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Abstract Memory accesses form an important source of timing unpredictabil-
ity. Timing analysis of real-time embedded software thus requires bounding
the time for memory accesses. Multiprocessing, a popular approach for per-
formance enhancement, opens up the opportunity for concurrent execution.
However due to contention for any shared memory by different processing
cores, memory access behavior becomes more unpredictable, and hence harder
to analyze. In this paper, we develop a timing analysis method for concurrent
software running on multi-cores with a shared instruction cache. Communica-
tion across tasks is by message passing. Our method progressively improves
the lifetime estimates of tasks that execute concurrently on multiple cores,
in order to estimate potential conflicts in the shared cache. Possible conflicts
arising from overlapping task lifetimes are accounted for in the hit-miss classi-
fication of accesses to the shared cache, to provide safe execution time bounds.
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We show that our method produces lower worst-case response time (WCRT)
estimates than existing shared-cache analysis on a real-world embedded ap-
plication. Furthermore, we also exploit instruction cache locking to improve
WCRT. By locking some beneficial memory blocks into L1 cache, the WCET
of the tasks and L2 cache conflicts are reduced, resulting in better WCRT. Ex-
periments demonstrate that significant WCRT reduction is achieved through
cache locking.

1 Introduction

Static analysis of programs to give guarantees about execution time is a diffi-
cult problem. For sequential programs, it involves finding the longest feasible
path in the program’s control flow graph while considering the timing effects
of the underlying processing element. For concurrent programs, we also need
to consider the time spent due to interaction and resource contention among
the program threads.

What makes static timing analysis difficult? Clearly it is the variation in
the execution time of a program due to different inputs, different interaction
patterns (for concurrent programs) and different micro-architectural states.
These variations manifest in different ways, one of the major variations being
the time for memory accesses. Due to the presence of caches in processing ele-
ments, a certain memory access may be cache hit or miss in different instances
of its execution. Moreover, if caches are shared across processing elements (as
in shared cache multi-cores), one program thread may have constructive or
destructive effect on another in terms of cache hits/misses. This makes the
timing analysis of concurrent programs running on shared-cache multi-cores a
challenging problem. We address this problem in our work.
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Fig. 1 A simple MSC and a mapping of its processes to cores.

Our system model consists of a concurrent program visualized as a graph,
each node of which is a Message Sequence Chart or MSC [5]. MSC is a mod-
eling notation that emphasizes the inter-process interaction, allowing us to
exploit its structure in our timing analysis. The individual processes in the
MSC appear as vertical lines. Interactions between the processes are shown
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as horizontal arrows across vertical lines. The computation blocks within a
process are shown as “tasks” on the vertical lines. Figure 1 shows a simple
MSC with five processes (Main, Health Monitoring etc.) executing the tasks

maing, ..., mainyg, hm etc. Note that an MSC denotes a labeled partial order
of tasks.
Core 1 Core n
[ =
v | v
| L2 Cache |

Fig. 2 A multi-core architecture with shared cache.

Our system architecture consists of a multi-core where the individual pro-
cesses in the program (the vertical lines of the MSCs) are mapped to the differ-
ent cores (see Figure 1). With such a mapping, an MSC provides a natural spec-
ification of interactions among the processes in a concurrent program running
on multi-cores. As multi-cores are increasingly adopted in high-performance
embedded systems, the on-chip cache hierarchy becomes more complex. We
consider an architecture where each processor core has private first-level (L1)
cache. However, a second-level (L2) cache is shared across the processor cores
(see Figure 2).

Certainly, the analysis effort required for capturing the timing effects in
the presence of a shared cache is complex, as memory contention across the
multiple cores significantly affects the shared cache behavior. In particular,
accesses to the L2 cache originating from different cores may conflict with
each other. Thus, isolated cache analysis of each task that does not account
for these conflicts will not safely bound the execution time of the task.

Contributions: In this paper, we develop a worst-case response time (WCRT)
analysis of concurrent programs, where the concurrent execution of the tasks
are analyzed to bound the shared instruction cache interferences. Our method
advances the state-of-the-art in shared cache multi-core timing analysis [39,40]
in several ways. First of all, our iterative analysis estimates which tasks (run-
ning on two different cores) can have overlapping lifetimes. If two tasks cannot
overlap, they cannot affect each other in terms of conflict misses and thus we
can reduce the number of estimated conflict misses in the shared cache. This
leads to improved timing estimates. Second, we consider set-associative caches
in our analysis as opposed to only direct mapped caches and this creates ad-
ditional opportunities for improving the timing estimation. Finally, to further
improve the worst-case execution time, we consider instruction cache locking
to reduce the cache conflicts from tasks on different cores. In summary, (a)we
develop a timing analysis method for shared cache multi-cores that enhances
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the state-of-the-art and (b)we ensure more predictable memory accesses in the
presence of shared instruction caches by a combination of analysis and system
level changes via cache locking.

The rest of the paper is organized as follows. The next section presents the
system model and architecture. Section 3 describes our WCRT analysis frame-
work, and section 4 details the analysis components. In section 5, we introduce
the cache locking optimization. Section 6 surveys related work. Experimental
results appear in section 7, and section 8 concludes the paper.

2 System Model and Architecture

In this section, we give some background on Message Sequence Charts (MSCs)
and Message Sequence Graphs (MSGs) — our system model for describing
concurrent programs. In doing so, we also introduce our case study with which
we have validated our approach. We conclude this section by detailing our
system architecture — the platform on which the concurrent application is
executed.

2.1 Message Sequence Charts

A Message Sequence Chart (MSC) [5] is a variant of an UML sequence dia-
gram with a formal semantics. Figure 1 shows a simple MSC with five processes
(vertical lines). It is in fact drawn from our DEBIE case study, which mod-
els the controller for a space debris management system. The five processes
are mapped on to four cores. Each process is mapped to a unique core, but
several processes may be mapped to the same core (e.g., Health-monitoring
and Telecommand processes are mapped to core 2 in Figure 1). Each process
executes a sequence of “tasks” shown via shaded rectangles (e.g., mainy, hm,
tc are tasks in Figure 1). Each task is an arbitrary (but terminating) sequen-
tial program in our setting and we assume there is no code sharing across the
tasks. In case two tasks share a function f — we create two separate copies
of function f, one for each task. This is because we do not handle construc-
tive effects of shared cache in this work. Tasks communicate with each other
through message passing via mailboxes. The tasks deposit or receive messages
from the mailbox through interrupt service routines (ISR). Exclusive access to
the mailbox is ensured by disabling interrupts within ISR. A task waiting on
a message is notified by the ISR once the message is available in the mailbox.
Finally, we assume that there is no overflow in any mailbox, that is, mailboxes
are of unbounded length.

Semantically, an MSC denotes a set of tasks and prescribes a partial order
over these tasks. This partial order is the transitive closure of (a) the total order
of the tasks in each process (time flows from top to bottom in each process),
and (b) the ordering imposed by the send-receive of each message (the send of
a message must happen before its receive). Thus in Figure 1, the tasks in the
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Main process execute in the sequence main, mains, maing, maing. Also, due
to message send-receive ordering, the task main,; happens before the task hm.
However, the partial ordering of the MSC allows tasks hm and tc to execute
concurrently.

We assume that our concurrent program is executed in a static priority-
driven non-preemptive fashion. Thus, each process in an MSC is assigned a
unique static priority. The priority of a task is the priority of the process
it belongs to. If more than one processes are mapped to a processor core,
and there are several tasks contending for execution on the core (such as the
tasks hm and tc on core 2 in Figure 1), we choose the higher priority task
for execution. However, once a task starts execution, it is allowed to complete
without preemption from higher priority tasks.

2.2 Message Sequence Graph

A Message Sequence Graph (MSG) is a finite graph where each node is de-
scribed by an MSC. Multiple outgoing edges from a node in the MSG represent
a choice, so that exactly one of the destination charts will be executed in suc-
cession. While an MSC describes a single scenario in the system execution, an
MSG describes the control flow between these scenarios, allowing us to form
a complete specification of the application.

To complete the description of MSG, we need to give a meaning to MSC
concatenation. That is, if M7, My are nodes (denoting MSCs) in an MSG, what
is the meaning of the execution sequence My, My, M1, M>,...7 We stipulate
that for a concatenation of two MSCs say M; o Mo, all tasks in M; must
happen before any task in Ms. In other words, it is as if the participating
processes synchronize or hand-shake at the end of an MSC. In MSC literature,
it is popularly known as synchronous concatenation [8].

2.3 DEBIE Case Study

Our case study consists of DEBIE-I DPU Software [15], an in-situ space debris
monitoring instrument developed by Space Systems Finland Ltd. The DEBIE
instrument utilizes up to four sensor units to detect particle impacts on the
spacecraft. As the system starts up, it performs resets based on the condition
that precedes the boot. After initializations, the system enters the Standby
state, where health monitoring functions and housekeeping checks are per-
formed. It may then go into the Acquisition mode, where each particle impact
will trigger a series of measurements, and the data are classified and logged for
further transmission to the ground station. In this mode too, the Health Mon-
itoring process continues to periodically monitor the health of the instrument
and to run housekeeping checks.

The MSG for the DEBIE case study (with different colors used to show
the mapping of the processes to different processor cores) is shown in Figure
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Message Sequence Graph

Node 1: Boot

power-up soft/warm checksum watchdog
lbool l boot l boot lbom Node 2: Power-up Reset
2: Power-up 3:Warm 4: Record 5: Record Class
Reset Reset CS Failure WD Failure ification

{

6: Initializations
7: Standby

8: Acquisition

Node 3: Warm Reset

Class-
ification

Node 4: Record WD Failure

Node 5: Record CS Failure

Node 6: Initializations Node 7: Standby
N N Health Tele- su [Env]
Mr:i:‘r?ng mm‘eand ’:ﬁ?;r" H‘tggge’ Monitoring comfanu Interface | | Sensor Unit
Node 8: Acquisition
Health Tele- Telomet Acqui- Class- || Hit Trigger su [Env]
Monitoring | | command " sition ification ISR Interface | |Sensor Unit
‘ HW
[T
] —]
[T

Fig. 3 DEBIE Case Study. Different colors are used to show the mapping of the processes

to different processor cores.

3. This MSG is acyclic. For MSGs with cycles, the number of times each cycle
can be executed needs to be bounded for worst-case response time analysis.

2.4 System Architecture

The generic multi-core architecture we target here is quite representative of
the current generation multi-core systems as shown in Figure 2. Each core
on chip has its own private L1 instruction cache and a shared L2 cache that
accommodates instructions from all the cores. In this work, our focus is on
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instruction memory accesses and we do not model the data cache. We assume
that the data memory references do not interfere in any way with the L1 and
L2 instruction caches modeled by us (they could be serviced from a separate
data cache that we do not model).

Each cache can be either direct-mapped or set-associative. In this paper,
we consider Least Recently Used (LRU) cache replacement policy for set-
associative caches. Also, we consider architectures without timing anomalies
caused by interactions between caches and other architecture features. The L2
cache block size is assumed to be larger than or equal to the L1 cache block size.
Finally, we are analyzing non-inclusive multi-level caches [19]. Even though
we consider two levels of caches here, our approach can be easily extended
to handle more levels of cache hierarchy using the same propagation principle
from L1 cache to L2 cache presented in this paper.

3 Analysis Framework

In this section, we present an overview of our timing analysis framework
for concurrent applications running on a multi-core architecture with shared
caches. For ease of illustration, we will throughout use the example of a 2-core
architecture. In fact the polynomial computational complexity (see section 4.5)
allows our analysis to scale to a large number of cores. But shared cache itself
may not always scale well to a large number of cores due to frequent inter-core
evictions. Thus, in practice, we evaluate our technique using 2-core, 4-core and
8-core architectures as shown in section 7. As we are analyzing a concurrent
application, our goal is to estimate the Worst Case Response Time (WCRT)
of the application.

Figure 4 shows the workflow of our timing analysis framework. First, we
perform the L1 cache hit/miss analysis for each task mapped to each core
independently. As we assume a non-preemptive system, we can safely analyze
the cache effect of each task separately even if multiple tasks are mapped to the
same processor core. For preemptive systems, we need to include cache-related
preemption delay analysis ([21,38,29,34]) in our framework.

The filter at each core ensures that only the memory accesses that miss
in the L1 cache are analyzed at the L2 cache level. Again, we first analyze
the L2 cache behavior for each task in each core independently assuming that
there is no conflict from the tasks in the other cores. Clearly, this part of the
analysis does not model any multi-core aspects and we do not propose any new
innovations here. Indeed, we employ the multi-level non-inclusive instruction
cache modeling proposed recently [19] for intra-core analysis.

The main challenge in safe and accurate execution time analysis of a con-
current application is the detection of conflicts for shared resources. In our
target platform, we are modeling one such shared resource: the L2 cache. A
first approach to model the conflicts for L2 cache blocks among the cores is
the following. Let T be the task running on core 1 and T be the task running
on core 2. Also let My,...,Mx (Mj,..., My ) be the set of memory blocks
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Fig. 4 Our Analysis Framework

of thread T' (T") mapped to a particular cache set C in the shared L2 cache.
Then we simply deduce that all the accesses to memory blocks My, ..., Mx
and Mj, ..., My will be misses in L2 cache. Indeed, this is the approach fol-
lowed by the shared L2 cache analysis proposed in the literature [39].

A closer look reveals that there are multiple opportunities to improve the
conflict analysis. The first and foremost is to estimate and exploit the lifetime
information for each task in the system, which will be discussed in detail in
the following. If the lifetimes of the tasks 7' and 7" (mapped to core 1 and core
2, respectively) are completely disjoint, then they cannot replace each other’s
memory blocks in the shared cache. In other words, we can completely bypass
shared cache conflict analysis among such tasks.

The difficulty lies in identifying the tasks with disjoint lifetimes. It is easy
to recognize that the partial order prescribed by our MSC model of the concur-
rent application automatically implies disjoint lifetimes for some tasks. How-
ever, accurate timing analysis demands us to look beyond this partial order
and identify additional pairs of tasks that can potentially execute concurrently
according to the partial order, but whose lifetimes do not overlap (see Section
3.1 for an example). Towards this end, we estimate a conservative lifetime for
each task by exploiting the Best Case Execution Time (BCET) and Worst
Case Execution Time (WCET) of each task along with the structure of the
MSC model. Still the problem is not solved as the task lifetime (i.e., BCET
and WCET estimation) depends on the L2 cache access times of the mem-
ory references. To overcome this cyclic dependency between the task lifetime
analysis and the conflict analysis for shared L2 cache, we propose an iterative
solution.
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(a) Initial interference graph deduced from model | (b) Task lifetimes determined in first round of analysis | (c) Interference graph after first round of analysis
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Fig. 5 The working of our shared-cache analysis technique on the example given in Figure 1

The first step of this iterative process is the conflict analysis. This step
estimates the additional cache misses incurred in the L2 cache due to inter-
core conflicts. In the first iteration, conflict analysis assumes very preliminary
task interference information — all the tasks (except those excluded by MSC
partial order) that can potentially execute concurrently will indeed execute
concurrently. However, from the second iteration onwards, it refines the con-
flicts based on task lifetime estimation obtained as a by-product of WCRT
analysis component. Given the memory access times from both L1 and L2
caches, WCRT analysis first computes the execution time bounds of every
task, represented as a range. These values are used to compute the total re-
sponse time of all the tasks considering dependencies. The WCRT analysis also
infers the interference relations among tasks: tasks with disjoint execution in-
tervals are known to be non-interfering, and it can be guaranteed that their
memory references will not conflict in the shared cache. If the task interference
has changed from the previous iteration, the modified task interference infor-
mation is presented to the conflict analysis component for another round of
analysis. Otherwise, the iterative analysis terminates and returns the WCRT
estimate. Note the feedback loop in Figure 4 that allows us to improve the
lifetime bounds with each iteration of the analysis.

3.1 Illustration

We illustrate our iterative analysis framework on the MSC depicted in Figure 1.
Initially, the only information available are (1) the dependency specified in the
model, and (2) the mapping of tasks to cores. Two tasks t, ¢’ are known not to
interfere if either (1) ¢ depends on ¢ as per the MSC partial order, or (2) t and
t' are mapped to the same core (by virtue of the non-preemptive execution).
We can thus sketch the initial interference relations among tasks in an in-
terference graph as shown in Figure 5(a). Each node of the graph represents a
task, and an edge between two nodes signifies potential conflict between the
tasks represented by the nodes. This is the input to the cache conflict anal-
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ysis component (Figure 4), which then accounts for the perceived inter-task
conflicts and accordingly adjusts L2 cache access time of conflicting memory
blocks.

In the next step, we compute BCET and WCET values for each task. These
values are used in the WCRT analysis to determine task lifetimes. Figure 5(b)
visualizes the task lifetimes after the analysis for this particular example. Here,
time is depicted as progressing from top to bottom, and the duration of task
execution is shown as vertical bar stretching from the time it starts to the
time it completes. The overlap between the lifetimes of two tasks signifies the
potential that they may execute concurrently and may conflict in the shared
cache. Conversely, the absence of overlap in these inferred lifetimes tells us
that some tasks are well separated (e.g., ag and tc) so that it is impossible for
them to conflict in the shared cache. For instance, here tc starts later than hm
on the same core, and thus has to wait until Am finishes execution. By that
time, most of the other tasks have finished their execution and will not conflict
with tc. Based on this information, our knowledge of task interaction can be
refined into the interference graph shown in Figure 5(c). This information is
fed back as input to the cache conflict analysis, where some of the previously
assumed evictions in the shared cache can now be safely ruled out.

Our analysis proceeds in this manner iteratively. The initial conservative
assumption of task interferences is refined over the iterations. In the next
section, we provide detailed description of the analysis components and show
that our iterative analysis is guaranteed to terminate.

4 Analysis Components

The first step of our analysis framework is the independent cache analysis for
each core (see Figure 4). As mentioned before, we use the multi-level non-
inclusive cache analysis proposed by Hardy and Puaut [19] for this step. How-
ever, some background on this intra-core analysis is required to appreciate
our shared cache conflict analysis technique. Hence, in the next subsection, we
provide a quick overview of the intra-core cache analysis.

4.1 Intra-Core Cache Analysis

The intra-core cache analysis step employs abstract interpretation method [37]
at both L1 and L2 cache levels. The additional step for multi-level caches is the
filter function (see Figure 4) that eliminates the L1 cache hits from accessing
the L2 cache. The L1 cache analysis computes the three different abstract
cache states (ACS) at every program point within a task [37]. In this paper,
we consider LRU replacement policy, but the cache analysis can be extended
for other replacement polices as shown in [20].

— Must Analysis: It determines the set of all memory blocks that are guar-
anteed to be present in the cache at a given program point. This analysis
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uses abstract cache states where the position of a memory block is an upper
bound of its age.

— May Analysis: It determines the set of all memory blocks that may be
present in the cache at a given program point.

— Persistence Analysis: This analysis is used to improve the classification
of memory references. It collects the set of all memory blocks that are never
evicted from the cache after the first reference.

The analysis results can be used to classify the memory blocks in the following
manner.

— Always Hit (AH): If a memory block is present in the ACS corresponding
to must analysis, its references will always result in cache hits.

— Always Miss (AM): If a memory block is not present in the ACS corre-
sponding to may analysis, its references are guaranteed to be cache misses.

— Persistent (PS): If a memory block is guaranteed never to be evicted
from the cache, it can be classified as persistent where the second and all
further executions of the memory reference will always be cache hits.

— Not Classified (NC): The memory reference cannot be classified as either
AH, AM, or PS.

For a Persistent (PS) memory block, we further classify it as Always Miss
(AM) for its first reference and Always Hit (AH) for the rest of the references.
Once the memory blocks have been classified at L1 cache level, we proceed to
analyze them at L2 cache level. But before that, we need to apply the filter
function that eliminates L1 cache hits from further consideration [19]. The
filter function is shown below.

’ L1 Classification H L2 Access ‘
Always Hit (AH) Never (N)
Always Miss (AM) Always (A)

Not Classified (NC) || Uncertain (U)

A reference classified as always hit will never access L2 cache (“Never”)
whereas a reference classified as always miss will always access L2 cache (“Al-
ways”). The more complicated scenario is with the non-classified references.
[19] has shown that it is unsafe to assume that a non-classified reference will
always access L2 cache. Instead, its status is set to “Uncertain” and we con-
sider both the scenarios (L2 access and no L2 access) in our analysis for such
references.

The intra-core L2 cache analysis is identical to L1 cache analysis except
that (a) a reference with “Never” tag is ignored, i.e., it does not update ab-
stract cache states, and (b) a reference r with “Uncertain” tag creates two
abstract cache states (one updated with r and the other one not updated with
r) that are “joined” together.



12 Yun Liang et al.

4.2 L2 Cache Conflict Analysis

Shared L2 cache conflict analysis is the central component of our framework.
It takes in two inputs, namely the task interference graph (see Figure 5) gen-
erated by the WCRT analysis step and the abstract cache states plus the
classification corresponding to L2 cache analysis for each task in each core.
The goal of this step is to identify all potential conflicts among the memory
blocks from the different cores due to sharing of the L2 cache.

Let T be a task executing on core 1 that can potentially conflict with the
set of tasks 7’ executing on core 2 according to the task interference graph.
Now let us investigate the impact of the L2 memory accesses of 7' on the 1.2
cache hit/miss status of the memory blocks of T. First, we notice that if a
memory reference of 7’ is always hit in the L1 cache, it does not touch the
L2 cache. Such memory references will not have any impact on task T'. So we
are only concerned with the memory references of 7’ that are guaranteed to
access the L2 cache (“Always”) or may access the L2 cache (“Uncertain”). For
each cache set C' in the L2 cache, we collect the set of unique memory blocks
M(C) of T’ that map to cache set C' and can potentially access the L2 cache
(i.e., tagged with “Always” or “Uncertain”).

If a memory block m of task T has been classified as “Always Miss” or
“Non-Classified” for L2 cache, the impact of interfering task set 7’ cannot
downgrade this classification. Hence, we only need to consider the memory
blocks of task 7' that have been classified as “Always Hit” for L2 cache. Let
m be one such memory block and it maps to cache set C. If M(C) # 0,
then the memory accesses from interfering tasks can potentially evict m from
the L2 cache. So we change the classification of m from “Always Hit” to
“Non-Classified”. Note that actual task interaction at runtime will determine
whether the eviction indeed occurs. Thus the access is regarded as “Non-
Classified” rather than “Always Miss”.

Optimization for Set-Associativity:

Task T Task T
Age: 1 m(Q |— Non-Classified Age:1 m0 |—> Always hit
2 ml |— Non-Classified 2 ml |—> Always hit
3 m2 |— Non-Classified 3 m2 | —> Non-Classified
4 4
Without optimization With optimization

Total number of conflicting memory blocks from other tasks [M(C)| = 2.

Fig. 6 An example of 4-way set associative L2 cache. The abstract cache state of task
T for cache set C' at a program point during must analysis is shown. Memory blocks are
converted to either “Always Hit” or “Non-Classified” according to their ages and the number
of conflicting memory blocks from interfering tasks.
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In the discussion so far, we blindly converted each “Always Hit” reference
to “Non-Classified” if there are potential memory accesses to the same cache
set from the other interfering tasks. However, for set-associative caches, we can
perform more accurate conflict analysis. Again, let m be a memory reference
of task T at program point p that has been classified as “Always Hit” in the
L2 cache and it maps to cache set C. Clearly, m is present in the abstract
cache state (ACS) at program point p corresponding to must analysis. Let
age(m) be the age of reference m in the ACS of must analysis. The definition
of ACS implies that m should stay in the cache for at least (N — age(m))
unique memory block references to cache set C' where NN is the associativity
of the cache [37]. Thus, if [M(C)| < N — age(m), memory block m cannot be
evicted from the L2 cache by interfering tasks. In this case, we should keep
the classification of m as “Always Hit”. Figure 6 shows an example. Memory
blocks m0 and m1 are kept as “Always Hit” because the number of conflicting
memory blocks from interfering tasks (M(C) = 2) are not enough to evict
them. However, memory block m?2 is converted to “Non-Classified” due to its
old age.

4.3 WCRT Analysis

In this step, we take the results of the cache analysis at all levels to determine
the BCET and WCET of all tasks. Table 1 presents how we deduce the latency
of a reference r in the best and worst case given its classification at L1 and
L2. Here, hit;, denotes the latency of a hit at cache level L, which consists of
(1) the total delay for cache tag comparison at all levels [ : 1... L, and (2) the
latency to bring the content from level L cache to the processing core. missyzs,
the L2 miss latency, consists of (1) the total delay for cache tag comparison at
L1 and L2 caches, and (2) the latency to access the reference from the main
memory and bring it to the processing core.

Table 1 Access latency of a reference in best case and worst case given its classifications

L1 cache | L2 cache Access latency
Best-case [ ‘Worst-case
AH — hitrq hitr1
AM AH hitro hitro
AM AM missr,o missyo
AM NC hitLQ misng
NC AH hitrq hitr,o
NC AM hitLl missL2
NC NC hitrq missra

Note that an NC reference is interpreted as hits in the best case, and as
misses in the worst case. We assume an architecture free from timing anomaly
so that we can assign miss latency to an NC reference in the worst case. Having
determined the latency of each reference, we can compute the best-case and
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worst-case latency of each basic block by summing up all incurred latencies.
A shortest (longest) path search is then applied to obtain the BCET (WCET)
of the whole task [35].

In order to compute the WCRT of MSG, we need to know the time interval
of each task. The task ordering within a node (denoting an MSC) of the MSG
model is given by the partial order of the corresponding MSC. The task order-
ing across nodes of the MSG model are captured by the directed edges in the
MSG. Given a task t, we use four variables Earliest Readylt], Latest Readylt],
EarliestFinish[t], and LatestFinishlt] to represent its execution time infor-
mation. Given a task ¢, its execution interval is from FarliestReady[t] to
Latest Fiinishlt]. These notations are explained below:

— EarliestReadylt]/ Latest Ready[t]: earliest/latest time when all of ¢’s pre-
decessors have completed execution.

— EarliestFinish[t]/Latest Finish|t]: earliest/latest time when task ¢ fin-
ishes its execution.

— separated(t,u): If tasks ¢ and v do not have any dependencies and their
execution interval do not overlap or if tasks ¢ and u have dependencies,
then separated(t,u) is assigned true; otherwise it is assigned false.

In a non-preemptive system, Earliest Finish[t]| = Earliest Ready[t|+ BCETt].
Also, task t is ready only after all its predecessors have completed execution,
that is, Earliest Ready[t] = max,ep(Earliest Finish[u]), where P is the set of
predecessors of task ¢. For a task ¢ without any predecessor Earliest Ready(t] =
0.

However, latest finish time of a task is not only affected by its predecessors
but also its peers (non-separated tasks on the same core). For task t, we define

S} eers = {t'|7separated[t’,t] A t,t are on the same core}
In other words, S}, is the set of tasks whose execution interfere with task ¢

on the same core. Let P be the set of predecessors of task t. Then we have

LatestReady[t] = max,ep(LatestFinishlu])
Latest Finish[t] = LatestReady[t] + WCET|t]
+ Zt/ eszt)ccrs WCET[t/]

However, the change of latest times of tasks may lead to different inter-
ference scenario (i.e., separated|.,.] may change), which might change the lat-
est finish times. Thus, latest finish times are estimated iteratively until the
separated|.,.] do not change. separated|t, u| is initialized to false if tasks ¢ and
u do not have any dependency and true otherwise. When iterative process
terminates, we are able to derive the final application WCRT as

WCRT = max; LatestFinish(t)
— miny EarliestReady(t)

that is, the duration from the earliest start time of any task until the latest
completion time of any task. Note that this iterative process within WCRT
analysis is different from the iterative process shown in Figure 4.
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A by-product of WCRT analysis is the set of tasks that can potentially con-
flict in L2 cache, that is, tasks whose execution intervals (from Earliest Ready
to LatestFinish) overlap. This information, if different from the previous iter-
ation, will be fed back to the cache conflict analysis to refine the classification
for L2 accesses.

4.4 Termination Guarantee

Now we proceed to prove that the iterative L2 cache conflict analysis frame-
work shown in Figure 4 terminates.

Theorem 1 For any task t, its BOCET and FarliestReady[t] do not change
across different iterations of L2 cache conflict and WCRT analysis.

Proof Our level 2 cache conflict analysis only considers the memory blocks
classified as “Always Hit” for L2 cache. Some of these memory blocks might
be changed to “Non-Classified” due to interference from conflicting tasks while
others remain as “Always Hit”. An “Always Hit” memory block in L2 cache
should have “Always Miss” or “Non-Classified” status in L1 cache. According
to Table 1, a memory block classified as L1 “Always Miss” is considered as L2
cache hit in the best case irrespective of whether is it AH or NC in L2 cache.
Similarly, a “Non-classified” memory block in L1 is considered as L1 cache hit
in the best case irrespective of its classification in the L2 cache. Hence, L2
cache conflict analysis cannot reduce the best case access time of a memory
reference and hence a task’s BCET does not change across different iterations
of our analysis.

We prove that FarlistReady[t] does not change through contradiction.
Let us assume that for a task t, its FarlistReady[t] changes. This must
be due to a change in its predecessors’s Earliest Ready[t] because a task’s
BCET remains unchanged. Proceeding backwards, EarliestReady[src] must
have changed where src is a task without any predecessor, contradicting the
fact that FarliestReady[src] = 0. Hence, for a task t its Farliest Ready|t]
does not change.

Theorem 2 Task interferences monotonically decrease (strictly decrease or
remain the same) across different iterations of our analysis framework.

Proof We prove by induction on number of iterations.

Base Case: In the first iteration, tasks are assumed to conflict with all the
tasks on other cores (except those excluded by partial order). This is the
worst case task interference scenario. Thus, the task interferences of the second
iteration definitely monotonically decrease compared to the first iteration.
Induction Step: We need to show that the task interferences monotonically
decrease from iteration n to iteration n+1 assuming that the task interferences
monotonically decrease from iteration n — 1 to n. We prove by contradiction.
Assume two tasks i and j do not interfere at iteration n, but interfere at
iteration n + 1. There are two cases.
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— EarliestReadylj] > LatestFinishli] at iteration n, but Earliest Ready[j] <
Latest Finishli] at iteration n + 1. This implies that Latest Finish[i] at it-
eration n+1 increases because Farliest Ready[j] remains unchanged across
iterations according to Theorem 1. LatesteFinishli] at iteration n 4 1 can
increase due to three reasons: (a) at iteration n + 1, the WCET of task
i itself increases; (b) the WCET of some tasks which task ¢ depends on
directly or indirectly increases; and (c) the WCET of some tasks increases
as a result of which either the number of peers of task i (|S,,,.,|) increases
or the WCET of a peer of task i increases. In summary, at least one task’s
WCET is increased. The WCET increase at iteration n 4+ 1 of some task
implies that more memory blocks are changed from “Always Hit” to “Non-
Classified” due to the task interference increase at iteration n. However,
this contradicts with the assumption that task interferences monotonically
decrease at iteration n.

— EarliestReady[i] > LatestFinish[j] at iteration n, but Farliest Readyli] <
Latest Finish[j] at iteration n+ 1. The proof is symmetric to the first case.

As task interferences decrease monotonically across iterations, the analysis
must terminate.

4.5 Computational Complexity

In this subsection, we analyze the computational complexity of our approach.
Our analysis framework consists of three components: intra-core cache anal-
ysis, L2 cache conflict analysis and WCRT analysis. As previously described,
the last two components are invoked together in an iterative manner until the
task interference does not change. In the following, we analyze the compu-
tational complexity of each component and the overall analysis. We assume
there are M tasks (t1,...,tp) in the MSC. The complexity of our analysis is
characterized by M and not the number of cores in the system.

Intra-core cache analysis.In this phase, we perform the must, may, and
persistence analysis for each task in isolation. In other words, we assume that
there are no conflicts among the tasks. In fact, must, may, and persistence
analysis are fixed point data flow analysis and the computational complexity
depends on the program control flow of the tasks and the cache architecture.
The complexity of this phase is equivalent to standard single-core cache anal-
ysis for WCET estimation. Moreover, this phase is performed only once in
our framework. Let w be the average cache analysis time per task. Then the
computational complexity of this component is Tjpirq = O(wWM).

Iterative analysis.The L2 cache conflict analysis and WCRT analysis are
invoked together iteratively as shown in Figure 4. We start with the worst-
case task interference (i.e., tasks conflict with all the tasks on other cores
except those excluded by partial order). The number of conflicting task pairs
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(i.e., edges in the task interference graph) in the initial task interference graph
can be bounded by w The iterative analysis terminates until there is
no change to the task interference graph. Meanwhile, according to Theorem 2,
task interference monotonically decrease (strictly decrease or remain the same)
across different iterations of our analysis framework. Thus, the number of
iterations of our iterative framework can be safely bounded by W
Next, we first derive the computational complexity of one iteration and then
summarize across all the iterations.

L2 cache conflict analysis.In this phase, for each pair of conflicting tasks
(t;,t;), we compute the number of conflicting memory blocks introduced to
task ¢; by task t; and vice versa. So for each task ¢ we can collect the set of
unique memory blocks from the tasks on other cores that conflict with ¢ (M (C)
in section 4.2). Let S be the number of sets in the shared cache and b be the
average number of memory blocks per task. Then M(C) is upper bounded by
M x %. As we have S cache sets, the cost per task is M x % x S =bM. The
process has to be repeated for all the tasks. So, the computational complexity

of this component Tro = O(bM?).

WCRT analysis.In this phase, we traverse the tasks in topology order.
The topology sort of the tasks is performed only once before our iterative
analysis. For each task t, we traverse all of its predecessors to compute the
EarliestReady(t]/ Latest Ready[t]. The total number of predecessor relation-
ship can be bounded by W To compute the Lateste F'inish[t], we need
to sum the WCET of t's peers. Recall that t; and t; are defined as peers
if they are mapped to the same core and their execution lifetime overlaps
and do not have dependencies. The total number of pairs of peers can be
bounded by w too. Thus, the computational complexity of this com-
ponent Tyyert = O(M?).

Finally, we need to update the task interference graph: for each pair of
conflicting tasks, we need to check whether their lifetime still overlap. This
overhead Typgate = O(M?).

The overall computational complexity of our analysis T'(M) is

o Mx(M-1)

— dintra -1 wer update
T(M) = Tintra + > x > (Tr2 + Twert + Tupdate)

— O(wM)+ £X, T (0(M?) + O(M?) + O(M?))
= O(wM) + O(bM?)

In practice, our analysis converges after 2—3 iterations and thus the complexity
is approximately O(wM) + O(bM?). We experimentally validate this using
real-world and synthetic benchmarks on 2-core, 4-core and 8-core architectures
(section 7) where the runtime is well under 6 minutes. Clearly, the complexity
of our analysis is not dependent on the number of cores, but rather on the
number of tasks. However, shared cache itself may not always scale well to a
large number of cores due to the large number of conflicts in shared cache and
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frequent inter-core evictions. As a result, the overestimation of timing analysis
for such many-core shared cache architecture might be high.

5 Cache Locking Optimization

Cache locking was primarily designed to offer better timing predictability for
hard real-time applications. Once a memory block is locked in the cache, it
cannot be evicted from the cache under replacement policy. Thus, all the
subsequent accesses to the locked memory blocks will be cache hits.

In the context of shared caches in multi-cores, a substantial source of unpre-
dictability is the interference among the memory blocks accessed by the tasks
executing on different cores but mapping to the same cache set. If the anal-
ysis cannot identify the task lifetimes to be disjoint, then we have to assume
worst-case interference among the tasks in the shared cache. In this section,
we resort to cache locking to avoid such interferences for memory blocks that
are frequently accessed from the shared cache.

In our system architecture, each core has its private L1 cache and multiple
cores share the same L2 cache. Thus we have the option of locking memory
blocks either in the private L1 caches or the shared L2 cache. Locking the
memory blocks into L1 caches certainly helps to improve the WCET of the
current task (e.g., by locking memory blocks that cause a lot of cache misses
on the WCET path in a task). In addition, more cache hits in the L1 cache
implies less L2 cache accesses. Thus, the tasks running on the other cores
may benefit as well due to the reduced L2 cache conflicts. It is also possible
to lock memory blocks into the shared L2 cache. However, as L2 cache has
longer latency compared to L1 cache, the WCET reduction is much less for
the current task. More importantly, as the L2 cache size gets reduced after
locking, the tasks on the other core might suffer considerably. Thus, we choose
to lock memory blocks only in the L1 cache.

Locking Mechanisms: There exists two locking mechanisms — way locking
and line locking. In way locking, the entire ways are locked for all the cache
sets. Way-locking is employed by ARM processor series [3,4]. Line locking is
employed by Intel Xcale [1], ARM9 family and Blackfin 5xx family proces-
sors [2] allows different number of lines to be locked for different cache sets.
Obviously, line locking is a fine grained locking mechanism compared to way
locking. Thus, we consider line locking in this paper. Furthermore, recall that
our system model is a message sequence graph (MSG) where each node is
described as an MSC. We consider static instruction locking for each MSC.
In other words, the memory blocks are locked in the cache at the beginning
of execution of an MSC and remain locked throughout the execution of the
MSC. The implication is that we need to pay for the time to load and lock the
instructions into the cache before the execution of each MSC in the MSG.
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5.1 Cost-Benefit Modeling for Cache Locking

The critical question that we need to answer for cache locking is how to select
the memory blocks that should be locked. We need to perform a cost-benefit
analysis to identify the most profitable memory blocks to lock in the cache.

To identify the profitable memory blocks, we first perform one round of
our cache and WCRT analysis as described in Section 3. Then, we collect
the profiles including the abstract cache states at L1 and L2 caches, task
interference graph, memory access latency of each memory block (Table 1)
and the execution frequency of each memory block on the WCET path. These
information will be used in our cache locking modeling.

For memory block m, let lat,, be its worst-case access latency according
to its classification in L1 and L2 caches (see Table 1) and f,, be its execution
frequency on the WCET path, respectively. By locking memory block m into
L1 cache, all the accesses to m will be cache hits; thus the WCET of the
current task may be improved. We define the benefit for the current task as

Self, = (laty, — hitp1) X fm

Meanwhile, locking m into the private L1 cache of the core eliminates all
the accesses of m to the L2 cache. This may lead to reduced L2 cache conflicts
for the tasks running on other cores with memory blocks mapped to the same
L2 cache set as m. Let us assume m belongs to task T running on core P and
it is mapped to cache set C' in L2 cache before locking. Then, let Conf(m) be
the set of memory blocks belonging to the tasks running on other cores (not
P ) that can potentially access the cache set C' in the L2 cache. Recall that in
Section 4.2, for the memory block m, we will convert its access classification
from “Always Hit” to “Non-Classified” if |Conf(m)| > Np2 —ager2(m) where
ager2(m) is the age of m in the abstract cache state of L2 must analysis and
Nps is the associativity of the L2 cache. By locking m, we reduce the L2
cache conflicts for the tasks running on other cores. Thus we might be able to
avoid the conversion of some “Always Hit” references to “Non-Classified” due
to conflicts. If memory block m is converted from L2 “Non-Classified” to L2
“Always Hit”, then the WCET reduction is

Gaing, = fm X (Missra — hitrs)
Therefore, the total benefit for the other cores after locking m is

Other,, = Z Gaing,

m/€Conf(m)A(|Conf(m’)| + ager2(m’)=Nr2+1)

On the other hand, locking memory block m may have negative impact on
the memory blocks mapped to the same set in the private L1 cache of the same
core as the associativity for the private L1 cache is reduced through locking.
Let Same(m) be the set of memory blocks mapped to the same cache set as m
in the private L1 cache of the core. From the L1 abstract cache states during
must analysis, we can easily find the age of these memory blocks. If the age



20 Yun Liang et al.

|

p
Cache Analysis &
WCRT Analysis

!

( Computing locking
L benefit

Pick and lock a ]

beneficial memory
block

!

Cache Analysis &
WCRT Analysis

Did WCRT
Improve?

no

yes

Final WCRT

Fig. 7 Cache locking framework

of a conflicting memory block m’ € Same(m) is N1 — 1 where Ny is the L1
cache associativity, then m’ will be converted to L1 miss after locking m. In
the worst case, m’ will also be classified as “Non-Classified” L2 accesses. So,
we define the cost of locking m as

Cost,, = Z (misspa — hitp1) X fm

m’€Same(m)Aager1(m’)=Nr;—1

where ager1(m’) is the age of m’ in the abstract cache state of L1 must
analysis. Then, we define the overall benefit as

Benefit,, = Sel f,, + Other,, — Cost,,

Note that, we use Benefit,, to evaluate and compare the benefit of locking
different memory blocks such that we can quickly identify some beneficial
memory blocks for locking. Bene fit,, may not be the actual WCRT reduction
as both the BCET and the WCET path may change after cache locking. Thus,
the actual WCET reduction may be more or less than we what predict. Also,
the task interference graph may change due to the change of BCET and WCET
values. But in practice, we find that Benefit,, is a good metric to evaluate
the benefit of locking different memory blocks.

The overall cache locking framework is shown in Figure 7. We first perform
our cache and WCRT analysis before the iterative process. Then, in each
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iteration, we compute the Bene fit,, for all the unlocked memory blocks so far.
If a cache set is fully locked, we will not consider the memory blocks mapped to
that cache set. Then, we select the memory block with the maximum Bene fit,,
for locking. We break the ties arbitrarily. After that, we perform cache and
WCRT analysis to derive the precise WCRT after cache locking. If WCRT is
improved, we continue to lock; otherwise we stop the process.

Cache Locking Granularity: So far, we assumed that L1 and L2 caches
have identical block size. However, in reality the block size of L2 cache can
be greater than or equal to the block size of L1 cache. We can choose locking
either at L1 or L2 block granularity. Figure 8 shows the differences between
the two locking granularities. In this example, L2 block size is assumed to be
twice as big as L1 block size. m1 and m2 are two consecutive memory blocks
in L1 cache and both of them correspond to memory block m in L2 cache.
If we choose to lock at L2 memory block granularity, then we have to lock
both m1 and m2 in L1 cache simultaneously. More importantly, the references
to memory block m will not access the L2 cache any more. However, we can
not guarantee this if we choose to lock at L1 memory block granularity. For
example, if we choose to lock ml into L1 cache, there might still be accesses
of m at L2 cache level due to miss of m2 in L1 cache. Thus, the L2 cache
conflicts are not reduced. So, if we choose to lock at L1 granularity level, we
will not include the benefit from other cores (Other,,) in the final Bene fit,y,.
We will explore both locking granularities in the experiments.

6 Related Work

There have been a lot of research efforts in modeling cache behavior for WCET
estimation in single-core systems. A widely adopted technique is the abstract
interpretation ([7,37]) which also forms the foundation to the framework pre-
sented in this paper. Mueller [28] extends the technique for multi-level cache
analysis; Hardy and Puaut [19] further adjust the method with a crucial
observation to produce safe estimates for set-associative caches. Other pro-
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posed methods that attempt exact classification of memory accesses for pri-
vate caches include data-flow analysis [28], integer linear programming [24]
and symbolic execution [27].

Cache analysis for multi-tasking systems mostly revolves around a metric
called cache-related preempted delay (CRPD), which quantifies the impact of
cache sharing on the execution time of tasks in a preemptive environment.
CRPD analysis typically computes cache access footprint of both the pre-
empted and preempting tasks ([21,38,29]). The intersection then determines
cache misses incurred by the preempted task upon resuming execution due to
conflict in the cache. Multiple process activations and preemption scenarios
can be taken into account, as in [34]. A different perspective in [36] considers
WCRT analysis for customized cache, specifically the prioritized cache, which
reduces inter-task cache interference.

In multiprocessing systems, tasks in different cores may execute in paral-
lel while sharing memory space in the cache hierarchy. Due to the complex-
ity involved in static analysis of multiprocessors, time-critical systems often
opt not to exploit multiprocessing, while non-critical systems generally utilize
measurement-based performance analysis. Tools for estimating cache access
time are presented, among others, in [33], [14] and [22]. It has also been pro-
posed to perform static scheduling of memory accesses so that they can be
factored in to achieve reliable WCET analysis on multiprocessors [32]. Gus-
tavsson et al. [17] perform WCET analysis of multicore architectures through
model checking.

One technique in literature that has addressed inter-core shared-cache anal-
ysis so far is the one proposed by Yan and Zhang [39,40]. Their approach ac-
counts for inter-core cache contention by detecting accesses across cores which
map to the same set in the shared cache. They treat all tasks executing in
a different core than the one under consideration as potential conflicts re-
gardless of their actual execution time frames; thus the resulting estimate is
highly pessimistic. We also note that their work has not addressed the prob-
lem with multi-level cache analysis observed by [19] (a “non-classified” access
in L1 cache cannot be safely assumed to always access L2 cache in the worst
case) and will be prone to unsafe estimation when applied to set-associative
caches. This concern, however, is orthogonal to the issues arising from cache
sharing. Our proposed analysis obtains improved estimates by exploiting the
knowledge about overlap of time intervals for different tasks. Hardy et al. [18]
bypass static single usage blocks from the shared caches, and only blocks stat-
ically known to be reused are cached. Their approach reduces the pollution
in shared caches, thus, tightens the WCET estimates for multi-core proces-
sors with shared instruction caches. However, they also do not consider the
execution time intervals of tasks.

Chattopadhyay and Roychoudhury [12] develop a compile-time scratchpad
allocation framework for multi-processor platforms, where the processors vir-
tually share on-chip scratchpad space and external memory is accessed through
a shared bus. They adopt a static bus schedule scheme (Time Division Mul-
tiple Access) which is incorporated by scratchpad allocation method. Overall
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WCRT is significantly reduced by appropriate content selection and overlay
optimization (variables share the same scratchpad space due to disjoint life-
times). There are also studies employing cache locking to improve the timing
predicability. Puaut and Decotigny proposed two low-complexity algorithms
for static cache locking in a multi-tasking environment [31]. System utiliza-
tion or inter-task interferences are minimized through static cache locking [31].
Campoy et al. employed generic algorithms to select contents for locking in or-
der to minimize system utilization [11]. However, the WCET path may change
after some functions are locked into the instruction cache and the change of
the WCET path is not handled in [31,11]. Falk et al. considered the change
of the WCET path and showed better WCET reduction [16]. Liu et al. [26]
formulated the instruction cache locking for minimizing WCET as linear pro-
gramming model and showed that the problem is NP-Hard problem. However,
all the techniques consider cache locking at function level (e.g. the entire func-
tion is either locked or not locked). In this paper we consider cache locking
at finer granularity — cache line level, which provides more opportunities for
optimization. More recently, Liang and Mitra [25] have shown that cache lock-
ing is quite effective for improving the execution time of general embedded
applications as well.

7 Experimental Evaluation

In this section, we evaluate our WCRT analysis and cache locking technique
with real-world and synthetic applications. We first perform a case study of
DEBIE-I DPU Software [15], an in-situ space debris monitoring instrument
developed by Space Systems Finland Ltd. The MSG for the DEBIE case study
(with different colors used to show the mapping of the processes to different
processor cores) is shown in Figure 3. We further validate the effectiveness
of our technique using Unmanned Aerial Vehicle (UAV) control application
from PapaBench [30] and a synthetic benchmark. The tasks of the synthetic
benchmark are from WCET benchmark suite and we use TGFF [6] to generate
MSG. The MSG of PapaBench and synthetic benchmark are shown in Figure 9
and Figure 10.

We compile these benchmarks for SimpleScalar PISA (Portable ISA) in-
struction set [9] — a MIPS like instruction set architecture. The individual
tasks are compiled into SimpleScalar PISA compliant binaries, and their con-
trol flow graphs (CFGs) are extracted as input to the cache analysis framework.
The cache analysis framework is built on top of the open-source WCET anal-
ysis tool Chronos [23]. Details of the tasks in the DEBIE benchmark and their
code-sizes appear in Figure 11 and Table 2. The table also shows the mapping
of the tasks to the processor cores in a system with four cores. The details
of the tasks in PapaBench and synthetic benchmarks are shown in Table 3
and 4, respectively. Some tasks of the synthetic benchmarks have very few L2
accesses due to their small code size. Therefore, we choose to partially unroll
the loops for these tasks to increase the code size.
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As we are modeling the cache, we assume a simple in-order processor with

unit-latency for all data memory references. We perform all the experiments
on a 2.5GHz 8-core Xeon CPU with 16GB memory.

In the following, we perform four sets of experiments. First, we compare

our analysis with Yan-Zhang’s method using DEBIE case study. We also pro-
vide experimental results for PapaBench and synthetic benchmarks. Then, we
present the cache locking results. Finally, we show the accuracy results of our
analysis.
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Table 2 Characteristics and settings of the DEBIE benchmark.

[ MSC | Task [ Codesize (bytes) [ Core |
1 boot_main 3,200 1
2 pwr_-maing 9,456 1

pwr-mainsg 3,472 1
pwr_class 1,648 3
3 wr-maini 3,408 1
wr-mainsg 5,952 1
wr_class 1,648 3
4 rcs_main 3,400 1
5 rwd_-main 3,400 1
6 init_maing 320 1
init_-maing 376 1
init-mains 376 1
init-maing 376 1
intt_health 5,224 4
init_telecm 4,408 3
init_acqui 200 4
init_hit 616 2
7 sby_health 16,992 4
sby_healtho 448 4
sby_telecm 23,288 3
sby_suq 6,512 2
sby_susa 4,392 2
sby_sus 1,320 2
8 acq-health, 16,992 4
acq-healths 448 4
acq-telecm 23,288 3
acqg-acquii 3,136 4
acq-acquiz 3,024 4
acq-telemt 3,768 1
acq-class 3,064 3
acq-hit 8,016 2
acq-sug 2,536 2
acq_suy 6,512 2
acq-sug 4,392 2
acq-sus 1,320 2
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Fig. 11 Code size distribution of DEBIE benchmark.

7.1 Case Study of DEBIE Benchmark

Our analysis produces the WCRT result when the iterative work flow as shown
in Figure 4 terminates. The estimate produced after the first iteration assumes
that any pair of tasks assigned to different cores may execute concurrently and
evict each other’s content from the shared cache. This value is essentially the
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Table 3 Characteristics and settings of the PapaBench.

[ MSC | Task [ Codesize (bytes) [ Core |

1 fbw_main_initservo 816 1

fbw_main_initradio 96 1
fbw_main_initspi 96 1
fbw_main_initend 1,696 1
fbw_servo_init 528 1
fbw_radio_init 384 1
fbw_spi_init 272 1
ap-main_initmodem 768 2
ap-main_initspi 96 2
ap-main_initgps 96 2
ap-main_initreport 1,264 2
ap-modem_init 352 2
ap-spi-init 560 2
ap-gps-init 392 2
ap-report_init 5,520 2
2 fbw_main_mancmd 144 1
fbw_radio-mancmd 464 1
fbw_spi_mancmd 992 1
3 fbw_main_autocmd 208 1
fbw_radio_autocmd 464 1
fbw_main_gencmd 144 1
fbw_spi_autocmd 992 1
4 ap-spi-cmdl 2,752 2
ap-spi-cmd2 1,728 2
ap-spi-cmd3 176 2
ap-modem_updatel 2,304 2
ap-modem_update2 6,496 2
ap-main_getcmd 1,536 2
5 ap-main_navl 20,240 2
ap-gps-navl 1,040 2
ap-gps-nav 1,296 2
ap-main_nav2 13,920 2
6 ap-main_stabil 96 2
ap_spi_sendnav 656 2
7 fbw_spi_rcvnav 1,840 1
fbw_main_getnav 256 1
fbw_servo_nav 656 1
Table 4 Characteristic of synthetic benchmark.

[ Benchmarks [ Code Size (bytes) [ LoC [ Core |
adpcm 12,480 876 3
cnt 5.368 224 4
crc 4,200 162 1
edn 11,000 336 4
fdct 9,936 401 2
jfdctint 12,048 511 2
minver 6,256 201 3
ndes 6,352 230 1
nsichneu 63,744 | 4,032 4

estimation result following Yan-Zhang’s technique [39,40]. The improvement
in WCRT estimation accuracy due to our proposed analysis is demonstrated
by comparing this value to the final estimation result of our technique.
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Fig. 12 Comparison between Yan-Zhang’s method and our method and the improvement
of set associativity optimization of DEBIE benchmark).

7.1.1 Comparison with Yan-Zhang’s method

Yan-Zhang’s analysis [39,40] is restricted to direct mapped cache. Thus, to
make a fair comparison, we first configure both L1 and L2 as direct mapped
caches. Figure 12(a) shows the comparison of the estimated WCRT between
Yan-Zhang’s analysis and ours on varying number of cores. The size of L1 cache
is 2KB bytes with 32-byte block size. The L2 cache has 64-byte block size. The
L2 cache size is doubled with the doubling of the number of cores. We assume
1 cycle latency for L1 hit, 10 cycle latency for L1 cache misses and 100 cycle
latency for L2 cache misses. When only one core is employed, the tasks execute
non-preemptively without any interference. Thus the two methods produce
the exact same estimated WCRT. In the 2-core and 4-core settings where task
interferences become significant to the analysis, our method achieves up to
14% more accuracy over Yan-Zhang’s method. As tasks are distributed on
more cores, the parallelization of task execution help to reduce the overall
runtime as shown in Figure 12(a).

In Figure 12(b), we compare the number of inter-core cache evictions esti-
mated by both methods for the same configurations as in Figure 12(a). When
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Fig. 13 Comparison of estimated WCRT between Yan-Zhang’s method and our method
for varying L1 and L2 cache sizes of DEBIE benchmark).

only one core is employed, there is no inter-core evictions for both methods. For
multi-core systems, due to the accurate task interference, the number of inter-
core evictions of our method are much smaller than Yan-Zhang’s method as
shown in Figure 12(b). This explains the WCRT improvement in Figure 12(a).

7.1.2 Set associative caches

Our method is able to handle set-associative caches accurately by taking into
account the age of the memory blocks. Figure 12(c) compares the estimated
WCRT with and without the optimization for set-associativity (see Section
4.2) in a 2-core system. Without the optimization, all the “Always Hit” ac-
cesses are turned into “Non-Classified” accesses as long as there are conflicts
from other cores, regardless of the memory blocks’ age. Here, L1 cache is con-
figured as 2KB direct mapped cache with 32-byte block size and L2 cache is
configured as a 32KB set-associative cache with 64-byte block size, but varied
associativity (1, 2, 4, 8). As shown in Figure 12(c), when associativity is set
to 1 (direct mapped cache), there is no gain from the optimization. However,
for associativity > 2, the estimated WCRT is improved significantly with the
optimization.
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Fig. 15 Runtime of our iterative analysis.

7.1.3 Sensitivity to L1 cache size

Figure 13(a) shows the comparison of the estimated WCRT on a 2-core system
where L1 cache size is varied but L2 cache size is kept as constant. Again
both L1 and L2 caches are configured as direct mapped caches due to the
limitation of Yan-Zhang’s analysis. Our method is able to filter out evictions
among tasks with separated lifetimes and achieves up to 14% more accuracy
over Yan-Zhang’s method.

7.1.4 Sensitivity to L2 cache size

Figure 13(b) shows the comparison of the estimated WCRT on a 2-core system
where L2 cache size is varied but L1 cache size is kept as constant. Here too,
both L1 and L2 caches are configured as direct mapped caches. We observe
slightly larger improvement as we increase the L2 cache size. In general, more
space in L2 cache reduces inter-task conflicts. Without refined task interference
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Fig. 16 Comparison between Yan-Zhang’s method and our method and the improvement
of set associativity optimization for PapaBench.

information, however, there can be significant pessimism in estimating inter-
core evictions, which limits the benefit of the larger space in the perspective of
Yan-Zhang’s analysis. As a result, our analysis is able to achieve lower WCRT
estimates as compared to Yan-Zhang’s method.

7.1.5 8-core Setting

Figure 14 presents the comparison of estimated WCRT between Yan-Zhang’s
analysis and ours for a 8-core setting with various cache configurations. As
tasks are distributed to 8 cores, there are more inter-core evictions than 4-
core settings. Our method achieves up to 20% improvement over Yan-Zhang’s
method.

7.1.6 Runtime

Figure 15 sketches the runtime of our complete iterative analysis (L2 cache
and WCRT analysis) for various configurations (e.g. different cores and cache
sizes) of DEBIE benchmark. It takes less than 13 seconds to complete our
analysis for any considered settings.
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Fig. 17 Comparison of estimated WCRT between Yan-Zhang’s method and our method
for varying L1 and L2 cache sizes for PapaBench.

7.2 PapaBench and Synthetic Benchmarks

For PapaBench, we first evaluate our analysis in terms of the aforementioned
three perspectives: WCRT comparison, inter-core eviction comparison, and
set associativity optimization. The results are shown in Figure 16. For Pa-
paBench, our method achieves up to 11% more accuracy over Yan-Zhang’s
method in terms of WCRT estimation. The set associativity optimization also
improves the estimated WCRT significantly for high associative cache. The
sensitivity to L1 and L2 cache size results are shown in Figure 17. As shown,
our analysis achieves lower WCRT estimation for various settings compared
to Yan-Zhang’s method. All the experiments are performed using the same
setting as in section 7.1.

The results for the synthetic benchmark are shown in Figure 18 and 19.
Figure 18 shows the WCRT comparison, inter-core eviction comparison, and
set associativity optimization, respectively. Our method achieves up to 8%
improvement in WCRT estimation compared to Yan-Zhang’s method. The set
associativity optimization again improves the estimated WCRT significantly
for highly associative caches. Figure 19 presents the sensitivity of our analysis
to different L1 and L2 cache configurations, and our method produces lower
estimated WCRT in all configurations.
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Fig. 18 Comparison between Yan-Zhang’s method and our method and the improvement
of set associativity optimization for synthetic benchmark.

Results without Synchronization. The improved accuracy of our analysis
stems from both dependency analysis among the tasks as well as lifetime anal-
ysis among the tasks without dependency. In order to evaluate the strength of
our lifetime analysis, we removed all the synchronization edges in the synthetic
benchmark shown in Figure 10, i.e., there is no data dependency among the
tasks. The task mapping on 4 cores remains the same, as shown in Table 4.
L1 cache is configured as 4KB direct mapped cache with 32-byte block size
and L2 cache is configured as a 64KB direct mapped cache with 64-byte block
size.

The comparison between Yan-Zhang’s method and our method is shown
in Figure 20 (note that the scale of this graph is different from Figure 18
and 19). Our method has lower estimated WCRT due to fewer estimated
inter-core evictions in the L2 cache. In our method, lifetime of each task is
considered. Two tasks whose lifetime does not overlap should not conflict with
each other in L2 cache. Compared to the results with synchronization for the
same configuration (Figure 18 (b)), Yan-Zhang’s method estimates the same
number of inter-core evictions (2,413). While for our method, the number of
evictions increases from 1,664 to 2,129 after the elimination of synchroniza-
tion, as more tasks may conflict with each other now. The absolute WCRT
value, however, decreases as the elimination of synchronization creates more
parallelism opportunity.
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marks without synchronization.

Our complete iterative analysis (L2 cache and WCRT analysis) runs very
fast for PapaBench and synthetic benchmarks. For any tested settings, it takes
only a few seconds to complete the analysis.
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Fig. 21 Estimated WCRT with and w/o cache locking at different locking granularities for
DEBIE benchmark.

7.3 Cache Locking Results

In this section, we evaluate the effectiveness of cache locking in WCRT im-
provement. We employ cache locking at both L1 and L2 block size granularities
as discussed in Section 5. We consider a 4-core system. L1 cache is configured
as 2-way set associative cache with 32-byte block size and L2 cache is con-
figured as 4-way set associative with 64-byte block size. Note that the cache
locking overhead (i.e. the execution of lock instructions) are included in the
WCRT computation.

Figure 21 shows the estimated WCRT with and without cache locking. In
Figure 21(a), we vary the L1 cache size but keep the L2 cache size constant
at 32KB. In Figure 21(b), we vary the L2 cache size but keep the L1 cache
size constant at 2KB. In Table 5, we provide more detailed results for each
individual MSC (Table 2) for a particular cache size setting: 2KB L1 cache
and 8KB shared L2 cache. As shown, cache locking significantly improves the
WCRT by up to 80% across various cache settings. Both locking granularities
show promising WCRT improvement. Overall L1 block size granularity per-
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Table 5 Estimated WCRT with and w/o cache locking for individual MSCs DEBIE bench-

mark.
w/o locking at improvement locking at improvement
MSC . L1 block size L2 block size
cache locking . (%) . (%)
granularity granularity
1 7,741 6328 18.25 4,933 36.27
2 29,790 27,590 7.39 28,404 4.65
3 11,524 6,520 43.42 6,202 46.18
4 11,524 6,520 43.42 6,202 46.18
5 19,742 17,374 11.99 16,028 18.81
6 137,176,212 39,646,903 71.10 40,783,962 70.27
7 979,875,684 154,698,198 84.21 228,064,576 76.73
8 1,785,859,974 389,844,371 78.17 644,563,187 63.91

Table 6 Estimated cache misses with and w/o cache locking for DEBIE benchmark.

Cache w/o granularity at improvement granularity at improvement
cache locking L1 block size (%) L2 block size (%)

core 1 492 430 12.60 417 15.24

core 2 3,410,485 2,375,979 30.33 2,827,827 17.08

core 3 112 116 -3.57 116 -3.57

core 4 7,202,040 6,492,711 9.85 5,140,950 28.62

shared L2 cache 19,399,164 2,390,423 87.68 4,878,932 74.85

forms better than L2 block size granularity. This is because we may lock some
memory blocks that are not on the WCET path if we lock at coarser granu-
larity. Furthermore, locking bigger memory blocks into L1 cache implies less
locking opportunities for the remaining memory blocks given the fixed cache
size.

Table 6 presents the detailed cache misses with and without cache locking
for DEBIE benchmark. The size of L1 and L2 caches are 2KB and 8KB,
respectively. Rows (core 1, core 2, core 3, and core 4) show the estimated
number of memory accesses, which are L1 cache misses but L2 cache hits,
for each core. The last row (shared L2 cache) presents the number of shared
L2 cache misses. As shown in Table 6, our cache locking significantly reduces
the L2 cache misses and slightly improves the L1 cache misses for most of
the cores. Recall that the performance metric in section 5 models the overall
access latency of the memory hierarchy. The reduction of L2 cache misses can
effectively improves the overall WCRT as the latency of L2 miss is much longer
than that of L1 miss. It is possible that our cache locking slightly increases
the L1 cache misses for some cores (see core 2).

The Estimated WCRT with and without locking for PapaBench and syn-
thetic benchmarks are shown in Figure 22 and 23, respectively. The corre-
sponding cache misses improvement are shown in Table 7 (L1:1KB, L2:8KB)
and Table 8 (L1:2KB, L2:32KB).
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PapaBench.

Table 7 Estimated cache misses with and w/o cache locking for PapaBench.

Cach w/o granularity at | improvement | granularity at | improvement
ache cache locking L1 block size (%) L2 block size (%)

core 1 37 25 32.43 24 35.14

core 2 166 128 22.89 176 -6.02

core 3 479 475 0.84 570 -19.00

core 4 151 137 9.27 153 -1.32

shared L2 cache 1190 1108 6.89 934 21.51

Table 8 Estimated cache misses with and w/o cache locking for synthetic benchmark.

Cach w/o granularity at | improvement | granularity at | improvement
ache cache locking | L1 block size (%) L2 block size (%)

core 1 9112 4509 50.52 5819 36.14

core 2 928 928 0.00 928 0.00

core 3 1146 1146 0.00 1146 0.00

core 4 2012 2012 0.00 2012 0.00

shared L2 cache 8249 5371 34.89 5400 34.54
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Fig. 23 Estimated WCRT with and w/o cache locking at different locking granularities for
synthetic benchmark.

7.8.1 8-core Setting

Figure 24 presents the estimated WCRT improvement for a 8-core setting. As
shown, cache locking significantly improves the WCRT by up to 50% across
various cache settings.

7.8.2 Runtime

Figure 25 shows the runtime of our iterative cache locking process for both
locking granularities across various settings for DEBIE benchmark. As shown,
our cache locking algorithm is very efficient. It takes less than 6 minutes for any
considered setting. The cache locking analysis for PapaBench and synthetic
benchmark completes within 1 minute.
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7.4 WCRT Analysis Accuracy

In this subsection, we evaluate the accuracy of our WCRT estimates. Eval-
uating the accuracy of the WCRT estimate requires us to obtain observed
WCRT through simulation. Even though we can compile and analyze DEBIE
benchmark and estimate its WCRT, there are difficulties in carrying out cycle-
accurate simulation of the entire benchmark program. The original DEBIE
software receives its input from multiple sensors as well as uses multiple timer
interrupts. When porting to other platforms that may not have these periph-
erals, the behavior of the peripherals are simulated through some “harness”
functions. In other words, we need to use simulated peripherals to run this
benchmark. Unfortunately, we cannot port these simulated peripheral codes
to SimpleScalar infrastructure that we use as our platform. The simulated pe-
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Fig. 26 MSC used to obtain simulation results.

Table 9 Characteristic and settings of the MSC used in simulation.

[ Task [ Codesize (bytes) | Core |
main-test-tc 240 1
main-test-hm 240 1
main-test-tm 240 1
main-test-hit 240 1
main-test-aq 240 1
main-test-su 240 1
tm-test 56, 960 1
hit-test 10,776 2
su-test 50,176 2
tc-test 45,368 3
hm-test 44,176 4
aqg-test 44,128 4

ripherals communicate via RTX kernel with proprietary code. Thus it is not
possible for us to simulate the entire DEBIE benchmark.

However, the DEBIE benchmark includes another program that tests the
different software components. This particular testing program does not re-
quire any peripherals to generate input data as the test inputs are generated
internally. Thus we choose to use the MSC corresponding to this testing pro-
gram to evaluate the accuracy of our WCRT analysis. Details of this MSC are
shown in Figure 26 and Table 9. In addition to DEBIE benchmark, we can
obtain the simulation results for PapaBench and synthetic benchmarks. We
compare the estimation with simulation for all the them.

We consider a 4-core system and the corresponding mapping of the tasks to
the processor cores appear in Figure 26. The L1 cache is configured as 2-way
set associative cache with 32-byte block size. The shared L2 cache is configured
as 4-way set associative cache with 64-byte block size.
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Table 10 WCRT estimation accuracy with cache locking for DEBIE benchmark.

Configuration locking at L1 block size granularity locking at L2 block size granularity
Est. Obs. Over Est. Obs. Over
WCRT WCRT ve WCRT WCRT ve
Est. Est.
(cycles) (cycles) (cycles) (cycles)
L1:2KB L2:4KB_ | 105,365,114 | 170,997,708 114 196,053,375 | 170,723,730 .15
L1:2KB L2:8KB__ | 190,462,524 | 155,539,731 1.22 194,421,313 | 155,411,040 1.25
T1:2KB L2:16KB | 189,618,571 | 152,009,715 1.25 192,322,099 | 151,895,604 1.27
L1:2KB L2:32KB | 189,211,591 | 151,577,355 1.25 191,123,029 | 151,479,444 1.26
L1:4KB L2:8KB 167,275,370 | 151,513,653 1.10 169,603,178 | 151,310,262 T.12
L1:4KB L2:16KB 167,820,768 147,722,133 1.14 170,242,896 147,708,012 1.15
L1:4KB L2:32KB 167,127,572 147,398,223 1.13 169,559,690 147,393,552 1.15

Table 11 WCRT estimation accuracy with cache locking for PapaBench.

Configuration locking at L1 block size granularity locking at L2 block size granularity

Est. Obs. Over Est. Obs. Over

WCRT WCRT WCRT WCRT
Est. Est.

(cycles) | (cycles) (cycles) | (cycles)
L1:512B L2:4KB 125,700 61,380 2.05 112,726 74,145 1.52
L1:1KB L2:8KB 118,032 63,592 1.86 100,007 67,944 1.47
L1:1KB L2:4KB 120,687 60,012 2.01 105,722 66,789 1.58
L1:2KB L2:8KB 110,736 55,350 2.00 92,452 57,720 1.60
L1:2KB L2:16KB 110,232 55,368 1.99 96,259 58,302 1.65

Table 12 WCRT estimation accuracy with cache locking for synthetic benchmark.

Configuration locking at L1 block size granularity locking at L2 block size granularity
Est. Obs. o Est. Obs. o
WCRT | WCRT Bet. WCRT | WCRT ver
st. Est.
(cycles) | (cycles) (cycles) | (cycles)
L1:2KB L2:32KB 846,924 467,111 1.81 858,500 476,669 1.80
L1:2KB L2:64KB 774,204 432,101 1.79 785,060 441,659 1.78
L1:4KB L2:32KB 717,265 425,639 1.69 717,067 426,476 1.68
L1:4KB L2:64KB 696,655 390,629 1.78 696,277 391,466 1.78

We obtain the simulation results using a cycle-accurate simulation infras-
tructure [13] built on top of the CMP-SIM simulator [10]. The bus is not
modeled in this simulator. The estimated and observed (simulation) WCRT
of DEBIE with cache locking are shown in Table 10. Overestimation ratio is
calculated as Estimation cycles/Observed cycles. We note that the overesti-
mation is not high, and it varies between 1.10 and 1.27.

Table 11 and Table 12 present the results of PapaBench and synthetic
benchmark. The overestimation varies between 1.47 and 2.05.

8 Concluding Remarks

We have presented a worst-case response time (WCRT) analysis of concurrent
programs running on shared cache multi-cores. Our concurrent programs are
captured as graphs of Message Sequence Charts (MSCs) where the MSCs
capture ordering of computation tasks across processes. Our timing analysis
iteratively identifies tasks whose lifetimes are disjoint and uses this information
to rule out cache conflicts between certain task pairs in the shared cache. Our
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analysis obtains lower WCRT estimates than existing shared-cache analysis
methods on a real-world application. Moreover, we exploit our analysis results
to lock some memory blocks into the private L1 caches so as to reduce the
impact of interference among the memory blocks in the shared L2 cache. Our
cache locking algorithm improves the WCRT estimates by up to 80%.

In future, we are planning to extend the work in several directions. This
will also amount to relaxing or removing the restrictions in our current analysis
framework, namely - (i) handling of data caches, (ii) handling cache replace-
ment policies other than LRU, (iii) directly capturing the constructive effect
of shared code (such as libraries) across tasks, and (iv) allowing tasks to com-
municate via message passing as well as shared memory.
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