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Abstract—Workloads from autonomous systems project an
unprecedented processing demand onto their underlying embed-
ded processors. Workload comprises of an ever-changing mix of
multitudes of sequential and parallel tasks. Adaptive many-core
processors with their immense yet flexible processing potential
are up to the challenge. Adaptive many-core house together tens
of base cores capable of forming more complex cores at run-time.
Adaptive many-cores, therefore, can accelerate both sequential
and parallel tasks whereas non-adaptive many-cores can only
accelerate the latter. Adaptive many-cores can also reconfigure
themselves to conform to the needs of any workload whereas
non-adaptive many-cores - homogeneous or heterogeneous - are
inherently limited given their immutable design. The accompany-
ing qualitative schedule is the key to achieving the real potential
of an adaptive many-core. The scheduler must move base cores
between tasks on the fly to meet the goals of the overlying
autonomous system. The scheduler also needs to scale up with the
increase in the number of cores in adaptive many-cores without
making compromises on the schedule quality. We present a near-
optimal distributed scheduler for maximizing performance on
adaptive many-cores. We also introduce an online performance
prediction technique for adaptive many-cores that enable the
proposed scheduler to operate without any task profiling.

I. INTRODUCTION

General-purpose processors can speed up the execution
of tasks by exploiting two kinds of parallelism inherent in
the code, namely Instruction Level Parallelism (ILP) and
Thread Level Parallelism (TLP). Current-generation many-
core architectures with a number of simple cores on chip are
perfectly attuned to accommodate TLP code where the threads
are distributed across the cores. Each individual simple core,
however, lacks the aggressive mechanisms — such as wide-
issue superscalar out-of-order (ooo) execution — required to
take advantage of ILP. Thus, the sequential code fragments
with ILP (but no TLP) becomes the performance bottleneck
of the entire task according to Amdahl’s Law [1].

Adaptive many-cores are upcoming processors [2] contain-
ing a set of simple physical cores that can naturally exploit
TLP; but subsets of these cores can be coalesced together at
runtime to form varisized wide-issue ooo virtual cores capable
of extracting ILP from the sequential code fragment and
transparently accelerate task execution without programmer
intervention. Thus, adaptive many-cores are equally adept in
handling ILP and TLP code fragments.
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Fig. 1: A generic adaptive many-core architecture with eight
2-way base cores. The number of cores allocated to a task
depends on the task’s ILP/TLP potential.

The key to reach the true potential of an adaptive many-
core architecture is the quality of the scheduler. The objective
of this work is to design an effective dynamic scheduling
strategy for ILP (and/or TLP) tasks on an adaptive many-
core. This is challenging as the scheduler has to determine
the granularity (size) of the virtual cores in addition to the
spatio-temporal mapping of the tasks to the cores. Moreover,
as the parallelism profile of a task varies across different
phases of the task, a runtime scheduling policy with low
overhead is imperative compared to a static policy. In this
paper, we propose a distributed scheduler that satisfies all these
considerations with the goal of maximizing the performance.

A generic adaptive many-core architecture considered in this
paper comprises of n simple base cores each with z-way issue
ooo pipeline. We need to execute m tasks on this architecture.
Each of the m tasks can be assigned multiple cores for execu-
tion. A sequential single-threaded task is assigned x ≤ n base
cores forming a virtual x × z-way issue ooo core extracting
ILP. A parallel multi-threaded task is assigned x ≤ n base
cores that exploit TLP by executing the threads of the task in
parallel on x cores. The number of cores assigned to a task
depends on its ILP/TLP potential. A task that is not assigned
any base core is put to sleep. The above formulation can
be conceptually applied to several of the proposed adaptive
multi/many-core architectures discussed in Section II with
minimal modifications for architecture specific constraints. We
avoid adding constraints imposed by any specific architecture
to keep this work generalized. Homogeneous many-cores are
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a special case of the formulation where only TLP tasks can
be allocated to more than one core.

Figure 1 illustrates a generic adaptive many-core where
varisized virtual cores are executing single-threaded tasks with
different levels of ILP, along with two threads of a multi-
threaded task executing in parallel on different cores. There is
also a sleeping task that is awaiting assignment of base cores.

Schedulers are Operating System (OS) sub-routines that
optimize underlying processor’s performance by determining
task-to-core assignments [3]. Existing schedulers for adaptive
multi-cores [4], [5] are inadequate as they require offline task
profiling. These schedulers being centralized, will also not
scale up with increasing number of base cores. Furthermore,
the parallelism profile of a task varies over its lifetime [6]
enforcing the need for lightweight dynamic schedulers that
can re-organize the underlying core assignments at runtime
according to the workload. Centralized schedulers also act as
a central point of failure.

Our Novel Contributions and Concept Overview: Multi-
Agent System (MAS) based schedulers are inherently distribu-
tive [7] and allow proper analysis when designed formally. We
design a dynamic MAS scheduler called DPMS (Distributed
Performance Many-Core Scheduler) for adaptive many-cores.
DPMS avoids profiling by employing a new performance
prediction technique for adaptive many-cores presented here.
DPMS can also be applied to existing homogeneous many-
cores, latter being a special case of adaptive many-cores. It
guarantees convergence to a solution in given number of steps
from any initial state. The proposed scheduler results in 200x
reduction in the overheads compared to a centralized oracle
scheduler on a 64-core many-core system.

Our contributions in this work are as follows.
• We present an optimal MAS scheduler called DPMS,

which efficiently performs distributive dynamic schedul-
ing on adaptive many-cores. The scheduler is derived
from our work originally presented in [8].

• We develop a performance prediction technique for
single-thread benchmarks on adaptive many-cores, which
enables DPMS to operate efficiently without profiling.

• We quantize the superior scalability of our proposed
distributed scheduler DPMS against state-of-the-art cen-
tralized scheduler in many-cores using real-world repre-
sentative cycle-accurate simulations.

II. RELATED WORK

Several adaptive multi-/many-core architectures have been
proposed in the literature. We briefly summarize few of them
- Core Fusion [9] can fuse symmetric out-of-order cores using
a complex reconfigurable hardware; T-Flex [10] can create
larger (powerful) cores from smaller (weaker) cores, which
use EDGE ISA; Bahurupi [11] coalesce simple symmetric
out-of-order cores by a hardware-software co-design and use
of sentinel instructions; Federation [12] combines simple
scalar in-order cores to make a complex out-of-order core
by introducing additional logic to internal pipeline stages;
WiDGET [13] is a reconfigurable processor whose execution
units can merge together dynamically to become more capable;

Voltron [14] can couple symmetric cores together, which then
execute multiple instruction streams in parallel, similar to
a VLIW processor. Authors in [15] proposed a framework
(by making modifications to existing OS) in which a set of
functions are provided for implementing schedulers in adaptive
multi-cores. However, they do not propose schedulers.

The proposed DPMS scheduler operates on a generalized
abstraction of simple symmetric out-of-order base cores form-
ing larger (complex and powerful) out-of-order cores through
coalitions. The idea should be applicable to almost all the
reviewed adaptive multi-core architectures though this is not
empirically tested. Thus, DPMS can be extended to work on
any of those proposed adaptive architectures.

Analytical models have been used for performance predic-
tion of different types of processors. Analytical performance
models are built either using mechanistic or empirical model-
ing. The mechanistic models [16] utilize processor architecture
details to perform predictions, while empirical models [17]
treat processors as a black box and use statistical tech-
niques such as regression. Authors in [18] proposed a hybrid
mechanistic-empirical model for CPI stack [19] for symmetric
multi-cores. The work presented in [20] used mechanistic-
empirical modeling to do performance prediction for asymmet-
ric multi-cores. DPMS also needs to do performance prediction
for tasks being executed on varisized core-coalitions, for which
we employ mechanistic-empirical modeling. Authors in [21]
proposed a specialized performance prediction technique for
TFlex adaptive multi-core using specific depth estimators. In
contrast, we propose a generic architecture-agnostic technique
based on standard hardware counters.

Performance oriented scheduling for adaptive multi-cores
has been previously researched. Threshold based scheduler
(THRESH) for Bahurupi adaptive multi-core was presented
in [5]. It allocates a task to base cores (if available) as
long as the average speedup of every consequent base core
allocation is more than an empirically determined threshold
but does not provide any specific order in which the tasks
must be evaluated. The scheduler is simple to implement but
still requires profiled information before hand in the form of
expected speedups of tasks on different sized coalitions. A
fixed threshold impacts its efficiency as there is no single ideal
threshold value that can work efficiently for all possible work-
loads. If the threshold value is too high, fewer core-coalitions
would form that could cause system underutilization. If the
value is too low, the tasks evaluated first will consume all
the base cores, leaving none for the tasks evaluated later even
if allocations to later tasks can result in higher performance.
Furthermore, a similar threshold based scheduler called PDPA
was also presented in [4] and suffers from similar drawbacks
as the scheduler in [5].

Authors in [4] presented a set of schedulers for T-Flex adap-
tive multi-core, amongst which PROFILE performed the best.
PROFILE also assumes that the average speedups for all tasks
being executed in the system are known. It then maximizes
the total average speedup using Dynamic Programming (DP).
The advantage of PROFILE over threshold based schedulers
is that it does not require any user-defined parameter; but
DP schedulers have higher overheads if executed continuously
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Fig. 2: Execution profiles of mcf and bzip2 benchmarks
showing entropy in their speedup during execution [8].

at run-time. Furthermore, both THRESH and PROFILE are
schedulers operating on average values that miss out on per-
formance enhancing opportunities available from exploitation
of variations in instantaneous speedups of tasks. Another
promising alternative is to use fast centralized algorithms that
can operate efficiently under certain assumptions [22]. All
centralized algorithms inherently suffer from the shortcoming
of having a single point of failure.

MAS design provides an option for developing distributed
schedulers [23], [24]. Authors in [25] introduce a heuristic
MAS called DistRM that uses agents performing local com-
munications to achieve a good enough solution with low over-
heads. MAS schedulers based on game theory [26]–[28], with
foundations in Nash Equilibrium have been proposed before
for many-cores. These schedulers will need modifications to
work on adaptive many-cores as they inherently assume fixed
number and types of cores. Furthermore, without the perfor-
mance prediction models for adaptive many-cores we develop
in this work, they will still have limitations of not being able
to work without profiling even after the modifications. DPMS
also provides stronger formal guarantees on convergence,
optimality of convergence and time to convergence than these
schedulers even for homogeneous many-cores.

Authors in [29] present a parallelizable optimal algorithm
for makespan minimization problem of malleable tasks with
concave speedups that requires complete task profiles. A task
is defined as malleable if the number of cores allocated to it
can change during its execution [30]. Authors in [31] present
a distributed hybrid algorithm - a run-time heuristic to be
used in conjunction with design space exploration (operat-
ing points) - for multi-objective optimization that also uses
convex optimization. We study the problem of performance
maximization at run-time in this work but similar to [29],
we use inherent concavity in speedups of malleable tasks to
reach the optimal solution. The proposed DPMS is a form of
distributed consensus coordinate descent algorithm [32], which
are a class of algorithms that can be used as parallel solvers
for convex optimization problems.

III. MOTIVATIONAL CASE STUDY

We present a motivational example to stress the need for dy-
namic schedulers for adaptive many-cores. We assume a four-
core processor executing two SPEC [33], [34] benchmarks
(mcf and bzip2). Figure 2 shows the corresponding 2-core
speedup of both benchmarks averaged over every ten million
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Fig. 3: Motivational example showing improved throughput
under dynamic scheduling over static scheduling on an adap-
tive multi-core with four base cores executing mcf and bzip2.

committed instructions. N -core speedup for a benchmark is
defined as ratio of its IPC when assigned N cores versus ratio
of its IPC when assigned only 1 core. The speedups vary over
the benchmarks lifetime. Throughput is defined as aggregate
speedup experienced by all executing tasks.

Figure 3 shows the base core allocations under static and
dynamic scheduling. Figure 3b shows dynamic scheduling
under DPMS, which changes core-coalitions at run-time to
exploit speedup variability. Dynamic scheduling results in
1.02% higher throughput in comparison to static scheduling.
We optimize speedup as it is observed to be a better metric
than for example Instruction per Second (IPS) [35], [36].

IV. SCHEDULING WITH DPMS

We now present details of a multi-agent scheduler called
DPMS, which performs dynamic scheduling on adaptive
many-cores distributively. We introduce various models that
capture the scheduling dynamics.

System Model: We assign an agent to each task in our
adaptive many-core. Let there be A agents representing A
tasks, indexed using the symbol x. Each agent x holds Cx
number of cores. Let C represent the state of the many-
core encompassing all task-to-core assignments. Let ρ(Cx)
represent the instantaneous speedup of task represented by
agent x. Let ρ(C) represent the throughput of many-core.

ρ(C) =

A∑
x=1

ρ(Cx) (1)

Utility Model: Agents exchange cores based on the value
of their utility functions. Let ui→j(∆) represent the utility of
transferring ∆ cores from agent i to j measured in terms of
resultant change in their combined speedup.

ui→j(∆) = ρ(Ci −∆)− ρ(Cj + ∆) (2)
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Fig. 4: Average speedup of different tasks when assigned
different number of cores.

Speedup Observation: Figure 4 shows the average
speedups for benchmarks (tasks) of different types when
assigned different number of cores. It can be observed from
the figure that the average speedup is both monotonically
increasing and concave. Note that similar concave behavior
is also observed in other benchmarks. This is because of the
saturation of exploitable ILP or TLP in the benchmarks with
increasing number of assigned cores. Therefore, the problem
of throughput maximization of malleable tasks at run-time can
be interpreted as a convex optimization problem. DPMS uses
a coordinated descent algorithm to reach the solution but other
convex optimization techniques can also be potentially applied
here. Agents also internally smoothen speedup predictions for
concavity if non-concave predictions are made.

Optimal Throughput: We now present proof of throughput
optimality and convergence provided by DPMS. Proof is
inspired by our work presented in [37] and is a simplification
of the original proof presented in [8].

Theorem 1. DPMS converges to task-to-core assignments that
maximizes the throughput in O(A) rounds.

Proof. After core exchange under utility ui→j(∆), throughput
ρ(C) changes to ρ(C ′).

ρ(C′) = ρ(C) + ui→j(∆) (3)

So ρ(C ′) > ρ(C) when ui→j(∆) > 0 and ρ(C ′) < ρ(C)
when ui→j(∆) < 0. Hence, only core exchange between
agents with positive utility can increase throughput from any
given state. When no positive utility move exists, throughput
cannot be increased further and a maximum is reached. We
now prove that this maximum maximizes the throughput.

Speedups are piecewise linear functions that are too compu-
tationally expensive to optimize [38]. Based on observations
made in Figure 4, we assume that speedup ∀x ρ(Cx) is
concave-extensible to a non-negative discrete concave function
of Cx and error introduced by this concave relaxation [39]
is minimal. ρ(C) is a positive sum of concave functions,
therefore is a discrete concave function of C as described by
Equation (1). Every maxima of a discrete concave function
are its global maxima [40].

As cores-to-task assignments are discrete, there exist only
a finite number of positive utility moves. Two agents i and
j that exchange ∆ cores once will not exchange cores again
unless disturbed by a third agent if ∆ maximizes ui→j(∆).
ui→j(∆) is also a discrete concave function of ∆ that can be

maximized efficiently using gradient descent. We force agents
in DPMS to always make ∆ maximizing moves. Thus, positive
utility moves will exhaust in at worst O(A) rounds, since an
agent can interact with at most A agents (excluding myopic
repeated interactions); hence proved.

Complexity: Each round of DPMS requires O(|A|) agents
to perform O(|C|) utility calculations described by Equa-
tion (2). In the worst case, equilibrium can take up to
O(|A|) rounds (refer Theorem 1). In totality, a maximum
of O(|A|2|C|) calculations are required to ensure stability.
However, the processing overhead is distributed across all
the base cores in the system resulting in O(|A|2) worst-case
calculations per core.

V. PERFORMANCE PREDICTION

To realize DPMS proposed in Section IV, we develop
performance prediction models for adaptive many-cores. The
models are developed only once at design-time. They are based
on low-level hardware counters and hence are independent
of the executing tasks and their phases. This design-time
modeling has no overhead during run-time in DPMS. The
models are used by agents in DPMS to estimate potential
changes in their utilities given by Equation (2), based on
which they make decisions to join or break-away from core-
coalitions. Utility estimation by definition requires prediction
of Instruction per cycle (IPC) of the tasks on core-coalitions of
different sizes, which can then be used to perform speedup pre-
dictions. The performance prediction models we propose are
based on building of Cycles per Instruction (CPI) stacks [18]
of tasks being executed on adaptive many-cores. CPI is inverse
of IPC. We first estimate the CPI and then convert it to IPC.

CPI stacks have been used in the past to predict performance
for both symmetric [18] and asymmetric multi-cores [20],
[41]. CPI stack based prediction models for non-adaptive
architectures assume static cores and cannot accommodate the
possibility of allocating multiple cores to an ILP task. Hence,
we are required to develop new models. The hardware counters
used in our models should be available on all kinds of base
cores, hence making our performance prediction technique
potentially portable across adaptive many-core architectures.

Let P (Cx) be the instantaneous CPI of the task associated
with agent x with Cx number of cores assigned. P (Cx) is the
sum of CPI due to steady-state instruction execution (PS(Cx))
and CPI due to stalls during execution (PM (Cx)).

P (Cx) = PS(Cx) + PM (Cx) (4)

A. Estimation of Steady-state CPI

Steady-state CPI PS(Cx) is dependent upon the struc-
tural hazards and inter-instruction dependency faced by task
assigned to Cx. Given the high book-keeping overhead of
counters maintaining structural hazards and inter-instruction
dependency, it is unlikely for any real hardware to contain
them. Authors in [18] modeled steady CPI as D−1, where D is
dispatch width of the processor. This assumption is applicable
only to completely balanced pipelines, wherein the number of
functional units in a processor is equal to its dispatch width
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and structural hazards do not manifest. This assumption also
ignores the data dependency among the instructions.

Instead, we employ linear regression to obtain PS(Cx). We
model CPI in quanta of I instructions and size of I needs
to be empirically determined. We set size of I to 10 million
instructions. Ideally I should be as small as possible so that
even minutest CPI variation can be modeled. As the value of
I reduces, noise in the observations increases. When I is very
small, CPI prediction using regression becomes too inaccurate.

Let I be composed of Iint integer and Ifp float instructions.
Iint and Ifp could be committed in θint∗Iint and θfp∗Ifp cy-
cles, respectively assuming there are no structural hazards and
inter-instruction dependencies. θint and θfp are cycles taken
to commit a single integer and float instruction, respectively.
When structural hazards and inter-instruction dependencies
manifest, the functional units will be busy. Let Ibusy be the
number of times functional unit reported busy in I instructions
and resulted in stalling for θbusy ∗ Ibusy cycles. θbusy is
number of cycles wasted every time functional unit reported
busy. Thus, PS(Cx) for I instructions executed on Cx can
be modeled as Equation (5), where θint, θfp and θbusy are
system specific constants that can either be provided by system
designer or can be determined with the help of regression.

PS(Cx) = (θint Iint + θfp Ifp + θbusy Ibusy)/I (5)

B. Estimation of Miss CPI

Miss CPI PM (Cx) is determined by stalls that happen
because of branch mis-predictions and cache misses during
execution on Cx. We assume adaptive many-core has separate
L1 instruction and data cache. We assume a unified L2 cache
as L2 cache misses are disproportionately dominated by data
misses. The design of cache-hierarchy is in sync with most
of the commercially deployed micro-architectures. We also
assume that our base cores are out-of-order, which given their
complex design are more difficult to model than in-order cores.

In I instructions, let IL1iMiss, IL1dMiss be the number
of L1 instruction cache and L1 data cache misses that leads
to wastage of θL1iMiss ∗ IL1iMiss and θL1dMiss ∗ IL1dMiss

cycles, respectively. θL1iMiss and θL1dMiss represent the
cycles wasted in one single L1 instruction and L1 data cache
miss, respectively. Let IBrMiss represent the number of branch
mis-predictions that happen in I instructions. IBrMiss leads
to wastage of (θFrLen + θBrRes) ∗ IBrMiss cycles. θFrLen
is front end length of the pipeline measured in cycles and
θBrRes represent the cycles needed to find the outcome of a
single branch instruction (or branch resolution time). θBrRes
varies from one branch instruction to another depending upon
whether the resolution of the branch instruction is dependent
on another instruction in the pipeline or not, but this variation
is not substantial. Therefore, we can simplify the model by
assuming it to be a constant. Let IL2miss be the number
of L2 cache misses that happen in I instructions. For in-
order cores, number of cycles wasted in IL2miss would be
θL2miss ∗ IL2miss, where θL2miss is the cycles wasted in a
single L2 cache miss. However, in our case, we divide this
term by Memory Level Parallelism (MLP) factor to account
for overlapping last level cache accesses in an out-of-order
core. Thus, MLP is primarily dependent on the number of L2

misses, the last level cache in conventional adaptive many-core
architectures. MLP is modeled as [γ1 ∗ (IL2miss)

γ2 ], where γ1
and γ2 are constants obtained using polynomial regression on
performance counter values including CPI.

Therefore, CPI PM (Cx) for I instructions on Cx can
be modeled as Equation (6). Similar to Equation 5,
θL1iMiss, θL1dMiss, θFrLen, θBrRes and θL2Miss are con-
stants, which can either be provided by the designer or can be
determined by performing micro-benchmarking.

PM (Cx) = (θL1iMissIL1iMiss+θL1dMissIL1dMiss

+(θFrLen+θBrRes)IBrMiss+θL2MissIL2Miss/MLP )/I
(6)

C. Varisized coalition CPI Estimation
Our MAS requires agents to use current CPI P (Cx) on Cx

to estimate CPI P (C ′x) when Cx changes in size to C ′x. Agents
must estimate both the steady-state CPI PS(C ′x) and miss CPI
PM (C ′x) from current PS(Cx) and PM (Cx), respectively and
then use them in Equation (5) to obtain estimated P (Cx).

Varisized Coalition Steady-state CPI Estimation: For I
instructions, the count of Iint integer and Ifp float instructions
do not change, when underlying core assignment changes size
from Cx to C ′x. Based on Equation (4) to predict steady CPI
PS(C ′x) we only need to predict the functional unit busy I ′busy
on C ′x from Ibusy on Cx. As all our base cores are identical,
the number of functional units in a core-coalition will increase
linearly with increase in the size of the core-coalition. I ′busy
besides Ibusy , also depends upon instruction composition of I
that consists of Iint integer, Ifp float, Ibr branch and Imem
memory (load or store) instructions. We obtain the relationship
with help of linear regression.

I ′busy = β1Ibusy + β2Iint + β3Ifp + β4Ibr + β5Imem + β6

Varisized Coalition Miss CPI Estimation: Miss CPI
PM (C ′x) on C ′x also needs to be estimated from miss CPI
PM (Cx) on Cx. Based on Equation (6), we need to estimate
number of L1 instruction cache misses I ′L1iMiss, L1 data
cache misses I ′L1dMiss, branch misdirections I ′BrMiss and L2
cache misses I ′L2miss for I instructions on C ′x using current
observation of IL1iMiss, IL1dMiss, IBrMiss and IL2miss on
Cx, respectively.

All the base cores in our adaptive many-core have the same
branch predictors and cache sizes. Thus, an assignment Cx
of size |Cx| will have |Cx| times the L1 instruction and
data cache of a single base core. L2 cache being a unified
cache shared by all the cores within a coalition does not
change in size with change in the core-coalition size but
the number of L2 cache miss for varisized core-coalitions
will still be different because of change in the size of the
corresponding L1 cache. L1 instruction and data cache have
the same associativity across different core-coalition sizes.
Hence, these misses are estimated using a linear regression
model. Linear regression can also be used to estimate branch
mis-predictions. We observe high variability in L2 cache-
misses and use polynomial regression of degree two for them.

I ′L1iMiss = β7IL1iMiss + β8

I ′L1dMiss = β9IL1dMiss + β10
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I ′BrMiss = β11IBrMiss + β12

I ′L2miss = β13IL2miss + β14I
2
L2miss + β15

Note that the prediction models introduced in this section
are only valid for ILP based performance prediction in single-
threaded benchmarks. For parallel multi-threaded tasks, we
choose to continue using profiles instead of performance
prediction models in this work. Existing CPI stack based
performance prediction models proposed for non-adaptive
multi-cores [18], [20] can only operate with single-threaded
tasks. Performance prediction models based on speedup stacks
introduced in [42] can potentially be adapted to perform TLP
based performance prediction for malleable multi-threaded
tasks. Development of complete performance prediction model
for any generic multi-threaded task with consideration of inter-
thread synchronizations is beyond the scope of this paper.

VI. EXPERIMENTAL EVALUATIONS

A two-stage simulation is used in this evaluation because
unlike other many-cores [43] a real-world adaptive many-core
is not yet available. In the first stage, a generic adaptive many-
core is modeled using cycle-accurate gem5 [44] simulator. This
many-core consists of eight 2-way out-of-order ARM base
cores utilizing ARMv7 ISA. Each core contains a dedicated
4-way associative 64 KB L1 instruction and data caches.
Additionally, all cores share an 8-way associative 2 MB unified
L2 cache. Thus, each task can employ up to 8-core coalition.

The cycle-accurate simulation time increases exponentially
with an increase in the number of base cores. Therefore,
modeling hundreds of cores with the cycle-accurate simulator
is time consuming. To solve this shortcoming, the second stage
utilizes execution traces from stage one to realize an adaptive
many-core that contains up to a maximum of 256 cores. Note
that malleable tasks can only be simulated using trace-based
simulators. Trace-based simulators are widely used in many-
core scheduler evaluations [45], [46].

Workloads are created from 24 sequential single-
threaded (ILP) benchmarks comprising of integer, float and
vision benchmarks from SPEC 2000 [33], SPEC 2006 [34]
and SD-VBS suites [47]. Additionally, 10 multi-threaded TLP
benchmarks from PARSEC [48] and SPLASH-2 [49] suites
are also used. Table I states the 34 benchmarks used in this
evaluation. ARM cross compiler with “-O2” optimization flag
is used to compile all the benchmarks and executed on gem5
System Call Emulation (SE) mode. “Ref” input is used in
SPEC benchmarks while “full-hd’ input is used in SD-VBS
benchmarks. “Sim-small” input is used in the multi-threaded
benchmarks from PARSEC and SPLASH-2 benchmark suites.
Each benchmark executes for a maximum of 2 billion cycles.
The performance counter values utilized in Section V are
obtained per benchmark from gem5.

We invoke the scheduler every 10 million cycles. This
corresponds to decision making every 10 ms, if the system
operates at 1 GHz. Note that 10 ms corresponds to the default
operating granularity of the Linux scheduler [50]. The over-
heads for breaking or making core-coalitions in adaptive multi-
core architectures are very small. For example, it is 500 cycles

Category Benchmark Name
Integer astar, bzip2, gobmk, h264ref, hmmer, mcf, omnetpp,

perlbench, twolf
Float art, bwaves, calculix, equake, gemsfdtd, lbm, namd,

povray, tonto
Vision disparity, mser, sift, svm, texture, tracking

Multi-threaded blackscholes, cholesky, fmm, fluidanimate, lu, radix,
radiosity, swaptions, streamcluster, water-sp

TABLE I: List of benchmarks used in the evaluation.

0 20 40 60 80 100
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1

1.5

x10 Million Instruction

IP
C
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2 Core-Coalition Predicted

Fig. 5: h264ref IPC prediction on 2-core from observed 1-core
IPC, compared against actual 2-core measured IPC.

Name 2-Core 3-Core
art 6.2 4.4

astar 1.0 4.6
bwaves 1.77 12.2
bzip2 8.0 14.3

disparity 4.5 12.9
equake 16.6 6.7
h264ref 3.5 5.7

mcf 2.5 4.6
omnetpp 10.3 7.9

perlbench 3.5 3.3
tracking 4.3 8.7

svm 6.5 13.4

(a) Training Set

Name 2-Core 3-Core
calculix 17.3 11.1
gemsfdtd 2.6 15.7
gobmk 7.2 10.1
hmmer 9.3 23.5

lbm 4.2 7.9
mser 3.9 5.9
namd 4.0 14.4

povray 8.4 2.1
sift 12.2 9.7

texture 4.4 2.0
tonto 4.6 10.7
twolf 8.2 5.0

(b) Testing Set

TABLE II: Average percentage errors in predicting 2- and 3-
core IPC from 1-core measured IPC for ILP benchmarks.

in T-Flex [10] and 100 cycles in Bahurupi [11]. In comparison
to the scheduling epoch these penalties are negligible.

A. Performance Prediction Accuracy

We evaluate the accuracy of the regression based perfor-
mance prediction models presented in Section V for ILP task
executing on adaptive many-cores. We divide all our available
ILP benchmarks equally among training and test sets. Both
sets contain equal mix of compute intensive and memory
intensive benchmarks, for holistic modeling and model evalu-
ation. The data from benchmarks in the training set is used to
obtain the regression constants of the proposed models. Data
is generated using detailed cycle-accurate simulations. Models
are then evaluated for accuracy on benchmarks in the test set
again using cycle-accurate simulations.

Figure 5 shows 2-core IPC measurements against 2-core IPC
predictions from 1-core IPC measurements for h264ref aver-
aged over every 10 million instructions committed. h264ref
has high entropy and the figure shows that we can predict its
IPC with high accuracy throughout its lifetime. Table II shows
average error in predicted IPC for 2- and 3-core from 1-core
measured IPC for benchmarks from the testing and training
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Fig. 6: Performance of different schedulers on a closed 256-
core adaptive many-core with ILP workloads.

set. Our models have 6.97% and 8.52% error in IPC prediction
on average for all IPC benchmarks across all core assignment
sizes in the training and test inputs respectively.

B. Scheduler Evaluation and Analysis

We now empirically evaluate the performance of our DPMS
and begin by creating an oracular algorithm from PRO-
FILE [4], which has been discussed in Section II. We extend
PROFILE scheduler to ORACLE scheduler that is capable
of exploiting dynamic scheduling. ORACLE uses dynamic
programming to maximize instantaneous speedup of tasks
every scheduling epoch without any prescient knowledge of
the future in the form of recorded average speedup like
PROFILE. It does assume perfect knowledge of instantaneous
speedup for all tasks on all possible core assignment sizes. For
ORACLE, solution in a n core system is defined as

Maximize
|A|∑
x=1

ρ(Cx), given constraint
|A|∑
x=1

|Cx| ≤ n

We also compare against a fast centralized GREEDY algo-
rithm of our own design [22] that also exploits concavity in
speedup like DPMS to give near-optimal solutions.

Performance: We simulate a closed system on a 256-core
adaptive many-core. In a closed system, the system begins with
an immutable predefined set of tasks; instances of those tasks
on completion immediately rejoin the system for re-execution.
Throughput measured in terms of aggregate speedup is used
as the performance metric where higher throughput is better.
Figure 6 shows the throughput with different schedulers under
different system loads. As we operate with one-thread per core
model and each task produces at least one thread with minimal
speedup of one, it is not meaningful to simulate systems with
number of tasks more than number of cores.

For example, as seen in Figure 6, under half-load, i.e. 128
tasks, the performance of DPMS and GREEDY is 1.38% and
2.42% lower than optimal, respectively. Even though both
DPMS and GREEDY are optimal solutions, the performance
drop in these approaches are slightly more than ORACLE
because of the speedup concavity assumption, which may not
always hold for some tasks. ILP tasks can show non-concave
behavior when some secondary bottleneck like memory opens
up due to assignment of more cores.

Scalability: The biggest advantage of DPMS over ORACLE
is its ability to perform distributed scheduling, which can scale
up better with increase in the number of base cores. In a
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ORACLE DPMS GREEDY

Fig. 7: Scheduling overhead for different schedulers on vari-
sized many-cores under half load.

nutshell, DPMS reduces the per-core processing overhead by
disbursing the processing across all the cores in the many-core
but this also results in an increase in communication overhead
when compared to ORACLE. Therefore, it is important to
get a measure of the real-world benefits that can be obtained
from DPMS over ORACLE by trading-off per-core processing
overhead with communication overhead.

As running schedulers with real workloads cycle-accurately
on gem5 is time-wise infeasible for large size many-cores, we
instead execute the logic of the schedulers cycle-accurately
with representative input and report the corresponding problem
solving time. While ORACLE is implemented as a centralized
application written in C, DPMS is implemented as a distributed
multi-threaded C++ application. Each agent in DPMS is
implemented as one thread using POSIX-thread.

Figure 7 shows the worst-case overhead observed on vari-
sized many-cores under DPMS and ORACLE on a logarithmic
scale. Note that overhead due to performance estimator is also
included in DPMS. It can be seen from the figure that DPMS
solves the many-core scheduling problem much faster in
practice. For a 64-core many-core, ORACLE requires 7.985 ms
to solve the problem whereas DPMS only requires 0.040 ms.
Therefore, DPMS leads to 200x reduction in total overhead
in comparison to ORACLE on a 64-core many-core system.
Performance of DPMS on a 64-core many-core system is even
faster than 0.061 ms taken by the GREEDY algorithm.

VII. CONCLUSION

In this paper, we propose a multi-agent scheduler called
DPMS for distributed scheduling on adaptive many-cores. We
also introduce a performance prediction technique for adaptive
many-cores that enables DPMS to operate without any a-
priori profiling. DPMS guarantees convergence to an optimal
throughput maximizing state under the predicted information
in given number of steps from any initial state. It results
in 200x reduction in scheduling overheads compared to a
centralized oracle scheduler on a 64-core many-core system.
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