
Runtime Adaptive Extensible Embedded Processors —
A Survey

Huynh Phung Huynh and Tulika Mitra

School of Computing
National University of Singapore

{huynhph1,tulika}@comp.nus.edu.sg

Abstract. Current generation embedded applications demand the computation
engine to offer high performance similar to custom hardware circuits while pre-
serving the flexibility of software solutions. Customizable and extensible embed-
ded processors, where the processor core can be enhanced with application-specific
instructions, provide a potential solution to this conflicting requirements of perfor-
mance and flexibility. However, due to the limited area available for implementa-
tion of custom instructions in the datapath of the processor core, we may not be
able to exploit all custom instruction enhancements of an application. Moreover,
a static extensible processor is fundamentally at odds with highly dynamic appli-
cations where the custom instructions requirements vary substantially at runtime.
In this context, a runtime adaptive extensible processor that can quickly morph
its custom instructions and the corresponding custom functional units at runtime
depending on workload characteristics is a promising solution. In this article, we
provide a detailed survey of the contemporary architectures that offer such dy-
namic instruction-set support and discuss compiler and/or runtime techniques to
exploit such architectures.

1 Introduction

The ever increasing demand of high-performance at low-power in the embedded do-
main is fueling the trend towards customized embedded processors [13]. A customized
processor is designed specifically for an application domain (e.g., network, multime-
dia etc.) enabling it to offer significantly higher performance compared to its general-
purpose counterparts, while consuming much lower energy. This dual improvement in
power-performance is achieved by eliminating certain structures (e.g., floating-point
unit) that are redundant for the particular application-domain, while choosing appropri-
ate dimensions for other structures (e.g., cache, TLB, register file). The elimination of
redundant structures cuts down energy/area wastage and tailor-made dimensioning of
required structures improves performance at reduced power budget.

A further step towards customization is instruction-set extensible processors or ex-
tensible processors for short. An extensible processor opens up the opportunity to cus-
tomize the Instruction-Set Architecture (ISA) through application-specific extension
instructions or custom instructions. Each custom instruction encapsulates a frequency
occurring complex pattern in the data-flow graph of the application(s). Custom instruc-
tions are implemented as Custom Functional Units (CFU) in the data-path of the pro-
cessor core. As multiple instructions from the base ISA are folded into a single custom

K. Bertels et al. (Eds.): SAMOS 2009, LNCS 5657, pp. 214–224, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Runtime Adaptive Extensible Embedded Processors — A Survey 215

instruction, we save fetching/decoding costs and improve code size. More importantly,
the CFU can typically achieve significantly lower latency through parallelization and
chaining of basic operations (the latency is determined by the critical path in the data-
flow graph of the corresponding custom instruction) compared to executing one op-
eration per cycle sequentially in the original processor. On the other hand, as custom
instructions are exposed to the programmer, extensible processors offer great flexibility
just like any software-programmable general-purpose processors. The large number of
commercial extensible processors available in today’s market (e.g., Xtensa [9], Lx [8],
ARC configurable cores [2], OptimoDE [7], MIPS CorExtend [18]) is a testament to
their wide-spread popularity.

There are, however, some drawbacks of traditional extensible processors. First, we
need to design and fabricate different customized processor for each application do-
main. A processor customized for one application domain may fail to provide any tan-
gible performance benefit for a different domain. Soft core processors with extensibility
features that are synthesized in FPGAs (e.g., Altera Nios [1], Xilinx MicroBlaze [21])
somewhat mitigate this problem as the customization can be performed post-fabrication.
Still, customizable soft cores suffer from lower frequency and higher energy consump-
tion issues because the entire processor (and not just the CFUs) is implemented in FP-
GAs. Apart from cross-domain performance problems, extensible processors are also
limited by the amount of silicon available for implementation of the CFUs. As embed-
ded systems progress towards highly complex and dynamic applications (e.g., MPEG-4
video encoder/decoder, software-defined radio), the silicon area constraint becomes a
primary concern. Moreover, for highly dynamic applications that can switch between
different modes (e.g., runtime selection of encryption standard) with unique custom in-
structions requirements, a customized processor catering to all scenarios will clearly be
a sub-optimal design.

Runtime adaptive extensible embedded processors offer a potential solution to all
these problems. An adaptive extensible processor can be configured at runtime to
change its custom instructions and the corresponding CFUs. Clearly, to achieve runtime
adaptivity, the CFUs have to be implemented in some form of reconfigurable logic. But
the base processor is implemented in ASIC to provide high clock frequency and better
energy efficiency. As CFUs are implemented in reconfigurable logic, these extensible
processors offer full flexibility to adapt (post-fabrication) the custom instructions ac-
cording to the requirement of the application running on the system and even midway
through the execution of the application. Such adaptive extensible processors can be
broadly classified into two categories:

– Explicit Reconfigurability: This class of processors need full compiler or pro-
grammer support to identify the custom instructions, synthesize them, and finally
cluster then into one (or more) configurations that can be switched at runtime. In
other words, custom instructions are generated off-line and the application is re-
compiled to use these custom instructions.

– Transparent Reconfigurability: This class of processors do not expose the exten-
sibility feature to the compiler or the programmer. In other words, the extensibil-
ity is completely transparent to the user. Instead, the runtime system identifies the
custom instructions and synthesizes them while the application is running on the



216 H.P. Huynh and T. Mitra

system. These systems are more complex, but may provide better performance as
the decisions are taken at runtime.

In this article, we will first provide a quick survey of the architecture of explicit runtime
adaptive extensible processors followed by the compiler support required for such pro-
cessors. Next, we will discuss transparent reconfigurable processors and their runtime
systems. Finally, we will conclude this survey by outlining the challenges and opportu-
nities in this domain.

2 Explicit Runtime Adaptive Extensible Processors

In this section, we will focus on extensible processors that require extensive compiler
or programmer intervention to achieve runtime reconfigurability.

2.1 Architecture

Temporal Reconfiguration. We start with architectures that enable temporal reconfig-
uration, but only one custom instruction can exist at any point of time. That is, there is
no spatial sharing of the reconfigurable logic among custom instructions.

PRISC (PRogrammable Instruction Set Processor) [17] is one of the very first architec-
tures to include temporal reconfigurability of the custom functional units. Temporal
reconfiguration virtually enlarges the limited reconfigurable hardware, which is tightly
attached to the datapath of core processor. PRISC supports a set of configurations, each
of which contains a computation kernel or a custom instruction. At any point of time,
there is only one active configuration for reconfigurable hardware. However, each of
the configurations can become active at some point of time through time-multiplexing.
Therefore, temporal reconfiguration can extend the computational ability of the recon-
figurable hardware at the cost of reconfiguration overhead.

Figure 1 shows the Programmable Functional Unit (PFU) in parallel with the other
traditional functional units in the datapath of the PRISC processor. PFU data communi-
cation is similar to the other functional units. However, PFU can support only two input
operands and one output operand. With the limitation on the number of input and output
operands, PRISC cannot implement large custom instructions that can potentially pro-
vide more performance benefit though instruction-level parallelism as well as higher
latency reduction. Moreover, as each configuration can include only one instruction,
PRISC effectively restricts the number of custom instructions per loop body to one;

Register
File and
Bypass
Logic

FU1 FU2 PFU
Paddr
Pdata

Result Operand Bus

Source Operand Buses

Fig. 1. PRISC Architecture [17]



Runtime Adaptive Extensible Embedded Processors — A Survey 217

otherwise, the temporal reconfiguration cost within loop body will typically outweigh
any benefit of custom instructions.

OneChip [14] reduces reconfiguration overhead by allowing multiple configurations to
be stored in the PFU, but only one configuration is active at any point of time. Moreover,
OneChip comprises of a superscalar pipeline with PFU to achieve higher performance
for streaming applications. However, OneChip lacks the details of how programmers
specify or design the hardware that is mapped onto the reconfigurable logic.

Spatial and Temporal Reconfiguration. Both PRISC and OneChip allow only one
custom instruction per configuration that can result in high reconfiguration cost spe-
cially if two custom instructions in the same code segment are executed frequently, for
example, inside a loop body. Our next set of architectures enable spatial reconfiguration,
that is, the reconfigurable hardware can be shared among multiple custom instructions.
The combination of spatial and temporal reconfiguration is a powerful feature that parti-
tions the custom instructions into multiple configurations, each of which contains one or
more custom instructions. This clustering of multiple custom instructions into a single
configuration can significantly reduce the reconfiguration overhead.

Chimaera [22], which is inspired by PRISC, is one of the original works considering
temporal plus spatial configuration of the custom functional units. Chimaera tightly
couples Reconfigurable Functional Unit (RFU) with a superscalar pipeline. The main
innovation of the Chimaera RFU is that it uses nine input registers to produce the result
in one destination register. Simple compiler support is provided to automatically map
group of normal instructions into custom instructions. However, Chimaera compiler
lacks support for spatial and temporal reconfiguration of custom instructions so as to
make runtime reconfiguration more efficient.

Stretch S6000 [10] commercial processor follows this research trend. Figure 2 shows
the Stretch S6000 engine that incorporates Tensilica Xtensa LX dual-issue VLIW
processor [9] and the Stretch Instruction Set Extension Fabric (ISEF). The ISEF is
software-configurable datapath based on programmable logic. It consists of a plane
of Arithmetic/logic Units (AU) and a plane of Multiplier Units (MU) embedded and
interlinked in a programmable, hierarchical routing fabric. This configurable fabric acts
as a functional unit to the processor. It is built into the processor’s datapath, and re-
sides alongside other traditional functional units. The programmer defined application
specific instructions (Extension Instructions) are implemented in this fabric. When an
extension instruction is issued, the processor checks to make sure the corresponding
configuration (containing the extension instruction) is loaded into the ISEF. If the re-
quired configuration is not present in the ISEF, it is automatically loaded prior to the
execution of the user-defined instruction. ISEF provides high data bandwidth to the
core processor through 128-bit wide registers. In addition, 64KB embedded RAM is
included inside ISEF to store temporary results of computation. With all these features,
a single custom instruction can potentially implement a complete inner loop of the ap-
plication. The Stretch compiler fully unrolls any loop with constant iteration counts.

Partial Reconfiguration. Partial reconfiguration provides the ability to reconfigure only
part of the reconfigurable fabric. With partial reconfiguration, idle custom instructions



218 H.P. Huynh and T. Mitra

Local Memory System

32KB
I Cache

32KB
D Cache

64KB
Dual port RAM

Execution Unit

32 bit Register 32 bit Register 128 bit Wide Register

FPU ALU

ISEF
IRAM

Xtensa LX Dual Issue VLIW

Fig. 2. Stretch S6000 datapath [10]

can be removed to make space for the new instructions. Moreover, as only a part of the
fabric is reconfigured, it saves reconfiguration cost.

DISC (Dynamic Instruction Set Computer) [20] is one of the earliest attempts for an
extensible processor to provide partial reconfiguration feature. DISC implements each
instruction of the instruction set as an independent circuit module. It can page-in and
page-out individual instruction modules onto reconfigurable fabric in a demand-driven
manner. DISC supports relocatable circuit modules such that an existing instruction
module can be moved inside the fabric to generate enough contiguous space for the
incoming instruction module. The drawback of DISC system is that both standard and
custom instructions are implemented in reconfigurable logic, causing significant per-
formance overhead. On the other hand, the host processor is under-utilized as it only
performs resource allocation and reconfiguration.

Extended Instruction Set RISC (XiRisc) [15] follows this line of development to cou-
ple a VLIW datapath with a pipelined run-time reconfigurable hardware. XiRisc has a
five-stage pipeline with two symmetrical execution flows called Data Channels. Recon-
figurable datapath supports up to four source operands and two destination operands
for each custom instruction. Moreover, reconfigurable hardware can hold internal states
for several computations so as to reduce the register pressure. However, configuration
caching is missing in XiRisc leading to high reconfiguration overhead. Moreover, there
is lack of compiler support for designer to automatically generate custom instructions.

Molen [19] polymorphic processor incorporates an arbitrary number of reconfigurable
functional units. Molen resolves the issue of opcode space explosion for custom func-
tions as well as data bandwidth limitation of the reconfigurable hardware. Moreover,
Molen architecture allows two or more independent functions to be executed in parallel
in the reconfigurable logic. To achieve these features, Molen requires a new program-
ming paradigm that enables general-purpose instructions and hardware descriptions
of custom instructions to coexist in a program. An one-time instruction set extension



Runtime Adaptive Extensible Embedded Processors — A Survey 219

of eight instructions is added to support the functionality of reconfigurable hardware.
Molen compiler automatically generates optimized binary code for C applications with
pragma annotation for custom instructions. The compiler can also generate appropriate
custom instructions for each implementation of reconfigurable logic. The reconfigu-
ration cost is hidden by scheduling the instructions appropriately such that the con-
figuration corresponding to a custom instruction can be prefetched before that custom
instruction is scheduled to execute.

2.2 Compiler Support

Most of the runtime adaptive extensible processors lack appropriate compiler support
to automate the design flow. However, given the tight time-to-market constraint of em-
bedded systems, compiler support is instrumental in developing greater acceptability of
these architectures. Currently, the burden is entirely on the programmer to select appro-
priate custom instructions and cluster them into one or more configurations. Choosing
an appropriate set of custom instructions for an application itself is a difficult problem.
Significant research effort has been invested in developing automated selection tech-
niques for custom instructions [13]. Runtime reconfiguration has the additional compli-
cation of both temporal and spatial partitioning of the set of custom instructions in the
reconfigurable fabric.

We have recently developed an efficient framework [12] that starts with an appli-
cation specified in ANSI-C and automatically selects appropriate custom instructions
as well as clubs them into one or more configurations (see Figure 3). We first extract
a set of compute-intensive candidate loop kernels from the application through profil-
ing. For each candidate loop, one or more Custom Instruction Set (CIS) versions are
generated differing in performance gain and area tradeoffs. The control flows among
the hot loops are captured in the form of a loop trace (execution sequence of the
loops) obtained through profiling. The hot loops with multiple CIS versions and the
loop trace are fed to the partitioning algorithm that decides the appropriate CIS version
and configuration for each loop. The key component of the framework is an iterative

Hot Loops 
Detection

CIS versions 
Generation

Hot Loop Trace 
Generation

Datapath SynthesisSoftware Loops

Partitioning

Bit Stream
for Each Config

Application in C

Fig. 3. Compiler framework for runtime adaptive extensible processors [12]



220 H.P. Huynh and T. Mitra

T0

T3

T2T1

T6

T5

T4

D6

D4

D3

D0

C0 C1 C2

T0
[0] T1

[0] T2
[0] T4

[0] T3
[0] T5

[0] T6
[0] T0

[1] …

D1 D2 D5
…

Schedule of Task Instances

Temporal Configurations

Fig. 4. A set of periodic task graphs and the corresponding schedule [11]

partitioning algorithm. We model the temporal partitioning of the custom instructions
into different configurations as a k-way graph partitioning problem. A dynamic pro-
gramming based pseudo-polynomial time algorithm determines the spatial partitioning
of the custom instructions within a configuration. The selected CIS versions to be im-
plemented in hardware pass through a datapath synthesis tool. It generates the bitstream
corresponding to each configuration (based on the outcome of the temporal partition-
ing). These bitstreams are used to configure the fabric at runtime. The remaining loops
are implemented in software on the core processor. Finally, the source code is modified
to exploit the new custom instructions.

We also extend our work to include runtime reconfiguration of custom instructions
for multiple tasks along with timing constraints [11]. An application is modeled as a
set of periodic task graphs, each associated with a period and a deadline. Multiple CIS
versions are generated for each constituent task of a task graph. Each task has many in-
stances in the static non-preemptive schedule over the hyper-period (the least common
multiple of the task graph periods) as shown in Figure 4. The objective is to minimize
processor utilization by exploiting runtime reconfiguration of the custom instructions
while satisfying deadline constraints. To achieve this goal, temporal partitioning di-
vides the schedule into a number of configurations, where area constraint is imposed on
each configuration. For example, Figure 4 illustrates an initial fragment of the sched-
ule and its partitioning into three configurations. Note that each configuration contains
a disjoint subsequence of task instances from the original schedule. Temporal parti-
tioning allows a larger virtual area at the cost of reconfiguration overhead. The area
within a configuration is spatially partitioned among the task instances assigned to it
by choosing appropriate CIS version for each task instance. A dynamic programming
based algorithm is enhanced with various constraints to efficiently solve the problem.

3 Transparent Extensible Processors

We now proceed to describe extensible processors that are reconfigured transparently
by the runtime system.

Configurable Compute Accelerators (CCA): Transparent instruction-set customization
supports a plug-and-play model for integrating a wide range of accelerators into a
pre-designed and verified processor core. Moreover, instruction-set customization
occurs at runtime. An architectural framework for transparent instruction-set



Runtime Adaptive Extensible Embedded Processors — A Survey 221

SG1

SG2

Program Program

SG1

SG2

BRL

BRL

Subgraph Result

CCA
Subsystem

Core

Execution 1

CCA
Subsystem

Core
Subgraph

Execution 2 > N

Result

(a) (b)

Configure
CCA

Fig. 5. Transparent Instruction Set Customization. (a) Subgraph Identification and (b) Runtime
Processing [6].

customization has been proposed in [5]. The framework comprises of
static identification of subgraphs for execution on CCA [6] and run-
time selection of custom instructions to be synthesized to CCA as shown
in Figure 5. First, the program is analyzed to identify the most frequent
computation subgraphs (custom instructions) to be mapped onto CCA.
Figure 5(a) shows that two subgraphs have been selected. They are considered
as normal functions and will be replaced by function calls. At runtime, the first time a
selected subgraph is encountered, it is executed in the core pipeline while a hardware
engine determines the CCA configuration concurrently. From the second execution
onwards, the subgraph is implemented in the CCA as shown in Figure 5(b).

Static subgraph extraction and replacement are achieved by adding a few steps into
the conventional code generation process, which comprises of prepass scheduling, reg-
ister allocation and postpass scheduling of spill code as shown in Figure 6. These steps
are shaded in gray in the figure. First, given a dataflow graph, subgraph identification
selects a set of potential subgraphs, which will be later implemented on CCA. Sub-
graph identification is a well-studied problem; interested readers can refer to [13] for
a detailed exposition of the solutions. Note that subgraph identification is performed
before register allocation to avoid false dependencies within data flow graph. After sub-
graph identification, selected subgraphs are collapsed into a single instruction. However,
when collapsing subgraphs, code motion ensures the correctness if the subgraph crosses
branch boundaries. Before getting into register allocation, the collapsed instruction is
expanded so that register allocator can assign the registers to internal values. The advan-
tage of this approach is that even a processor without CCA can execute the subgraphs
as well (because they are treated as normal functions). More importantly, subgraph
expansion ensures that register allocation remains relatively unchanged. After register

Code
Motion

Prepass
Sched

Subgraph
Expansion

Reg
Allocate

Subgraph
Compaction

Postpass
Sched

Expansion
/ Function
Outlining

Assembly
File

Subgraph
Identification

DFG

Fig. 6. Compiler Flow for CCA Architecture [6]



222 H.P. Huynh and T. Mitra

allocation, each subgraph is compacted to an atomic node and passed on as input to
postpass scheduling. When postpass scheduling completes, each subgraph is expanded
once again and a function is created for each subgraph along with a function call.

WARP: At the other end of the spectrum, we have WARP [16] that has been devel-
oped with completely transparent instruction-set customization in mind. WARP proces-
sor consists of a main processor with instruction and data caches, an on-chip profiler,
WARP-oriented FPGA and an on-chip computer-aided design (CAD) module. The ex-
ecution of an application starts only on the main processor. During the execution, the
profiler determines the critical kernels of the application. Then, CAD module invokes
the Riverside On-Chip CAD (ROCCAD) tool chain.

ROCCAD tool chain starts with decompilation of the application binary code of soft-
ware loops into high-level representation that is more suitable for synthesis. Next, the
partitioning algorithm determines the most suitable loops to be implemented in FPGA.
For the selected kernels, ROCCAD uses behavioral and Register Transfer Level (RTL)
synthesis to generate appropriate circuit descriptions. Then, ROCCAD configures the
FPGA by using Just-In-Time (JIT) FPGA compilation tools. The JIT compiler performs
logic synthesis to optimize the hardware circuit followed by technology mapping to
map the hardware circuit onto reconfigurable logic fabric. Placement and route are then
performed to complete the JIT compilation. Finally, ROCCAD updates the application
binary code to utilize the custom accelerators inside the FPGA.

RISPP (Rotating Instruction Set Processing Platform) [4] is a recent architecture that
offers a unique approach towards runtime customization. RISPP introduces the notion
of atoms and molecules for custom instructions. Atom is the basic datapath, while a
combination of atoms creates custom instruction molecule. Atoms can be reused across
different custom instruction molecules. Compared to the contemporary reconfigurable
architectures, RISPP reduces the overhead of partial reconfiguration substantially
through an innovative gradual transition of the custom instructions implementation
from software into hardware. At compile time, only the potential custom instructions
(molecules) are identified, but these molecules are not bound to any datapath in hard-
ware. Instead, a number of possible implementation choices are available including
a purely software implementation. At runtime, the implementation of a molecule can
gradually “upgrade” to hardware as and when the atoms it needs become available. If
no atom is available for a custom instruction, it will be executed in core pipeline using
the software implementation. RISPP requires fast design space exploration technique at
runtime to combine appropriate elementary data paths and evaluate tradeoffs between
performance and hardware area of the custom instructions [3]. A greedy heuristic is
proposed to select the appropriate implementation for each custom instruction.

4 Conclusions

In this article, we focused on a detailed survey of extensible processors that provide
runtime reconfiguration capability of the custom instruction sets. We observe that these
architectures span a large spectrum starting from simplest solution that provides only
temporal reconfiguration of a single custom instruction to more complex partial recon-



Runtime Adaptive Extensible Embedded Processors — A Survey 223

figuration and finally completely transparent reconfiguration solution where the cus-
tom instructions are identified and implemented at runtime. We also discuss compiler
support necessary to exploit and harness this unique reconfiguration capability. Even
though the architectural landscape in this domain looks quite promising, there is a seri-
ous lack of software tool support to take these solutions forward. In particular, runtime
reconfiguration demands spatial and temporal partitioning of the custom instructions
of an application into multiple configurations — a challenging problem for which only
preliminary solutions exist today. Transparent extensible processors offer an interesting
alternative to customization; however, the runtime overhead for design space explo-
ration and synthesis is somewhat limiting the effectiveness of these proposals. We hope
future research will bridge the gap between architecture and application to create an
end-to-end solution for mapping applications to dynamic architectures.

Acknowledgements

This work is partially supported by NUS research project R-252-000-292-112.

References

1. Altera. Introduction to the Altera Nios II Soft Processor, ftp://ftp.altera.
com/up/pub/Tutorials/DE2/Computer_Organization/tut_nios2_
introduction.pdf

2. ARC. Customizing a Soft Microprocessor Core (2002), http://www.arc.com/
upload/download/ARCIntl_0126_CustomizingSoftMicCore_wp.pdf

3. Bauer, L., Shafique, M., Henkel, J.: Run-time instruction set selection in a transmutable em-
bedded processor. In: DAC (2008)

4. Bauer, L., Shafique, M., Kramer, S., Henkel, J.: RISPP: Rotating instruction set processing
platform. In: DAC (2007)

5. Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S., Flautner, K.: An architecture framework
for transparent instruction set customization in embedded processors. In: ISCA (2005)

6. Clark, N., Kudlur, M., Park, H., Mahlke, S., Flautner, K.: Application-specific processing on
a general-purpose core via transparent instruction set customization. In: MICRO (2004)

7. Clark, N., Zhong, H., Fan, K., Mahlke, S., Flautner, K., Van Nieuwenhove, K.: OptimoDE:
Programmable Accelerator Engines through Retargetable Customization. In: Hot Chips
(2004)

8. Faraboschi, P., Brown, G., Fisher, J.A., Desoli, G., Homewood, F.: Lx: A technology platform
for customizable VLIW embedded processing. In: ISCA (2000)

9. Gonzalez, R.E.: Xtensa: A configurable and extensible processor. IEEE Micro. 20(2) (2000)
10. Gonzalez, R.E.: A software-configurable processor architecture. IEEE Micro. 26(5) (2006)
11. Huynh, H.P., Mitra, T.: Runtime reconfiguration of custom instructions for real-time embed-

ded systems. In: DATE (2009)
12. Huynh, H.P., Sim, J.E., Mitra, T.: An efficient framework for dynamic reconfiguration of

instruction-set customization. In: CASES (2007)
13. Ienne, P., Leupers, R. (eds.): Customizable Embedded Processors. Morgan Kauffman, San

Francisco (2006)
14. Jacob, J.A., Chow, P.: Memory interfacing and instruction specification for reconfigurable

processors. In: FPGA (1999)

ftp://ftp.altera.com/up/pub/Tutorials/DE2/Computer_Organization/tut_nios2_introduction.pdf
ftp://ftp.altera.com/up/pub/Tutorials/DE2/Computer_Organization/tut_nios2_introduction.pdf
ftp://ftp.altera.com/up/pub/Tutorials/DE2/Computer_Organization/tut_nios2_introduction.pdf
http://www.arc.com/upload/download/ARCIntl_0126_CustomizingSoftMicCore_wp.pdf
http://www.arc.com/upload/download/ARCIntl_0126_CustomizingSoftMicCore_wp.pdf


224 H.P. Huynh and T. Mitra

15. Lodi, A., Toma, M., Campi, F., Cappelli, A., Canegallo, R., Guerrieri, R.: A VLIW processor
with reconfigurable instruction set for embedded applications. IEEE Journal of Solid-State
Circuits 38(11) (2003)

16. Lysecky, R., Stitt, G., Vahid, F.: WARP processors. ACM Transactions on Design Automa-
tion of Electronic Systems 11(3) (2006)

17. Razdan, R., Smith, M.D.: A high-performance microarchitecture with hardware-
programmable functional units. In: MICRO (1994)

18. MIPS Technologies. MIPS Configurable Solutions,
http://www.mips.com/everywhere/technologies/configurability

19. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte, E.M.: The
MOLEN Polymorphic Processor. IEEE Transactions on Computers 53(11) (2004)

20. Wirthlin, M.J., Hutchings, B.L.: A Dynamic Instruction Set Computer. In: FCCM (1995)
21. Xilinx. Microblaze Processor,

http://www.xilinx.com/products/design resources/proc central/
microblaze.htm

22. Ye, Z.A., Moshovos, A., Hauck, S., Banerjee, P.: CHIMAERA: A high-performance archi-
tecture with a tightly-coupled reconfigurable functional unit. In: ISCA (2000)

http://www.mips.com/everywhere/technologies/configurability
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm

	Runtime Adaptive Extensible Embedded Processors — A Survey
	Introduction
	Explicit Runtime Adaptive Extensible Processors
	Architecture
	Compiler Support

	Transparent Extensible Processors
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


