidhar, Paul Polakos, Vikram

Srinivasan, and Thomas Woo. 2012. CloudIQ: A framework for pro-

cessing base stations in a data center. In Proceedings of the 18th annual

international conference on Mobile computing and networking. ACM,

125-136.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar

Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad

Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The Gem5

Simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1-7.

Ouajdi Brini and Mounir Boukadoum. 2017. Virtualization of the

LTE physical layer symbol processing with GPUs. In New Circuits

and Systems Conference (NEWCAS), 2017 15th IEEE International. IEEE,

329-332.

Dai Bui, Alessandro Pinto, and Edward A Lee. 2009. On-time network

on-chip: Analysis and architecture. EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2009-59 (2009).

Dai N Bui, Hiren D Patel, and Edward A Lee. 2010. Deploying hard

real-time control software on chip-multiprocessors. In Embedded and

Real-Time Computing Systems and Applications (RTCSA), 2010 IEEE

16th International Conference on. IEEE, 283-292.

Divya Chitimalla, Koteswararao Kondepu, Luca Valcarenghi, and

Biswanath Mukherjee. 2015. Reconfigurable and efficient fronthaul

of 5G systems. In 2015 IEEE International Conference on Advanced

Networks and Telecommuncations Systems, ANTS 2015, Kolkata, India,

December 15-18, 2015. 1-5.

Christoph Cullmann et al. 2010. Predictability considerations in the

design of multi-core embedded systems. RTSS.

W. J. Dally. 1992. Virtual-Channel Flow Control. IEEE Trans. Parallel

Distrib. Syst. 3, 2 (March 1992), 194-205.

Benoit Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume

Lager, Clément Léger, Benjamin Orgogozo, Jérome Reybert, and

Thierry Strudel. 2013. A Distributed Run-Time Environment for the

Kalray MPPA®-256 Integrated Manycore Processor.. In ICCS, Vol. 13.

1654-1663.

Angel Dominguez, Sumesh Udayakumaran, and Rajeev Barua. 2005.

Heap Data Allocation to Scratch-pad Memory in Embedded Systems.

J. Embedded Comput. 1, 4 (Dec. 2005), 521-540.

[32] Stephen A Edwards and Edward A Lee. 2007. The case for the precision
timed (PRET) machine. In 2007 44th ACM/IEEE Design Automation

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

https://opencores.org/project,amber
https://opencores.org/project,amber
https://bit.ly/2Bpa9jH
https://bit.ly/2TOMLmP
http://www.3gpp.org/release-15

(46

(50

[51

[52

[l

—

—

]

]

—

—

Conference. IEEE, 264-265.

R. Damodaran et al. 2012. A 1.25GHz 0.8W C66x DSP Core in 40nm
CMOS. In VLSID.

Heiko Falk et al. 2007. Compile-time decided instruction cache locking
using worst-case execution paths. In CODES+ISSS.

Heiko Falk et al. 2009. Optimal static WCET-aware scratchpad alloca-
tion of program code. In DAC.

Arnon Friedmann and Sandeep Kumar. 2009. LTE emerges as early
leader in 4G technologies. In White Paper. Texas Instruments.

Nan Guan et al. 2009. Cache-aware scheduling and analysis for multi-
cores. In EMSOFT.

Andreas Hansson, Kees Goossens, and Andrei Radulescu. 2005. A
Unified Approach to Constrained Mapping and Routing on Network-
on-chip Architectures. In Proceedings of the 3rd IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS *05). ACM, New York, N'Y, USA, 75-80.

Andreas Hansson, Mahesh Subburaman, and Kees Goossens. 2009.
Aelite: A Flit-synchronous Network on Chip with Composable and
Predictable Services. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe (DATE °09). European Design and Automa-
tion Association, 3001 Leuven, Belgium, Belgium, 250-255.

S. Hesham, J. Rettkowski, D. Goehringer, and M. A. Abd El Ghany.
2017. Survey on Real-Time Networks-on-Chip. IEEE Transactions on
Parallel and Distributed Systems 28, 5 (May 2017), 1500-1517.
Huawei. [n. d.]. Base Station Operation Increases the Efficiency of
Network Construction. https://bit.ly/2GtCd6N.

Yiming Huo, Xiaodai Dong, and Wei Xu. 2017. 5G cellular user equip-
ment: From theory to practical hardware design. IEEE Access 5 (2017),
13992-14010.

Xianfeng Li et al. 2007. Chronos: A timing analyzer for embedded
software. Science of Computer Programming (2007).

Jing Lu, Ke Bai, and Aviral Shrivastava. 2015. Efficient Code Assign-
ment Techniques for Local Memory on Software Managed Multicores.
ACM Trans. Embed. Comput. Syst. 14, 4, Article 71 (Dec. 2015), 24 pages.
Timothy G Mattson, Michael Riepen, Thomas Lehnig, Paul Brett,
Werner Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin
Borkar, Greg Ruhl, et al. 2010. The 48-core scc processor: The pro-
grammer’s view. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society, 1-11.

S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli.
2006. A Methodology for Mapping Multiple Use-Cases onto Networks
on Chips. In Proceedings of the Design Automation Test in Europe Con-
ference, Vol. 1. 1-6.

ns 3. 2010. ns-3 Network simulator. https://www.nsnam.org/.

Imtiaz Parvez, Ali Rahmati, Ismail Guvenc, Arif I Sarwat, and Huaiyu
Dai. 2017. A Survey on Low Latency Towards 5G: RAN, Core Network
and Caching Solutions. arXiv preprint arXiv:1708.02562 (2017).

Klaus I Pedersen, Gilberto Berardinelli, Frank Frederiksen, Preben Mo-
gensen, and Agnieszka Szufarska. 2016. A flexible 5G frame structure
design for frequency-division duplex cases. IEEE Communications
Magazine 54, 3 (2016), 53-59.

Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy,
Jean Francois Nezan, and Slaheddine Aridhi. 2014. Preesm: A dataflow-
based rapid prototyping framework for simplifying multicore dsp
programming. In EDERC. 36.

Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley,
Raffaele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott
Hansen, Reinhold Heckmann, et al. 2015. T-CREST: Time-predictable
multi-core architecture for embedded systems. Journal of Systems
Architecture 61, 9 (2015), 449-471.

Martin Schoeberl, Florian Brandner, Jens Sparsg, and Evangelia
Kasapaki. 2012. A Statically Scheduled Time-Division-Multiplexed
Network-on-Chip for Real-Time Systems. In Proceedings of the 2012

15

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

IEEE/ACM Sixth International Symposium on Networks-on-Chip (NOCS
’12). IEEE Computer Society, Washington, DC, USA, 152-160.
Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek,
Gerhard Fettweis, Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth,
Jens Voigt, Ines Riedel, et al. 2017. Latency critical IoT applications in
5G: Perspective on the design of radio interface and network architec-
ture. IEEE Communications Magazine 55, 2 (2017), 70-78.

Silexica. 2016. Multi-core Software Design For an LTE Base Station,
WHite Paper. https://bit.ly/2TyE7sx.

Magnus Sjalander, Sally A. McKee, Peter Brauer, David Engdal, and
Andras Vajda. 2012. An LTE Uplink Receiver PHY Benchmark and
Subframe-based Power Management. In Proceedings of the 2012 IEEE
International Symposium on Performance Analysis of Systems & Software
(ISPASS °12). IEEE Computer Society, Washington, DC, USA, 25-34.
Avinash Sodani. 2015. Knights landing (KNL): 2nd Generation Intel®
Xeon Phi processor. In Hot Chips 27 Symposium (HCS). IEEE, 1-24.
Manikantan Srinivasan, C Siva Ram Murthy, and Anusuya Balasubra-
manian. 2015. Modular performance analysis of Multicore SoC-based
small cell LTE base station. In Very Large Scale Integration (VLSI-SoC),
2015 IFIP/IEEE International Conference on. IEEE, 37-42.

Christoph Studer, Christian Benkeser, Sandro Belfanti, and Quiting
Huang. 2011. Design and implementation of a parallel turbo-decoder
ASIC for 3GPP-LTE. IEEE Journal of Solid-State Circuits 46, 1 (2011),
8-17.

Vivy Suhendra et al. 2005. WCET centric data allocation to scratchpad
memory. In RTSS.

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook
Lee, Walter Lee, et al. 2002. The raw microprocessor: A computational
fabric for software circuits and general-purpose programs. IEEE micro
22, 2 (2002), 25-35.

Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. 2006.
Dynamic Allocation for Scratch-pad Memory Using Compile-time
Decisions. ACM Trans. Embed. Comput. Syst. 5, 2 (May 2006), 472-511.
Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat,
Zlatko Petrov, Christine Rochange, Eduardo Quinones, Mike Gerdes,
Marco Paolieri, Julian Wolf, et al. 2010. Merasa: Multicore execution
of hard real-time applications supporting analyzability. IEEE Micro 30,
5 (2010), 66-75.

Leslie G. Valiant. 1982. A scheme for fast parallel communication.
SIAM journal on computing 11, 2 (1982), 350-361.

Vanchinathan Venkataramani, Mun Choon Chan, and Tulika Mitra.
2019. Scratchpad-Memory Management for Multi-Threaded Applica-
tions on Many-Core Architectures. ACM Transactions on Embedded
Computing Systems (TECS) 18, 1 (2019), 10.

Xavier Vera et al. 2007. Data cache locking for tight timing calculations.
TECS (2007).

Reinhard Wilhelm et al. 2008. The worst-case execution-time problem-
overview of methods and survey of tools. TECS.

Qi Zheng, Yajing Chen, Ronald G. Dreslinski, Chaitali Chakrabarti,
Achilleas Anastasopoulos, Scott A. Mahlke, and Trevor N. Mudge. 2013.
WiBench: An open source kernel suite for benchmarking wireless sys-
tems. In Proceedings of the IEEE International Symposium on Workload
Characterization, ISWC 2013, Portland, OR, USA, September 22-24, 2013.
123-132.

Qi Zheng, Yajing Chen, Hyunseok Lee, Ronald Dreslinski, Chaitali
Chakrabarti, Achilleas Anastasopoulos, Scott Mahlke, and Trevor
Mudge. 2015. Using Graphics Processing Units in an LTE Base Station.
Journal of Signal Processing Systems 78, 1 (01 Jan 2015), 35-47.

https://bit.ly/2GtCd6N
https://www.nsnam.org/

	Abstract
	1 Introduction
	2 LTE Baseband Processing
	2.1 Overview
	2.2 LTE Uplink Baseband Processing
	2.3 Parallelization Strategies

	3 Architecture Design
	3.1 Lightweight In-order Cores
	3.2 Software programmable memory
	3.3 Software-scheduled Network-on-Chip
	3.4 Inter-phase communication scheduling
	3.5 Run-time Power Optimization
	3.6 Software Toolchain

	4 Evaluation
	4.1 Simulation methodology
	4.2 Comparison with alternative platforms
	4.3 LTE standards changes and updates
	4.4 System Utilization
	4.5 Scaling to new standards
	4.6 RTL design, synthesis and layout

	5 Related Work
	6 Conclusion
	References

