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Abstract. Ubiquitous asymmetric multi-core processors such as ARM
big.LITTLE combine together cores with different power-performance
characteristics on a single chip. Upcoming asymmetric many-core pro-
cessors are expected to combine hundreds of cores belonging to differ-
ent types. However, the accompanying task-to-core mapping schedules
are the key to achieving the full potential of such processors. Run-time
scheduling on asymmetric processors is a much harder problem to solve
optimally than scheduling on symmetric processors with equivalent cores.
We present the first-ever greedy scheduler to be proven theoretically opti-
mal (under certain constraints) for asymmetric processors. The proposed
scheduler, called A-Greedy, improves throughput by 26% and reduces av-
erage response time by up to 45% when compared to the default Linux
scheduler on ARM big.LITTLE asymmetric multi-core.

Keywords: Multi-/Many-cores · Asymmetric Processors · Scheduling ·
Optimal Greedy · ARM big.LITTLE.

1 Introduction

Upcoming asymmetric many-core processors are expected to house together hun-
dreds of heterogeneous cores grouped into homogeneous tiles connected using an
interconnect on a single chip as shown in Figure 1 [10]. They are an evolu-
tion of current asymmetric multi-core processors such as ARM big.LITTLE that
are now commonplace. Asymmetric many-cores are designed to execute tens of
multi-threaded applications on its hundreds of cores using one-thread-per-core
model in order to reduce context switching overheads [12]. An Operating Sys-
tem (OS) sub-routine called scheduler determines the allocation of the cores
among the applications. The discrete scheduling problem of allocating multiple
cores to multiple applications optimally on asymmetric processors is in general
NP-Hard and is commonly solved using heuristics [21].

Authors in [9] showed that the scheduling problem can be solved optimally
using dynamic programming in polynomial time for symmetric processors con-
taining cores with equivalent performance although with high scheduling over-
heads. Presence of a large number of cores in many-cores puts greater emphasis
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Fig. 1: An abstract block diagram of an asymmetric many-core processor con-
taining clusters of cores with different power-performance characteristics.
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Fig. 2: (a) Throughput with two applications (MatrixMult and Pi) when exe-
cuted with different asymmetric core allocations on Kirin 960 (b) Throughput
of different applications when executed in isolation with different asymmetric
core allocations on Kirin 960.

on scheduler scalability than multi-cores especially for use at run-time [17],[23].
Authors of [18] showed that the scheduling problem for symmetric processors can
also be solved optimally using a greedy scheduler for applications with concave
speedups but with several magnitudes lower scheduling overheads. Thus, the
greedy scheduler can be used for run-time scheduling on symmetric many-cores.

The problem of scheduling on asymmetric processors is, however, more dif-
ficult to solve optimally than equivalent scheduling on symmetric processors as
the scheduler needs to determine not just the number of cores allocated to each
application but also the type of each of those allocated cores [8]. Thus, the in-
volved design space that needs to be explored is further enlarged. For example,
consider the case wherein we need to schedule two applications on Huawei Kirin
960 octa-core ARM big.LITTLE asymmetric multi-core with a cluster of four
Big cores and a cluster of four Small cores. There will be twenty five design
points on Kirin 960 (0 to 4 cores in each cluster allocated to one application
and remaining cores allocated to the other application). While on an equivalent
octa-core symmetric multi-core, we will have only nine design points (0 to 8 cores
for one application and remaining to the other application).
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Motivational Example: A scheduler’s efficacy can be measured using the
throughput it can sustain on its underlying processor. Throughput is defined
as the number of applications finishing per unit time. Figure 2(a) shows the
throughput for all possible core allocations between the two applications (Ma-
trixMult and Pi) on Kirin 960. Results show that the throughput in the best-case
is 1.23x higher than the worst-case, necessitating a sophisticated scheduler.

The performance improvement with increasing core allocation for a multi-
threaded application is dependent on the parallel portion of the application as
governed by the Amdahl’s Law [1]. Parallelization may incur overheads arising
from coherence, inter-thread communication, etc. in processors. Thus, every sub-
sequent core allocation brings in lower or equal improvement than the antecedent
allocation resulting in multi-threaded applications to exhibit concave throughput
increase. Fortunately, we observe that several of the multi-threaded applications
that exhibit concave throughput behavior on symmetric processors also exhibit
near-concave throughput behavior on asymmetric processors. Figure 2(b) shows
the concavity in throughput increase for different applications when executed
with different asymmetric allocations on Kirin 960. This concavity observation
can be utilized to design an optimal greedy scheduler for asymmetric processors.
In practice, the proposed scheduler can also accommodate minor non-concavity
using concave approximations [22] without deviating significantly from the op-
timal. Though uncommon, applications that do not exhibit concave speedup
exist [20] and this work is not applicable to them.

Our Novel Contributions: We make the following novel contributions
within the scope of this work.

– We are the first to present a greedy scheduler that can optimally schedule
multi-threaded applications with concave throughput increase on asymmet-
ric processors. We present the proofs to theoretically support our claim.

– We implement our proposed greedy scheduler on a commercial-grade Kirin
960 asymmetric multi-core and show its performance to be near-equivalent to
an optimal ILP-based scheduler. The performance is also shown to be higher
than the default Linux scheduler and state-of-the-art heuristic scheduler [13].

2 A-GREEDY: Greedy Scheduler for Asymmetric
Multi-/Many-Cores

We describe A-Greedy, a greedy scheduler that exploits concave throughput be-
havior in multi-threaded applications to make efficient use of the underlying
asymmetric processor. For brevity, we assume that the asymmetric processor
contains cores of only two types - Big and Small. However, A-Greedy can be
generalized to asymmetric processors with any number of core types.

2.1 Model

Let B and S denote the total number of cores of type Big and Small, respectively
in the processor. Let T denote the total number of independent applications
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executing on the processor indexed using i. We assume that all applications
derive higher performance on n Big cores than n Small cores, where n ≥ 1.
Furthermore, we also assume that the performance of an individual application
i remains unaffected by other applications executing in parallel. Note that this
assumption is needed only for designing a theoretically optimal algorithm. Our
experimental evaluation includes interferences among the applications.

Let Bi and Si be the number of cores of type Big and Small respectively that
are allocated to application i. Let PBi,Si represent the throughput (performance)
of application i when simultaneously executed on Bi Big and Si Small cores.
Let THDi denote the maximum multi-threading factor of application i, which
determines the maximum number of cores, i.e., Bi + Si that can be assigned to
application i. Let PBi,Si

= 0, if Bi + Si > THDi.
The problem of throughput maximization on asymmetric processors can then

be described as:

Maximize:

T∑
i=1

PBi,Si

subject to the following constraints:
T∑
i=1

Bi ≤ B ,

T∑
i=1

Si ≤ S and ∀i ∈ {1, 2, . . . , T}(Bi + Si) ≤ THDi

We use profiling to obtain PBi,Si
for all possible core allocations. We observe

that the applications exhibit concave throughput behavior, i.e., the increase
in throughput when a core is allocated is less than or equal to the increase
in throughput experienced in the previous core allocation when adding cores
belonging to a particular type. The concavity observed on asymmetric processors
as shown in Figure 2 (b) needs to be mathematically represented. Concavity due
to the allocations of additional n Big (or Small) cores while starting with having
different number of Big (or Small) cores but the same number of Small (or Big)
cores, i.e., Bi → Bi +n versus B′i → B′i +n (or Si → Si +n versus S′i → S′i +n)
can be described using the equations below.

∀n ≥ 0, PB′
i+n,Si

− PB′
i,Si
≥ PBi+n,Si

− PBi,Si
if B′i ≤ Bi (1)

∀n ≥ 0, PBi,S′
i+n
− PBi,S′

i
≥ PBi,Si+n − PBi,Si

if S′i ≤ Si (2)

We also assume that the allocation of n Big (or Small) cores while having the
same number of Big (or Small) cores is independent of the number of Small (or
Big) cores allocated already.

∀n ≥ 0, PBi+n,S′
i
− PBi,S′

i
= PBi+n,Si − PBi,Si ∀S′i, Si ∈ [0, S] (3)

∀n ≥ 0, PB′
i,Si+n − PB′

i,Si
= PBi,Si+n − PBi,Si , ∀B′i, Bi ∈ [0, B] (4)

2.2 Algorithm

The greedy algorithm proposed in A-Greedy scheduler consists of the following
steps performed sequentially at every invocation.
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1. Start with an empty allocation for all applications, i.e., ∀i ∈ {1, 2, . . . , T},
Bi = 0 and Si = 0.

2. Sort all applications i ∈ {1, 2, . . . , T} that has been allocated with less than
THDi cores in descending order of highest possible throughput gain by al-
locating one more free core of any type and add them to a queue.

3. Allocate a core of that type to application i in front of the queue from which
it derives the maximum throughput.

4. Update the throughput value and reposition the entry associated with appli-
cation i in the queue according to its revised throughput only if (Bi +Si) <
THDi. As the queue is sorted, we can use binary search to perform fast
insertions. Otherwise, pop the element from the queue.

5. Repeat Steps 3 and 4 if there are applications left in the queue and if any
core is left unallocated.

6. Execute the applications with the greedy allocation.

The above greedy algorithm is straightforward to implement. Nevertheless,
the algorithm results in a schedule that provides optimal allocations that max-
imizes total throughput on asymmetric many-cores under the throughput con-
cavity assumption. We provide the proof for its theoretical optimality next.

2.3 Optimality Proof

Theorem 1. The A-Greedy scheduler optimally maximizes the aggregate through-
put on an asymmetric processor.

Proof. We prove this theorem using the induction method. There are two pos-
sible scenarios that need to be inductively proven sub-optimal – unidirectional
moving of cores between two applications and swapping of heterogeneous cores
between two applications. Let [{B1, S1}, {B2, S2}, ..., {BT , ST }] be the greedy
core allocation chosen by our proposed A-Greedy scheduler.

Moving Cores Unidirectionally Between Applications:
Base Case: We do not start with moving one Big (or Small) core between

applications as it reduces to the allocation problem in symmetric processors.
Authors in [18] have proven this move to be sub-optimal. Thus, we only show
detailed proof for the case where one Big core and one Small core is removed
from Application x and given to Application y. Without loss of generality, the
proof below will also hold for other possible combinations if (i) one Big and one
Small core is removed from Application x and given one each to Application
y and Application z, respectively, (ii) one Big and one Small core is removed
respectively from Application x and y, and then given to Application z, (iii)
one Big and one Small core is removed respectively from Application v and x,
and then given to Application y and z. Due to the space constraint all the cases
cannot be shown here in detail.

Let us begin with the assumption that [{B1, S1}, ..., {Bx−1, Sx−1}, ..., {By+
1, Sy +1}, ..., {BT , ST }] is instead the optimal allocation where one Big core and
one Small core is removed from Application x and given to Application y. For
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the assumed optimal allocation to be better than the greedy core allocation, gain
in throughput of Application y with allocation of more cores must outweigh the
loss in throughput of Application x due to the removal of those cores and thereby
the following inequality must hold.

PBx−1,Sx−1 + PBy+1,Sy+1 > PBx,Sx + PBy,Sy (5)

As A-Greedy chose to allocate the additional Big core to Application x instead
of Application y, then the following inequality must be true.

PBx,Sx
− PBx−1,Sx

≥ PBy+1,Sy
− PBy,Sy

(6)

As A-Greedy chose to allocate the additional Small core to Application x
instead of Application y then the following inequality must be true.

PBx,Sx
− PBx,Sx−1 ≥ PBy,Sy+1 − PBy,Sy

(7)

Using Equation (4), we know that the following equations are true.

PBx−1,Sx
− PBx−1,Sx−1 = PBx,Sx

− PBx,Sx−1 (8)

PBy,Sy+1 − PBy,Sy
= PBy+1,Sy+1 − PBy+1,Sy

(9)

Adding Equations (6) and (9) we get:

PBx,Sx
− PBx−1,Sx

+ PBy,Sy+1 − PBy,Sy
≥ PBy+1,Sy

− PBy,Sy

+PBy+1,Sy+1 − PBy+1,Sy

(10)

Using the inequality in Equation (7) in Equation (10) we get:

PBx,Sx
− PBx−1,Sx

+ PBx,Sx
− PBx,Sx−1 ≥ PBy+1,Sy+1 − PBy,Sy (11)

Using Equation (8) in Equation (11) we get:

PBx,Sx
− PBx−1,Sx

+ PBx−1,Sx
− PBx−1,Sx−1 ≥ PBy+1,Sy+1 − PBy,Sy (12)

By solving and rearranging Equation (12) we get:

PBx,Sx
+ PBy,Sy

≥ PBx−1,Sx−1 + PBy+1,Sy+1 (13)

Equation (13) is in contradiction to Equation (5). Hence, we prove that the
allocation chosen by the greedy scheduler is optimal.

Inductive Assumption: We assume that the greedy allocation is optimal
and of higher or equal performance than any allocation where n cores are re-
moved from Application x and distributed among all the other tasks in any
combination. Mathematically, we assume that the following inequality is true.

PBx,Sx − PBx−n,Sx−n ≥ PB1+α1,S1+β1 − PB1,S1 + ..+ PBT+αT ,ST+βT
− PBT ,ST

(14)

where α1 + ...+ αT = β1 + ...+ βT = n
Inductive Step: Now we assume optimal allocation, which is different from

the greedy allocation. In this optimal allocation, n cores are removed from Ap-
plication x and distributed among all the other applications in the same combi-
nation as in the inductive assumption in Equation (14). In addition, n+ 1th Big
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and Small cores are removed from Application x and are given to Application
y without loss of generality. For assumed optimal allocation to be better than
greedy allocation, the following inequality must hold.

PB1+α1,S1+β1
− PB1,S1

+ ...+ PBy+αy+1,Sy+βy+1 − PBy,Sy
+ ...+

PBT+αT ,ST+βT
− PBT ,ST

> PBx,Sx
− PBx−n−1,Sx−n−1

(15)

As A-Greedy allocated a Big and Small core to Application x with Bx−n−1
Big and Sx−n−1 Small cores already allocated to it instead of Application y, by
the greedy design of A-Greedy, the following inequality must be true.

PBx−n,Sx−n − PBx−n−1,Sx−n−1 ≥ PBy+αy+1,Sy+βy+1 − PBy+αy,Sy+βy (16)

By adding Equation (16) with Equation (14) we get:

PBx,Sx
− PBx−n−1,Sx−n−1 ≥ PB1+α1,S1+β1

− PB1,S1

+...+ PBy+αy+1,Sy+βy+1 − PBy,Sy
+ ...+ PBT+αT ,ST+βT

− PBT ,ST

(17)

Equation (17) is in contradiction to Equation (15) proving that the greedy
allocation under A-Greedy is optimal instead of the assumed optimal allocation in
the inductive step. Thus, unidirectional movement of cores between applications
is a sub-optimal scenario.

Swapping Asymmetric Cores Between Applications:
Base Case: As in the previous scenario, we only show the detailed proof

for the case where one Small core is removed from Application x and given
to Application y and one Big core is removed from Application y and given to
Application x. Without loss of generality, the proof below will also hold for other
possible combinations. Let us begin with the assumption that [{B1, S1}, ..., {Bx+
1, Sx−1}, ..., {By−1, Sy+1}, ..., {BT , ST }] is instead the optimal allocation. For
this to be true, throughput in this assumed optimal allocation has to be better
than the greedy core allocation as stated in the following inequality.

PBx+1,Sx−1 + PBy−1,Sy+1 > PBx,Sx
+ PBy,Sy

(18)

Since A-Greedy adds one core at a time, let us start from an intermedi-
ate allocation [{B1, S1}, ..., {Bx, Sx− 1}, {By − 1, Sy}, ..., {BT , ST }] which is the
predecessor allocation to both greedy and optimal allocation. In the greedy al-
gorithm, one Big core is added to Application y followed by one Small core to
Application x from the intermediate allocation. For the assumed optimal allo-
cation, one Big core is added to Application x and one Small core is added to
Application y from the same intermediate allocation. Since A-Greedy chose to
allocate the additional Big core to Application y instead of Application x, fol-
lowed by additional Small core to Application x instead of Application y, the
following inequalities must hold.

PBy,Sy − PBy−1,Sy ≥ PBx+1,Sx−1 − PBx,Sx−1 (19)

PBx,Sx
− PBx,Sx−1 ≥ PBy,Sy+1 − PBy,Sy

(20)

Using Equation (4), we know that the following equation is true.

PBy,Sy+1 − PBy,Sy
= PBy−1,Sy+1 − PBy−1,Sy

(21)
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Replacing R.H.S in Equation (20) using Equation (21) and adding Equa-
tions (19) and (20) we get:

PBy,Sy
− PBy−1,Sy

+ PBx,Sx
− PBx,Sx−1 ≥

PBx+1,Sx−1 − PBx,Sx−1 + PBy−1,Sy+1 − PBy−1,Sy

(22)

By rearranging Equation (22) we get:
PBx,Sx

+ PBy,Sy
≥ PBx+1,Sx−1 + PBy−1,Sy+1 (23)

Equation (23) is in contradiction to Equation (18). Hence, we prove that the
allocation chosen by the greedy scheduler is optimal.

Inductive Assumption: We assume that the greedy allocation is optimal
with equal or higher performance than any allocation where n Small cores from
Application x is swapped with n Big cores from other applications in any com-
bination. Mathematically, we assume that the following inequality is true.
PBx,Sx − PBx+n,Sx−n ≥ PB1−α1,S1+β1 − PB1,S1 + ...+ PBT−αT ,ST+βT

− PBT ,ST

(24)

where α1 + ...+ αT = β1 + ...+ βT = n
Inductive Step: Now we assume that the optimal allocation is different

from the greedy allocation. In this assumed optimal allocation, n Small cores
from Application x are swapped with n Big cores from other applications in the
same combination as in the inductive assumption (Equation (24)). In addition,
n+1th Small core from Application x is swapped with Big core in Application y
without loss of generality. For the assumed optimal allocation to be better than
the greedy allocation, the following inequality must hold.

PB1−α1,S1+β1
− PB1,S1

+ ...+ PBy−αy−1,Sy+βy+1 − PBy,Sy
+ ...+

PBT−αT ,ST+βT
− PBT ,ST

> PBx,Sx
− PBx+n+1,Sx−(n+1)

(25)

As A-Greedy allocated a Big core to Application y, followed by a Small core
to Application x, by greedy design following inequality must be true.
PBx+n,Sx−n − PBx+n+1,Sx−(n+1) ≥ PBy−αy−1,Sy+βy+1 − PBy−αy,Sy+βy

(26)

By adding Equation (26) with Equation (24) we get:
PBx,Sx

− PBx+n+1,Sx−(n+1) ≥ PB1−α1,S1+β1
− PB1,S1

+ ...+

PBy−αy−1,Sy+βy+1 − PBy,Sy
+ ...+ PBT−αT ,ST+βT

− PBT ,ST

(27)

Equation (27) is in contradiction to Equation (25) proving greedy allocation
under A-Greedy is optimal instead of the assumed optimal allocation in the
inductive step. Thus, swapping of asymmetric cores between applications is a
sub-optimal scenario. A-Greedy is therefore proven to be optimal using induction.

2.4 Complexity

The A-Greedy scheduler requires sorting of the tasks according to their through-
put, which introduces a worst-case overhead of O(T lg T ). It also requires repo-
sitioning of the applications in the queue using binary search after every core al-
location introducing a worst-case overhead of O((B+S) lg T ). Therefore, the to-
tal worst-case computational-overhead of our A-Greedy scheduler is O(max{B+
S, T} lg T ). The need for the sorted applications queue data structure introduces
a worst-case space-overhead of O(T ) for A-Greedy.
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Fig. 3: Huawei Kirin 960 octa-core ARM big.LITTLE platform block diagram

3 Experimental Evaluations

In this section, we show the efficacy of our proposed A-Greedy scheduler on a
commercial state-of-the-art asymmetric multi-core.

3.1 Benchmarks and Multi-threading model

In this evaluation, we utilize eight multi-threaded benchmarks: CilkSort, DFS,
Fibonacci, Knapsack, MatrixMult, Pi, Queens, Strassen, from LACE benchmark
suite [5]. These applications are representative of a real-world asymmetric pro-
cessor workload and are implemented using a work-stealing framework in which
slave threads grab work from a centralized queue managed by a master thread.
We suitably modify these applications to make them malleable [6], i.e., it is pos-
sible for the scheduler to change the number of cores allocated to them during
their execution. Malleability is shown to enable efficient utilization of the un-
derlying processing resources [6]. Though multi-threaded benchmark suites like
Parsec [2] are also compatible with our proposed algorithm, it is not possible for
us to change the number of cores allocated to them at run-time making them
non-malleable. Hence, we do not utilize them in this work.

3.2 Evaluation Setup

We use state-of-the-art HiKey 960 embedded platform with Huawei Kirin 960
octa-core ARM big.LITTLE asymmetric multi-core processor (Figure 3) as a
proof-of-concept testbed for our evaluation on existing silicon. Figure 3 also
summarizes the system specifications of this architecture. There are two clusters:
a low-performance cluster consisting of four ARM Cortex-A53 (Small) cores and
a high-performance cluster containing four ARM Cortex-A73 (Big) cores. The
clusters are connected by a cache-coherent bus interface. We ideally want to
run the applications at the maximum system frequency on all eight cores as
the primary objective in this work is to improve the performance. However, the
system gets automatically throttled due to thermal constraints. Hence, in order
to make use of all available cores without throttling affecting our evaluations,
we run the small cores at 533 MHz and big cores at 903 MHz. The experimental
evaluations implicitly reflect the impact of inherent shared-resource contention.
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3.3 Profiling

In the Huawei Kirin 960 SoC, there are four Small and four Big cores. Hence,
the maximum value of both Bi and Si is limited to four for each Application i.
Therefore, we first run each benchmark application on all possible core config-
urations. Figure 2(b) shows that the throughput of the different applications is
concave in almost every case. We use the profiled data and fit it to a concave
curve using regression. The fitted values are then utilized in A-Greedy to make
scheduling decisions. The comparative baselines use the original unmodified val-
ues as they do not require concave smoothing to operate.

3.4 Evaluation Systems and Metrics

A-Greedy scheduler can be utilized in both closed and open systems. We describe
these systems alongside their preferred optimization metric.

Closed System. In a closed system, applications executing in the system
restart execution immediately after their completion. System throughput is often
used as the performance metric [7] in these systems.

Open System. In an open system: (i) applications enter and leave the sys-
tem at any time and (ii) run-time scheduling overhead needs to be minimal.
Response time, i.e., the time elapsed between an application’s arrival and exit is
a common metric optimized in open systems [7] as it captures both waiting and
execution time. Thus, we use average response time as the performance metric
for our open system evaluations. Applications arrive in the open system using a
uniform distribution and permanently leave once they complete execution.

3.5 Comparative Baselines

We evaluate our proposed A-Greedy scheduler against three baselines:
ILP. An ILP-based scheduler implemented using Gurobi [16] that utilizes the

measured throughput values as input to obtain the optimal scheduling decision.
Though the ILP scheduler is guaranteed to present optimal results even in the
absence of concavity, it cannot scale beyond dozen cores due to its exponential
computational complexity and is therefore infeasible in-practice for use as a run-
time scheduler in asymmetric many-cores.

Linux. Our platform’s default Linux scheduler (4.14.0-rc7-linaro-hikey960)
that is based on a load-balancing algorithm described in [4].

MTS-Like. Existing scheduler called MTS [13] first maximizes performance
by allocating cores to the application thread that has the highest Instruction
per Second (IPS). In this step, cores are considered in decreasing order of their
performance. Next, it swaps cores allocated to different application threads to
improve the system power-efficiency. As we focus on performance, we only uti-
lize the first step of MTS. The original performance metric (IPS) used in MTS
is changed to throughput for a fair comparison with the A-Greedy scheduler.
MTS treats each application thread independently. Thus, it is unable to utilize
the throughput concavity (observed when considering the allocation dependency
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Fig. 4: Throughput obtained under proposed A-Greedy scheduler normalized to
(a) exhaustive ILP scheduler (note that the slight drop in performance is due to
concave approximation) (b) default Linux scheduler and (c) MTS-Like heuristic
scheduler on Kirin 960 asymmetric multi-core.

among the application threads) and thereby compute the optimal schedule. Ma-
jor difference between MTS and A-Greedy is theoretical as former is proposed
purely as a heuristic. Since we modify the design parameters of original MTS al-
gorithm extensively to be within the purview of this work, we rename the version
we implement and compare against as MTS-Like.

Invocation. In closed-system, MTS-Like and A-Greedy schedulers are in-
voked only once as the application mix does not change over time. For open-
systems, scheduling decisions in MTS-Like and A-Greedy are re-calculated when
applications enter or leave the system. Note that the Linux scheduler is invoked
at the default 10 ms period in both these systems as we make no changes to it.

3.6 Asymmetric Multi-Core Evaluations

Closed System Results. A workload is defined as the set of applications that
execute in the multi-core. We restrict the number of applications from 1-8 (eight
cores in the system) and generate 255 workloads by exploring all possible ap-
plication combinations. Figure 4(a) reports the throughput obtained using A-
Greedy scheduler with respect to the ILP scheduler in the closed system for
these workloads. This figure shows that the throughput under A-Greedy sched-
uler is on average 0.98x of the throughput achievable under ILP scheduler. Even
though both A-Greedy and ILP are theoretically optimal, the drop in perfor-
mance for some workloads can be explained due to the use of regression-based
convex approximations for fitting the throughput in A-Greedy (ILP utilizes real
throughput values) for making scheduling decisions.

We also compare our proposed A-Greedy scheduler with the default Linux
scheduler [4] that performs Completely Fair Scheduling on our asymmetric multi-
core in Figure 4(b). For this experiment, we launch each application with eight
threads. Current Linux scheduler uses priority of applications in the system to
allocate time slices for executing them on different types of cores. Thus, it does
not have any mechanism to use application information to take efficient decisions
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Fig. 5: Average response time under MTS-Like and Linux normalized to A-
Greedy on Kirin 960 asymmetric multi-core modeling an open system.

at run-time. Figure 4(b) shows that the proposed A-Greedy scheduler provides
on average 26% higher throughput than the default Linux scheduler.

Finally, we compare the proposed A-Greedy scheduler with the MTS-Like
heuristic scheduler on our asymmetric multi-core in Figure 4(c). On the small
size asymmetric multi-core platform, A-Greedy scheduler results in average 8%
higher throughput than MTS-Like scheduler.

Open System Results. We compare the performance of A-Greedy, Linux
and MTS-Like schedulers under different open system loads in Figure 5. The
number of applications arriving in the open system (per second) is varied from
one to eight, i.e. low to high load. The maximum number of applications arriving
in the system is fixed to eight as there are only eight cores in the system. From
Figure 5, we see that the A-Greedy scheduler reduces the average response time
by up to 14% and 45% when compared to the MTS-Like and Linux schedulers.

3.7 Scalability Analysis

We report the run-time of ILP and A-Greedy schedulers on the Big core for
representative scheduling problems with different number of cores and workload
sizes in Table 1. We fix the number of cores in a cluster to four for the scalability
experiments as the hardware platform that was used to collect profiling data had
only four cores per cluster. The load is varied from 12.5% to 100% many-core uti-
lization i.e., the number of applications in the many-core ranges from (#cores/8)
to (#cores). Though the problem-solving time of ILP -based scheduler is in the
order of milliseconds for an 8-core asymmetric multi-core with two clusters, the
problem-solving time increases exponentially for a higher number of cores (or
clusters). For instance, a 64-core asymmetric many-core scheduling problem in
ILP does not terminate even after hours. However, A-Greedy proposed in this
work only takes 47 ms to schedule 512 applications on a 512-core processor.

4 Related Work

Scheduling for asymmetric multi-/many-cores has been an active subject of re-
search since their inception [11]. A number of works looked into maximizing
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Table 1: Problem-solving time (in ms) for ILP and A-Greedy scheduler on
varisized representative scheduling problems. ILP-scheduler does not termi-
nate (N.T.) for #cores ≥64.

PPPPPPPLoad
#cores ILP A-Greedy

8 16 32 ≥ 64 8 16 32 64 128 256 512

12.5% 16 266 26,190 N.T. 0.03 0.03 0.09 0.23 0.60 2 6

25% 30 506 52,086 N.T. 0.02 0.05 0.13 0.34 1 3 12

50% 45 823 110,849 N.T. 0.03 0.06 0.21 0.54 2 6 24

100% 56 1,603 209,830 N.T. 0.03 0.09 0.27 0.91 3 12 47

performance under power-constrains for asymmetric processors [3], [13], [19],
[24]. For instance, authors in [13] first map application tasks to achieve high
throughput but swap tasks in the second phase to meet the power constraints.
However, these works do not determine the number of cores (spanning multi-
ple asymmetric core types) allocated to multi-threaded applications at run-time
and do not perform evaluations on real-world platforms. Authors of [14], [15]
proposed controller/economic theory based mechanisms on ARM big.LITTLE
asymmetric multi-core platforms for meeting the quality of service requirements
under power-constraints. However, threads belonging to same/different applica-
tions are considered independently. Additionally, it is very hard to provide any
guarantees on scheduling decisions taken by these mechanisms. To the best of
our knowledge, none of the aforementioned work has proposed a low-overhead
scheduling algorithm that can be proven to obtain an optimal schedule (under
certain constraints) with a proof-of-concept implemented and evaluated on a
real-world hardware platform.

5 Conclusion

In this work, we present A-Greedy, the first-ever scheduler to be proven theoret-
ically optimal (under certain constraints) for asymmetric multi-/many-core pro-
cessors. Experimental evaluation on Kirin 960 asymmetric multi-core shows that
the throughput in A-Greedy is on average 0.98x the throughput of an optimal
ILP-based scheduler but with minimal scheduling overheads. A-Greedy provides
26% higher throughput and up to 45% lower average response time than the
default Linux Scheduler on Kirin 960. A-Greedy also provides up to 8% higher
throughput and up to 14% lower average response time than state-of-the-art
MTS-Like heuristic scheduler. Scalability analysis show that A-Greedy is fast
enough to perform run-time scheduling for large-size asymmetric many-cores.
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