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OPTiC: Optimizing Collaborative CPU-GPU
Computing on Mobile Devices with
Thermal Constraints

Sigi Wang, Gayathri Ananthanarayanan, and Tulika Mitra, National University of Singapore

Abstract—The CPU-GPU co-execution of computation kernels
on heterogeneous MPSoC can significantly boost performance
compared to the execution on either the CPU or the GPU
alone. However, engaging multiple on-chip compute elements
concurrently at the highest frequency may not provide the
optimal performance in a mobile system with stringent thermal
constraints. The system may repeatedly exceed the temperature
threshold necessitating frequency throttling and hence perfor-
mance degradation. We present OPTiC, an analytical framework
that given a computation kernel can automatically select the par-
titioning point and the operating frequencies for optimal CPU-
GPU co-execution under thermal constraints. OPTiC estimates,
through modeling, CPU and GPU power, performance at differ-
ent frequency points as well as the performance impact of thermal
throttling and memory contention. Experimental evaluation on
a commercial mobile platform shows that OPTiC achieves an
average 13.68% performance improvement over existing schemes
that enable co-execution without thermal considerations.

Index Terms—Co-execution, mobile platforms, thermal, GPU

I. INTRODUCTION

ODERN heterogeneous multi-processor system-on-

chip (MPSoC) architectures are equipped with multiple
compute elements including multi-core CPUs, accelerators
capable of general-purpose computing including graphic pro-
cessing units (GPUs), digital signal processors (DSPs) and
Field Programmable gate arrays (FPGAs). The execution of an
application is therefore no longer constrained to only the CPU
cores. The powerful CPU cores achieve good performance
at the cost of high power consumption. With the inclusion
of accelerators, some applications can reach the same or
even better performance with lower power. In particular, for
applications with high data parallelism, porting the compu-
tation onto GPUs largely improves performance and power
efficiency. To facilitate this trend of collaboration among
multiple compute elements, Khronos Group defined OpenCL
[1], a cross-platform programming model that enables the
exploitation of data parallelism. Multiple works [2], [3], [4]
in addition show that the partitioned CPU-GPU co-execution
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Fig. 1: Execution time of SYRK kernel under varying CPU-
GPU workload partitioning and frequency.

of computation kernels can significantly boost performance
compared to the execution on either CPU or GPU alone.

On a mobile platform, the thermal constraints are more
stringent in the absence of active cooling measures. As we
engage multiple compute elements simultaneously, the total
power increases and the chip temperature may repeatedly
exceed the temperature threshold. This necessitates frequency
throttling by the underlying operating system and leads to
performance degradation.

Figure 1 illustrates the effect of thermal throttling on CPU-
GPU co-execution on a mobile platform with SYRK kernel
from the Polybench benchmark suite [5]. The experimental
setup is detailed in Section V. We perform a design space
exploration that sweeps through all the frequency levels of the
CPU and the GPU with all possible workload partitions. Each
line in the graph represents the execution time corresponding
to a fixed CPU frequency, ranging from 900MHz to 2000MHz.
In this example, the GPU never gets throttled even when
running at the highest frequency and hence the GPU frequency
is not plotted. The workload portion is the fraction allocated
to the CPU, where 0 (or 1) corresponds to the execution



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, SEPTEMBER, 2018 2

of the kernel on the GPU (or CPU) alone. As reported in
previous works [2], [3], [4], CPU-GPU co-execution provides
lower runtime than either the CPU or the GPU execution
alone. For SYRK, the best possible CPU alone, GPU alone
execution time are 31.62s and 58.61s, respectively, while the
best possible co-execution runtime is 21.43s. The optimal con-
figuration for this runtime is 1500MHz CPU frequency with
64% of the workload allocated to CPU. Identifying the optimal
configuration is challenging because it depends on (a) relative
execution time of the kernel on CPU and GPU separately, (b)
thermal throttling at higher frequency, and (c) contention for
off-chip shared memory between CPU and GPU. But OPTiC
successfully solves this problem through analytical modeling
of all these factor individually and collectively.

We can make several important observations from Figure 1.
(1) Thermal throttling impacts the co-execution performance
significantly. Higher frequency does not necessarily provide
lower runtime. A lower frequency (1500MHz for SYRK) may
induce less thermal throttling and lead to lower runtime
(21.43s) for co-execution compared to 24.61s at maximum
frequency of 2000MHz. (2) Even if two frequency settings
have the same single-device runtime, they may not behave
similarly during co-execution due to different thermal behav-
ior. For example, the CPU-alone execution at 1900MHz and
1400MHz for SYRK have the same runtime (34.3s); but the
optimal workload partition and runtime for co-execution is
different, as shown in the zoomed-in plot.

(3) The optimal workload partition is different for each
CPU operating frequency depending on the individual runtime
of CPU and GPU, thermal throttling behaviour, and memory
contention. The optimal CPU workload partition for SYRK
varies from 0.53 to 0.645 across different frequencies. (4)
When CPU workload portion is less than 50% for SYRK,
the co-execution runtime is not impacted by CPU frequency.
This is because with lower CPU workload, the GPU runtime
dominates even at the highest CPU frequency. But the GPU
is not thermally throttled in our platform with increased
CPU frequency and temperature; hence GPU runtime and co-
execution runtime remain unchanged.

The optimal workload partition and CPU-GPU frequency
depend on the application characteristics. One may conduct
an exhaustive design space exploration to identify the optimal
configuration. With M possible CPU frequencies, /N possible
GPU frequencies and S partition points, the design space
has M * N * S points. On our platform, it takes almost
1.5 days to execute all the design points for a single kernel,
especially because the chip needs to be cooled down to the
same ambient temperature before each execution. In contrast,
our analytical modelling takes only 5 mins to come up with the
optimal configuration. Developing an analysis framework that
can predict the optimal configuration involves many challenges
such as modelling the throttling behaviour of the kernel
based on its power-performance characteristics, the underlying
system behaviour, and the shared resource contention due to
concurrent execution. In addition, developing our analytical
model on a real hardware platform has its own challenges.
We have limited information regarding the details of the
hardware architecture and the supported hardware performance
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Fig. 2: Block Diagram of Exynos 5422 SoC with CPU and
GPU on Odroid XU3.

counters due to insufficient documentation. We adopt targeted
micro-benchmarking to reverse engineer micro-architectural
details, memory controller policies, precise definition of the
performance counters, and the latency of the operations. Also
we employ analytical modelling in conjunction with statistical
regression using the available hardware performance counters
to estimate power-performance-thermal behaviour.

We present OPTiC, an analytical framework that automati-
cally selects the workload partition and the operating frequen-
cies for optimal CPU-GPU co-execution. OPTiC estimates,
through modeling, the CPU and GPU performance (Section
IV-D1), power (Section IV-D2) at different frequencies, the
impact of thermal throttling on performance (Section IV-B,
IV-A2), as well as the performance penalty due to CPU-GPU
memory contention (Section IV-C, IV-A3). OPTiC achieves
substantial performance improvement over existing schemes
that attempt co-execution without thermal considerations. Fur-
thermore, OPTiC predicts the exact optimal configuration
choice for most benchmarks kernels. The runtime of the
OPTiC selected configuration is, on an average, only 5.1%
higher compared to the optimal runtime obtained through
exhaustive design space exploration.

II. BACKGROUND

To explore CPU-GPU co-execution behaviour, we use a

mobile platform with heterogeneous MPSoC architecture,
Odroid XU3 [6]. We detail the platform characteristics, the
programming model and the execution behaviours to facilitate
understanding of OPTiC.
Experiment Platform: Odroid XU3 platform is powered by
Exynos 5422 SoC [7] shown in Figure 2. The SoC features
ARM big LITTLE architecture consisting of heterogeneous
processing with a cluster of four ARM Cortex Al5 cores
designed for performance, and a cluster of four ARM Cortex
A7 cores designed for power efficiency. The MPSoC also
includes ARM Mali T628 MP6 GPU implementing “Midgard”
architecture with six shader cores. The platform supports
OpenCL 1.1 facilitating general purpose computation on the
GPU. The integrated CPU-GPU platform with shared DRAM
through the bus interface avoids the overheads of transferring
data between the CPU and the GPU during collaborative
execution.
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OpenCL Programming Model: The Open Computing Lan-
guage is an open standard for developing parallel applica-
tions in heterogeneous multi-core architectures including CPU,
GPU, DSP, and FPGAs [1]. It allows runtime software from
different vendors to co-exist and the same program can exploit
multiple different devices. An OpenCL host (CPU) controls
the computation by launching a kernel on the compute devices
(CPU, GPU, etc.). The compute device consists of one or more
compute units (e.g., a GPU Mali core). The host is responsible
for setting up the execution including run-time compiling
of OpenCL code, mapping/transferring data to the devices,
initiating the execution and finally reading the data from the
devices for further execution. Each kernel instance, called a
work-item, runs the kernel code on a single data point. A user-
defined number of work-items form a work-group. All the
work-items in a work-group share a local memory and execute
concurrently on a single compute unit. Memory consistency
is required for work-items within a work-group but not across
different work-groups, which makes a work-group the unit for
scheduling, and enables different work-groups to be launched
on different compute devices without concern about memory
consistency.

OpenCL Runtime: The OpenCL runtime software for the
Mali GPU is supplied by the vendor. But the current mobile
SoCs typically do not include OpenCL support for the ARM
CPU cores. We install an open-source OpenCL runtime,
FreeOCL [8] to utilize the CPU cores as OpenCL compute
devices. As different OpenCL runtime softwares are used for
the CPU and the GPU, the execution cannot be automati-
cally partitioned across the devices at runtime. Instead, co-
execution is achieved by launching the kernel on both devices
concurrently with pre-defined workload partitions, defined in
the granularity of a work-group. The number of work-groups
to be executed are decided statically through OPTiC.

For an OpenCL application executing on the CPU, the role
of the CPU cores toggles between host and compute devices
continuously. The CPU first acts as a host to launch the
kernel on the devices. The role of the CPU then transforms
into an OpenCL device. The host program waits for the
CPU to be discharged from the kernel execution. The host
cannot launch another kernel on the GPU at this point even
if the GPU has completed its earlier workload. The GPU
has to wait till the CPU cores have completed the current
kernel execution. This effect introduces additional overhead
to GPU execution and is a limitation of the OpenCL runtime
that we are using. To evaluate the CPU cores only as an
OpenCL device, we modified the FreeOCL runtime to pin
the OpenCL host functions to the A7-cluster and the device
functions to the Al5-cluster. The A7-cluster is also reserved
for other system functions to reduce the interference with
OpenCL device functions. Also, OpenCL runtime considers
the big. LITTLE clusters (A15 and A7 clusters) as a single
homogeneous device and splits the workload equally to run
on all A15 and A7 cores. Therefore, limiting the OpenCL
workloads to only high-performance A15 cores eliminates the
sub-optimal performance introduced by OpenCL runtime and
ensures optimal prediction. In the paper, we will use CPU and
AlS5 interchangeably to represent the OpenCL execution on
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Fig. 3: Thermal Behaviour of A15, GPU in co-execution.

A1S5 cores as OpenCL devices.

Dynamic Voltage Frequency Scaling (DVFS): DVES is the
most commonly used technique for the trade-off between
power/thermal and performance. Odroid XU3 provides DVFS
feature per cluster for CPU and GPU cores. Note that all
the cores within a cluster should run at the same frequency
level. The A15 cluster can be clocked between 200MHz to
2000MHz at an interval of 100MHz and the GPU can be
clocked at seven different voltage-frequency settings between
177MHz and 600MHz. The voltage at each frequency level is
automatically set by the hardware, as shown in Table I and II.

TABLE I: A15 CPU Frequency and Voltage Settings.

f(MHz) [ 900 [ 1000 | 1100 [ 1200 | 1300 | 1400
V(mV) | 9325 | 9588 | 985 | 10125 | 10388 | 10525
f(MHz) | 1500 | 1600 | 1700 | 1800 | 1900 | 2000
V(mV) | 1080 | 11087 | 1147.5 | 11862 | 1237.5 | 1315

TABLE II: GPU Frequency and Voltage Settings.

T(MHz) | 600 | 543 | 480 | 420 | 350 | 266 | 177
V(mV) | 975 | 962.5 | 9125 | 875 | 850 | 975 | 7625

Thermal Behaviour: The Odroid XU3 platform has five
temperature sensors that capture the temperature of the four
cores in the Al5 cluster and the GPU. During execution, the
temperature change is significant. Figure 3 shows the thermal
behaviour of the A15 cluster and the GPU when co-executing
SYRK at the highest frequency settings for the initial 5 seconds.
We start sampling the thermal sensors before the kernel execu-
tion to capture the initial temperature. The difference in initial
temperatures is because of the core placement. The thermal
response of each A15 core to the input power is different. The
temperature of the A15 cluster rises when the kernel execution
starts and the hottest core reaches 75°C (thermal threshold)
very quickly (within 1s). This triggers the underlying OS
thermal management. The frequency of the whole A15 cluster
is throttled down to 900 MHz, causing temperature drop. The
frequency changes back to 2000MHz once the temperature is
lower than the thermal threshold, causing the temperature to
rise again. The thermal throttling is triggered very frequently,
resulting in a fluctuating A15 cluster temperature around the
thermal threshold (74 - 76°C). It greatly reduces the processing
speed, resulting in as high as 41% increase in CPU runtime.
The temperature of the GPU is much cooler and stabilizes at
around 67°C in this example without any thermal throttling.
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III. RELATED WORKS

In recent years, researchers have focused towards develop-
ing scheduling techniques to appropriately map the applica-
tions onto heterogeneous MPSoCs comprising of functionally
different computing cores (CPU and GPU) [9], [10]. Most of
the techniques [11], [12], [13], [14] target towards maximizing
performance and energy efficiency. These techniques map
the entire application kernel on to a single device (CPU or
GPU). Several other works [15], [2], [4], [16], [3] partition
the OpenCL workloads to be executed on CPU and GPU
concurrently.

Authors in [2] show that by exploiting both functional het-
erogeneity and performance heterogeneity concurrently, sig-
nificant performance gains can be obtained. Additionally, [2]
presents a static workload partitioning technique and provides
the voltage frequency settings to achieve power efficiency.
Recently, [4] proposes a mapping and thread partitioning
scheme for executing multiple OpenCL applications concur-
rently. They execute each application across all the design
points and collect the execution time on the individual devices
(CPU/GPU) to compute the optimal workload partition at
each design point. They also model the delay due to existing
enqueued threads from another application in the GPU and
repartition the workload for minimum energy consumption at
runtime. The work in [3] also proposes scheduling approach
for multiple kernels running concurrently on the GPU. OPTiC,
in contrast, focuses on the co-execution of a single kernel and
does not require extensive offline profiling. Work [15] auto-
matically partitions threads to CPUs and GPUs by providing
new APIs. The APIs require access locations of all threads to
be analyzed statically and thus needs extensive profiling.

However, none of the works mentioned earlier consider the
effect of thermal constraints on the mobile platforms. Dynamic
voltage and frequency scaling (DVFES) is a common technique
to address the power and thermal issues on the mobile plat-
forms. Existing approaches to DVFS for power/thermal man-
agement include running at the lowest or highest frequency, as
well as reacting to runtime workload to reduce or increase fre-
quency based on the CPU usage. Many works[17], [18], [19]
model the thermal behaviour of the device and dynamically
adjust the frequencies of the processors to mitigate the effect
of thermal violation on performance. Qscale[20] demonstrates
a thermally efficient thread scheduling and DVFS policy for
heterogeneous mobile platforms. The authors limit the use of
the big CPU cores to execute only the QoS critical threads,
which effectively slows down the heating of the big cores. The
thread to core mapping of the QoS critical threads is based
on the thermal signature of each of the big cores and the
thermal coupling between the CPU and GPU. These works
do not involve workload partitioning and consider different
applications executing concurrently on CPU and GPU.

Another work [21] extends [2] and [4] to map and partition
the application in CPU-GPU MPSoCs taking into account the
temperature behaviour. It performs exhaustive profiling similar
to [4] that measures the temperature at different design points
to compute the new partition, in order to achieve minimum
energy consumption and best temperature.
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Fig. 4: OPTiC Framework.

On the other hand, authors in [22] demonstrate a compile-
time CPU frequency selection approach for affine programs.
The approach categorizes a certain program region by ap-
proximating the operational intensity and parallelism features
through static analysis. The frequency and core settings of
the program category are chosen from profiling the processor
with representative micro-benchmarks. The authors further
implement a lightweight runtime DVFS approach based on
energy efficiency, and show that the compile-time approach to
CPU frequency selection can significantly outperform runtime-
based approaches. The experimental evaluation of our work
confirms these findings.

OPTiC, with comprehensive analytical model for CPU, GPU
performance, power and temperature, is able to predict the
impact of thermal behaviour on the execution time without
extensive profiling, and recommends the best execution con-
figuration before hand.

IV. OPTIC FRAMEWORK

We present OPTiC: a framework for OPtimizing collab-
orative CPU-GPU computing with Thermal Constraints, as
shown in Figure 4. The variables in blue denote the output
of the respective models. The high-level operation of OPTiC
is as follows: For each kernel, two profile runs are performed
to obtain the CPU and GPU parameters from CPU-alone and
GPU-alone executions, respectively. The profile run for CPU-
alone execution is performed at frequency f¢ while GPU-
alone execution is performed at f¢9 . OPTiC uses the hardware
counters and power values from the profile runs, pass them
through a performance model and power model to obtain
the respective predictions for all possible target frequency
configurations(f¢ and f9). The predicted performance and
power information are then passed to a thermal throttling
model to capture the effect of thermal constraints. OPTiC
extracts memory subsystem related hardware counters from the
profile runs and uses them in its memory contention model to
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model the interferences between devices. These models finally
add up to a co-execution model that calculates the performance
of the CPU-GPU co-execution for all the frequency pair
combinations. The configuration with the minimum predicted
runtime is the optimal configuration identified by OPTiC.

OPTiC does not attempt to predict a throttle-free configura-
tion; rather the model is able to analyse the thermal behaviour
and predict the impact of thermal throttling on the runtime and
thus provide optimal performance achievable under the current
thermal condition. We will next explain how we construct the
co-execution model (Section IV-A), followed by the details
of the throttling model (Section IV-B), memory contention
model (Section IV-C), and finally the independent CPU and
GPU performance models (Section IV-D).

A. CPU-GPU Co-Execution Model

In OpenCL programming model as discussed in Section II,
the unit for scheduling is a work-group. All the work-items in
the same work-group execute concurrently. The work-groups
are independent of each other. Thus we set the granularity of
the workload partition to be a work-group. The execution time
is observed to be linearly proportional to the workload parti-
tion (number of work-groups) allocated when executing CPU
or GPU alone. When executing CPU and GPU concurrently, as
both devices are working in their address spaces, we can safely
assume the same linear relation with the workload partition.
A non-linear model can be applied if the linear relationship
does not hold for other platforms. The co-execution time is the
maximum of the time taken by the individual devices with the
allocated workload partition. However, the effect of thermal
throttling may drastically increase the execution time of the
devices. In addition, the execution of both devices concurrently
will cause contention among shared resources, such as the
main memory. The effects of thermal throttling and memory
contention are included to complete the co-execution model.

1) Co-Execution of CPU and GPU: Figure 5 shows a
diagram representing the execution time of CPU and GPU for
increasing number of work-groups. The primary and secondary
Y-axes are the percentage of work-groups allocated to the CPU
(increasing) and GPU (decreasing), respectively. At a given
frequency combination ( f€¢, f9) for CPU and GPU, the CPU
takes L%, time to complete all the work-groups, while the
GPU takes E]gcg time. The rate of work-group processing is
denoted as 7. and r, for the CPU and the GPU respectively,
calculated as total workload (which is considered as 1) over
runtime: r. = 1/E%. and r, = 1/E}, The point where
the two execution time meet (F) is therefore the shortest
execution time possible to complete all the work-groups using
co-execution (r, X E' +ry, x I = 1). The co-execution time
is calculated as shown in Eqn. (1). The workload partition is
calculated using Eqn. (2).

1 1

T etry) (/B +1/E%) M

CPU work portion = F/ E.

2
GPU work portion = 1 — E/Ef%. @

2) Effect of Thermal Throttling: Thermal throttling greatly
affects the runtime by drastically reducing the processing
speed. It prolongs the execution, resulting in a longer execution
time which we denote as the throttled execution time as E]Cc%
The workload partition calculated in Section IV-Al is therefore
not optimal. Note that the throttling of frequency starts only
when the processor temperature reaches a certain threshold.
We denote the time taken to reach the threshold to be ¢7,
(time to reach thermal limit). The details of how we estimate
EJCM and t7, are discussed in Section IV-B.

ere we consider the common case where CPU frequency
is throttled and GPU is not affected for simpler illustration.
Also note that in our platform, the GPU temperature is always
lower than the thermal threshold and its frequency does not
get throttled. The rate of execution will be reduced after time
tTr, as shown in Figure 5 (b). We approximate the behaviour
by estimating an average execution rate r., that is lower than
the original 7.. 7/, is calculated with throttled time as shown
in Eqn. (3). The numerator is the remaining workload when
thermal throttling starts while the denominator is the time for
processing the remaining workload.

’ ]-_T'cXtTL
r,= —/———

Eygg —tre @

As shown in Figure 5(b), the yellow and green lines
represent scenarios where the system starts the frequency
throttling at different time ¢7r. In the first scenario (yellow
dotted line, CPU_throttle_1), the temperature of CPU rises
quickly resulting in frequency throttling at ¢t7;, = 2. The final
intersection of the CPU and GPU execution line is therefore
different from the non-throttling scenario. We again equate
the workload processed by CPU and GPU in time E to 1 as
retrr + 1L(E — trr) + 14 X E = 1. The execution time can
then be calculated by Eqn. (4).

E=(1—rextyp+rextrp)/(rg + 1), 4)

The equation is valid only when kernel execution time is larger
than trr, i.e., thermal throttling happens before the kernel
completes execution. As the CPU runtime is prolonged by
throttling, the workload portion allocated to CPU is less and
the final execution time is longer.

In the second scenario (green solid line, CPU_throttle_2),
the throttling happens later at {7, = 6. When executing
CPU and GPU together, the execution is finished before CPU
temperature exceeds the thermal threshold. So the optimal
configuration remains unchanged as in the non-throttling sce-
nario (Eqn. (1)). The workload partition calculation remains
the same as shown in Eqn. (2).

3) Effect of Memory Contention: In our experimental plat-
form, the CPU cores and GPU share the DRAM through a
bus interface. When CPU and GPU are executing concurrently,
both the devices compete for the shared memory subsystem.
This memory contention has different impacts on devices.
We illustrate the case where CPU execution performance is
affected whereas GPU performance remains unchanged. As
shown in Figure 5 (c), the green solid line shows the CPU
performance curve after considering contention. The effect of
memory contention is small in the beginning and becomes
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Fig. 5: (a) CPU GPU co-execution model. (b) Co-execution with CPU frequency throttling. (c) Co-execution with contention.

more prominent as time passes. Such effect is captured by
discounting execution rate by J. The execution time after
including the effects of memory contention is calculated as

E=1/({55 +7,) ®

The workload partition calculation remains the same as
shown in Eqn. (2). The workload portion to allocate on CPU
is decreased with increased overall execution time. The details
of the calculation for the discount parameter ¢ is provided in
Section IV-C.

Now when we combine the effects of both the thermal
throttling and memory contention, the execution time can
be calculated with Eqn,. (4) with updated processing rate

% 57 and ) (110 57
4 ) The Design Space: We have so far presented how we

can predict the co-execution performance from the isolated
CPU and GPU execution times, considering the effect of the
thermal behaviour and the memory contention. The predicted
performance E(f¢, f9) is based on the frequency and iso-
lated execution time of the devices at a particular frequency
combination(f¢ and f9). The change of frequency not only
changes the isolated execution time, but also changes the
thermal throttling behaviour as well as the memory contention.
In order to find the optimal configuration for a kernel, we go
through all the possible frequency combinations of the devices
(all possible combinations of f¢ and f9) and predict the co-
execution performance. The frequency configuration which
gives the minimum execution time is therefore the optimal
configuration located by OPTiC.

Having presented the high-level operation of the framework,
we now introduce the individual components in detail.

B. Thermal Throttling Model

As active cooling is not often presented on mobile plat-
forms, the vendors often set a safe operating thermal limit
(Trr, = 75°C ). The processor cores adjust their operating
frequency based on the set thermal limit to prevent catastrophic
failure of the chip. Once the CPU hits the thermal limit, the
OS performs frequency throttling. In the Linux kernel 3.10.72
present on our platform, the throttling mechanism oscillates
the CPU frequency between the set frequency (f¢) and 900
MHz (f}},,..)- When the CPU temperature rises above 17y,
its operating frequency is adjusted to fy},.,,. When the chip
temperature goes below Ty, the frequency is set back to f°.

The performance impact due to throttling is quantified in
two steps. We first find the time taken ({7 ) by the core to

reach Trr, and then predict the number of throttles after ¢y,
till the end of the kernel execution. We adopt the well-known
RC equivalent circuit model for the CPU temperature as shown
in Eqn. (6).

T = Pf. X Re + (Tinie — Pfe X Ro)e™ (6)

Here T is the CPU temperature, P¢. is the power consumption
on CPU, R, is the core thermal resistance, 7 is the chip
time constant, ¢ is the elapsed time and 7;,;; is the initial
temperature. The time taken to reach the thermal limit (t7r)
can therefore be calculated given the initial temperature and
power by Eqn. (7).

R.Pf. — Tini
trp =7ln | ———+—

Enzt 7
R.P§. —Trp M

The time periods (t7, and tz7), are the periods for which the
CPU will stay at f;;,.,, and f¢, respectively. Eqn. (7) is used to
compute these time periods with different initial temperature,
end temperature and power values. The temperature drops to
Thew after the throttling before it rises again and the drop in
temperature is approximated by x times the power difference
at f¢ and f;,,,, where & is a platform specific parameter. To
calculate t;, we plug in Ty as the initial temperature and
Thew as the end temperature with P° £E s and the reverse
with Pf. for ty. The power values are predicted from the
models discussed in Section IV-D2.

In this model, we assume the workload to be in terms of
cycles. We obtain the workload cycles from the non-throttled
CPU runtime EJ%C of the workload at f¢. As tp denotes the
time at which throttling sets in, the remaining workload that
needs to be executed after throttling Ly = (E§. —trr) x f.
As the CPU frequency oscillates between the set frequency f€
and ff,,,» we can approximate the workload cycles executed
in one throttle period TC = t; x ff,.,, + tu x f¢ The
number of throttles Ny = L%, /T'C. The remainder workload
in the last throttle period Ly = (Nre — | Nre|) X TC. The
new CPU runtime Efc incorporating the effects of throttling
is calculated using Eqn (8).

trr + |Nre X (to +tu) + fthct
e — Jif Lo <tp x ffhcmt
T Vtrp + (Nro) x (tn + ta) + tg, + Ere= i)

, otherwise

®)
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In our experimental platform, the GPU does not hit 75°C with
general-purpose workload at runtime. However, we can follow
a similar approach to model the throttling behaviour of GPU
and obtain the throttled performance E}’%.

C. CPU-GPU Memory Contention Model

As mentioned in Section IV-A3, the co-execution of CPU
and GPU together causes memory contention. Through various
experiments on our evaluation platform, we found that the
GPU memory accesses are prioritized over CPU accesses.
Thus there is a neglible impact on the performance of GPU
due to contention for memory. Therefore, we model a resource
contention that causes an increase in execution time only for
the CPU. We define this overhead as the contention overhead
(Cont). Cont is proportional to the execution time where the
CPU and the GPU are concurrently executing.

Cont =Tgcpy * 6 ©)]

0 represents the increase in runtime due to co-execution over
its isolated runtime. T¢py is the isolated execution time of
the kernel.

Parameter § is obtained through a two-step process.
For a given kernel, we use the following hardware coun-
ters Cache:12 data refill, Cache:1L2 data write and
Cache:L2 data victim for the CPU and Mali L2 Cache:
External read bytes and Mali L2 Cache: External
write bytes for the GPU from the profile run at f¢ and
f9 and obtain the average and maximum memory request
rate in (bytes/sec) of CPU and GPU at frequency f¢ and
9, respectively. The memory request rate varies based on
the memory intensity of the benchmark and the operating fre-
quency. We obtain the average and maximum memory request
rate at other frequencies (f¢ and f9) through a multi-variate
additive regression model. The request rate at other frequencies
is modeled as a function of the variables «, & and A. o denotes
the ratio of memory access time over computation. & is the
ratio of target frequency over the profile frequency and )\? is
the memory request rate at profile frequency.

Af = fun01(a7§>>‘f) (10)

The second step is to model § as a function of average and
maximum memory request rate (A4, )\50\/1 ) of both the CPU and
GPU.
c JC g g
8y = func2(Nfe , AFE A MK (11)

We use OpenCL-based STREAM benchmarks from [23]
to generate memory requests of various intensities from CPU
and GPU and measure the execution times of isolated and co-
execution runs. DS-5 Streamline [24] with gator is used to
obtain the required hardware counters. funcl is generated
using generalized additive models of R [25] while func?2
is generated using first-order linear regression model of R
including all the interaction terms.

D. Power-Performance Estimation across Frequency Settings

The optimal configuration for a given kernel is obtained by
going through the design space of different frequency com-
binations of the devices (shown in Table LII). The respective

throttling and memory contention for the frequency pair of
CPU and GPU are predicted as discussed in Section IV-B and
IV-C. This information is then plugged into the co-execution
model as discussed in Section IV-A to obtain the prediction
of the co-execution time. Here in this section we describe
how the performance and power values for other frequency
configurations are obtained from a profile frequency.

1) Performance Model: With the performance counter val-
ues collected from only one execution at a certain frequency,
our performance models are able to predict the execution
time of the application at all frequency points. Note that the
OpenCL execution incurs overheads on the host device such
as API overheads and the overhead caused by JIT compila-
tion [26]. These overheads do not need to be considered in
our performance model as the host functions are pinned to the
AT cores.

a) CPU Performance Model: Performance prediction
for traditional CPU processors is a well researched topic. Re-
searchers use simulations, analytical models, hardware counter
based models and machine learning models [27], [28], [29],
[30], [31] to achieve good predictions. These approaches
usually require detailed knowledge of the micro-architecture
or hardware counters that reveals the property of the hardware
and applications. The parameters to be used in the model are
micro-architecture specific and need to be carefully selected.
The OpenCL applications make the CPU behave similar to
the GPUs [26]. Thus different frequency levels may result in
different thread scheduling and thus different performance. In
addition, the execution of OpenCL on CPU platforms is not a
well-researched topic; existing works are mostly focusing on
the API overheads rather than the actual execution time [26],
[32]. Therefore in this work, we adopt a simple analytical
model of GPU [33] with hardware counter information, to
scale the execution performance to other frequencies for CPU.
The CPU execution time (£°¢) is modeled as comprising of the
computational time, memory access time and latency hiding,
as shown in Eqn.(12). Parameter « is the ratio of memory
access time over computation time and represents the compute
intensity. 3 represents the latency hiding fraction over the total
computation time and is linearly proportional to a.

c _ poc c c
E° = Ecomp + E’mem - Ehide

= Egomp +ax Ego'mp - B X Esomp (12)
= (1_"0‘_[-3) X Egomp

From the CPU profile run at one frequency (f¢), we
collect the number of memory accesses through L2 cache
miss counter: Cache:L2 data refill (N_mem) and the
computational information through number of computation
instructions executed: Executed (I_er) -
Instruction: Load/Store (I_mem). Thus « is calculated
as the number of memory access over computation instruc-
tions: « = N_mem/(I_ex—I_mem) x Cq, f = Cy X a. The
constants Cy and C'y are application agnostic and computed by
analysing micro-benchmarks with different compute intensity.

When we employ frequency scaling of Al5, the CPU
frequency is changed to f¢ while the memory frequency does
not change. Indeed, the memory controller frequency cannot
be changed in our platform. Therefore, the computation time

Instruction:



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, SEPTEMBER, 2018 8

will be scaled with frequency, keeping the memory access
time the same. The execution time at f€¢, denoted as EJC%, is
estimated by Eqn.(13).
Bje = 2 X (Btomp — Bfiad) + Bnem
_ [E
fc
b) GPU Performance Model: There is a rich literature
on analytical performance models for conventional high-end
GPUs [33], [34], [35], [36]. But ARM Mali GPU Midgard ar-
chitecture differs in many-aspects from conventional desktop-
class GPUs. Midgard GPUs are based on Very Long Instruc-
tion Word (VLIW) architecture and each instruction word
contains multiple operations. Single Instruction Multiple Data
(SIMD) is adopted so that most arithmetic instructions operate
on multiple data elements simultaneously. Instead of extracting
thread level parallelism, all threads in Midgard GPUs have
individual program counters and the warp size is 1. Threads
on a Mali GPU are independent and can diverge without
any performance impact. In addition, Mali GPUs use caches
instead of local memories and OpenCL local and private
memories are mapped into main memory. To the best of our
knowledge, there are no published works on the performance
models for embedded GPUs that have architectures similar to
that of ARM-Mali GPUs.

The GPU performance model is based on the execution
cycles of the workload on the underlying GPU architecture,
frequency and the workload characteristics. The ARM Mali-
T628 GPU consists of six shader cores (SC) and an inter-
core task management unit (I’MU). The T MU is responsible
for distributing the tasks to shader cores for execution. As
depicted in Figure 6, Each SC in the Midgard architecture
is made up of three different pipelines: Arithmetic pipeline,
Load/Store (L/S) pipeline and Texture pipeline. The three
pipelines are collectively known as the ¢ripipe. Each thread
uses only one of the Arithmetic or Load-Store execution
pipes at any point in time. Two instructions from the same
thread execute in sequence. The cycles for which the tripipe is
active is determined by the slowest among the three pipelines.
General purpose OpenCL applications typically only use the
Arithmetic or Load-Store pipelines. The texture pipeline used
for reading image data types is not often engaged. Thus, the
tripipe active cycles is usually determined by the slowest
of the Arithmetic and the L/S pipelines, as shown in Eqn.
(14). OH7p and O Hrjs denote the overheads associated with
driving the tripipe and TMU.

13)
X (1 - ﬂ) + O‘] X Egomp

(14)
15)

Tripipe Cycles = MAX(LY 05 LY o) + OHrp

GPU Active Cycles = Tripipe Cycles + OHr pp

From the GPU profile run of the kernel at one frequency f9,
we collect the following hardware performance counters : GPU
Active cycles, Tripipe cycles, LS instructions, LS
instruction issues,Arith. instructions,L2 cache
counters. In Midgard architecture, arithmetic instructions are
single cycle throughput, thus we use Arith. instructions counter
to approximate the Arithmetic cycles (L9, ). Similar to

comp
arithmetic instructions, a single load/store can be executed in

| TMU
SC SC ‘ SC
sc sc | sc
. L2 [ MMU || L2 |
Thread Issue
Al | |laz|||lLs|| | T
| I Ihxggd__gémglgglgg _________ ]

Fig. 6: Mali GPU Architecture.

a single cycle under ideal circumstances. LS instruction issues
counter is used to approximate the L/S cycles (LY,,,,). The
overhead values OHrp and OHr), at the profiled frequency
are therefore calculated using Eqn. (14) and (15). We assume
the overhead values to be the same across all frequencies.

In order to predict for other GPU frequencies (f9), LY, ..,
needs to be scaled. The LY .. cycles varies because of the
changes in memory access cycles due to cache misses. In
ARM Midgard architecture, cache misses does not stall the
pipeline while waiting for the misses to be resolved, instead,
it results in an instruction restart/reissue. LS instruction issues
counter counts the retry cycles due to misses in the data cache.
Thus we use the difference between L/S instructions and LS
instruction issues counter to approximate the cycles incurred
due to cache misses (Miss?). The memory access latency
cycles (M L) varies with GPU frequency(f9). We use global
latency benchmark similar to [37] to obtain MLy of our
hardware platform. For a given application kernel, the impact
of variation of M Ly, on Miss? is dependent on the intensity
and distribution of L2 misses. We use L2 miss rate (L2,,r) to
quantify the miss intensity and we assume uniform distribution
of the L2 misses over the all tripipe cycles. L2 p represents
L2 misses per Tripipe Cycle. W in Eqn.( 16) is modeled as
function of L2, and L27p.

LY em (f9) = LSS instructions + M Lyg x W x Miss? (16)

With the corresponding LY, and L7 ., at f9, we can
calculate the GPU Active Cycles by Eqn. (14) and (15). The
GPU runtime Ejgcg can therefore be calculated by Eqn. (17).

E!]

e = GPU Active Cycles/ 9

an

2) Power Model: The power values of the devices are
required for an accurate thermal behavior and therefore better
throttling prediction as discussed in Section IV-B. Research
on processor power modeling is usually based on instruc-
tions [38], hardware-counters [39], [40] and utilization [41].
Instruction-level models require massive information including
the power of each instructions and overheads of all instruction
pairs, making it impractical to be implemented. There have
been substantial are focused around the hardware-counter-
based models, where the counters are selected manually [39]
or automatically by machine learning [40] for specific plat-
forms. The identification of such counters is largely dependent
on the processor architecture and benchmark characteristics.
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In addition, the number of counters to be collected concur-
rently are usually restricted, resulting in a long profiling time.
Utilization-based models, on the other hand, use one profile
run to capture the activity in order to approximately predict the
power. In this work, we implement an utilization-based power
model to predict the power of all other frequency levels from
one profile run. Few hardware counters are collected to achieve
better prediction.

The total power comprises of dynamic power and static
power and is defined as P = A. * V2f + Psq:. Here V' and f
are the operating voltage and frequency respectively, A, is the
activity factor times capacitance factor. As A, value remains
constant across frequency levels, we combine these two factors
into one for easier notation. The static power is application
agnostic and depends on the voltage/frequency settings. Thus
it can be obtained through profiling at each frequency level
(Pstat) fo. We note that in our mobile system, the stringent
temperature constraints (75°C) ensure that additional leakage
power due to high temperature is negligible.

We profile the kernel at frequency f¢ and collect the power
value (PCF) from the on-chip sensors. The A, value remains
unchanged across frequency levels because in our co-execution
the CPU is never idle. The power for another frequency level
P¢;c is estimated as shown in Eqn. (18).

PCpe = Ac* Vi * £ + (Pstat) fe (18)

For GPU, a similar utilization based model is implemented.
GPU power P9 is calculated similar to Eqn. (18).

3) Portability of OPTiC: The analytical models in OPTiC
are parameterizable but need to be instantiated with platform-
specific values. To port OPTiC onto a new platform, profiling
and micro-benchmarking are required to identify the parameter
values for thermal throttling, memory contention, and power-
performance models. The models can then be applied with the
new parameter values as discussed in Section IV-A to obtain
co-execution performance.

V. EXPERIMENTAL EVALUATION

We conduct the evaluation of the OPTiC framework on the
Odroid XU3 platform [6]. The Polybench benchmark suite [5]
is used, from which twelve benchmarks that are suitable to be
partitioned to run on CPU and GPU concurrently are chosen.
The benchmarks are configured with appropriate input sizes as
shown in Table III, in order to minimize the interferences of
OpenCL API overheads and reveal the pure kernel execution
portion.

In addition, to minimize the measurement error as well we
emphasize the effect of thermal throttling, multiple iterations
are used for benchmarks with short execution time. We later
show in Section V-G the evaluation of OPTiC with end-to-
end performance results and thermal throttling behavior for
real-world applications using some of these kernels.

A. Performance evaluation of Co-execution

To quantify the effectiveness of kernel co-execution, we first
obtain the performance of the OpenCL kernel on a single
device. We execute the OpenCL kernel on 4 AlS5 cores,

TABLE III: Benchmark Configurations for Polybench.

Name 2DCONV 2MM 3MM ATAX
Input Size 4096x4096 512x512 512x512 | 4096x4096
Iterations 100 30 15 75
Name BICG CORR COVAR GEMM
Input Size 4096x4096 | 2048x2048 | 2048x2048 1024x1024
Iterations 60 1 1 5
Name GESUMMV MVT SYR2K SYRK
Input Size 4096 4096 | 2048x2048 | 1024x1024
Iterations 250 50 1 30

denoted as CPU—-alone execution. Similarly, we execute the
same kernel on the 4 shader cores of Mali GPU, denoted as
GPU-alone execution. These executions are performed for
all possible A15 and GPU frequency configurations. Table IV
shows the best execution time achievable for the kernel on a
single device. We observe that some kernels benefit greatly
from GPU executions while others do not.

This behavior encourages us to explore the benefits of co-
execution that utilize both the CPU and the GPU concurrently.
We use the configuration (frequency and workload partition)
provided by our OPTiC framework for each kernel and execute
the kernels on our experimental platform. The execution time
for the benchmarks are listed in comparison to the minimum
of the standalone execution time, as shown in Table IV. We
can see that by co-executing the kernel on CPU and GPU with
the configuration provided by our OPTiC framework, we are
able to achieve better performance than executing the kernel
on a single computing device (CPU/GPU). The performance
benefit can be as high as 35% when compared to the best
possible single device execution. We obtain on an average
13.8% performance improvement over standalone execution.

B. Importance of Thermal Consideration

We then evaluate the importance of considering the thermal
constraints in co-execution. We compare OPTiC with [2],
which enables co-execution of the kernel and partitions the
workload using load balancing strategy for each kernel based
on its runtime for CPU-alone and GPU-alone executions.
The model in [2] does not consider the effects of thermal
constraints and always runs at the highest possible CPU and
GPU frequency for the co-execution.

Table IV in addition shows the actual execution times on
the platform for the predicted configuration without thermal
consideration [2]. OPTiC shows an average of 13.7% (and
as high as 25%) improvement in performance compared to
[2] by taking into account thermal behavior. Furthermore, for
benchmarks 2DCONV, ATAX, BICG, SYR2K, [2] per-
forms worse than the corresponding best possible single device
execution. For 2DCONYV kernel, there is a 33% increase in the
co-execution runtime compared to the single device runtime.
This observation clearly emphasizes the need for considering
the thermal constraints while enabling co-execution.

C. Optimal Configuration Prediction

We perform exhaustive runtime measurement of all design
points by executing each kernel at all frequency settings and
workload partitions. 12 CPU frequencies, 7 GPU frequencies
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TABLE IV: Execution times with single-device, OPTiC predicted co-execution configuration, and predicted co-execution config

from [2] with no thermal consideration.

Benchmark Execut.ion Time (Sec) BCI'leﬁtS of Beljleﬁts of
Names CPU-al_one GPU-al_one Min of CPU- OPTiC 2] (qo the_rmal OPTiC (_lue to OPTiC due to
Execution Execution and GPU-alone consideration) Co-execution (%) | Thermal Con. (%)
2DCONV 100.92 7.98 7.98 7.95 10.61 0.38 25.07
2MM 22.41 14.68 14.68 9.52 11.76 35.15 19.05
3MM 30.72 11.05 11.05 9.03 9.16 18.28 1.42
ATAX 41.57 12.48 12.48 12.27 15.32 1.68 19.91
BICG 32.87 9.95 9.95 9.65 11.72 3.02 17.66
CORR 53.18 129.01 53.18 41.93 50.64 21.15 17.20
COVAR 47.63 99.57 47.63 38.12 45.51 19.97 16.24
GEMM 86.19 9.97 9.97 9.13 9.75 8.43 6.36
GESUMMYV 21.53 73.84 21.53 21.32 21.95 0.98 2.87
MVT 29.29 11.26 11.26 9.42 9.6 16.34 1.88
SYR2K 29.75 58.63 29.75 26.92 30.9 9.51 12.88
SYRK 31.63 56.81 31.63 21.98 28.8 30.51 23.68
Average 13.78% 13.68%
) . D. Influence of the Co-execution Model
B Optimal EOPTIC Bref-nMC Oref-nTMC

Normalized Execution Time
© oo Qo
ON PO ® KL
7,
;-

Fig. 7: Execution time of exhaustively searched optimal config
with OPTiC, ref-nMC and ref-nTMC predicted configs.

and 20 different workload partition point make up the design
space with 1680 points. The experiments take on average 1.5
days per benchmark, mainly because after each execution, one-
minute cooling down period is applied to ensure a consistent
ambient thermal condition. In contrast, with only two profile
runs, OPTIC is able to perform the prediction of all design
points within 5 minutes on an average for a kernel. This leads
to 432X speedup in the design space exploration time with the
OPTiC framework compared to an exhaustive search.

The configuration with the minimum execution time from
exhaustive execution of all design points is the actual optimal
configuration. This optimal runtime is compared against the
runtime of the configuration obtained from OPTiC. We pick
the configuration suggested by OPTiC and execute it on the
platform to obtain the runtime. Table V shows the comparison.
The Frequency shown in the table are the CPU frequencies.
The GPU frequency choices are at 600MHz for all the bench-
marks and therefore omitted. For benchmarks 2M M, 3M M,
CORR, GESUMMYV and SY RK, OPTiC chooses accurately
the best frequency setting with minimal workload-partition
difference. For other benchmarks, the OPTiC predicted con-
figurations still provide near-optimal runtime. The runtime of
the predicted configuration is on average 5.1% higher than the
optimal achievable runtime.

We use two simplified co-execution models to evaluate
the effectiveness of OPTiC’s memory contention and thermal
throttling models. Starting with OPTiC as reference, the model
ref-nMC considers thermal throttling effects but removes the
memory contention model as discussed in Section IV-A3. The
model ref-nTMC removes the thermal throttling considera-
tion as discussed in Section IV-A2 in addition to the memory
contention model. We have already shown in Section V-B, the
need for thermal consideration. Model re £-nTMC is included
here for comprehensive comparison.

Figure 7 shows the runtime comparison of the predicted
optimal configuration by OPTiC, ref-nMC and ref-nTMC
normalized to the actual optimal execution time. The execution
time of the predicted configurations is on an average 14.33%
higher for ref-nMC and 22.74% higher for re f-nTMC than
the optimal. When compared to OPTiC, the execution time is
on an average 8.85% higher for ref-nMC and 16.83% higher
for ref-nTMC.

For most of the kernels, ref-nMC predicts the same fre-
quency configuration as OPTiC as shown in Table V but with
more workload allocated to the CPU. As memory contention
only affects the CPU runtime, the CPU time is stretched
while the GPU time remains the same. Thus for benchmarks
like ATAX and BICG, ignoring memory contention results in
suboptimal workload allocation. OPTiC is able to capture the
effect and predict the delay in CPU runtime, and therefore
allocates less workload to the CPU and achieves better per-
formance. ref-nTMC ignores the effect of thermal throttling
and thus predicts the optimal frequency configurations to be
at the highest frequency settings with corresponding workload
partition. The predicted configurations are near optimal for
benchmarks that do not suffer much from thermal throttling,
such as 3MM, GEMM and MVT. But for other benchmarks
like 2DCONYV, such configuration can yield 40% more runtime
compared to the optimal.

E. Accuracy of Individual Models

1) Performance and Power Models: Figure 8 and 9 shows
the estimation error of the CPU, GPU power-performance
estimations in Section IV-D1 and IV-D2 for all the benchmarks
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TABLE V: Execution time for exhaustively searched optimal configuration and OPTiC predicted optimal configuration.

Benchmark Optimal Conﬁguration OPTiC Predicteq Optimal Error
through Exhaustive Search Configuration (%)

Frequenc . Execution Frequenc . Execution

Names (l\(}IHz) Y | CPU Portion Time (Sec) (1\(/][Hz) Y| CPU Portion Time (Sec)
2DCONV 1600 6.15% 7.54 1500 6.82% 7.95 5.46
2MM 1700 39.06% 9.16 1700 37.60% 9.52 3.97
3MM 1900 26.56% 8.80 1900 24.68% 9.03 2.13
ATAX 1800 15.23% 11.69 1900 16.05% 12.27 4.94
BICG 1900 14.06% 9.10 2000 15.22% 9.65 6.02
CORR 1700 66.92% 40.58 1700 66.21% 41.93 3.32
COVAR 1700 66.92% 34.48 1800 66.61% 38.12 | 10.57
GEMM 1900 10.35% 9.00 1600 10.38% 9.13 1.48
GESUMMV 1700 78.10% 19.88 1700 72.97% 21.32 7.28
MVT 1700 25.10% 8.91 2000 26.72% 9.42 5.78
SYR2K 1600 66.02% 25.25 1700 62.63% 26.92 6.65
SYRK 1500 63.67% 21.43 1500 63.12% 21.98 2.57
Average 5.06

averaged across all frequency settings. Note that the power-
performance estimation models (Section IV-D1 and IV-D2)
evaluated in this subsection individually do not consider the
increase in execution time or change in power consumption
due to thermal throttling. The effect of thermal throttling
on CPU and GPU independently as well as on CPU-GPU
co-execution are modeled separately (Section IV-B) starting
with non-disrupted power and execution time estimations
obtained from individual models and we present the evaluation
of the model in the next subsection. Therefore, in this set
of experiments, we apply additional active fan cooling to
minimize the effects of thermal throttling when measuring
the execution time/power at different frequencies and obtain
accurate evaluation of the estimated execution time/power.
However, the executions of some benchmarks at the highest
CPU frequency setting (2.0 GHz) still suffer from thermal
throttling. The non-throttled execution times at the highest
CPU frequency setting are not obtainable and thus omitted
for the evaluation.

The bars in Figure 8 and 9 show the average prediction
error of the performance and power model across all frequency
settings (with the exclusion of 2.0 GHz for some benchmarks
where non-throttled performance could not be measured as
discussed in the previous paragraph). The blue bars represent
average prediction errors for the CPU and the green bars
represent average prediction error for the GPU. The maximum
and minimum prediction error are shown as the vertical line
and the median error is denoted as yellow dashes on the line
for each benchmark across all possible frequency settings. On
an average, the individual models are able to predict within
3.55% for performance and 2.15% for power. The inaccuracy
in performance and power prediction can affect the overall pre-
diction of co-execution performance, but such effects are not
directly correlated. For example, for benchmarks 2DCONV
and 2MM, although the individual prediction errors of 2MM
are higher than 2DCONYV, OPTiC is still able to find the
optimal configuration for 2MM and achieves less prediction
error, as shown in Table V.

2) Thermal Throttling Model: The individual A15 perfor-
mance model predicts runtime at different frequency without
thermal consideration. The actual runtime at higher frequency
is stretched due to thermal throttling. The first column in
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Fig. 8: Accuracy of performance predictions.
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Fig. 9: Accuracy of power predictions.

Figure 10 shows the estimated runtime without thermal consid-
eration, the second column shows the revised estimation with
the thermal consideration as discussed in Section IV-B, and
the third column shows the actual runtime measured on the
system. Our throttling model brings down the prediction error
for SYRK from 9.18% to 5.80%. At lower frequencies (below
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@ Estimation Time (Section IV-B(a)) @ Estimation Considering Throttling
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Fig. 10: CPU runtime estimation with thermal throttling con-
sideration for SYRK.

1400 MHz), as there are few or no throttling, the estimation
error is dominated by the CPU performance model.

FE Influence of DVFS

The aim of OPTiC framework is to minimize the co-
execution time of the kernel and hence both the CPU and
the GPU run at close to 100% utilization. This leads to
thermal emergencies and we quantify its effect on performance
in OPTiC. As OPTIC carefully chooses the CPU and GPU
frequencies by taking care of the thermal constraints, dynamic
voltage and frequency scaling (DVES) is therefore not enabled
during kernel execution except for thermal throttling and hence
we use Linux performance governor. However, one may won-
der whether other existing Linux power governors (interactive,
ondemand, conservative) and other IPC (Instructions Per Cy-
cle) based DVFS schemes would have been equally effective
as OPTiC. Here we choose one workload based DVFS scheme
(Linux interactive governor) and an IPC based scheme (CPU-
miser) [42] for comparison purposes. CPU-miser [42] is a run-
time DVFS scheme that aims to reduce power consumption
given a specific constraint on the performance degradation. It
specifies an index of CPU-intensiveness from the measured
instructions per cycles achieved by the running workload in
the current time interval, predicts the index for the next time
interval and adjusts the frequency. We implemented CPU-
miser for our platform. In this set of experiment, CPU-miser is
invoked with 100 ms time interval and the degradation factor is
set to 10%. Considering the slow varying nature for Polybench
benchmarks, the index for the current interval is used as the
prediction for the next time interval [43].

Table VI shows the performance improvement of OPTiC
when compared to the best of CPU-alone and GPU-alone con-
figurations as well as the co-execution configuration suggested
by [2] under the two DVFS schemes. In general, OPTiC (with
fixed frequency settings) is more effective than the existing
power governors and the IPC-based DVFS scheme in the
presence of thermal throttling during co-execution across all
the benchmarks. The average performance improvement of
OPTiC compared to CPU-GPU co-execution + dynamic DVFS
with Linux interactive governor is 10.56% and CPU-GPU co-
execution + dynamic DVFS CPU-miser is 5.44% respectively.
Note that we use Linux kernel 3.10.106 to enable the Linux

power governors, which is different from the linux kernel
3.10.72 used in the previous experiments. Hence the runtime
reported are different from Table IV.

For most of the benchmarks, GPU has better performance
than CPU execution. Thus dynamic DVFS on CPU does
not have much impact on the minimum time of the single
device execution (Min(C,G)) as the GPU execution time is
not affected by the CPU frequency settings. As CPU-miser
[42] introduces degradation in performance for CPU, increase
in Min(C,G) are observed for GESUMMYV, SY R2K and
SY RK, where minimum single device executions are on CPU.
However, the degradation in performance is not as high as 10%
as we configured, because CPU-miser helped to some extent
with the thermal throttling by adjusting the CPU to a lower
frequency. For a naive co-execution configuration [2], co-
execution of CPU and GPU achieves better performance com-
pared to single device execution for most of the benchmarks
with dynamic DVFS. CPU-miser helps with the thermal throt-
tling problem by reducing the CPU frequency based on the
IPC achievable, gives better performance than the workload
based interactive performance governor. However, CPU-miser
is not designed to be thermal-aware, causing unpredictable
performance drops for some benchmarks. On the contrary,
OPTiC, which is thermal aware, is designed to predict the
runtime thermal behaviours of the benchmark and further
improves the co-execution performance.

G. Application Case Studies

To illustrate the effectiveness of OPTiC, we use two of
the benchmarks kernels, matrix multiplication (GEMM) and
convolution (2DCONYV), in two full-fledged real-world appli-
cations. These two applications are Tiny YOLOV3, an object
detection model in Darknet [44] neural network and a simple
128 labels, image-classification convolutional neural network
(CNN) from ARM Compute Library [45].

A continuous stream of images are used in both applica-
tions. We profile the dominant kernels of the application and
use the profiling results to obtain the parameters necessary for
OPTiC to determine the optimal partitioning and frequency
settings for these dominant kernels. The rest of the application
(non-kernel portions) executes on the CPU only. There are
13 convolution layers out of the 23 layers in Tiny YOLOv3.
Darknet transforms the convolution operations into matrix
multiplications (GEMM), which comprises 76.35% of the
runtime of the application. The OPTiC-predicted partitioning
and frequency selection are then applied to the GEMM kernels
for co-execution. Similarly, convolution (2DCONV) is the
dominant computation (74.21% of runtime) in the image-
classification CNN, and we apply OPTiC-based partitioning,
frequency selection for co-execution of the 2DCONYV kernels.

GPU-accelerated (GPU-acc) execution where 2DCONV and
GEMM kernels are executed on GPU with the performance
DVFS governor is used as the baseline. Furthermore, the
co-execution of CPU and GPU with the partition selected
by [2] which neglects the thermal behaviour are presented
for comparison. The non-kernels are executed on CPU in all
cases. The CPU-alone, GPU-acc and Model [2] executions are
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TABLE VI: Influence of dynamic DVFS.

Performance improvement

Performance improvement

Benchmark ofE(}i;;))cTui%or(lg )tlglveieth Execution time (s) of of OPTIC over Execution time (s) of of OPTIC over
Names Li : the execution with dynamic DVFS the execution with dynamic DVFS
inux performance Linux interactive governor + CPU-miser [42] +

governor) Min[C,G) [ 21 [ Min(C,G) | 2] MinC,G) | 21| Min(C.G) | 2]
2MM 11.09 17.78 12.44 37.61% 10.83% 17.65 11.51 37.14% 3.60%
3MM 10.81 13.73 12.03 21.31% 10.19% 13.70 11.81 21.11% 8.51%
ATAX 12.09 12.33 12.85 1.93% 5.87% 11.85 12.97 -2.04% 6.76%
BICG 9.40 9.71 10.75 3.17% 12.48% 9.43 12.65 0.29% 25.63%
GEMM 11.39 12.69 11.35 10.22% -0.42% 12.55 11.53 9.19% 1.21%
GESUMMV 22.23 20.86 24.99 -6.58% 11.05% 22.61 22.95 1.69% 3.11%
MVT 9.58 11.48 10.86 16.58% 11.78% 11.42 10.18 16.11% 5.90%
SYR2K 25.54 33.76 32.35 24.34% 21.06% 33.50 23.19 23.75% -10.16%
SYRK 23.90 31.95 27.23 25.19% 12.24% 32.67 25.00 26.85% 4.41%
Average - - - 14.86 % 10.56 % - - 14.90 % 5.44%

TABLE VII: Image classification case study evaluation.

Configuration Normalized Execution Time Avg. CPU Temp Avg. GPU Temp % CPU Throttling
Performance Interactive | Performance | Interactive | Performance | Interactive | Performance | Interactive
GPU-acc 1 1.02 69.16 °C 67.80 °C 62.40 °C 59.86 °C 22.29 % 18.44 %
CPU 3.9 3.97 72.65 °C 72.85 °C 60.69 °C 61.04 °C 77.51 % 79.55 %
[2] 1.05 1.06 71.68 °C 72.10 °C 63.50 °C 63.29 °C 52.39 % 56.07 %
OPTiC 0.95 - 63.56 °C - 54.77 °C - 0 -

TABLE VIII: Tiny YOLOV3 case study evaluation.

Configuration Normalized Execution Time Avg. CPU Temp Avg. GPU Temp % CPU Throttling
Performance Interactive | Performance | Interactive | Performance | Interactive | Performance | Interactive
GPU-acc 1 1.01 65.09 °C 62.10 °C 59.61 °C 57.28 °C 0 0
CPU 5.3 5.53 70.97 °C 71.38 °C 61.52 °C 62.74 °C 32.8 % 42.88 %
[2] 1.10 1.12 68.33 °C 64.48 °C 60.79 °C 56.95 °C 12.32 % 7.57 %
OPTiC 0.93 - 53.15 °C - 47.67 °C - 0 -

configured to be at the highest CPU, GPU frequency with the
performance and interactive governor, while OPTiC runs at the
frequency selected by the framework without dynamic DVFS
(with performance governor only).

Tables VII and VIII show the end-to-end latency of the
entire applications including the sequential non-kernel com-
putations under different DVFS governors, the average CPU
and GPU temperature during the application execution and the
percentage of time CPU is at lower frequency due to thermal
throttling. The execution times reported are normalized to the
baseline (GPU-acc with performance governor), i.e., lower
value is better.

It can be clearly seen that OPTiC achieves performance
gain: 5-7% improvement in end-to-end latency compared to
GPU-only accelerated execution. Note that this performance
gain of OPTiC is measured on a real platform with applica-
tions that have substantial sequential code (which becomes
performance bottleneck with parallelization). Moreover, the
performance gains are achieved w.r.t. a highly-optimized GPU-
accelerated version. More importantly, OPTiC significantly
lowers the average core temperature by 4 —9°C and in addition
completely eliminates thermal throttling. Such temperature
control exhibits the potential of OPTiC in extending system
lifetime without compromising performance with the help of
accelerators and co-execution.

A slight degradation (< 2%) in performance can be ob-
served for the execution with the inferactive governor, compar-
ing to the performance governor. This is because for CPU-only
execution with high utilization rates, the interactive DVFS
governor does not get a chance to lower the frequency and

hence temperature/thermal throttling. However, for the GPU-
accelerated executions, the inferactive governor reduces the
CPU frequency during low CPU utilization, resulting in an
average of 2°C reduction in the CPU temperature. Note that
the CPU gets throttled even in GPU-acc configuration (though
much lower than CPU-only execution) for the image classi-
fication application as the non-convolutional layers executing
on CPU are quite power-hungry

H. Limitation

As a static analysis framework, OPTiC estimates through
profiling the performance of a computational kernel for CPU-
GPU co-execution on platforms with stringent thermal con-
straints. For unknown kernels, OPTiC requires two profile runs
(one execution on CPU and one execution on GPU) to identify
the optimal settings. It is well suited for applications like
Polybench as we demonstrated, for which the execution char-
acteristics of the OpenCL kernels can be fully captured by the
profile runs, enabling an accurate estimation of the run-time
behaviour. However, for applications that present variability at
runtime depending on the input, careful profiling needs to be
performed to capture the dominant execution characteristics in
order for OPTiC to locate the optimal execution configuration
at compile time.

VI. CONCLUSION

Partitioned co-execution of computation kernels on CPU-
GPU systems can significantly reduce the execution time.
Identifying the optimal configuration that results in minimum
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execution time is quite challenging due to thermal throttling
and memory contention. We present OPTiC, a framework
that predicts the co-execution performance through analytical
modeling of CPU and GPU performance, power, impact of
thermal throttling and memory contention. OPTIiC achieves
an average 13.68% performance gain over existing schemes
attempting co-execution without thermal considerations.
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