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AbstractConvolutional Neural Networks (CNNs) based inference is a quintessential
component in mobile machine learning applications. Privacy and real-time response
requirements require applications to perform inference on the mobile (edge) devices
themselves. Heterogeneous Multi-Processor System-on-Chips (HMPSoCs) within
the edge devices enable high-throughput, low-latency edge inference. An HMPSoC
contains several processing cores, each capable of independently performing CNN
inference. However, to meet stringent performance requirements, an application
must simultaneously involve all core types in inferencing. A software-based CNN
inference pipeline design allows for synergistic engagement of all the cores in an
HMPSoC for a high-throughput and low-latency CNN inference. In this chapter,
we present two different CNN inference pipeline designs. The first design creates
a pipeline between two different types of CPU cores. The second design extends
the pipeline from CPU to GPU. We also provide a future perspective and research
directions on the subject.
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1 Introduction

Pattern recognition plays an important role in several edge applications such as
image and speech processing. Application developers commonly use Deep Neural
Networks such as Convolution Neural Networks (CNNs) in their applications [1].
However, CNNs are resource-intensive solutions that require significant computa-
tional power. Heterogeneous Multi-Processor System on Chips (HMPSoCs) [21]
powering mobile devices can potentially meet this challenge. However, the appli-
cations must engage all the compute elements within such systems to provide an
adequate level of performance.
HMPSoCs contain several heterogeneous processing cores with different power-

performance characteristics, such as general-purpose CPU cores of varying com-
plexity, GPUs, DSPs, non-programmable accelerators, and reconfigurable comput-
ing elements. The heterogeneity enables compute-intensive application kernels to
execute on the appropriate processing core best suited for that kernel [21]. This
execution results in substantially improved performance and energy efficiency [2].
Executing the CNN inference on one of these processing core types is straightfor-
ward. However, such execution may not meet the throughput or latency requirements
except for Neural Processing Units (NPU). However, many HMPSoCs do not include
NPUs. Therefore, we need to harness the power of the HMPSoC by engaging all
the compute elements during inference to achieve the power-performance goals. It
is non-trivial to execute CNNs on multiple processing core types in parallel, all
performing a part of the inference.
Direct execution of CNN workload (each layer) on different types of processing

cores simultaneously results in a reduction of performance (throughput) instead of
improvement because of the additional communication overhead involved [4] in such
execution. We demonstrate this with CNN inference execution on Amlogic A311D
HMPSoCwithinKhadas Vim 3 embedded platform [3], which contains two different
types of CPU cores, Big and Small. Figure 1 shows how throughput changes when
wemove from engaging one CPU core type to engaging simultaneously two different
CPU core types. We begin by executing the inference on one Big core and report
the throughput. We then perform multi-threaded inference by creating two threads
and then pinning them on two different Big cores. The performance (throughput)
for the inference continues to increase as long as we include more Big CPU cores
for inferencing. However, the performance degrades once we create more threads
and try to include both Big and Small CPU cores in inferencing simultaneously
using Heterogeneous Multi-Processing (HMP). Improving neural network inference
performance by directly using multi-threaded HMP within each layer remains an
open research problem.
The pipelined designs presented in this chapter highlight the software challenges

and opportunities in harnessing the computation power offered by diverse com-
ponents within a heterogeneous multiprocessor systems-on-chip device in mobile
and edge computing for deep neural network inference. The clear advantage of co-
execution is significantly improved inference throughput that can be as high as 2x
compared to single component execution. But there are many challenges in reaching
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Fig. 1 Throughput of different CNNs with a different number of heterogeneous cores (B: Big core,
s: Small core) with direct parallelization of CNN workloads (layers).
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Fig. 2 An abstract block diagram showing high-throughput (low-latency) pipelined inferencing of
an input data stream on HMPSoC using a two-component two-stage pipeline. The number of stages
can be more than the number of components if there are multiple cores within a component.
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Fig. 3 An abstract block diagram showing high-throughput (low-latency) pipelined inferencing of
an input data stream on HMPSoC using a three-component three-stage pipeline. The number of
stages can be more than the number of components if there are multiple cores within a component.

this high throughput. A simple approach is to deploy all the on-chip compute re-
sources by allocating each incoming input (e.g., an image) to the available compute
component for inference. This approach can provide close to superior throughput.
Still, it has several drawbacks: much longer latency (defined by the slowest on-chip
component) and high jitter with uneven inference time per input depending on the
compute resource allocated to it.
Parallel execution of different CNNs layers across different processor core types

through layer-level software pipelining presents a way out of this problem. In this
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approach, we do not parallelize within a layer and hence do not incur the high
cost of communication overhead. Layer-level software pipelining entails far less
communication overhead than direct parallelization of layers of a CNN across the
different core types. We also do not have the bottleneck of the slowest compute
component in terms of high latency or jitter. Nonetheless, it still comes at some
latency cost. We can balance the load across different stages of the software pipeline
by assigning a different number of layers to each pipeline stage. The balancing
maximizes throughput while ensuring the minimum penalty to the latency.
In this chapter, we describe two different pipelined designs for CNN inference.

The first design creates a software pipeline between two different processor core
types within an asymmetric multi-core CPU (big and little) now commonplace in
HMPSoCs to create a two-component pipeline, as shown in Figure 2. This design,
however, cannot be extended beyond the asymmetric multi-core. Therefore, we then
describe a completely different design that creates a software pipeline between the
two asymmetric multi-core CPU core types and a GPU to create a three-component
pipeline, as shown in Figure 3.
The challenge with these software pipelines is the software and systems design to

support inference across different core types, such as ARM big.LITTLE CPU and
GPU. The current commercial CNN inference frameworks and software libraries
are designed and highly optimized for single-component inference through multi-
threading. Extending them in a straightforward fashion to execute different pipeline
stages on different components leads to high overhead due to the replication of neural
network weights in each thread. For ARM big.LITTLE CPU, we take advantage
of the fact that the big and little cores share the same instruction-set architecture
and hence can execute the same software binary. Therefore, instead of assigning a
different thread for each pipeline stage, we migrate the thread from one pipeline
stage to another, carrying all the data. This leads to less overhead and more efficient
implementation. We also share all the weights and biases across different threads
working on different input data frames. For co-execution across CPU and GPU, the
software binaries differ due to different instruction-set architectures and require a
different strategy. In this case, we partition the compute graph corresponding to
the inference into multiple components, one corresponding to each pipeline stage.
The data transfer between two pipeline stages that belong to two different compute
elements is carefully orchestrated with an explicit buffer and transformation of the
data to satisfy the requirement of the corresponding compute elements.
We design, implement and experimentally evaluate the different CNN inference

co-execution approaches on a contemporary heterogeneous multiprocessor system-
on-chip with asymmetric multi-core, GPU, and NPU. This allows us to compare
the different design choices on a single hardware platform and analyze their relative
benefits and shortcomings. To the best of our knowledge, this is the first time that these
different techniques have been studied on a common heterogeneous multiprocessor
systems-on-chip architecture.
Finally, we describe the challenges in extending the design to create a multi-

component pipeline by further including the NPU.
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Fig. 4 An abstract block diagram of heterogeneous multi-processor system-on-chip (HMSoC) with
an asymmetric multi-core CPU, a multi-core GPU, and an NPU along with other components. Such
HMPSoCs are now ubiquitous in edge (mobile) devices.

2 Background

2.1 Heterogeneous Multi-Processor System on Chips

Figure 4 shows an abstract block diagram of a heterogeneousmulti-processor system-
on-chip (HMPSoC) now commonplace in edge (mobile) devices. HMPSoC contains
several different processor core types that communicate among themselves and
with the Dynamic Random Access Memory (DRAM) based main memory using
a Cache Coherent Interconnect (CCI) bus. It contains an asymmetric multi-core
CPU [10, 11] which contains a Big and a Small CPU cluster. The Big CPU cluster
is a cluster of high-performance, high-power cores. The Small CPU cluster is a
cluster of low-performance, low-power cores. The power-performance envelope of
the cores in Big CPU and Small CPU can sometimes overlap. All the CPU cores
have their private L1 data and instruction cache. The cores within a CPU cluster
share an L2 cache. The L2 cache in the Big CPU is bigger than the L2 cache in
the Small CPU. The cores within a cluster communicate using an intra-cluster bus
called Snoop Control Unit (SCU). One can also expect various many-cores to replace
multi-cores in HMPSoCs [43]. Finally, it is also possible to design reconfigurable
multi-core architectures that combine multiple small cores into a big core at runtime,
depending on the workload [35–37].
An HMPSoC also contains a multi-core GPU. GPUs are essential for mobile

games [8, 9]. However, they can also run other generic parallel processing work-
loads such as those commonly found in CNNs using frameworks like OpenCL and
CUDA [12]. GPU cores also share a common L2 cache. GPU cores are generally
more power-efficient than CPU cores. However, they cannot work in isolation and
must rely on the necessary support from the CPU cores.
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The HMPSoCs also increasingly include hardware accelerators called Neural
Processing Units (NPUs) for executing deep neural network workloads. NPUs are
generally Application-Specific Integrated Circuits (ASICs) with a vendor-specific
design. These ASIC designs make them significantly more power-efficient than even
the GPUs. However, the efficiency comes at the cost of flexibility, wherein CNNs
must be compatible with the NPU design to work. Re-programmable NPUs based on
reconfigurable accelerators such as Coarse-GrainedReconfigurableArrays (CGRAs)
architectures [13–19] and Scratch-Pad Memories (SPM) [20] may address this prob-
lem in the future. Accelerators also require support from the CPU to work with
CNNs and therefore cannot operate independently.

2.2 Convolution Neural Networks

Convolution Neural Networks are neural networks that take inspiration from nature,
particularly the process of stimuli response in the visual cortex within the eyes of
living beings. Similar to the eyes and ears in the real world, the primary purpose
of CNNs is to perform some form of pattern recognition. Therefore, CNNs find use
in several computational problems that require pattern recognition, such as image
classification, speech recognition, and natural language processing.
CNNs are regularized versions of common machine learning constructs called

Multi-Layer Perceptrons (MLP). They primarily employ a mathematical construct
called convolution that gives them their namesake. Convolution is computationally
similar to general-purpose matrix multiplication and is easy to parallelize.
A CNN typically contains three different layer sets – an input layer, multiple

hidden layers, and an output layer. Figure 5 shows an architecture of a popular
image classification CNN called AlexNet as an example. Input layers take in the
input that requires recognition. Hidden layers perform the convolutions on the input
given to them. Input and output are not human-comprehensible as an activation
function (commonly ReLU), and final convolution masks them. Convolution layers
within the hidden layers primarily compute the dot product (generally Frobenius
inner product) of convolution kernel(s) with the layer’s input. The convolution kernel
matrix slides along the input matrix to generate a feature map. The feature map is
the input for the next layer. Hidden layers also involve several other layer types such
as pooling, fully-connected, and normalization layers working with the output from
convolution layers. Pooling layers reduce data dimensions by combining the output
of clusters of neurons. Fully connected layers connect all its neurons with all other
neurons in the next layer, similar to layers in traditional MLPs. In CNNs, neurons
receive input data from only a part of previous layers. This part defines the receptive
field of the neuron. A neuron then computes its output by applying its function to
the input it receives from its receptive field in the previous layer. Besides the input
data, the neuron function also takes in a set of static input vectors called weights and
biases for computation.
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Fig. 5 An abstract block diagram of CNN architecture for a popular image classification CNN
called AlexNet.

Deployment of CNNs is a two-step process. In the first steps, we train a CNN
primarily on a set of labeled input data wherein we decide upon the best weights
and biases for the neurons in the neural network. In the second step, we place the
trained neural network on the device requiring CNN inferencing. Training CNNs is a
computationally expensive process that requires a significant amount of processing
and storage resources. This level of resources is generally beyond the means of edge
devices. Therefore, the training process happens primarily in cloud data centers
or other high-performance computing machines. Edge devices are computationally
well suited to perform inference. In fact, due to privacy and performance (latency)
reasons, users prefer the inference to happen on the edge device itself. Edge inference
also brings additional benefits, such as operating offline.
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Fig. 6 An abstract block diagram showing the placement of ARM-CL in the entire CNN inference
ecosystem for ARM-based HMPSoCs.

2.3 ARM Compute Library (ARM-CL)

ARMCompute Library (ARM-CL) is a library of highly optimized low-levelmachine
learning functions forARMCortex-ACPUcores (ARM v7 and v8 ISA) andMaliGPU
cores (Midgard and Bifrost architecture). It uses Neon (or OpenCL) for accelerating
CNN inference on the CPU (or GPU) cores. ARM-CL is written primarily in C++
14. ARM-CL comes as a part of the open-source ARM NN Software Development
Kit (SDK), as shown in Figure 6.

ARM NN is an inference engine that bridges the gap between existing Neural
Network (NN) frameworks and the underlying IPs. It supports several popular NN
frameworks such as TfLite, ONNX, PyTorch, and Caffe. ARM NN also supports
ARM Ethos NPUs out-of-the-box and keeps the option of supporting third-party
NPUs, and other IPs open. ARM NN interfaces with Google Android NN using
the Hardware Abstraction Layer (HAL) driver to target the underlying ARM-based
HMPSoCs. ARM NN (or ARM-CL) has the highest known inference performance for
ARM-based HMPSoCs against other generic vendor-agnostic equivalents [5].

3 Related Work

Heterogeneous computing emerged as a solution to balance computation energy
efficiency and performance in the dark silicon era [21]. The asymmetric multi-core
architecture includes a mixture of cores with different power-performance charac-
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terizations, such as general-purpose CPU, GPU, and special-purpose accelerators.
An evaluation of the CNN inference capabilities of these different cores appears
in [5]. Application developers can utilize these capabilities to determine CNN work-
load partition on processing cores. However, the synergistic orchestration of various
on-chip computing resources needs significant software support [22,23] to improve
performance and energy efficiency. There are different ways of partitioning CNN
workload on multiple processing cores to exploit task-level (pipeline) or data-level
parallelism during compile time or run time.
Existing state-of-the-art machine learning inference libraries, like ARM-CL [24],

Tengine [25], and NCNN [26], partition the CNN models at the kernel level within a
layer across the cores of the same type on HMPSoC. However, this strategy is unsuit-
able for heterogeneous component co-execution because of the high inter-component
communication overhead. The authors of [34] propose a pipeline-based scheduler
to reduce the delay due to feature map data movement between ARM big.LITTLE
CPU processing cores. The authors iteratively bi-partition the model-based Directed
Acyclic Graph (DAG) to multiple parts with nearly the same computation time to
match the latencies of the pipeline stages. This simple implementation achieves
73% greater CNN inference throughput than the traditional approach utilizing only
data-level parallelism. Similarly, the authors of [38] present a hardware manage-
ment technique, NeuroPipe, to pipeline consecutive neural network layers on the
host and accelerators to maximize task-level parallelism. NeuroPipe obtains greater
hardware utilization and achieves energy-efficient acceleration than the conventional
host-device execution mode.
On CPUs-GPUs MPSoCs, the authors of [28] formulate an execution pipeline

by distributing CNN layers on CPUs to leverage task-level parallelism among the
layers. Then to aid the CPUs, the GPUs are used to accelerate part of the computation
within layers to improve the inference speed. In this case, the authors utilize both
the task-level and data-level parallelism of CNN models on HMPSoCs. However,
the performance degradation due to the communication overhead between CPUs
and GPUs for the same layer computation is unavoidable. The authors of [29]
extend this work and utilize Genetic Algorithms to find the Pareto-optimal mapping
of CNN workloads with appropriate voltage and frequency scaling configuration.
The mapping reduces the power consumption further. To maximize the throughput,
authors of [30] pipeline the inference network at layer level using GPU and NPUs
and utilize multi-stream to improve parallelism within these accelerators.
The above works leverage only profiling data during compile time to schedule

the CNN implementations on heterogeneous processing cores. Some research also
adopts runtime strategies to help determine workload mapping configuration on
HMPSoCs, such as work-stealing [39] and online tuning [32]. The work in [39]
exploits a multi-threaded pipeline at layer granularity to simultaneously utilize all
on-chip resources of embedded FPGA-based HMPSoCs and relies heavily on high-
level synthesis [40, 41]. The authors employ a work-stealing scheduler to balance
the workload of different processing units at run time. The authors of [32] propose
an online tuning algorithm Pipe-search that generates near-optimal pipeline con-
figuration on HMPSoCs, based on compile-time hints and real-time performance
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Table 1 Specifications summary for the experimental setup used in this work.
Component Details
Board Khadas VIM3 Pro
SoC Amlogic A311D@ 12 nm
CPU ARM big.Little

big CPU Quad-Core ARM Cortex-A73@ 2.2GHz
Little CPU Dual-Core ARM Cortex-A53@ 1.8GHz
GPU ARM Mali G52@ 0.8GHz
NPU VeriSilicon IP @ 5 TOPS
Memory 4GB LPDDR4
Storage 32GB EMMC 5.1
OS Android Pie v9.0
Kernel Linux v4.9

CNN Framework ARM-CL v21.02

CNN Pretrained model

Python Script

Extracted weights and biases of
CNN layers (in Numpy format)

ARM-CL API
(Load parameters at setup time)

CNN Architecture

ARM-CL API

CNN Defined in ARM-CL

Pipeline ConfigurationPipe-it/Pipe-All

Partition or duplicate CNN to
setup and run them in pipeline

Pipeline Stage1

Big CPU

NEON API

Pipeline Stage2

Little CPU

NEON API

Pipeline Stage3

GPU

OpenCL API

Fig. 7 The overview of tool flow for pipeline CNN inference using Pipe-It and Pipe-All.

measurements. With the help of task moldability supported by XiTAO runtime [27],
Pipe-search keeps tuning adaptive pipelines to minimize the execution time of the
slowest stage.

4 Experimental Setup

We use the Khadas VIM3 PRO board for our experiments. Table 1 summarizes the
relevant details of the board. Khadas VIM3 PRO board contains an Amlogic A311D
HMPSoC fabricated on a 12 nm technology node. It has an ARM big.Little; the big
CPU cluster contains quad-core ARM Cortex-A73 high-performance, high-power
general-purpose processing cores with a peak frequency of 2.2GHz, and the Lit-
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Fig. 8 An abstract block diagram showing high-throughput high-latency parallel inferencing of
input stream on HMPSoC by simultaneous engagement of multiple components.

tle CPU cluster contains dual-core ARM Cortex-A53 low-performance, low-power
general-purpose processing cores with a peak frequency of 1.8GHz. It also con-
tains a dual-core ARM Mali G52 MP4 GPU of BiFrost design with four execution
units running at their peak frequency of 800MHz. There is also a VeriSilicon NPU
capable of INT8 quantized CNN inference at the rate of 5 Tera Operations per
Second (TOPS) (up to 1536Multiply-Accumulate (MAC) operations). A 4GB Low-
Power Double Data Rate 4 (LPDDR4) memory acts as the main memory. A 32GB
embedded MultiMediaCard (eMMC) 5.1 drive provides the storage. The board runs
Android Pie v9.0 OS with Linux kernel v4.9. It runs ARM-CL v21.02 to support
on-chip CNN inference. Figure 7 shows the tool flow for running pipeline inference
using ARM-CL. CNN architecture is defined (layer by layer) in ARM-CL using the
ARM-CL APIs. Pipe-All and Pipe-it are integrated into ARM-CL and partition or
create multiple instances of the defined CNN, respectively. Then they create mul-
tiple Graphs/SubGraphs instead of one Graph equivalent to the whole CNN corre-
sponding to the different pipeline stages. Next, they set up these Graphs/SubGraphs
and run them simultaneously in a pipelined fashion. After the creation of each
graph/subgraph, ARM-CL loads weights and biases of each layer (extracted from
the pre-trained CNN model) at setup time. For the CPU cores, NEON API is used
to take advantage of the Arm Neon SIMD architecture extension, while for the GPU
cores, OpenCL API is used.

5 Non-Pipelined Parallel Inference

We first present a non-pipelined, high-throughput inferencing approach using a very
basic design wherein all the components in the HMPSoC perform parallel CNN
inference independently. However, this approach suffers from high latency. Figure 8
shows such a design using an abstract block diagram. The authors of [5] were the
first to propose and evaluate such a design.
The design consists of a shared arrival queue shared acrossHMPSoC components.

All frames for inference get placed in this queue on arrival. All components of the
HMPSoC – Big CPU cluster, Small CPU cluster, GPU, and NPU – pull a frame for
inference from the shared queue. This approach results in minimal inter-component
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Fig. 9 Throughput of different CNNswith non-pipelined parallel CNN inference on all components
simultaneously (Parallel) compared to theoretical addition of components’ inference throughput
(Theoretical).
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Fig. 10 Latencies of different CNNs with non-pipelined parallel CNN inference on all components
simultaneously. The Little CPU cluster being the slowest component determines the latency.

communication. The performance is almost equivalent to the sum of all components
inferencing in parallel in isolation. Figure 9 shows the throughput with a non-
pipeline parallel inference design and the contribution of the individual components.
One can expect slight performance degradation from the theoretical sum because
of shared resources such as CCI bus and DRAM controllers. The figure shows that
parallel inference throughput, on average, is 21% less than the theoretical sum of all
components inference throughput.
The downside of this design is that the latency of the slowest inferencing com-

ponent on the HMPSoC becomes the latency of the non-pipelined parallel inference
design. The Small CPU cluster is the slowest inference component in the HMPSoC.
Therefore, the latency of the Small CPU cluster defines the latency of the non-
pipelined parallel inference design. Figure 10 shows the latency of the non-pipelined
parallel inference design on our setup. The non-pipelined parallel inference design
cannot engage an HMPSoC component in its design if the latency requirements for
inference are less than the latency of that component. It is also not suitable for appli-
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Big CPU
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Core0
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Core1
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Fig. 11 An abstract diagram showing how the two-component pipeline of Pipe-it works in a three-
stage configuration on an asymmetric multi-core.

cations that are jitter sensitive. Jitter-sensitive applications cannot tolerate different
frames having inference with significantly different latencies.
Pipelined inference designs address shortcomings of the non-pipelined parallel

inference design but are significantly more involved in implementation. They bring
the same benefits as the non-pipelined parallel inference design to the throughput
but at a much lower latency.

6 Pipelined CNN Inference on Asymmetric Multi-Core

We first present the pipelined design of CNN inference on asymmetric multi-cores
calledPipe-it that we originally proposed in [4].Pipe-it uses both Small andBigCPU
clusters in an asymmetric multi-core for inferencing using a software pipeline. The
design of Pipe-it is implemented within the ARM-CL framework. Figure 1 shows
processing a given layer directly on Big and Small CPU clusters simultaneously
is detrimental to the CNN inference performance (both latency and throughput).
Pipe-it, therefore, chooses to split CNN inferencing processing at the granularity of
layers.
Figure 11 shows the design behindPipe-it using an abstract block diagram.Pipe-it

splits the available cores into different stages. Each stage is homogeneous in terms
of the core types. Pipe-it assigns a series of consecutive layers to each stage. Each
frame gets processed after passing through all the stages in a given order. Pipe-it
process multiple frames in parallel to boost throughput. The processing of frames is
synchronously time-shifted to be not in the same stage simultaneously.
It primarily builds upon CPU thread migrations for implementing the pipeline.

Even though Big and Small CPU clusters in an asymmetric multi-core CPU have
significantly different power-performance envelopes, they share the same Instruction
Set Architecture (ISA). This commonality allows the threads from the same binary to
execute on cores of both Big and SmallCPU clusters. One can also freely migrate the
threads between the Big and Small CPU cluster mid-execution with minimal penalty
at run-time [10]. ARM-CL, by default, allows the workload for CNN inference to
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be parallelized using multi-threading. We can define the number of threads to split
the CNN inference workload for a given frame. Pipe-it builds upon the in-built
multi-threading constructs of ARM-CL for its implementation.

ARM-CL, by default, allows inference of only one frame at a given time. One
can run multiple binaries in ARM-CL in parallel for inferencing various frames.
However, the systemduplicates the common denominators (weight and biases) across
binaries in such execution. This duplication leads to the wastage of precious memory
resources. Therefore, Pipe-it extends ARM-CL to perform inference of multiple
frames in parallel in code. Pipe-it then performs inference of multiple frames using
the same binary wherein the parallel inference processes share the read-only weights
and biases. Input and output data structures are still separate for each inference.

ARM-CL does not have a construct to identify when a particular layer of CNN
inference starts or finishes execution. Therefore, Pipe-it adds hooks to the ARM-CL,
which get triggered when each layer in a CNN starts execution. It identifies when
ARM-CL threads related to CNN inference of a given frame start processing a frame.
It then migrates (pins) the thread to Big and SmallCPU clusters, depending on which
core type it wants to execute the layer in the pipeline. Since the workload for a CNN
inference is independent of input, Pipe-All calculates these decisions statically at
design time.
Two-component inference with Pipe-it does not necessarily mean a two-stage

pipeline. Pipe-it allows cores in a CPU cluster to be sub-divided into multiple stages
up to the granularity of an individual core. Therefore, a quad-core CPU cluster can
have one pipeline stage of four cores or four pipeline stages of one core each or any
other combination. Pipe-it uses a sophisticated Design Space Exploration (DSE)
algorithm to figure out the number of stages in the CNN inference pipeline, their
size (the number of cores), and the CNN layers they execute. Pipe-it stipulates that
the layers assigned to a stage are consecutive. Pipe-it also proposes a regression-
based performance model for layers of CNN on different CPU core types to guide the
DSE. Figure 12 shows the overall design of pipe-it to find the most efficient pipeline
configuration. First, it starts with one core for each stage of the pipeline, and the
workload split module uses a heuristic to balance the workload among stages of the
pipeline. Then it explores if merging two stages could improve the performance; if
yes, it merges them and initiates the workload splitting module; if not, the current
configuration is returned as the most efficient one for the pipeline. Readers can refer
to [4] for more details on the DSE that maximizes CNN inference throughput with
minimal penalty to latency.
Figure 13 shows the throughput of Pipe-it with different CNNs. It compares the

throughput of Pipe-it to the CNN inference of the best single-component limited
to the asymmetric multi-core CPU and parallel execution on multi-core CPUs. The
figure shows that Pipe-It can achieve 16% higher throughput than the best single
component on average and is almost the same as parallel execution of multi-core
CPUs for entirely different frames. The small CPU cluster in the SoC used for
our experiments has two cores compared to the Big CPU cluster, which has four
cores. Hence, adding the small CPU cluster increases the throughput by just 16%
compared to inference on the Big CPU cluster. We note that in the original work [4],
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Fig. 12 Pipe-it design flow for finding the most efficient pipeline configuration and workload
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Fig. 13 Throughput of different CNNs with pipelined inference using Pipe-it compared to best
single component CNN inference and parallel CNN inference on asymmetric multi-core.
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Fig. 14 Latency of different CNNs with pipelined inference using Pipe-it compared to best single
component CNN inference and parallel CNN inference on asymmetric multi-core.

we conducted the experiments on an SoC with four big cores and four small cores,
and hence Pipe-It increased inference throughput by 39% compared to the best
single-component throughput on average. Figure 14 shows the latency of Pipe-It
with different CNNs and compares it with the latency of the single best component
inference and the parallel inference on components. The figure shows Pipe-It has
67% higher latency than the best single component on average, while it has 62%
lower latency than parallel inference on components on average. This is because
the slowest component, the small CPU cluster, determines the latency of parallel
inference.
In other words, Pipe-it strikes a balance between throughput and latency. Its

throughput is closer to the non-pipelined parallel implementation, which is almost
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the maximum throughput achievable by utilizing both the CPU clusters. On the other
hand, the latency is closer to the best CPU cluster’s latency than parallel inference
on components.

Open-Source: The source code for Pipe-it is publicly available at the following
link - https://github.com/Elliezza/CLCode/blob/master/multi_split

7 Pipelined CNN Inference on Asymmetric Multi-Core and GPU

The next natural step is to extend the CNN inference software pipeline from asym-
metric multi-core to the embedded GPU in HMPSoCs. However, the design of
Pipe-it relies on migrating CPU threads between Small and Big CPU clusters of an
asymmetric multi-core to achieve the software pipeline. It is infeasible to migrate
CPU threads from a CPU to GPU. Therefore, it is impossible to extend the Pipe-it
design to create a CPU-GPU pipeline.
We now present a new design called Pipe-All to combine Small and Big CPU

clusters with GPU in a unified three-component pipeline, originally proposed in [6].
The design of Pipe-All differs significantly from Pipe-it even though they share the
same end goal. Pipe-All also works on top of ARM-CL and uses the extended version
of ARM-CL that supports CNN inference of multiple frames in parallel.

ARM-CL converts a given neural network architecture into an ARM-CL graph.
The graph consists of three main node types – Input Node, Main Node, and Output
Node. Input Node corresponds to the input layer of the CNN and processes the input
image. Main Node corresponds to processing layers of the CNN and clubs together
several layers such as convolution, pooling, and fully-connected layers into one.Main
Node takes in weights and biases as input. Output Node corresponds to the output
layer of the CNN and provides a classification for the input image. Figure 15 shows
the ARM-CL graph corresponding to the AlexNet CNN architecture in Figure 5.

Pipe-All introduces the concept of sub-graph into ARM-CL. Sub-graph contains
two new types of nodes called Transfer and Receiver Node besides the Input, Main,
and Output Nodes. A sub-graph is a part of the ARM-CL graph that connects with
other sub-graphs using a synchronized data buffer. The Transfer Node transfers the
data to the succeeding sub-graph, whereas the Receiver Node receives the data from
the preceding sub-graph. Sub-graphs dividing the unified ARM-CL graph represent
the stages of the software pipeline that execute parts of the graph in unison. Sub-
graphs can execute either on the CPU or GPU, and the most efficient component for
each sub-graph can be different [42].Pipe-All invokes CPU andGPU implementation
of the sub-graphs depending upon where they need to execute. Pipe-All provides the
APIs for the users to define the number of sub-graphs and their size. APIs also allow
for their placement on different components of the HMPSoC.
Figure 16 shows the ARM-CL graph divided into three sub-graphs that Pipe-All

uses to create a three-stage CNN inference pipeline. Pipe-All can support an N-
Stage pipeline by creating N sub-graphs. It uses internal ARM-CL multi-threading
constructs to parallelize processing within a component when necessary. A Transfer
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Fig. 15 An abstract block diagram of an ARM-CL graph for AlexNet CNN.

Node performs no data transformation when Pipe-All places two connecting sub-
graphs on cores that use the same ISA. However, the Transfer Node makes the data
compatible with the Receiver Node when Pipe-All places two connecting sub-graphs
on cores that use different ISAs.
Figure 17 shows the flow designed to find the most efficient CNN partitioning

between pipeline stages and mapping these partitions to processing elements, in-
cluding GPU and CPU clusters. In Pipe-All, the pipeline configuration is limited to
considering each component as one pipeline stage. The reason is that the increas-
ing number of pipeline stages increases the inference’s latency because each stage’s
processing capacity decreases, and the number(overhead) of transactions increases.
Pipe-All uses grid search to find the most efficient configuration. For this purpose, it
explores all possible partitioning of the workload for each mapping of the pipeline
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Fig. 16 An abstract block diagram of an ARM-CL graph for AlexNet CNN divided into three sub-
graphs by Pipe-All to create a three-stage three-component pipeline.

stages to the processing elements. It evaluates each design by running inference with
that configuration and measuring the performance on the real platform. Readers
can refer to [6] for more details about the optimizations to maximize throughput in
Pipe-All.
Figure 18 shows the throughput of Pipe-All with different CNNs. It puts the

throughput of Pipe-All in context with the throughput of the best single-component
inference limited to the asymmetric multi-core CPU and GPU. The figure shows that
Pipe-All can achieve 73% higher throughput on average. Similarly, Figure 19 shows
the latency of Pipe-All with different CNNs and puts it in the context with the best
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Fig. 18 Throughput of different CNNs with pipelined inference using Pipe-All compared to the
best single-component CNN inference on asymmetric multi-core and GPU.
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Fig. 19 Latency of different CNNswith pipelined inference usingPipe-All compared to best single-
component CNN inference on asymmetric multi-core and GPU.

single-component inference. The figure shows that Pipe-All latency is 62% higher
on average.

Open-Source: The source code for Pipe-All is publicly available at the following
link - https://github.com/Ehsan-aghapour/ARMCL-pipe-all
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Fig. 20 Throughput of different HMPSoC components with different CNNs.

8 Pipelined CNN Inference and NPU

The final step to complete the software pipeline would be to include the NPU in
the pipeline. To the best of our knowledge, no such pipeline design exists. However,
ARM-CL does not support execution on any NPU directly. Unlike CPU and GPU,
the use of NPU is also not standardized. NPU is available from multiple vendors.
Each vendor requires using their proprietary framework for converting a CNN into a
framework compatible with execution on their NPU. This multi-framework environ-
ment makes any CPU-GPU-NPU pipeline challenging to port to different HMPSoCs.
Nevertheless, it remains technically feasible to create a CPU-GPU-NPU pipeline.
Figure 20 shows the throughput of NPU in the context of other HMPSoC com-

ponents – the Big CPU cluster, the Small CPU cluster, and the GPU. It indicates that
NPU has higher throughput than all other HMPSoC components. Still, there is scope
to significantly improve the throughput for some CNNs, such asMobileNet, by using
components other than NPU. Furthermore, NPU performs an INT8 quantized infer-
ence, whereas other components perform an unquantized inference. Therefore, the
pipeline designs in Sections 6 and 7 are still helpful when performing unquantized
inference for higher accuracy. Many low-end budget HMPSoCs also lack an NPU
wherein the pipelined designs we describe in this chapter are valuable.

9 Conclusion and Future Outlook

We present two different designs for pipelined CNN inference on HMPSoCs. The
first design, Pipe-it, creates a two-component software pipeline for CNN inference
between the Big and Small CPU clusters of an asymmetric multi-core CPU of
an HMPSoC. However, extending the Pipe-it’s design to include the GPU is not
feasible. Therefore, we present another design called Pipe-All. Pipe-All creates a
three-component software pipeline between CPU clusters of the asymmetric multi-
core CPU and the GPU of an HMPSoC. Finally, we present the challenges and
opportunities in extending the software pipeline to include the NPU.
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The heterogeneous multiprocessor system-on-chip provides a rich playground
for software innovations to embedded neural network inference. While the NPU
provides superior latency, throughput, and power for inference, it has limitations
regarding the supported models and computation kernels. In the rapidly changing
landscape of neural network models, it is imperative to utilize the general-purpose
compute resources such as asymmetric multi-core CPU and GPU prevalent across
all embedded systems and adequate to execute any workload. Thus, software co-
executing neural network inference across different on-chip compute components
will become increasingly important. This chapter presented static approaches where
the software pipeline and partitioning of the neural network model across various
computing components are determined a priori. As the networkmodels becomemore
complex and dynamic, a hybrid approach where the statically designed pipeline can
be adapted at runtime based on input will be an interesting research direction.

10 Acknowledgements

This research is partially supported by the National Research Foundation Singa-
pore under its Competitive Research Program Award NRF-CRP23-2019-0003 and
Singapore Ministry of Education Academic Research Fund T1 251RES1905.

References

1. LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
2. Prakash, A., Wang, S. andMitra, T., 2020. Mobile application processors: Techniques for soft-
ware power-performance optimization. IEEEConsumer ElectronicsMagazine, 9(4), pp.67-76.

3. Khadas VIM 3, https://www.khadas.com/vim3, 23 12 2011.
4. Wang, S., Ananthanarayanan, G., Zeng, Y., Goel, N., Pathania, A. and Mitra, T., 2019. High-
throughput CNN inference on embedded ARM Big. LITTLE multicore processors. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(10), pp.2254-
2267.

5. Wang, S., Pathania, A. and Mitra, T., 2020. Neural network inference on mobile socs. IEEE
Design & Test, 37(5), pp.50-57.

6. Aghapour, E., Pathania, A. and Ananthanarayanan, G., 2021. Integrated ARM big. Little-Mali
Pipeline for High-Throughput CNN Inference. TechRxiv preprint.

7. Salamin, S., Rapp, M., Pathania, A., Maity, A., Henkel, J., Mitra, T. and Amrouch, H., 2020.
Power-efficient heterogeneous many-core design with ncfet technology. IEEE Transactions on
Computers, 70(9), pp.1484-1497.

8. Pathania, A., Jiao, Q., Prakash, A. and Mitra, T., 2014, June. Integrated CPU-GPU power
management for 3D mobile games. In 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC) (pp. 1-6). IEEE.

9. Pathania, A., Irimiea, A.E., Prakash, A. and Mitra, T., 2015, June. Power-performance mod-
elling of mobile gaming workloads on heterogeneous MPSoCs. In Proceedings of the 52nd
Annual Design Automation Conference (pp. 1-6).

10. Somu Muthukaruppan, T., Pathania, A. and Mitra, T., 2014. Price theory based power man-
agement for heterogeneous multi-cores. ACM SIGPLAN Notices, 49(4), pp.161-176.



22 Ehsan Aghapour, Yujie Zhang, Anuj Pathania, and Tulika Mitra

11. Mitra, T., Muthukaruppan, T.S., Pathania, A., Pricopi, M., Venkataramani, V. and Vishin, S.,
2017. Power Management of Asymmetric Multi-Cores in the Dark Silicon Era. In The Dark
Side of Silicon (pp. 159-189). Springer, Cham.

12. Prakash, A., Wang, S., Irimiea, A. E. and Mitra, T. Energy-efficient execution of data-parallel
applications on heterogeneous mobile platforms. In 2015 33rd IEEE International Conference
on Computer Design (ICCD) (pp. 208-215).

13. Karunaratne, M., Mohite, A. K., Mitra, T., Peh, L. S. (2017, June). Hycube: A cgra with
reconfigurable single-cycle multi-hop interconnect. In Proceedings of the 54th Annual Design
Automation Conference 2017 (pp. 1-6).

14. Li, Z.,Wijerathne, D., Chen, X., Pathania, A. andMitra, T., 2021. Chordmap: Automatedmap-
ping of streaming applications onto CGRA. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems.

15. Wijerathne, D., Li, Z., Pathania, A., Mitra, T. and Thiele, L., 2021. Himap: Fast and scalable
high-quality mapping on CGRA via hierarchical abstraction. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.

16. Wijerathne, D., Li, Z., Karunarathne, M., Pathania, A. and Mitra, T., 2019. Cascade: High
throughput data streaming via decoupled access-execute cgra. ACM Transactions on Embed-
ded Computing Systems (TECS), 18(5s), pp.1-26.

17. Li, Z., Wu, D., Wijerathne, D., Mitra, T. (2022, April). LISA: Graph Neural Network based
Portable Mapping on Spatial Accelerators. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA) (pp. 444-459). IEEE.

18. Bandara, T. K., Wijerathne, D., Mitra, T., Peh, L. S. (2022, February). REVAMP: a systematic
framework for heterogeneousCGRA realization. In Proceedings of the 27thACMInternational
Conference onArchitectural Support for Programming Languages andOperating Systems (pp.
918-932).

19. Wijerathne, D., Li, Z., Bandara, T. K., Mitra, T. (2022, July). PANORAMA: Divide-and-
Conquer Approach for Mapping Complex Loop Kernels on CGRA. In Proceedings of the
59th Annual Design Automation Conference 2022

20. Venkataramani, V., Pathania, A. andMitra, T., 2020, March. Unified thread-and data-mapping
for multi-threaded multi-phase applications on spm many-cores. In 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE) (pp. 1496-1501). IEEE.

21. Mitra, T., 2015. Heterogeneousmulti-core architectures. Information andMedia Technologies,
10(3), pp.383-394.

22. Wang, S., Prakash,A. andMitra, T., 2018, July. Software support for heterogeneous computing.
In 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 756-762). IEEE.

23. Prakash, A., Wang, S. andMitra, T., 2020. Mobile application processors: Techniques for soft-
ware power-performance optimization. IEEEConsumer ElectronicsMagazine, 9(4), pp.67-76.

24. ARM. Arm Compute Library. Available online: https://developer.arm.com/ip-
products/processors/machine-learning/compute-library (accessed on 17 March 2022).

25. OAID. Tengine. Available online: https://github.com/OAID/Tengine (accessed on 17 March
2022).

26. Tencent. NCNN. Available online: https://github.com/Tencent/ncnn (accessed on 17 March
2022).

27. Xitao. https://github.com/CHART-Team/xitao. (accessed on 17 March 2022).
28. Minakova, S., Tang, E. and Stefanov, T., 2020, July. Combining task-and data-level parallelism
for high-throughput CNN inference on embedded CPUs-GPUs MPSoCs. In International
Conference on Embedded Computer Systems (pp. 18-35). Springer, Cham.

29. Tang, E., Minakova, S. and Stefanov, T., Energy-efficient and High-throughput CNN Infer-
ence on Embedded CPUs-GPUs MPSoCs. International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS).

30. Jeong, E., Kim, J., Tan, S., Lee, J. and Ha, S., 2021. Deep learning inference parallelization
on heterogeneous processors with tensorrt. IEEE Embedded Systems Letters.

31. Tang, E. and Stefanov, T., 2021, December. Low-memory and high-performance CNN infer-
ence on distributed systems at the edge. In Proceedings of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing Companion (pp. 1-8).



Pipelined CNN Inference on Heterogeneous Multi-Processor System-on-Chip 23

32. Soomro, P.N., Abduljabbar, M., Castrillon, J. and Pericàs, M., 2021, May. An online guided
tuning approach to run cnn pipelines on edge devices. In Proceedings of the 18th ACM
International Conference on Computing Frontiers (pp. 45-53).

33. Scrugli, M.A., Meloni, P., Sau, C. and Raffo, L., 2021. Runtime Adaptive IoMT Node on
Multi-Core Processor Platform. Electronics, 10(21), p.2572.

34. Wu, H.I., Guo, D.Y., Chin, H.H. and Tsay, R.S., 2020, August. A pipeline-based scheduler
for optimizing latency of convolution neural network inference over heterogeneous multicore
systems. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS) (pp. 46-49). IEEE.

35. Pricopi, M., Mitra, T. (2013). Task scheduling on adaptive multi-core. IEEE transactions on
Computers, 63(10), 2590-2603.

36. Pricopi, M., Mitra, T. (2012). Bahurupi: A polymorphic heterogeneous multi-core architec-
ture. ACM Transactions on Architecture and Code Optimization (TACO), 8(4), 1-21.

37. Mitra, T., Pricopi, M. (2017). U.S. Patent No. 9,690,620. Washington, DC: U.S. Patent and
Trademark Office.

38. Kim, B., Lee, S., Trivedi, A.R. and Song, W.J., 2020. Energy-efficient acceleration of deep
neural networks on realtime-constrained embedded edge devices. IEEE Access, 8, pp.216259-
216270.

39. Zhong, G., Dubey, A., Tan, C. and Mitra, T., 2019. Synergy: An hw/sw framework for
high throughput cnns on embedded heterogeneous soc. ACM Transactions on Embedded
Computing Systems (TECS), 18(2), pp.1-23.

40. Zhong, G., Prakash, A., Liang, Y., Mitra, T., Niar, S. (2016, June). Lin-analyzer: A high-level
performance analysis tool for FPGA-based accelerators. In 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC) (pp. 1-6). IEEE.

41. Zhong, G., Venkataramani, V., Liang, Y., Mitra, T., Niar, S. (2014, October). Design space
exploration of multiple loops on FPGAs using high level synthesis. In 2014 IEEE 32nd
international conference on computer design (ICCD) (pp. 456-463). IEEE.

42. E.Aghapour, D. Sapra, A. Pimentel andA. Pathania, "CPU-GPULayer-SwitchedLowLatency
CNN Inference," 2022 25th Euromicro Conference on Digital System Design (DSD), 2022.

43. Rapp, M., Pathania, A., Mitra, T. and Henkel, J., 2020. Neural network-based performance
prediction for task migration on s-nuca many-cores. IEEE Transactions on Computers, 70(10),
pp.1691-1704.


