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Abstract— Multiprocessor System-on-Chips or MPSoCs in the Fg;:;’,:‘ D'sﬁ:jfsfff::"e Quantization Qu:‘:t?z’:fion et
embedded systems domain are increasingly employing multie — _ _ _ _ . - |
customizable processor cores. Such cores offer higher per- % 2 “/‘\‘ T ST T A T T e T >~
formance through application-specific instruction-set efensions <= —\FS)=——*PCT-——"2 Q 5 Q) " P
without sacrificing the flexibility of software solutions. Existing SO .o -7 B

techniques for generating appropriate custom instructiors for Fig. 1. The task graph of an MPEG-2 encoder.

an application domain are primarily restricted to specializing a - g56 gecondly, MPSoCs are increasingly targeted towards
single processor with the objective of maximizing performace. ’ ’

In a customizable MPSoC, in contrast, the different processr Multimedia streaming applications that are characterizgd
cores have to be customized in a synergistic fashion to creat high variability in their execution times. As such, convenal
a heterogeneous MPSoC solution that best suits the appligan. methods to select custom instructions fail to return adeura

Moreover, such a platform presents conflicting design tradeffs  resylts. In this paper, we will propose techniques to addres
betvv_een system throughput and on-chip memory/lpglc capatyi. these issues for streaming applications.
In this paper, we propose a framework to systematically exmre

the complex design space of customizable MPSoC platformsn| A. Overview of our Scheme

particular, we focus on multimedia streaming applications as A st . licati infinite st f dat
this class of applications constitutes a primary target of MPSoC streéaming application processes an infinite stream ot data

platforms. We capture the high variability in execution times and items or events. The application may be modeled as a task
the bursty nature of streaming applications through appropriate  graph where the nodes are abstract representations of the
mathematical models. Thus, our framework can efficiently ad  different functions or blocks of code. Figure 1 shows one

accurately evaluate the different customization choices ithout such task graph implementing an MPEG-2 encoder. The events

resorting to expensive system-level simulations. We perfim a LS .
detailed case study of an MPEG encoder application with our processed by such an application geed and the processing

framework. It reveals design points with interesting tradeoffs Of the events invokes different paths in the task graphs. The
between silicon area requirement for the custom instructios MPEG-2 encoder application for example processes three

and the on-chip storage for partially-processed video datawhile  types of frames to encode video informaticype |, type
ensuring that all the design points strictly satisfy required QoS B and type P. Depending on the frame type, the encoder
guarantees. : i
executes different subtasks to compress the frame agdtadt
|. INTRODUCTION in Figure 1. Thetype P events triggers all the subtasks of
Nowadays, there is a tremendous interest in Multiprocessbe encoder, while theype | triggers the tasks DCT, Q,
System-on-Chips (MPSoCs) specifically targeted towards i@, and IDCT; andtype B triggers only the tasks FS, DCT,
plementing multimedia applications. Designs based on MPSand Q. As a result, each of these three event types demand
platforms are today ubiquitous and range from mobile phondgferent amounts of resource for execution. As illustdaie
to set-top boxes. Such products are associated with hitpis example, in streaming applications the execution time
demands on flexibility, low design costs and stringent time- associated with any event might vary considerably, dependi
market constraints. On the other hand, they must also yatish the type of the event. As a result, the choice of custom
the high performance requirements of the target applioatioistruction will have to consider this variability in exdmn
domain. In order to strike the right balance between flexjbil times with respect to the event types in order to achieve
and performance, MPSoC platforms come with instructian-smaximum performance gain within given area constraints.
extensible processor cores that can extend the base itietrucConventional methods ([17], [11]) to select custom indinrs
set with special instructions. These instructions capftee ignore this variability.
quently executed computation patterns of an applicatiomes  In this paper, we propose a technique to effectively
examples of commercial instruction-set extensible prames bound the worst-case resource requirements of the apphcat
include Lx, ARC™ core, Xtensa and Stretch. thereby capturing the variability associated with streggmi
Customizing processor cores in an MPSoC with extensitd@plications. Towards this, our proposed mechanism esploi
instruction sets can lead to additional logic gates in thhe application-specific task execution patterns whictgaren
processor’s core, but potentially significant savings irchip in the form of a transition system. The transition system
buffer sizes and performance. A designer would be typicaltiescribes the possible compositions of any event stread, an
interested in identifying how the performance and on-chipur technique takes into account all possible sequences of
buffer requirements change with different choices of custoevents that might arrive based on this specification. Tlhsval
instructions on an MPSoC platform. However, as each task camto effectively bound the worst-case and best-case agacut
be enhanced with multiple extensible instructions, idgimtgy times, and thereby accurately compute a number of relevant
such tradeoffs necessitates effective traversal of a hegels performance metrics.
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In our scenario, where we consider multimedia applications 35 period
running on an MPSoC platform, there are two relevant per- 3 (

formance metrics. First, we estimate the on-chip buffee,siz a/ D ={130,130} zf a4

which is an important metric for an MPSoC platform. Second 20z 130'12 15 A o=
we evaluate the jitter of the processed stream as a measure @ / 1 2 za Z;:l;
QoS because higher burstiness at the output implies a pc b/ ={100,90 b/D={10090} 05
quality of the application. A 0 5 1 &5 2 B N
To estimate these performance metrics, we rely on a form () (b)
mathematical framework, based on the theory of network
calculus [13]. As a part of the input specification, we areegiv Fig. 2. Specifications of a streamiagplication model: (a) Transition System
bounds on the arrival rate of the event stream. Given (i) thes®d (b) Arrival Curve.
timing properties of the streams in the form of bounds, and
(ii) the bounds on resource requirements of the events thatexecution times inherent in streaming applicationsafyn
we computed from the transition system, our scheme utilizgglike [11] or [17], we do not resort to heuristics to accater
a series of algebraic equations based on [13] to compute the running times of the proposed algorithms. Our solutions
relevant performance metrics. The details of this fram&wogre provably optimal as well as fast because we utilize tifec
will be described in Section III. pruning techniques based on a Branch and Bound strategy.
In the above discussion, we gave a brief overview of our Note that in this work we focus on the custom instruction
technique which evaluates performance metrics correspgndselection problem. This approach is along the lines of research
to a particular set of custom instruction by capturing thefforts discussed above. Hence, we assume that a library
variability of the execution times of a streaming applioati of custom instruction candidates is given. Such a library
In practice, each task of an application can be customizefl custom instructions may benumerated by extracting
using multiple choices, thereby leading to a combinatlyrialfrequently occurring computation patterns from the date flo
large number of choices in the overall design space. Eachgrhiph of the program [6], [16], [20]. Recently, [2], [15],91L
these design points captures a tradeoff between the adaliticalso proposed a method to generate custom instructions by
logic for the custom instructions and the performance rogtri relaxing the constraints on the number of input and output
In this paper, we also propose a scheme to efficiently seakgiierands. There have also been efforts [16], [4] to combine
the design space of customization choices to expose the two steps ofenumeration and selection in order to
tradeoffs. Instead of resorting to heuristics like evalntiry generate custom instructions on-the-fly.
algorithms [9], which are not guaranteed to return optimal o
results, we propose a Branch and Bound method with provally Organization of the Paper
optimal solutions. In the next section, we introduce the system model and some
necessary notations. In Section I, we explain our frantéwo
B. Related Work to evaluate the performance metrics for one design point of
In recent years, lot of research has been devoted to custangustomized MPSoC running a streaming application. This
instruction selection techniques so as to optimize eiteeiop- is followed by a discussion on how to efficiently search the
mance or hardware area. However, most of them are restrictissign space for good quality designs in Section IV. Some
to analyzing single processor systems. Various approaclhgsexperimental results that we obtained by applying our
proposed along this line of work include techniques based @thnique to an MPEG encoder application are presented in
dynamic programming [1], 0-1 Knapsack [8], greedy heuristSection V. Finally, we conclude in Section VI, where we

# events

[7], and ILP [14]. outline some directions for future work.
On the other hand, selecting custom instructions for MP-
SoCs has still not received sufficient attention, despite- MP Il. SysTeEM MODEL

SoCs being equipped with extensible cores. In [17], a tech-We consider a multimedia streaming application mapped
nique is proposed to select appropriate custom instructilm an MPSoC architecture. Broadly, the model of such a
configuration for each task in the task graph of the appbcati system may be defined in terms of thapplication, the
which is mapped into an MPSoC. Recently, [11] presentedMPSoC architecture and themapping of the application to
design flow to customize streaming application on heterogfe architecture.

neous pipelined multiprocessor systems. However, botkethe

approaches have certain limitations. First, they do nobaet Application: We are concerned witllyped event streams
for buffers between any two processors, the size of whithat may be formally specified in two parts. Tfiest part

is one of the main design parameters in MPSoC desigf, the stream specification is a transition systém =
and determines on-chip area. Second, none of the previg§sSy, X, D, ¥) which captures all possibkequences of event
research efforts exploited specific characteristics @asting typesthat might occur in the stream. Hebe s the finite set of
applications (e.g., bursty arrival patterns and the véitgtin  eventtypes. S is a finite set of statesy, C S is a set of initial
execution demands) in order to achieve accurate results.states, an@ C Sx ¥ x .S is a set of transitions. Henceforth, we
this paper, we present a systematic approach to identify ttienote any transitiots, o, s') in ¥ by s % s’. Any sequence
quality of different design points by capturing the varlapi of events in the stream can only be generated as follows. The



system starts in an initial state, andsif> s’ then the system
can change its state from to s’ and generate an event of

{a,b}

input event stream
processed
event stream

type o. Finally, any transition?, s % s’ is annotated with the Q

worst-case [ CET) and best-case execution timds{ ET) ~

for the event types. We denote this as a tuplé)(¥) = WCET,, @ =50 M WCET,, (@) =80
{WCET,BCET}. The WCET and BCET for the event WCET,; (b) =60 ,l\w;umple | WeeT;,; (b) =40
type o will be based on the selection of custom instructions. { Configuration

Each custom configuration of the subtasks triggered il WCET;,(a) =40 |~ W”\ WCET,, (a) =70
: ; WCET,, (b) =20 WCET,, (b) =15
imply a unique set otV CET and BCET. We also assume i

that all subtasks tr'ggereq b’yare. running on one proc_essorFig 3. WCET for events differ for each configuration givirigerto multiple
Thus, here, we have definéfl with respect to a particular global configurations.

instance, i.e., one custom configuration and one processor.
Later in Section 1, we shall discuss how to instantigte _ S _
for different configurations and different processors. Mapping: We assume that the mapping is given, i.e., we
Such a transition systeffi can be used to model constraint&nNow which subtasks of the given application are running on
on allowable sequences of even. can either be deter- @ particular PE. Clearly, a different mapping would dirgctl
mined by analyzing the device or the system that generatguence the choice of custom instructions on the MPSoC.
the stream, or by analyzing a sufficiently large number dgfhus, to find the optimal set of custom instructions, the
representative input streams. Figure 2(a) shows a toyitiams Problem of mapping the application task graph to the difiere
system withS = {a, b}. It captures the constraints that (i) thEs has to be intertwined with the custom |nstruct|9n smnlac.t
event stream starts with the type (ii) the event typea may problem. However, we do not attempt toladdress th.|s combined
arrive in bursts and (iii) between two bursts of events Ofetyporoblem because the problem of selecting the optimal custom
a, at least two events of typlemust arrive. instructions for an MPSoC even for one instance of a map-
The secondpart of the stream specification is concernefling is already f:omputationally intensive, as EXpl"_}‘ind‘_ﬁ\hﬁ
with its timing properties. Towards this, we are given th@Ur 9oal here is to address the custom instructelection
functions a“(A) and a'(A), which we will refer to as problem, given a particular mapping and an enumerationl of al
the arrival curvesa“(A) and a'(A) bound the maximum possible custom instructions for this mapping. An impattan

and minimum number of events that can arrive within anfy/turé work would be to jointly optimize task mapping and
time interval of lengthA. Thus, given any concrete arriva/custom instruction selection, which will benefit from the
process R(t), which denotes the total number of eventfChniques proposed here. o
that arrive during the time interval0,t], the inequalites L€t there bell subtasks in the task graph of the application
al(A) < R(t+ A) — R(t) < a*(A) hold true for allA >0 whlch are mapped to various PEs on the_ MPSoC. Let us
andt > 0. It may also be noted here that this specificatiofPnsider thatA(PE;) is the set of tasks which are mapped
is more general than the event models traditionally studié®l the PE;. Figure 3 shows a possible mapping for a task
in the real-time systems literature, such as periodic,opézi 9raph with5 subtasks. Taskg:, T, and 73 are mapped to
with jitter or the sporadic event model [3], [5]. Figure 2(b)”E1 while the rest of the tasks are mapped on Rd.
shows the arrival curve for an event stream where uptoAS €ach task is running on a customizable processor, we
events arrive within any time interval of length less thafonsider that there are; custom instruction configurations
17 time units. In other words, if we consider any concrettor the kth task and refer to each of these configurations as
(timed) trace of an arrival process, and slide a “window” d¥*.1:Ck.2, -, Ck.n,. HOwever, more than one task is mapped
length less tharl7 time units along this trace, then for anyt© the same PE giving rise to multiple configurations of the
position of this window at mos events will be recorded PE. Thus,PE; can run in any oficonfigi| = [;encpp,)
inside the window. Similarly, if the window is of lengtti7, configurations. For example, in Figure B;, T, and 75 are

then for any position of this window at mostevents will be Mapped toP £, Assume thaff} andT; has one configuration
recorded inside the window. each, thusy; = ny = 1. Also, assume thafz has two custom

instruction configurations and thusg = 2. This leads to
Architecture: The streaming application described above: x ng x n3 = 2 configurations.
runs on an MPSoC platform withP processing elements We would like to note here that workload oRE; for
(PE). The processors are arranged in a pipelined fashiamy event would depend on its configuration. Let us con-
An input multimedia stream enterBE;, gets processed bysider thejth configuration of PE;. We then define worst-
the tasks implemented on this PE, and the processed stremselV CET; ;(a), (and the best-casBCET; ;(a)) execution
enters PE;, for further processing. Figure 3 shows suchequirements of a event typeon PE; for its configurationj
an MPSoC with two PEs onto which the various parts of aas the summation of worst-case (best-case) running times of
abstract application witts tasks are mapped. Each PE hathe tasks in sef that are triggered by event In Figure 3, let
an internal buffer, which is a FIFO channel of fixed capacitys consider task®;, 7> and73 to have worst case execution
and is used to store the incoming stream to be processestjuirements o0, 30 and40 — for their first configuration
The frequencies of the processors are known to us. Each ¢Hoices. Ifa triggers onlyT} and7» in PE;, thenW CET; 4
consists of an extensible instruction-set architecture. (i.e., WCET of a on PFE, for PE;’s first configuration) is



N Customization of Tagks minimum processing times that may be demandediyyse-
on MPSoC [Section 2] guence oft consecutive events belonging to the input stream.

The subscriptg, j refer to the fact that the functiom; ;(k)

is computed for thejith custom instruction configuration for

PE; on the MPSoC. Thus;j ranges froml to |config;|

2. Use [WCET, BCET] Tables
to Compute y [Section 3]

and encapsulates all possible configurations of tasks tieat a
1 mapped ontaP E; (see Section II).
3. Compute Performance Metric A Computi ng .

based on y Functions [Section 3] .
We now show how to compute the functiong’; and

1 v} ,;. Towards this, let us first recall the definition of the
- Efficiently Search Design transition system7, where each transitio® from (s;) to
Bsz)puarfjsl{f;’t‘gggrg‘:;zgdL‘] (s2) represents the processing of an event of the typEnd
i is annotated withD(¥) = {WCET,BCET}. As an event
Fig. 4. Overview of our proposed scheme. o passes through MPSoC its arrival sequence (as defined by
20 4+ 30 = 50. the states and transitions @f) at each PE remains same,

A global configuration for the MPSoC is defined by each dUt it will generate different workload (as defined by the
its processors being in one jism fig;| configurations. Hence, anNotationD(W) on the transitions off’) on each PE based

the total number of possible global configurations will b&" Lhe customlzatlonhch0|cg|lar?d the sst.of the ta;ks .rrrl]apped
|con figr|x|configal|...x|configp|, with P processors in the to that PE. We say thaf will have to beinstantiated wit

pipeline. Given such a large and complex design space ittis r'i%e Worst-ca§e e}nd bes_t—case execution times associaied wi
trivial for the designer to identify a configuration that wu €2Ch customization choice for each processorJ.gtrefer to

yield the optimal performance while satisfying hardwareaar (N€ instance of7” where we consider théth processor'gith -
constraints. In what follows, we shall introduce a frameworconfiguration. Thus, the annotation on each such transition

to identify good customization choices in a prohibitivedyde .

i.e., the tupleD; ;(¥) = {WCET; (o), BCET; (o)},
design space. Towards this, first we shall discuss how anotes the maximum and minimum processing time of
evaluate a single design point in Section Ill. In Section\Wé,

the evento. We shall illustrate this idea ofnstantiation
shall discuss an effective pruning strategy which can dyick?f 7 With the example in Figure 3. Here, we will have
evaluate trade-offs in the entire design space.

4 instances of7: 7;; and 7; 2 corresponding to the two
I1l. PERFORMANCEANALYSIS configurations onPFE;, and 7;; and 7, corresponding

In this section, we first describe how to evaluate the perfotrcz the two configurations otPEj. Figure 5 shows these

: . S instances graphically. As the event stream passes ffdm
mance metrics for a single processor. This will be followe . .
. : . . . 0 PFE,, the sequence of arrival of the event types remains
by a discussion on how this evaluation technique may he .
- . . e same. Hence, all thé instances of7 have the same
utilized for global performance evaluation of the entire 8¢/

latform. Towards this, our techniques build upon a enerStf’jltes and transitions, while differing only on the anrioat
b s ' a! ' up 9 ;i (¥). For simplicity of exposition, it is assumed that the
mathematical framework for analyzing real-time systenis [ CET is always5 units less than WCET in this example
We extend this framework to analyze the performance metrilcs '

associated with customization choices of MPSoCs. W' the Figure 5,7;; denotes they function for the ith

Before presenting the details of our performance evalnatigroce.s.sor and th@t.h co_n_flguranon. Thef; ; instance Of the
fransition system is utilized to compute the; function.

framework, we outline the main steps of our technique [N computation of any such;; function s discussed
4,7

Figure 4. Our proposed method starts with computing the L w . . .
custom instruction configurations for each task and the cobr(—alow' By definition, i, (k) (v;,(k)) is the weight of the

responding WCET and BCET values as defined in Section !rs:slrlggnmsv;/::ggtr(mllrzl(l)r?l;r:y\]ivelgh&)p ?;? c;fl(zr;)gi;k:: ttr:fs
This is Step1 in the Figure 4. This phase is related t “I » Vi i

the enumeration of custom instructions and as discussed iRc computed from the single source longest (or shortesspat

. ) . ; of length £ for all vertices in7; ;. The single-source longest
Section |-B we consider this as given. In Stépwe compute .or shortest path for a given vertex is computed using stahdar

the maximum and minimum processing requirements arisna namic proaramming methods. Algorithm 1 shows how to
from the incoming events on each PE. Towards this, we defin prog 9 - A9

u l H
a function~, the computation of which leverages 8WC ET computey;; (k) and-y, ; (k) for all integersl < k < n, where

and BCET of various event types. Next, in St@pwe utilize n is an input to this algorithm. In the rest of this section,

: . ' ' o where we are concerned with the performance metricsrier
this functiony to compute the performance metrics like the . . .
configuration onone processor we shall drop the subscripts

maximum dglay, backlog (which 'S a measure of th_e Maximugg, clarity of exposition. Henceforthy(k) (v'(k)) will be

buffer requirement) or jitter experienced by any input etvenSed to represent (k) (1} - (k)) without any ambiguit

stream. Step8 and3 will be the focus of this section and are" .p Al (k) (i s ). without any gty

discussed in detail in the following. Stelds the design space B- Computing Performance Metrics:

exploration strategy, and will be discussed in Section IV. To compute the maximum backlog in a buffer, we first
Formally, let us define the functiong!;(k) and 'yf,j(k) need to define a functiom’, which can be considered as

whose argument is an integkrand return the maximum andthe pseudoinverse of the functiony* that we already defined




a/ D= {50, 45} a/D =150, 45} a/D = {80, 75} a/D= {0, 75} BUA)
® o N, ; <
/ ! .
b/D={60,55 |\ p_ o 55 b/D= (40,\35) b/D = {40, 35) % r
\’ @ °>’ 3 o -
» a(A)

7, to compute y,, 7, to compute 3,

a/D = {40, 35} a/D={70, 65}

a/D = {40, 35} a/D={70, 65}
9

backlog

/ / @ A—
b/D:{ZO,\15) b/D = {20, 15} b/D=(15,\10} b/D = {15, 10} 8
a'" | ov4
@ i N I
° | o'(4)
Fig. 5. The transition system$ for PE; and PE, corresponding &8s
to the two different custom instruction configurations irckea £ | ’7
s [ ERZ!
Algorithm 1 Computing~(k). (Note that subscripts and j * 3 J |
are dropped for ease of exposition.) 2 i J 15
— - period =
Input: Transition system7 = (S5,Sy,%, D, ¥), function 1 rror i = 20
pred(s) which returns all predecessors of the state S, 0 | Jiter = max (%

and an integen; 10 20 30 40 50 60 70 80 90 100

Output: ~“(k) and~!(k) for all 1 < k < n; b A
1w (k) + —oo,wh(k) + —ocoforall s € S,1 <k <mn; Fig. 6. Computing the the maximum number of (a)klogged events
5 wf‘(O) 0 wl’(Oi —Oforallses: - - and (b) theyitter experienced by an event stream.

3: for k=1ton do

4 forVsesSdo other PEs. The event stream generated 0yg will trigger

5: if |pred(s)| > 0 then PEii, in the pipeline. Towards this, let us denote using

6 W (k) < maxpepreas {w(k—1)+WCET(p — a* (A) anda' (A), the maximum and minimum number of
s)} processed even_ts .respect_lvely_, that can possibly be sek_}a at

7. wl (k) = minyepreqqs {wh (k — 1) + BCET(p —  Output of PE; within any time interval of lengthh. @/(A) is
s)} therefore exactly of the same form aéA) which bounds an

a: end if input stream. It may be shown that

o: end for a"(a) = min{ogflﬁA{SUp{dl(H +A) =B8N}

10:  y“(k) + maxges{w(k)} . == Al>0

11: AY(k) + minges{w!(k)} / + BA-w}B(A)}

12: end for a* (A) = min{sup{ inf {a"(u)+B"N+A—pu)}

A0 0SH<A+A
- B} BYA)}
above. We define3!(A) = infy>o{k : (k) > A}. Hence, In the above equatiom3*(A) = supysoik : v'(k) > Al.
B'(A) returns the minimum number of events that camence,3"(A) returns the maximum number of events that can
generate a processing requirement/of In other words,at generate a processing requirement/of In other words,at
least 3'(A) events from the stream are guaranteed to Ipeost 3%(A) events from the stream may be processed within
processed within a time interval of length. Within this a time interval of lengthA. Further details and proof maybe
time interval, at mostv*(A) events might arrive. Hence, thefound in [5].
backlog generated within this interval i8*(A) — BY(A). The & functions defined above, along with thg
Therefore, the maximum or worst-casecklog is given by: functions for the next PERE;, ), can be now utilized in
backlog = supasofa®(A) — B'(A)} Intuitively, backlog the framework described in this section to evaluate various
can be interpreted as the maximum vertical distance betwegsstformance metrics. In this way, the entire MPSoC platform
the curvesa(A) and 5'(A) (see Figure 6). Due to spacemay be analyzed. From the outgoiacurves at the final PE
restrictions, we will omit a discussion on computidglay, inthe MPSoC we can analyze timing properties like burstnes

which involves similar analysis. and jitter. Towards this, let,* and w' be the upper and
_ ) _ lower curves corresponding to an event stream with period
C. Extending the Analysis to other PEs: O, where © is the period of the input arrival curves. We

Above, we presented a framework to analyze one PE, whitten compute/* = min{.Jy : w“(A + J;) > a*} and
lies at the beginning of the path of an input stream. Howevel. = min{J, : w'(A — Jy) < & }. The jitter of the outgoing
the analysis may be extended in a compositional fashion dweam isJ = maxz{J*, J'}. Intuitively, jitter is the deviation



of the stream from its periodicity. For example, in Figurg)g( Algorithm 2 Branch and Bound Strategy for Custom
J = J! = Jv = 20. For algorithms to compute the jitter ofInstructions Selection
more complex arrival curves and when the periodicity is ndfiPut: Tasksl'; ... Ty with configurations; Area constraint:
known, please refer to [12]. AREA; Mapping: A
To summarize, in this section we discussed the performarfedtput: Minimum jitter;
evaluation of an MPSoC for a one custom instruction configl: J <= 0; optimalSoln« (; A « AREA;
uration. In particular, techniques were discussed to esém 2 MinJitter < computeoriginaljitter();
the worst-case backlog for an event stream being process8d  /* T1 is the first task/
on a PE. The summation of the backlogs at all the PEs give$ searci(Ty, J, A, 0, A)
us an estimate of the total on-chip buffer requirement on thé&: return J;
MPSoC. Second, we discussed how to measure the jitter of ttfe €nd;
processed stream. The jitter or burstiness is a relevaritggua 7: Function searc(Ty, J, A, Soln,A)
of-service metric for multimedia applications. 8: ;or each Cy; of Tkin increasing order of execution time
0
IV. DESIGN SPACE EXPLORATION 9: if (area(Cy)) < A) then

In the previous sections, we explained how to analyz&:
various performance metrics for an MPSoC platform fotl:
one custom instruction configuration. In this section, wel2:
will be concerned with exploring the performance metricé3:
associated with all possible configurations to identify thé4:
solutions that satisfy given QoS guarantees. Recall thait th
computation of the functiony (which computes the worst 15:
and best-case execution requirement fofevents) lies at 16:
the heart of our analysis engine. It should be clear that th&:
function~ will have to be recomputed for each configuratioris:
because each unique custom instruction configuration forl&
task implies different execution requirements of the tasko:
Computation ofy is based on a traversal of the transitior2l:
system7 . Thus, in any iteration of a design space exploratio®2:

partialSoln« SolnJCy,; ; A <~ A — area(Ck 1);
if (is_thelasttaskon processof(y, A)) then
J «+ J + computgitter(i);
end if
if (isthelasttaskon_thelastprocessofly, A))
then
if (J<Minditter) then
MinJitter «<— J; optimalSoln« partialSoln
continue;
end if
end if
if (bound(partialSolnyMinJitter) then
search(nexttask(T'y), J, A, partialSoln))
end if

process, the first step is to annotate the transition syste&® end if

with D, ;(V) = {WCET, (o), BCET, ()} for this 24 end for

configuration. Note that the above procedure is an exhaustiv

search process iterating over all design points. In order

to improve the high running times associated with suchas only 2295 out of a total 55926 of design points were

framework, we next propose a fast search strategy. enumerated. The pseudocode of our proposed strategy is
shown in Algorithm 2 and is explained below.

A. Branch and Bound

Since an exhaustive exploration of all possible designtpoirAlgorithm Description: The B& B algorithm defines a tree
can turn out to be prohibitively huge, we propose a Brandtructure to represent the search space. Each levelthe
and Bound(B&B) algorithm to select appropriate customB& B search tree corresponds to the choice of a configuration
instruction configuration for each task. We choosé&3&B for the task7}. Thus, each node at levél corresponds to a
strategy because of two reasons. The first reason being thattial solution with the configurations about the tagksup
it returns the optimal solution. Other optimization stgpés to Tj,. If T}, is the last task to be considered by thBé: B
like evolutionary algorithms [9] or tabu search [10], beingn processoi (lines11-12), the jitter of the partial solution is
heuristics, cannot give optimality guarantees on theiultes increased by the jitter of processousingcompute_jitter(i).
Second, we designed effective pruning techniques that léathenever we reach a leaf node of the search tree, that is
to short running times of ouB&B search strategy. Thesethe last task on the last processor (lines19), we have a
pruning techniques are described in the following, alonthwicomplete solution with selected configurations for eack.tas
the description of ouB& B algorithm. During the traversal of the search tree, the minimum jitter

The goal of our design space exploration, i.e., ff&B achieved so far at any leaf node is keptMdsnJitter. If the
algorithm, is to find the configuration where (i) the jitter ajitter .J of the current complete solution is ledgin Jitter, we
the output is minimized and where (ii) the area constraints epdateM in.Jitter as well as the optimal solution computed
custom instructions are satisfied. We have chosen jittemasso far (see linel6).
optimization criterion because for multimedia applicap  The power of ouB& B algorithm comes from the following
higher burstiness at the output results in poor quality. Theo effective pruning strategies for the design space. At an
B& B algorithm was designed to effectively exploit specifinon-leaf noden in the search tree, we compute a lower bound,
characteristics of the design space for quickly identdyinbound(m), on the minimum possible jitter at any leaf node
optimal solutions. This is validated by our experiment® the subtree rooted at. This lower bound is computed
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by summing up the jitter due to the tasks that have been (In Gates)
enhanced with custom instructions with respect to the nmappiFid- 8 Tradeoffs between custom instruction area and oyiger.
A (see Algorithm 2) and the minimum jitter possible from 21
the remaining tasks (which is the jitter when enhanced with 2 4
the custom instruction configuration such thatet — bcet is
minimum among all event types). dbund(m) > MinJitter
(line 20), then the search space corresponding to the subtree
rooted atm can be pruned. Second, we have the constraint
on hardware area used for custom instructions in MPSoC.
Due to the fact that one processing element may require
more custom instructions than the others, it will have large

©

3

Jitter (Milliseconds)
5 X

o

area for custom instructions. Therefore, the hardware farea 14

custom instructions is allocated among processing elerient . | |

the MPSoC while performing design space exploration. If the "o 20000 40000 60000 80000
remaining unallocated hardware area for custom instrosti® Hardware Area for Custom Instructions

less than the required hardware area for the custom ingtnsct (In Gates)

of a particular configuration of a task at any node, then th&. 9. Zoomed-in chart of Figure 8 showing the tradeoffsieen custom

subtree rooted at the corresponding node is pruned @line nstruction area and jitter for upto 60K gates.

V. CASE STuDY Let the maximum possible custom instruction area be
In the following, we discuss the results obtained bysqyArea. For our experiments, we iteratively called the

applying our technique on an MPEG-2 encoder; the subtaskg B algorithm with the area constraint varying from

of the encoder are shown in Figure 1. The arrival sequengg x AfqxArea to MazArea with an interval/step size of

of these frame types were specified by the transition systgy » A7qzArea. This allowed us to evaluate the trade-offs

shown in Figure 7. The decoder is run on an MPSO0&t various points in the design space. At each of these

architecture with two pipelined PEs, witE; running at jntervals (i.e., design points) our tool found a system wfita

100MHz frequency and’E; running at 50MHz. We assumeminimum possible jitter and associated on-chip buffer .size

that the FS task is running on the first PE and the rest phe results from these experiments are discussed below.
the tasks are running on the second PE. The task FS has

signifacntly higher execution requirement compared to t
rest of the tasks, and hence, it is reasonable to assume
PE; will run at a higher frequency tha®Es. In our setup, Figure 8 shows the relation between output jitter and custom
the encoder has to encode 30 frames per second andingiruction area. Note that as the hardware area increases,

.aPiscusﬁ on

output is a 6464 pixel encoded clip. the jitter starts to decrease. This is because with the use
. of custom instructions the valu®8’ CET — BCET starts
A. Experimental Set-up to decrease. In fact, the jitter decreases uB2& with an

The entire framework has been implemented in C. AHrea of0.3 x MaxzArea (i.e., 60,000 gates). However, after
the experiments were conducted on a Linux machine rut4 x MazArea (i.€., 80,000 gates), the output jitter does not
ning on a 8-core Xeon(R) 3.0 GHz processor. We generatéelcrease any further. This can be expected because jitter is
different custom instruction configurations for each task idependent on thdifference between théVC ET and BCET
the MPEG-2 encoder using Tensilica tool [18]. The numband not onWCET or BCET independently. This result
of configurations for the tasks varied from to 13 thus is interesting because our tool reveals #weetspot (0.3 x
creating a large design spacgh (926 design points in total). MaxArea) after which adding more custom instructions will
In order to obtainW CET and BCET estimates, we usednot minimize jitter. To confirm our findings, we ran another
a simulation/measurement-based method by inserting gimiset of experiments where the constraint on hardware area for
counters to the MPEG-2 encoder code at suitable points. custom instructions was varied frohto 0.3 x MaxArea



340

320

300

-
\

| —

280

Buffer Area (Macro Blocks)

240

0 50000 100000 150000 200000

Hardware Area for Custom Instructions (in Gates)

Tradeoffs between the custom instruction area &edon-chip Fig.

Fig. 10.
buffer.

in results shown in Figure 9 validate our observation.

area being).3 x MaxArea, the buffer required to maintain on
that value of jitter can be further reduced if more hardware
area is used for custom instructions. Figure 10 shows the are
utilized by custom instructions corresponding to variouf§dy [
requirements. The reduction in on-chip buffer requirenisnt [2]
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11. Efficiency of Branch and Bound algorithm.

objectives other than jitter (e.g., delay, power etc.). his t

(i.e., 60,000 gates) in the steps @, 000 gates. The zoomed- paper, we assumed that the designer has taken appropriate
decisions regarding the mapping of the tasks to PEs. It will

While the jitter is minimized with the custom instructionalso be worthwhile to explore the influence of such decisions

the customization choices.
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