
XXX

CASCADE: High Throughput Data Streaming via Decoupled
Access-Execute CGRA

DHANANJAYAWIJERATHNE, ZHAOYING LI, MANUPA KARUNARATHNE, ANUJ PATHA-
NIA, and TULIKA MITRA, National University of Singapore, Singapore

A Coarse-Grained Reconfigurable Array (CGRA) is a promising high-performance low-power accelerator
for compute-intensive loop kernels. While the mapping of the computations on the CGRA is a well-studied
problem, bringing the data into the array at a high throughput remains a challenge. A conventional CGRA
design involves on-array computations to generate memory addresses for data access undermining the
attainable throughput. A decoupled access-execute architecture, on the other hand, isolates the memory access
from the actual computations resulting in a significantly higher throughput.

We propose a novel decoupled access-execute CGRA design called CASCADE with full architecture and
compiler support for high-throughput data streaming from an on-chip multi-bank memory. CASCADE offloads
the address computations for the multi-bank data memory access to a custom designed programmable
hardware. An end-to-end fully-automated compiler synchronizes the conflict-free movement of data between
the memory banks and the CGRA. Experimental evaluations show on average 3x performance benefit and
2.2x performance per watt improvement for CASCADE compared to an iso-area conventional CGRA with a
bigger processing array in lieu of a dedicated hardware memory address generation logic.

CCS Concepts: •Computer systems organization→Reconfigurable computing; Heterogeneous (hybrid)
systems.

Additional Key Words and Phrases: Coarse Grained Reconfigurable Arrays, Multi-Bank Memory partitioning,
Decoupled access-execute architectures,

ACM Reference Format:
Dhananjaya Wijerathne, Zhaoying Li, Manupa Karunarathne, Anuj Pathania, and Tulika Mitra. 20XX. CAS-
CADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA. ACM Trans. Embedd. Comput.
Syst. XX, X, Article XXX (October 20XX), 25 pages. https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

1 INTRODUCTION
A modern computing system increasingly relies upon hardware accelerator(s) working in tandem
with a Central Processing Unit (CPU) to feed the incessant increase in demand for power-efficient
computations. A Coarse-Grained Reconfigurable Array (CGRA) has emerged as a prominent
accelerator because it offers a good blend of computational throughput, power-efficiency, and
reconfigurability [19, 28, 32, 35]. The CGRA by design is an array of Processing Elements (PEs)

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES) 2019.
Authors’ address: Dhananjaya Wijerathne, dmd@comp.nus.edu.sg; Zhaoying Li, zhaoying@comp.nus.edu.sg; Manupa
Karunarathne, manupa@comp.nus.edu.sg; Anuj Pathania, pathania@comp.nus.edu.sg; Tulika Mitra, tulika@comp.nus.edu.
sg, National University of Singapore, Department of computer science, School of Computing, Computing 1, 13 Computing
Drive, Singapore, 117417.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 20XX Association for Computing Machinery.
1539-9087/20XX/10-ARTXXX $15.00
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

XXX:2 Dhananjaya, et al.

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

D
A
T
A

M
E
M
O
R
Y

C
o

n
f. M

em
o

ry
MUX

ALUR
F

MUX

Fig. 1. Conventional 4x4 CGRA architecture.

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v
0

20

40

60

80

Pe
rc
en
ta
ge

of
A
G
Is
[%
]

Single-Bank CGRA Multi-Bank CGRA

Fig. 2. Percentage of AGIs in kernels for single and multi-bank CGRA.

connected using a 2D mesh network, as shown in Figure 1. A PE typically constitutes an Arithmetic
Logic Unit (ALU), register file, and configuration memory.
The CGRA is best suited to accelerate the frequently executed compute-intensive loop kernels.

A CGRA compiler statically schedules the loop kernel on to the PEs and places the necessary
instructions in the configuration memory before the commencement of execution. A PE executes
the instructions stored in its configuration memory in every cycle with operands obtained from
either its register file or from its neighboring PEs. The PE then writes the result into its register file
or transports the results to one or more neighboring PEs or both. Some PEs can access the on-chip
data memory to fetch the operands and store the results.
A conventional CGRA design involves on-array computation to generate the data memory

addresses corresponding to the load/store operations. We observe that a substantial percentage
of PEs are allocated to execute Address Generation Instructions (AGIs) in a kernel. Moreover, an
on-chip multi-bank memory is often deployed with the CGRA to offer high memory bandwidth as
it allows multiple data memory accesses in the same cycle [35]. CGRA requires higher bandwidth
to support the high throughput data streaming loop kernels. Unfortunately, the multi-bank memory
also requires additional computations to determine the bank indices (using a banking function) and
intra-bank offsets (using an intra-bank offset function) to provide conflict-free memory accesses
further inflating the involved AGIs [45]. Figure 2 shows the rise in the percentage of AGIs in the
kernels when we move from a single-bank to multi-bank CGRA. The AGI percentage is quite high
ranging from 20% to 80%. It is possible to provide conflict-free access in the multi-bank CGRA even
without the use of the banking or intra-bank offset function by taking care of the bank conflicts in
the CGRA mapping schedule [22]. However, this approach generally results in a higher Initiation

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:3

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v
0

2

4

In
iti
at
io
n
In
te
rv
al
(II
)

Ideal Conventional CGRA Ideal Decoupled CGRA

Fig. 3. II for kernels corresponding to an ideal 4x4 conventional and a decoupled CGRA. Both CGRAs have
perfect memory system. A lower II value results in higher throughput.

Interval (II). The number of cycles between consecutive loop iterations defines the II. A higher II
results in lower resource utilization and throughput.
The on-array AGI execution overhead motivates the use of a decoupled access-execute CGRA

design [18, 31] that advocates the separation of execution of AGIs from the remaining actual
computational instructions to improve the loop kernel performance. Figure 3 shows the performance
potential of an ideal decoupled access-execute CGRA compared to an ideal conventional CGRA.
We assume that there are no memory conflicts in both the CGRAs, i.e., the memory subsystem can
provide infinite bandwidth and one-cycle latency for load/store accesses. The main difference is that
in the case of the conventional CGRA, the memory address generation computations are scheduled
on the PE array consuming precious resources. But in the ideal decoupled access-execute CGRA,
the memory address generation computations are moved out of the CGRA and can be executed
with zero overhead. In other words, the CGRA focuses only on pure computation with an ideal
memory. This ideal decoupled CGRA can reduce the II of the loop kernels by 80% on an average
compared to an ideal conventional CGRA resulting in 5x increase in the throughput. Unfortunately,
the few existing decoupled access-execute CGRAs [18, 31] cannot achieve this ideal performance
because (a) they do not support multi-bank memory essential for high bandwidth and (b) they lack
the compiler support necessary for conflict-free memory access.
CASCADE fills this gap by designing a holistic decoupled access-execute CGRA. CASCADE

includes a novel customized hardware for multi-bank memory address generation. The address
generation typically corresponds to regular computations on iteration variables that determine
the load/store addresses, and most loop kernels exhibit strided address generation patterns. The
banking and intra-bank offset functions also have standard templates that are applicable across
loop kernels. Therefore, the address generation computations are more suited to be offloaded to
custom programmable hardware than to be imposed onto the CGRA. CASCADE supplies the data
to the PE array of the CGRA at the same rate as the array consumes the data to prevent any
stalling of the on-array computations. The architecture is adroitly supported by an automated
compiler that performs conflict-free data placement in the multi-bank memory, programs the
hardware for address generation, and maps the computation onto the CGRA in tandem for perfect
synergy between the memory access and computation components. CASCADE accomplishes close
to the ideal CGRA performance — an average 3x improvement compared to conventional CGRA
with a similar overall area but bigger array size to substitute for the additional memory address
generation logic in CASCADE. Finally, an additional benefit of our approach is the substantially
reduced compilation time. It is far easier for the compiler to generate the schedule when the address
generation operations no longer need to be scheduled on the CGRA.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:4 Dhananjaya, et al.

(a) Source code

7.LOAD

PE 0 PE 1 PE 2 PE 3

8.LOAD 10.STORE 9.ADD
7.LOAD 8.LOAD 10.STORE 9.ADD
7.LOAD 8.LOAD 10.STORE 9.ADD
7.LOAD 8.LOAD 10.STORE 9.ADD

II = 1

(b) CGRA Schedule without AGIs

1.SEL

2.ADD
3.CMP

4.ADD 5.ADD

6.ADD 7.LOAD 8.LOAD

9.ADD

10.STORE

N
+1

A+2A+0

0

B+0

Address Generation Instructions Load/Store and
Compute Instructions

(c) DFG

1.SEL

2.ADD

3.CMP

4.ADD

5.ADD

6.ADD

7.LOAD

8.LOAD

9.ADD

10.STORE

1.SEL

2.ADD

3.CMP

4.ADD

5.ADD

6.ADD

7.LOAD

8.LOAD

9.ADD

10.STORE

1.SEL

2.ADD

3.CMP

4.ADD

5.ADD

6.ADD

7.LOAD

8.LOAD

9.ADD

10.STORE

II = 3

PE 0 PE 1 PE 2 PE 3

(d) CGRA Schedule with AGIs

Fig. 4. Illustration of II reduction in a CGRA schedule from three to one by offloading the address generation.

We note that both the decoupled access-execute architecture and the compiler support for multi-
bankmemory have been explored before independently in the context of CGRAs [45] [31]. CASCADE
is the first CGRA design that investigates both the opportunities and challenges associated with the
decoupled access-execute architecture in conjunction with the multi-bank memory. In particular, we
observe high-performance overhead of on-array memory address generation, especially with multi-
bank memory. In the case of Field Programmable Gate Arrays (FPGAs), the high-level synthesis
tools embed arbitrarily complex address generation logic with the actual computation [13]. But, the
overhead is far higher in case of CGRAswith a limited number of PEs meant to perform computation.
Thus, decoupling address generation from computation provides substantial performance benefit
in CGRAs. Moreover, unlike previously proposed decoupled architectures, software-based address
generation with one or more CPUs is incapable of supporting high-throughput data streaming to the
on-chip array [21]. This issue has been largely ignored in the literature and motivated us to design
custom programmable hardware responsible for fast address generation in the presence of a multi-
bank memory. Finally, compiler support for decoupled access-execute CGRAs is missing [31]. Our
compiler configures address generation hardware as well as orchestrates data movement between
the access and execute components in tandem with the computation mapping. In summary, the
novelty of CASCADE lies in providing an end-to-end solution with architecture and compiler
support for high-throughput data streaming on CGRAs.

2 MOTIVATING EXAMPLE
Wepresent amotivating example to illustrate the offload of AGIs from the PE array in Figure 4. Figure
4c shows the Data Flow Graph (DFG) corresponding to a simple loop kernel shown in Figure 4a. The
DFG nodes represent the operations, whereas the edges represent the data dependencies between
the operations. Six operations – Operations 1 to 6 – correspond to the address generation while
only Operation 9 corresponds to the actual computation. Operations 1, 2, and 3 are related to the
iteration variable initialization, increment, and bound checking, respectively. Operations 4, 5, and 6
add the base addresses of the arrays to the iteration variable to generate the effective addresses
used in the load (Operations 7 and 8) and store (Operation 10) operations.

CGRA mapping algorithms use the iterative modulo scheduling [34] to place the DFG operations
on the PEs in a software pipelined fashion and also route the data dependencies among the
operations. Figure 4d shows the optimal CGRA schedule of the DFG shown in Figure 4c on a 4x1
CGRA. The shaded nodes belong to the current iteration, while the white nodes represent the
previous or next iterations. The schedule repeats every three cycles, i.e., II=3.
Figure 4b shows the CGRA schedule of the DFG without AGIs, wherein II=1 leads to a 3x

performance improvement. CASCADE can achieve II=1 because it offloads address generation and

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:5

memory accesses to a specialized hardware unit called Stream Engine (SE) as shown in Figure 5. SE
fetches data from the multi-bank memory and feeds the CGRA through Stream Registers (SR).

Bank 1

a[0]a[1]

Bank 2 a[2]a[3]

a[4]a[5]

a[6]a[7]

PE PE

PEPE

CGRAOn-Chip Memory SE
SR 1

a[2]

SR 2
a[4]

SRs

SR 3
b[0]b[0]b[1]b[2]b[3]

Fig. 5. Abstract diagram showing data transfer from multi-bank memory via SE to CGRA.

Each load and store operation in the loop kernel is considered a different stream. In our example,
a[i] and a[i + 2] are two separate load streams while b[i] is a store stream. The memory addresses
accessed by stream a[i] and a[i + 2] are [0, 1, 2, ...,N − 3] and [2, 3, 4, ...,N − 1], respectively. Our
compiler guarantees conflict-free memory access by the different streams by making sure that
the data elements accessed in parallel are not placed in the same bank. The compiler generates
conflict-free banking function to determine data placement in memory banks when two parallel
streams access the same data array. The original addresses are no longer valid after data placement
with the banking function. Each data element has a new memory location that can be expressed
using a bank ID and intra-bank offset.

Let x be the original address in our example. The banking and intra-bank offset function of array a
is then

⌊ x
2
⌋
%2 and

⌊ x
4
⌋
×2+x%2, respectively. So stream a[i] and a[i+2]maps to an access sequence

with (bank ID, intra-bank offset) pairs [(0, 0), (0, 1), (1, 0), (1, 1), ...] and [(1, 0), (1, 1), (0, 2), (0, 3), ...],
respectively. The banking function ensures that the bank IDs of the data accessed in parallel are
conflict-free. Host processor configures SE with the banking function and stream access parameters.
SE generates bank ID and intra-bank offset of each stream at run-time to fetch data and place them
in SRs. CGRA needs to load/store data from the corresponding SRs.

3 RELATEDWORK
A CGRA achieves high performance and power-efficiency through its considerably streamlined
architecture. The simplicity of the architecture requires a complex compiler where the compiler
must explicitly map computations in a target kernel on to the CGRA’s PEs considering both
space and time dimensions. It also has to determine the routing (communication) between PEs
and generate the necessary configurations (for the muxes) to route the dependencies [28]. The
CGRA mapping problem has been extensively studied [6, 7, 11, 14–16, 20, 39], but only a few
works take into consideration the interdependence between memory management and CGRA
mapping. Authors of [23, 43–45] propose conflict-free loop kernel mapping algorithms considering
both memory management and CGRA mapping. Authors in [44, 45] propose an array element-
level data partitioning mechanism using a banking function. However, they do not consider the
hardware/software overhead of the function’s execution.

In a multi-bank memory, memory conflict arises if two data elements accessed in the same cycle
reside in the same memory bank with a single read port. A CGRA compiler needs to ensure that
the number of data accesses per bank per cycle is less than the number of available ports in one
memory bank. A naive approach will be to maintain multiple copies of the data arrays accessed in
parallel in different banks, but limited on-chip memory size makes this approach unsustainable. A

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:6 Dhananjaya, et al.

Bank 0

Bank N-1

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Host
Processor

Main
Memory DMA

On-Chip Memory CGRA

Config Bus

Stream
Engine (SE)

Xbar-B

SRL 0

Stream
Registers

S

Bank
Offset Data

SN

Xbar-A

SU S-1

SU 0

SU/SR
ID

SU/SR
ID

R/W

Bank
Offset

R/W

Bank
ID

Access Execute

SRS 0

SRL 1 SRS 1

SRS S-2

SRL S-1 SRS S-1

SRL S-2

Fig. 6. CASCADE architecture.

better solution would be to let the compiler partition the data into memory banks to avoid access
conflicts without any data replication.

Several recent works have studied the multi-bank data placement problem [30, 33, 37, 38]. Most
of the previous works on this problem target FPGAs, and they design arbitrarily complex mapping
functions without a fixed format. Even though it is possible to synthesize those functions into
FPGA hardware, it is not possible to implement them as configurable hardware units. Section 5.4
provides additional background details about the multi-bank data placement problem.

The authors of [36] were the first to propose the generic decoupled access-execute architecture
model. Many hardware accelerators [5, 8] adapt this model and use stream-based memory access
to improve performance. Recent works [12, 18, 31] introduced the decoupled access-execute model
to CGRAs, where they provide detailed programming interface and architecture abstraction for
their architectural design but lack compiler support. As a result, the programmer has to rewrite
applications in the architecture-specific intrinsic. Moreover, none of the existing works on decoupled
access-execute CGRAs provide a solution for multi-bank data placement problem. CASCADE design
proposed in this work is the first decoupled access-execute CGRA to support multi-bank memories with
dedicated programmable address generation hardware units and automated compiler support for both
computation and memory access.

4 CASCADE ARCHITECTURE
Figure 6 shows a high-level view of CASCADE architecture motivated by decoupled access-execute
architectural model [36]. It consists of Access and Execute components responsible for memory
access and compute operations, respectively. The memory access operations handle multi-bank
memory address generation, while we define the remaining operations as compute operations
because they operate on the data.

The Execute component is identical to a conventional CGRA where a set of PEs is arranged in a
grid with each PE connected to its neighbors. Each PE consists of ALU, register file, and control
memory to store configuration information. TheAccess component consists of a stream engine (SE),
multi-bank Scratch Pad Memory (SPM), and set of stream registers (SR) connected using two
crossbars as shown in Figure 6. The data is brought into on-chip multi-bank memory from off-chip

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:7

Start
Address

Stride of j

Stride of i

Fig. 7. Two-stride stream address sequence.

memory via Direct Memory Access (DMA) operations, similar to conventional CGRAs. On-chip
memory guarantees service to all memory accesses from the Access component. Each memory
access operation can be modeled as a stream because it is executed repetitively in the loop. There
are two types of streams, load and store streams. The SE is composed of multiple Stream Units (SUs)
wherein each SU is assigned a stream. These streams interface to the PEs through two types of SRs:
load stream register (SRL) and store stream register (SRS). Each PE connects to at most one pair of
{SRL, SRS } registers; the PEs that does not connect to any SR need to access memory data through
other PEs.

Each SU is responsible for address generation and bank selection to support delivery/reception of
data to/from {SRL, SRS }. Each SU produces (bank ID, intra-bank offset) sequence for the assigned
stream, corresponding to the execution of memory instruction in the loop. The crossbar Xbar-A
connects the SUs to the banks, and crossbar Xbar-B connects the banks to the SRs. During execution,
each SU selects a non-conflicting bank (guaranteed by the compiler) by setting Xbar-A and transmits
the intra-bank offset. Once data comes out of the bank, the SU configures Xbar-B to transmit the
data to the matching {SRL, SRS } pair.

4.1 Stream Tuple Definition
The addresses of a load/store stream can have arbitrarily complex pattern based on the number
of iteration variables used to generate them. This pattern also depends upon the start address,
loop bounds of iteration variables, and strides (multiple of iteration variables). We define a generic,
fundamental stream pattern with two strides using a stream tuple. This tuple can be used as a basic
building block to support arbitrarily complex patterns in CASCADE. Figure 7 shows the addresses
defined by stream tuple <SA,AS j ,ASi ,max j ,maxi> where SA is the start address,AS j is the address
stride of iteration variable j , ASi is the address stride of iteration variable i ,max j is the loop bound
of j, andmaxi is the loop bound of i . The address generation computation defined by the stream
tuple is functionally equivalent to Listing 1.

Listing 1. Memory address computation by stream tuple.

for(i=0; i<maxi ; i=i+1){
for(j=0; j<max j ; j=j+1){

addr = ASi *i + AS j *j + SA;
}

}

Address generation on the host processor is not a viable option because it takes on an average of
18 ARM64 instructions to generate a single address for a stream tuple. So we design a configurable
hardware unit (SE) that can generate an address per cycle for a stream tuple. Host CPU initially
configures the SE using the stream tuple, and subsequently, the SE generates the strided address
stream. CASCADE is not limited to two-stride stream patterns. Section 5.3 explains the generation of

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:8 Dhananjaya, et al.

strided address stream for streams with more than two strides through an iterative reconfiguration
of the SE by the host CPU.

4.2 Stream Address Generation in Hardware
Address generation for a stream tuple can be performed more efficiently by adding a linear shift to
the previous address in the sequence. Affine access ϕ(i, j) can be expressed as follows.

ϕ(i, j) =
[
ASi AS j

] [i
j

]
+ SA (1)

∆ϕ =

{
S2, if jn =max j − 1
S1, otherwise

(2)

S1 = AS j S2 = ASi −max j .AS j

jn+1 =

{
0, if jn =max j − 1
jn + 1, otherwise

in+1 =

0, if in =maxi − 1
in + 1, if jn =max j − 1
in, otherwise

ϕn+1 = ϕn + ∆ϕ (3)
The (n + 1)th access address is equal to the summation of ∆ϕ and nth access address. ∆ϕ is a

function of the strides and iteration variables as given by Equation (2). Section 4.4 explains how
this formulation leads to an efficient address generator implementation.

4.3 Bank and Offset Functions
The bank function β(x) and intra-bank offset functionO(x)map address x to bank ID and intra-bank
offset, respectively.

β(x) = ⌊
x

B
⌋%N (4)

O(x) = ⌊
x

N .B
⌋ .B + x%B (5)

where N is the number of banks, and B is the block size. Values of B and N depend on the access
pattern of the streams, and Section 5.4 explains the method to obtain them.

4.4 Stream Engine (SE) Architecture
Figure 8 shows the detailed architecture of the Stream Engine (SE) that generates bank ID and intra-
bank offset of S streams per cycle. It consists of one SU per stream and a shared Iteration Variable
Generation (IVG) unit. SU consists of a Stream Address Generation Unit (SAGU), Bank Address
Generation Unit (BAGU), and configuration memory to hold the stream tuple and bank/offset
parameters.
SAGU and IVG generate stream addresses based on Equation (2). SAGU has an address accu-

mulator (Accaddr) initialized to SA. In IVG, two accumulators increment iteration variables i and j
conforming to loop bounds. Acc j holds j , and increments it in each clock cycle. When Acc j reaches
max j , Acc j resets to 0, and Acci increments i . IVG generates a signal inside SAGU to select between
S1 and S2. If Acc j is equal tomax j − 1, S2 will be selected else S1 will be selected. The selected
output is added to the current address to generate the next address.
BAGU generates bank ID and intra-bank offset according to Equations (4) and (5), respectively.

Floor division and modulo operations can be implemented using shifters if B and N are both

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:9

Stream
Address

Bank ID

Bank Offset
SAGU

Accj

inc

reset

=maxj-1

Acci

inc

reset

=maxi-1

Accaddr

inc

reset

MUX

S1 S2

SA

S1 S2 SAmaxi maxj Accj Acci Accaddr

>>

&

>>
&

+
Bank ID

Bank
Offset

N B Log2(N*B)

Stream Engine (SE)

Stream
Address

BAGU
SU

Stream
AddressSAGU BAGUSU

Bank ID

Bank Offset

IVG

SAGUIVG
BAGU

Log2(B)

<<

Bankinit

Fig. 8. Detailed architecture of Stream Engine (SE).

power-of-two. So we restrict B and N to power-of-two values. Input for BAGU is stream address
generated by SAGU and output is the bank ID and intra-bank offset of each stream.
SUs are capable of generating addresses in a time-multiplexed manner to support more than S

streams by holding multiple stream tuples and bank/offset parameters. We sequence through the
configuration memory of the SU according to the II value of the CGRA schedule.

4.5 Data Transfer from Off-Chip Memory
The CGRA operates on multi-bank on-chip SPM data. Host processor configures DMA engine to
move data between off-chip memory and banked SPM. DMA engine calculates SPM bank location
(bank ID and intra-bank offset) of each data element using bank/offset functions when it accesses the
SPM. Dynamic SPM management technique is used to overlap data filling and consumption [10, 40].
Data transfer between off-chip and on-chip memory takes place at the granularity of blocks. The
host issues DMA operations to move data blocks to/from SPM while CGRA operates on a different
data block. The block size and number of blocks present in on-chip memory at any point in time
are calculated based on the SPM size and memory requirement of all arrays.

5 CASCADE COMPILER
Figure 9 shows the CASCADE compiler framework. The compiler generates the CGRA mapping,
SE configurations, and conflict-free banking function parameters. The compiler first extracts the
AGI-free DFG by removing all AGIs. It then gives the DFG to the CGRA mapper to generate
the CGRA schedule and routes. Memory access patterns are extracted and subsequently used to
generate the stream tuples and conflict-free banking function parameters.

5.1 Definitions
The compiler converts all loops to normalized loops in which the loop variable starts at 0 or a
constant and gets incremented by one at each iteration until the exit condition is satisfied. We
define affine array access [4] for a d-dimensional array in a normalized l-level loopnest using
iteration vector ®i by < A,C, LB > tuples whereA is d x l matrix of strides,C is d-dimensional vector

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:10 Dhananjaya, et al.

C Source
Code

Architecture
Description

Extract
Memory
Access
Patterns

Extract
Compu-
tation

SE Configuration

Conflict
Free Bank
Allocation

Stream
Tuple

Generation

CGRA
Mapper

CGRA Configuration

Fig. 9. CASCADE compiler framework.

of constant start offsets, and LB is l-dimensional vector of loop bounds. It maps the iteration vector
with loop bounds 0 ≤ ®i ≤ LB to an array element location ϕ(®i) = A®i +C where

®i =

i0
i1
...

il−1

LB =

lb0
lb1
...

lbl−1

C =

c0
c1
...

cd−1

A =

a0,0 . . . a0,l−1
a1,0 . . . a1,l−1
...

. . .
...

ad−1,0 . . . ad−1,l−1

Iteration domainM is formed by ®i within the loop bounds. We define access pattern PR as the

set ofm affine accesses in the loop kernel which access the data array R.

PR = {ϕ1(®i), . . . ,ϕm(®i)}

AGI-free DFG D = (VD , ED) is obtained by removing all AGIs of affine accesses in the loop
kernel. VD and ED are vertex and edge set of the AGI-free DFG D, respectively. Modulo Routing
Resource Graph (MRRG) [29] is the time extended (II cycles) resource graph of the CGRA. The
CGRA compiler establishes a mapping from the AGI-free DFG to the MRRG. We define the control
step to identify the set of parallel instructions executed at each cycle in MRRG, i.e., MRRG has II
number of control steps.

We define control step access pattern PRS as a subset of affine accesses in the loop kernel access
pattern (PR) that access data array R at control step S .

PRS = {ϕ1(®i), . . . ,ϕq(®i)}

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:11

5.2 Extraction of Access, Execute Components
The input to CASCADE compiler is C source code where the loop kernels targeted for acceleration
are annotated by pragmas and can be easily identified and extracted. We use Clang C compiler to
obtain LLVM IR (bitcode) of each target loop kernel. CASCADE compiler analyzes LLVM IR for data
and control dependencies. Memory access patterns and pure computation components are then
extracted.

Extraction of computation (execute) component: The LLVM IR is analyzed to generate AGI-
free DFG that consists of computation and load-store operations but does not include address
generation logic for load/store instructions. In LLVM IR, Get Element Pointer (GEP) instructions
precede all load/store operations. We disregard all GEP instructions and GEP dependent parent
instructions to generate AGI-free DFG.

Extraction of Memory Access Patterns: The compiler extracts memory access patterns cor-
responding to all load/store operations in the loop kernel in the form of affine array access (Section
5.1). As GEP instructions precede load/store operations, we analyze the parent nodes of GEP
instructions to find the access patterns corresponding to load/store operations. With GEP as a
leaf node, we recursively traverse all the previous data-dependent instructions until we reach the
iteration variables. LLVM inbuilt function (getCanonicalInductionVariable) is used to identify all
the iteration variables. The traversal captures the mathematical equations involved in the address
calculation. Equations are later converted to the affine format to obtain matrix A, vector C , and LB.

5.3 Nested Loop Mapping
When the compiler maps nested loops on to CGRAs, it places the innermost loop body operations
on to the CGRA PEs. Outer loop iteration variables maintain fixed values for one invocation of the
innermost loop. Typically the host processor handles loop control, i.e., calculates the values of the
outer loop iteration variables and sends them to the array when invoking a new innermost loop
instance [25, 26]. Some optimizations like loop flattening may reduce the number of invocations
at the cost of overhead because the compiler maps computations to evaluate outer loop iteration
variables onto the array [25].

There are many ways to handle imperfect nested loops, where the outer loop body also contains
statements [25]. These statements can be fissioned into a new loop to be executed by the host
processor or guarded by predicates and moved into the innermost loop. We transform imperfect
nested loops to perfect nested loops by guarding outer loop statements through predicates [17].

In CASCADE, nested loop control is handled through SUs, as we offload AGIs including iteration
variables evaluations to SUs. The datapath of a SU can generate strided access pattern corresponding
to two iteration variables in one invocation. Host processor needs to configure the SUs to handle
access patterns with more than two iteration variables. For example, to handle the three-level
loopnest shown in Listing 2, the host processor has to reconfigure each SU N times where N is the
trip count of the outermost loop. Our compiler generates host processor code and corresponding
SU configuration (stream tuple) as shown in Listing 3.

Listing 2. Three-level nested loop.

for(k=0; k<N; k=k+1){
for(i=0; i<M; i=i+1){

for(j=0; j<L; j=j+1){
.. = a[4*k+4*i+j];

}
}

}

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:12 Dhananjaya, et al.

Listing 3. Stream tuple generation for loop nest in Listing 2.

for(k=0; k<N; k=k+1){
Stream <SA=4*k, AS j =1, ASi =4, max j =L, maxi =M>

}

We now explain how a strided access pattern of arbitrary depth in a loop can be expressed using
the hardware supported strided pattern, for example from the access pattern in Listing 2 to the
sequence of stream tuples in Listing 3. The objective is to express extracted affine memory access in
terms of stream defined by the tuple < SA,AS j ,ASi ,max j ,maxi >. We first flattenmulti-dimensional
array accesses into a single dimension.

A =

a0,0 . . . a0,l−1
a1,0 . . . a1,l−1
...

. . .
...

ad−1,0 . . . ad−1,l−1

⇒ Af lat ,C =

c0
c1
...

cd−1

⇒ Cf lat

Here Af lat and C f lat vectors are obtained by flattening matrix A and vector C (Section 5.1) to
one dimension, as shown below.

Af lat =
[
a′0 . . . a′l−1

]
,C f lat =

[
c ′
]

a′n = a0,n + a1,n ∗w0 + a2,n ∗w0 ∗w1 + · · · + ad−1,n ∗

d−2∏
k=0

wk

c ′ = c0 + c1 ∗w0 + c2 ∗w0 ∗w1 + · · · + cd−1 ∗
d−2∏
k=0

wk

whereW = [w0,w1, . . . ,wd−1] is the vector of widths of each dimension of the accessed array.
If there are more iteration variables than what hardware can support (in our case two), the start
address absorbs the iteration variables except for the ones in the two innermost loops. Thus, we can
express the start address as an affined function of new iteration vector with ®i ′ =

[
i0 i1 . . . il−3

]
.

SA = c ′ + a′0 ∗ i0 + · · · + a
′
l−3 ∗ il−3;

ASi ,AS j ,maxi , andmax j are equal to the values correspond to two innermost iteration variables
of Af lat and LB.

ASi = a′l−2; AS j = a′l−1; maxi = lbl−2; max j = lbl−1;

5.4 Conflict-Free Memory Bank Allocation
Previous memory partitioning algorithms focus on supporting a single access pattern [30, 37, 38]. In
CGRA, it is possible to access the same data array in different access patterns in a mutually exclusive
manner. We define these access patterns as control step access patterns (PR1 , .., P

R
S). Control step

access patterns occur when memory accesses for the same data array happens in different control
steps. Memory partitioning algorithm should place data array on memory banks considering all
control step access patterns. Authors in [41, 42] analyze this problem, but both works use linear
transformation based cyclic partitioning scheme that leads to the complex bank and intra-bank
offset functions. These functions can be synthesized in FPGAs (though they occupy area) but far
more challenging to compute inside CGRAs because it leads to increased schedule length and II.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:13

Background: There are two basic memory partitioning schemes, cyclic and block partitioning.
In cyclic partitioning, we cyclically partition data into different banks. Cyclic partitioning memory
bank function is x%N , where N is the number of banks and x is the address of the data element, and
the intra-bank offset function is

⌊ x
N

⌋
. Block partitioning divides the data into a set of blocks and

then stores them in different memory banks. The block partitioning memory bank function is
⌊ x
B

⌋
,

and intra-bank offset function is x%B. We use block-cyclic partitioning which is the combination of
both these partitioning schemes. The banking function of block-cyclic partitioning has the form of⌊ x
B

⌋
%N .

Recently, authors in [37] introduced a linear transformation vector ®α to block-cyclic partitioning
and named it Generalize Memory Partitioning (GMP). GMP defines the bank mapping function
using the following equation.

β(®x) =

⌊
®α .®x

B

⌋
%N

For a given access pattern, memory partitioning algorithm finds α , N , and B such that partitioned
memory does not yield any access conflicts. The GMP algorithm enumerates through α , N and B.
For each α , N , and B it takes two access streams at a time and checks whether they are conflict-free
after applying the banking function to them. The condition that needs to be satisfied for valid
banking function β for two access streams ϕ0(®i) = A0.®i +C0 and ϕ1(®i) = A1.®i +C1 is stated below.

∀®i ∈ M, β(ϕ0(®i)) , β(ϕ1(®i))

We check the above condition through a polyhedral based method called conflict polytope testing.
Definition: (Conflict Polytope) A conflict polytope of two simultaneous access streams ϕ0(®i) =

A0.®i +C0 and ϕ1(®i) = A1.®i +C1 is a parametric polytope restricted to the iteration domain M as
stated below.

Pconf (ϕ0(®i),ϕ1(®i)) = {®i | ∀®i ∈ M, β(ϕ0(®i)) = β(ϕ1(®i))}.

The polytope is essentially a set of inequalities obtained from the above conflicting condition. If
the conflict polytope Pconf (ϕ0(®i),ϕ1(®i)) is empty (number of integer points in the conflict polytope
is 0), it implies ∀®i ∈ M , β(ϕ0(®i)) , β(ϕ1(®i)). Counting the number of integer points in a polytope is
a well-formulated problem in linear algebra and can be solved using Ehrhart algorithm [9]. The
GMP algorithm checks the conflict-free condition across all combinations of the access streams in
the access pattern. If all combinations satisfy the conflict-free condition, the respective α , N, and B
would be the parameters for conflict-free banking function.

Our Approach:We extend the GMP algorithm to find multi-access pattern memory partitioning
scheme. We use block-cyclic version (without parameter α) of the banking function in our approach
since the version with parameter α result in complex intra-bank offset functions without having a
fixed format. Block-cyclic version results in a slightly increased number of banks compared to the
version with parameter α . However, it simplifies the mapping functions to a fixed format so that
we can implement them as configurable hardware functional units, namely BAGU. So, our banking
function has the following format.

β(x) =
⌊x
B

⌋
%N

To obtain non-complex intra-bank offset function for multidimensional arrays,wd−1 (width of
the d − 1 dimension) should be an integral multiple of NxB. If not, d − 1th dimension is padded with
bits such that new dimension width is an integral multiple of NxB. Once padded, the intra-bank
offset function becomes

O(x) = ⌊
x

N .B
⌋ .B + x%B

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:14 Dhananjaya, et al.

Algorithm 1: Algorithm for calculating a conflict-free banking function.
Input: Access Patterns(PR1 , ..., P

R
S)

Result: Valid Bank Function Parameters
1 for B=1; B<Bmax ; B=2*B do
2 for N=1; N<Nb ; N=2*N do
3 j<-0
4 for s:1 → S do
5 c = All stream combinations in PRs
6 for i: 0→ c do
7 Pconf = CreateConf lictPolytope(N ,B,ϕx (),ϕy ())

8 points = CountPoints(Pconf)

9 if points>0 then
10 break;
11 if i = c − 1 then
12 j<-j+1
13 if j = n then
14 N,B are valid bank parameters for all control step access patterns , return;

Our algorithm searches for the number of banks N and block size B considering multiple access
patterns. Let us consider access patterns in two cycles accessing the same data array. Cycle 1 access
pattern consists of two access streams ϕ0(®i) and ϕ1(®i). Cycle 2 access pattern consists of two access
streams δ0(®i) and δ1(®i). Valid banking function β(®x), which works for both mutually exclusive
access patterns should satisfy the following condition.

∀®i ∈ M, β(ϕ0(®i)) , β(ϕ1(®i)) and β(δ0(®i)) , β(δ1(®i))

Algorithm 1 shows how conflict polytope-based test is used to check the above conditions. We
extend this approach when there are multiple control step access patterns and access streams
within one control step access pattern. Input for the algorithm is a set of mutually exclusive control
step access patterns on an array, and the output is a set of valid bank function parameters.

5.5 CGRA Mapper
The CGRA Mapper maps AGI-Free DFG onto CASCADE PE array through modulo scheduling.
Initially, we sort all the nodes in the DFG in topological order. We define minimum II as the
maximum of resource minimum II and recurrence minimum II. In CASCADE, resource minimum II
depends on the number of SUs and the number of load-store streams in the AGI-free DFG. CGRA
Mapper attempts to find a valid mapping starting from the minimum II and increases II iteratively
until it obtains a valid mapping. For each increased II value, we create time extended (II cycles)
resource graph of the CGRA, which is known as MRRG. Note that MRRG includes both compute
resources (PE ALUs) and configurable data paths, inside (ALU-register file links) and outside (PE-PE
links) PEs. The goal of the mapping algorithm is to map all the computations and dependencies in
the DFG to an MRRG with minimum II.

Problem Definition: Given an AGI-Free DFG D = (VD , ED) where VD consists of five types of
nodes – load operations (V L

D), child operations of load (V
CL
D), store operations (V S

D), parent operations
of store (V PS

D) and compute operations (VC
D) – the problem is to construct a minimally time-extended

MRRGHI I = (VH , EH)whereVH consists of four type of nodes: SUs (V SU
H), SR-connected PEs (V SR

H),
normal PEs (V F

H), and links (V L
H – the configurable data paths inside and outside PEs that is time

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:15

extended), for which there exists a mapping ϕ = (ϕV ,ϕE) from D to HI I = (VH , EH) under set of
constraints γ that restricts the mapping of V L

D , V
S
D nodes to V SU

H nodes, VCL
D , V PS

D nodes to V SR
H

nodes and VC
D nodes to either V SR

H or V F
H nodes.

Place and Route Algorithm: We follow an iterative approach for mapping. The algorithm
maps each node of the AGI-free DFG u ∈ VD to a node of MRRG vF ∈ {V F

H ,V
SU
H ,V

SR
H } under

constraint γ such that it utilizes the links vL ∈ V L
H , that results in the least accumulated cost,

when routing data from the parent nodes of u. We employ Dijkstra’s shortest path algorithm in
establishing such routes and allow the links to be over-subscribed if necessary. Initially, all links
are assigned a similar cost. At the end of one iteration of mapping, the algorithm increases the
cost of the over-subscribed links vL ∈ V L

H for future iterations (inspired by SPR [14]). The main
intuition behind increasing the cost is to encourage the routing of data through alternative routing
resources. When the mapping converges, the resources with most demand are likely to be used
for mapping the dependencies with fewer options for routing compared to the competitors. In
subsequent iterations, the placement of nodeu ∈ VD may change to avoid over-subscribed resources
from the previous iteration. We deem the mapping of the DFG a success when none of the resources
are over-subscribed.

5.6 Synergistic Banking and CGRA Mapping
Conflict-free memory allocation and CGRA mapping are heavily inter-dependent tasks as fixing
one create constraints on the other and vice versa [23, 45]. Bank mapping algorithm attempts
to create a conflict-free bank layout according to control step access patterns. If it fails to find a
conflict-free bank layout, CGRA mapping has to be changed, and the bank mapping algorithm has
to create a new conflict-free bank layout. It is an iterative process that continues till we find both
conflict-free bank layout and valid mapping. For example, let us assume an access pattern with five
load streams and a CGRA mapping with II=1 (all five streams access memory in one cycle). Further,
assume that we cannot find a conflict-free memory layout with the given number of banks. In this
case, we try to obtain new CGRA schedule and conflict-free bank layout by increasing the II to
two and distributing five load accesses in two cycles. We continue increasing II and distributing
memory accesses until we obtain conflict-free memory bank layout and valid CGRA schedule. This
process is guaranteed to terminate at II=5 as there are no load conflicts when II=5 (because only
one load access happens in one cycle).

Algorithm 2 presents synergistic memory banking and computation mapping on PE array. Initial
resource minimum II of the CGRA mapping depends on the number of SUs available in CASCADE
and number of load/store streams in the loop kernel in addition to CGRA fabric resources. This initial
II is an input to the algorithm along with the AGI-free DFG and architectural parameters. Function
f ind_bank_parameters divides the number of accesses in the loop kernel access pattern (PR) into
II number of sets to form a new set of control step access patterns. Then it searches for a banking
solution with these control step access patterns to find bank parameters with a minimum number
of banks (N a

min). This process is applied to each array in the loop kernel to obtain valid banking
parameters. If the obtained control step access patterns are different from the control step access
pattern in the existing CGRA mapping, the mapping algorithm finds new CGRA mapping by
constraining the mapping with resultant control step access patterns. We place different arrays in
different banks to avoid inter-array conflicts. Therefore, the algorithm adds N a

min of all arrays to
find total required number of banks (Nr eq). If the algorithm fails to find a valid mapping and valid
bank parameters for all arrays with the available number of banks, it increases the II of the CGRA
mapping. It is an iterative process that continues until it finds the conflict-free bank layout and
valid mapping.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:16 Dhananjaya, et al.

Algorithm 2: Synergistic Banking and CGRA Mapping.
Input: AGI-free DFG (D = (VD , ED)), CGRA architecture description (C = (VC , EC)), Data

Arrays(A1, ..An), Loop Kernel Access Patterns(PR1, ..., PRn), Number of Banks(Nb)
Result: Valid Bank and Computation Mapping HI I = (VH , EH)

1 I I =max(RecII (D),ResI I (D,C))

2 while true do
3 Nr eq <- 0
4 HI I , I I = CGRA_Mapper(I I , D, C)
5 foreach a ∈ (A1, ..An) do
6 for all II control step combinations formed by Pa do
7 N a = f ind_bank_parameters(Pa1 , .., P

a
I I)

8 if N a<N a
min then

9 N a
min<-N

a

10 P
′ <- (Pa1 , .., P

a
I I)

11 Constrained_Mappinд(HI I , P
′

)

12 Nr eq = Nr eq + N
a
min

13 if Nb ≥ Nr eq then
14 return;
15 I I = I I + 1

CASCADE does not support indirect addressing where array addresses depend on the data (e.g.,
A[B[i]]). To handle indirect addressing, it needs a separate datapath to route read data to address
generation units. We leave this as future work because the majority of the loops amenable to CGRA
acceleration do not include indirect addressing.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
Comparative Baselines: We evaluate CASCADE against two different baselines Generics [22]
and JLM-B [45] that represent two contrasting approaches to memory bank conflict handling by
the compiler. Both baselines are prototypical of conventional CGRA architectures and embed the
address generation computations in the PE array. In contrast, CASCADE decouples the address
generation operations into a separate Access component.

Generic: Data arrays are divided into bank-sized blocks and are placed consecutively in the
memory banks. The CGRA mapping algorithm creates schedules where the memory access opera-
tions are carefully placed along the timeline to avoid memory bank conflicts [22]. This may result
in longer schedules and higher II value. The address generation computations are performed in the
CGRA.

JLM-B: The compiler places data in the memory banks in a conflict-free manner according to
the banking functions proposed in Joint Loop Mapping (JLM) [45]. Authors of JLM do not specify
where they compute banking functions. Therefore, we assume the PE array evaluates them.

Compiler Implementation:We implement CASCADE compiler as a pass in LLVM 8.0 [24] that
extracts the AGI-free DFG and memory access pattern of a target loop kernel. We use pragmas to
annotate the target loop within a benchmark for acceleration. Extracted memory access pattern
and AGI-free DFG are the input for our synergistic banking and CGRA mapping algorithm, and
we implement them in C++. We utilize Ehrhart algorithm implementation provided in Polylib

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:17

Table 1. Benchmark loop kernels characteristics.

Benchmark
Benchmark

Suite

Node
with
AGI

Nodes
w/o AGI
(and w/o
LD/ST)

Loop
depth

LD/ST
streams

Conflicting
array

accesses

Memory
footprint

(KB)

gemm Polybench 42 27 (16) 3 8,1 Y 12
2d_stencil Polybench 42 18 (9) 2 5,1 Y 8
gesummv Polybench 26 21 (17) 2 3,1 N 8

adi Polybench 27 13 (7) 3 5,1 Y 12
dynprog Polybench 22 17 (14) 3 2,1 Y 32
first_diff Livermore 17 13 (10) 1 2,1 N 8

equa_of_SF Livermore 48 24 (14) 1 9,1 Y 16
two_d_ehf Livermore 52 28 (14) 2 12,2 Y 16

hydro Livermore 22 8 (4) 1 3,1 Y 12
h264 Mediabench 45 31 (28) 2 2,1 N 0.8
jpeg Mediabench 28 18 (16) 2 1,1 N 0.8

mpeg4 Mediabench 43 13 (11) 1 1,1 N 8

5.22.5 [2] library to count the number of integer points in conflict polytopes for conflict-free bank
allocation. Synergistic banking and CGRA mapping algorithm generate CASCADE CGRA and SE
configurations.

RTL Implementation: CASCADE introduces architectural modifications for the decoupled
access-execute design, while baseline Generic and JLM-B use the conventional design. We imple-
ment both CASCADE (with 4x4 PE array and 8 SUs) and conventional CGRA (with 4x4 PE array)
architectures in Verilog HDL. We then synthesize them onto a commercial 40 nm process using
Synopsys Toolchain. Both architectures consist of 4 KB SPM with eight banks. Conventional CGRA
architecture consists of 8 memory accessible PEs. We obtain the clock frequency, power, and area
estimates from the RTL implementation. The maximum clock frequency achievable for both the
baseline and CASCADE is 510MHz at 40 nm process.

Performance Estimation:We use IIs of valid CGRA mappings as the main performance metric
to compare the performance of conventional CGRAs and CASCADE as both designs have the same
clock frequency. As the compiler guarantees conflict-free banking and valid mapping, the simulated
execution of the CGRAs should produce the same performance results as compiler-generated II
value. Nevertheless, we still performed functional and timing validation of CASCADE architecture
through cycle-accurate software simulation to confirm the equivalence.

Benchmark Loop Kernels:We select representative loop kernels (Table 1) from Livermore [27],
Polybench [3], and Mediabench [1] benchmark suites. Selected loop kernels have different memory
access patterns with different stride depths. Loop kernels gemm, 2d_stencil, adi, equation of sf,
two_d_ehf, hydro, and fft have conflicting array accesses. Table 1 lists the number of nodes in
the DFG with AGIs and without AGIs for each loop kernel. The values inside brackets of the
fourth column denote the number of nodes without AGI and memory instructions. The number of
load/store streams, loop depths in the nested loops, and the memory footprint (the total size of the
data arrays) are also listed. Note that entire data arrays do not need to reside in on-chip SPM at any
point in time as the DMA engine transfers active data blocks between SPM and off-chip memory.
AGIs account for more than 50% of the DFG nodes in four loop kernels (2d_stencil, equation of sf,
hydro, and mpeg4). The rest have around 40% AGIs.

6.2 Experimental Results
CASCADE Memory Configurations: We first explore the impact of the memory configuration,
namely the number of banks and SUs on the performance of CASCADE. Figure 10 shows the
achieved II for two_d_ehf benchmark running on CASCADE with 4x4 PE array but a different
number of SUs and memory banks. The results show that both the number of memory banks and
SUs are critical, and adding either will result in a lower II value.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:18 Dhananjaya, et al.

4 8 16
32 4 8

16

321
2
3
4
5

No. of Banks (N) No. o
f Stre

am Units
(S)In

iti
at
io
n
In
te
rv
al
(I
I)

1

2

3

4

5

Fig. 10. Achieved II for different CASCADE configurations (w.r.t. number of banks and number of stream
units) for two_d_ehf benchmark.

ge
mm

2d
_st
en
cil

eq
ua
tio
n_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v
0

0.5

1

Q
oM

(Id
ea
lI
I/

A
ch
.I
I)

CASCADE1 CASCADE2

Fig. 11. QoM (Ideal II / Achieved II) of CASCADE versus Ideal decoupled CGRA with perfect memory.

Given the importance of memory parameters, we conduct the rest of the experiments with two
different CASCADE configurations illustrative of different memory capabilities. CASCADE1 has 4x4
PE array, 8 SUs, 8 load/store SR pairs, and 8 memory banks. In CASCADE1, two left-most CGRA PEs
in each row connect to two load/store SR pairs. The remaining PEs access memory data through
the PEs in the two leftmost columns. CASCADE2 has 4x4 PE array with 16 SUs, 16 load/store SR
pairs, and 16 memory banks. Thus, CASCADE2 has a matching number of PEs and load/store SRs.
Therefore, each CGRA PE in CASCADE2 has its own load/store SR pair. Clearly, CASCADE2 has far
more powerful memory subsystem than CASCADE1 even though the PE array design is the same
in both configurations.

Comparison with Ideal CGRA:We define a metric, Quality of Mapping (QoM), as the ratio of
the II of an ideal 4x4 decoupled CGRA that has infinite memory bandwidth and no memory conflicts,
and the achieved II of CASCADE1 or CASCADE2. The QoM being one implies that CASCADE1
(or CASCADE2) unlocks the maximum performance. Figure 11 shows the QoM of CASCADE1 and
CASCADE2.
CASCADE2 achieves ideal II for all but three benchmarks. Benchmarks gemm and h264 require

very high utilization of the fabric to achieve the ideal II because they have 16 nodes (ideal II=1
with 100% utilization) and 28 nodes (ideal II=2 with 86% utilization), respectively. Moreover, the
inability to route the dependencies in a restricted environment of high utilization makes these
kernels perform poorly. For two_d_ehf, the compiler cannot find a non-conflicting solution with 16
banks for its 12 load access streams and fails to achieve the ideal II. Additionally, CASCADE1 is
unable to achieve the ideal II for equation_of_SF and dynprog because of insufficient SUs.
Comparisonwith 4x4 Baseline CGRA: Figures 12 and 13 show the area and power breakdown

of CASCADE and baseline generic CGRA. The additional architectural components (SUs, crossbar

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:19

0 0.1 0.2 0.3 0.4 0.5 0.6

Generic CGRA

CASCADE

Area (mm2)

PE-FU PE-RF PE-inputXBar PE-ConstMEM
IntraPE Interconnect PE-ControlMEM DMEM SU-ControlMEM

Mem-XBars SU-FU IVG

Fig. 12. Area breakdown of 4x4 CASCADE with 8 SUs and 4x4 baseline generic CGRA.

0 20 40 60 80

Generic CGRA

CASCADE

Power (mW)

PE-FU PE-RF PE-inputXBar PE-ConstMEM
IntraPE Interconnect PE-ControlMEM DMEM SU-ControlMEM

Mem-XBars SU-FU IVG

Fig. 13. Power breakdown of 4x4 CASCADE with 8 SUs and 4x4 baseline generic CGRA.

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

0

5

10

In
iti
at
io
n
In
te
rv
al
(II
)

Generic 4x4 JLM-B 4x4 CASCADE1 4x4 CASCADE2 4x4

Fig. 14. CASCADE versus baseline 4x4 CGRA.

switches, and CGRA control memories) consumes 59% more area compared to the conventional
CGRA. However, we note that AGIs corresponds to an average of 65% of all computation in a loop
kernel. Figure 14 shows by offloading this AGI execution to the stream engine, CASCADE1 achieves
3.4x and 3.2x better performance, whereas CASCADE2 achieves 3.9x and 3.7x better performance
compared to Generic 4x4 and JLM-B 4x4 approaches, respectively. In other words, we pay a 0.6x area
overhead to obtain more than 3x performance gain. We demonstrate later that CASCADE1 achieves 3x
and 2.3x better performance whereas CASCADE2 achieves 3.7x and 3x better performance compared
to Generic and JLM-B approaches on baseline CGRAs with the same area, i.e., bigger PE array. The

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:20 Dhananjaya, et al.

Table 2. Iso-area baseline CGRAs corresponding to CASCADE configurations. The parenthesized values
indicate area normalized to CASCADE.

CASCADE Generic
CASCADE-1 PE:4x4 SU:8 (1.00) 4x6 (1.06)
CASCADE-2 PE:4x4 SU:16 (1.00) 4x8 (0.99)

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

0

5

10

In
iti
at
io
n
In
te
rv
al
(II
)

Generic 4x6 JLM-B 4x6 CASCADE1 4x4

(a) 8 Memory Accesses per Cycle

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

0

5

10

In
iti
at
io
n
In
te
rv
al
(II
)

Generic 4x8 JLM-B 4x8 CASCADE2 4x4

(b) 16 Memory Accesses per Cycle

Fig. 15. Performance of 4x4 CASCADE versus iso-area baseline CGRA with bigger PE arrays (4x6 and 4x8).

main contributors for the difference in silicon area of CASCADE concerning baseline CGRA are
the SU control memories (36%), crossbar switches (18%), CGRA control memories (3%), and SU
functional units (2%). The control memory of CASCADE is slightly larger than the baseline CGRA
because each PE has two additional channels – the stream registers (SRL , SRS) – that require control
information.

Comparison with Iso-Area Baselines: As CASCADE requires more area due to SE that is not
present in conventional CGRAs, we create baseline CGRA architectures that have roughly the same
area as each CASCADE configuration (Table 2) by increasing the PE array size. CASCADE1 and
CASCADE2 are iso-area equivalent to 4x6 and 8x4 PE array in conventional CGRA, respectively.
Moreover, to match the memory system, we pair 4x6 PE array and 8x4 PE array with 8 and 16
memory accessible PEs, respectively. Note that our baselines, namely Generic and JLM-B, have
identical baseline CGRA architecture but differ in compiler approach to resolve memory access
conflict.

Figures 15a and 15b show a performance comparison of CASCADE1 and CASCADE2 with corre-
sponding iso-area baselines. CASCADE delivers better performance compared to both the baselines

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:21

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

0

0.5

1

Pe
rf
or
m
an
ce

Pe
rW

at
t

w
.r.
t.
CA

SC
A
D
E1

Generic 4x6 JLM-B 4x6 CASCADE1 4x4

(a) 8 Memory Accesses per Cycle

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

0

0.5

1

Pe
rf
or
m
an
ce

Pe
rW

at
t

w
.r.
t.
CA

SC
A
D
E2

Generic 4x8 JLM-B 4x8 CASCADE2 4x4

(b) 16 Memory Accesses per Cycle

Fig. 16. Performance per watt of 4x4 CASCADE versus iso-area baseline CGRA with bigger PE arrays (4x6
and 4x8).

for all the loop kernels. CASCADE1 achieves 3x and 2.3x better performance whereas CASCADE2
achieves 3.7x and 3x better performance compared to Generic and JLM-B, respectively, even though
the latter have larger PE arrays.

It is important to note that some of the kernels do not require banking function for conflict-free
memory accesses (i.e., the number of banks are sufficient to hold the arrays separately, and each
array has single access per loop iteration). We identified the set of kernels (first_diff, h264, jpeg,
mpeg4, and gesummv) that do not require banking function. In CASCADE1, this set of kernels
perform 1.9x and 2.1x better compared to iso-area Generic and JLM-B, respectively. In CASCADE2,
these perform 2.4x better compared to both Generic and JLM-B, respectively. Such performance
improvement is primarily because of the offloading of AGI nodes to SUs.
In contrast, the rest of the kernels, that require banking function for conflict-free memory

accesses are observed to provide superior performance because of the offloading of both AGI and
banking functions to SUs. In CASCADE1, this set of kernels perform 3.5x and 2.5x better compared to
iso-area Generic and JLM-B, respectively. In CASCADE2, they perform 4.6x and 3.4x better compared
to iso-area Generic and JLM-B, respectively. Additionally, it is interesting to note that hydro and
equation_of_SF that have conflicting array accesses, perform better in Generic over JLM-B because
the overhead of banking computation nullifies the benefits of conflict-free data placement.

Figures 16a and 16b show the performance per watt comparison of CASCADE1 and CASCADE2
with the two baselines running on iso-area baseline CGRAs. Average power consumptions of
CASCADE1, CASCADE2, 4x6, and 4x8 iso-area baseline CGRAs are 76mW, 107mW, 79mW, and

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

XXX:22 Dhananjaya, et al.

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

0

0.5

1

Ite
ra
tio

ns
pe
rs

ec
on

d
w
.r.
t.
CA

SC
A
D
E1

FPGA Conventional CGRA 4x6 CASCADE1 4x4

Fig. 17. Performance comparison of CASCADE1 with FPGA and iso-area baseline CGRA.

110mW, respectively. CASCADE1 achieves 2.2X and 1.8X better performance per watt whereas
CASCADE2 achieves 2.9X and 2.6X better performance per watt compared to iso-area Generic and
JLM-B, respectively.

Comparison with FPGA: We evaluate CASCADE1 and iso-area baseline CGRA (4x6 PE array)
against Xilinx Zynq-7010 FPGA. Vivado High-Level Synthesis (HLS) tool estimates performance and
power values for the FPGA. We use HLS array partitioning and choose cyclic/block partitioning
factors to obtain the best performance for each benchmark. The FPGA runs at a maximum clock rate
of 200MHz, and power consumption is around 120mW∼128mW for all the benchmarks. Process
technology used for Xilinx Zynq-7010 FPGA and CASCADE is 28 nm and 40 nm, respectively. Thus,
we scale CASCADE frequency by a factor of 1.42 for a fair comparison. So CASCADE and baseline
CGRA scaled frequency is 714MHz (scaled from 510MHz at 40 nm to 28 nm).

We compare the performance (loop iteration per second) and performance per watt characteristics
of FPGA, iso-area baseline CGRA, and CASCADE1. Figures 17 and 18 show the performance and
performance per watt characteristics, respectively. On average, CASCADE1 and iso-area baseline
CGRA achieve 3.8x, 1.9x better performance and 7.5x, 3.5x better performance per watt compared
to FPGA. We observe that in general, CASCADE1 and FPGA achieve similar II values for most
benchmarks, while baseline CGRA has higher II values. In FPGA, address generation logic and
computation logic are synthesized onto fine-grained hardware resources as opposed to baseline
CGRA where limited processing elements are utilized for address calculations wasting precious
resources. The similarity of achieved II for FPGA and CASCADE shows the advantage of designing
specialized data path for address generation. On the other hand, even with similar II value, the
FPGA falls behind CASCADE and baseline CGRA in terms of both performance and performance
per watt due to the overhead of fine-grained reconfigurability resulting in slower clock and higher
power. These results show the advantage of coarse-grained reconfigurability of CGRAs compared
to FPGAs.

Compilation Time: CGRA Mapping problem is NP-complete, and the complexity of the map-
ping increases with the number of nodes in the DFG. In baseline CGRAs, the compiler maps the
DFG consisting of both address generation and computation. In contrast for CASCADE, the com-
piler maps AGI-free DFG consisting of only computation instructions. Therefore, the mapping for
CASCADE is relatively simpler compared to baseline CGRA mapping. CASCADE achieves three
orders of magnitude faster compilation time (Figure 19) compared to the two baselines.

7 CONCLUSION
This paper proposes a novel decoupled access-execute CGRA design called CASCADE with full
architecture and compiler support for high-throughput data streaming from multi-bank memory.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:23

ge
mm

2d
_st
en
cil

eq
u_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

0

0.5

1

Pe
rf
or
m
an
ce

Pe
rW

at
t

w
.r.
t.
CA

SC
A
D
E1

FPGA Conventional CGRA 4x6 CASCADE1 4x4

Fig. 18. Performance-per-watt comparison of CASCADE1 FPGA and iso-area baseline CGRA.

ge
mm

2d
_st
en
cil

eq
ua
tio
n_
of_
SF

hy
dro

tw
o_
d_
eh
f

ad
i

dy
np
rog

fir
st_
diff h2

64 jpe
g

mp
eg
4

ge
su
mm

v

av
er
ag
e

100

102

104

Co
m
pi
la
tio

n
Ti
m
e
(s
ec
)

Generic 4X6 JLM-B 4X6 CASCADE 4x4

Fig. 19. Compilation time of CASCADE versus baselines.

CASCADE compiler offloads address generation computations to novel programmable dedicated
hardware unit called stream engine. The compiler maps remaining actual computations to the
PE array allowing the CGRA to perform at its full potential. Our evaluations show CASCADE
accomplishes close to the ideal performance of a CGRA with perfect memory subsystem. It achieves
on average 3x performance benefit and 2.2x performance per watt improvement w.r.t. iso-area
conventional CGRA design while reducing the CGRA compilation time by three orders of magnitude
as an additional benefit.

8 ACKNOWLEDGEMENTS
This work was supported by the National Research Foundation, Prime Minister’s Office, Singapore
under Grant NRF2015-IIP003 and Huawei International Pte. Ltd.

REFERENCES
[1] 2019. MediaBench 2 Benchmark. http://mathstat.slu.edu/~fritts/mediabench/.
[2] 2019. PolyLib - A Library of Polyhedral Functions. http://icps.u-strasbg.fr/polylib/.
[3] 2019. The Polyhedral Benchmark Suite. http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/.
[4] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers: Principles, Techniques, and Tools

Second Edition.
[5] George Charitopoulos, Charalampos Vatsolakis, Grigorios Chrysos, and Dionisios N Pnevmatikatos. 2018. A Decoupled

Access-Execute Architecture for Reconfigurable Accelerators. In Proceedings of the 15th International Conference on
Computing Frontiers. ACM, 244–247.

[6] Samit Chaudhuri and Asmus Hetzel. 2017. SAT-Based Compilation to a Non-VonNeumann Processor. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 675–682.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

http://mathstat.slu.edu/~fritts/mediabench/
http://icps.u-strasbg.fr/polylib/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

XXX:24 Dhananjaya, et al.

[7] Liang Chen and Tulika Mitra. 2014. Graph Minor Approach for Application Mapping on CGRAs. Transactions on
Reconfigurable Technology and Systems (TRETS) 7, 3 (2014), 21.

[8] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Norris, Michael Schuette, and Ali Saidi. 2003.
The Reconfigurable Streaming Vector Processor (RSVPTM). In Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 141.

[9] Philippe Clauss and Vincent Loechner. 1998. Parametric Analysis of Polyhedral Iteration Spaces. Journal of VLSI signal
processing systems for signal, image and video technology 19, 2 (1998), 179–194.

[10] Emilio G Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P Carloni. 2015. An Analysis of Accelerator
Coupling in Heterogeneous Architectures. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[11] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. 2018. RAMP: Resource-Aware Mapping for CGRAs. In
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[12] Nasim Farahini, Ahmed Hemani, Hassan Sohofi, Syed MAH Jafri, Muhammad Adeel Tajammul, and Kolin Paul. 2014.
Parallel Distributed Scalable Runtime Address Generation Scheme for a Coarse Grain Reconfigurable Computation
and Storage Fabric. Microprocessors and Microsystems 38, 8 (2014), 788–802.

[13] Blair Fort, Andrew Canis, Jongsok Choi, Nazanin Calagar, Ruolong Lian, Stefan Hadjis, Yu Ting Chen, Mathew Hall,
Bain Syrowik, Tomasz Czajkowski, et al. 2014. Automating the Design of Processor/Accelerator Embedded Systems
with LegUp High-Level Synthesis. In 12th International Conference on Embedded and Ubiquitous Computing. IEEE,
120–129.

[14] Stephen Friedman, Allan Carroll, Brian Van Essen, Benjamin Ylvisaker, Carl Ebeling, and Scott Hauck. 2009. SPR:
An Architecture-Adaptive CGRA Mapping Tool. In Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays. ACM, 191–200.

[15] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. 2012. EPIMap: Using Epimorphism to Map Applications on
CGRAs. In DAC Design Automation Conference. IEEE, 1280–1287.

[16] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. 2013. REGIMap: Register-Aware Application Mapping on
Coarse-Grained Reconfigurable Architectures (CGRAs). In Proceedings of the 50th Annual Design Automation Conference.
ACM, 18.

[17] Kyuseung Han, Junwhan Ahn, and Kiyoung Choi. 2013. Power-Efficient Predication Techniques for Acceleration of
Control Flow Execution on CGRA. ACM Transactions on Architecture and Code Optimization (TACO) 10, 2 (2013), 8.

[18] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. 2015. Efficient Execution of Memory Access Phases
Using Dataflow Specialization. In SIGARCH Computer Architecture News, Vol. 43. ACM, 118–130.

[19] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh. 2017. HyCUBE: A cgra with reconfig-
urable single-cycle multi-hop interconnect. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[20] Manupa Karunaratne, Cheng Tan, Aditi Kulkarni, Tulika Mitra, and Li-Shiuan Peh. 2018. Dnestmap: mapping deeply-
nested loops on ultra-low power CGRAs. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[21] Heba Khdr, Santiago Pagani, Ericles Sousa, Vahid Lari, Anuj Pathania, Frank Hannig, Muhammad Shafique, Jürgen
Teich, and Jörg Henkel. 2016. Power Density-Aware Resource Management for Heterogeneous Tiled Multicores.
Transactions on Computers (TC) 66, 3 (2016), 488–501.

[22] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, and Yunheung Paek. 2010. Operation and Data Mapping for CGRAs
with Multi-bank Memory. In ACM Sigplan Notices, Vol. 45. ACM, 17–26.

[23] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, and Yunheung Paek. 2011. Memory Access Optimization in Compilation
for Coarse-Grained Reconfigurable Architectures. Transactions on Design Automation of Electronic Systems (TODAES)
16, 4 (2011), 42.

[24] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transforma-
tion. In Proceedings of the international symposium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society, 75.

[25] Jongeun Lee, Seongseok Seo, Hongsik Lee, and Hyeon Uk Sim. 2014. Flattening-Based Mapping of Imperfect Loop Nests
for CGRAs. In Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis.
ACM, 9.

[26] Dajiang Liu, Shouyi Yin, Leibo Liu, and Shaojun Wei. 2013. Polyhedral Model Based Mapping Optimization of Loop
Nests for CGRAs. In Proceedings of the 50th Annual Design Automation Conference. ACM, 19.

[27] Frank HMcMahon. 1986. The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range. Technical
Report. Lawrence Livermore National Lab., CA (USA).

[28] Bingfeng Mei, M Berekovic, and JY Mignolet. 2007. ADRES & DRESC: Architecture and Compiler for Coarse-Grain
Reconfigurable Processors. In Fine-and coarse-grain reconfigurable computing. Springer, 255–297.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

CASCADE: High Throughput Data Streaming via Decoupled Access-Execute CGRA XXX:25

[29] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwereins. 2002. DRESC: A Retargetable
Compiler for Coarse-Grained Reconfigurable Architectures. In International Conference on Field-Programmable Tech-
nology, 2002 (FPT). Proceedings. IEEE, 166–173.

[30] Chenyue Meng, Shouyi Yin, Peng Ouyang, Leibo Liu, and Shaojun Wei. 2015. Efficient Memory Partitioning for Parallel
Data Access in Multidimensional Arrays. In Proceedings of the 52nd Annual Design Automation Conference. ACM, 160.

[31] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankaralingam. 2017. Stream-Dataflow Acceler-
ation. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). IEEE, 416–429.

[32] Sai Manoj PD, Jie Lin, Shikai Zhu, Yingying Yin, Xu Liu, Xiwei Huang, Chongshen Song, Wenqi Zhang, Mei Yan,
Zhiyi Yu, et al. 2017. A Scalable Network-on-Chip Microprocessor with 2.5 D Integrated Memory and Accelerator.
Transactions on Circuits and Systems I: Regular Papers 64, 6 (2017), 1432–1443.

[33] Christian Pilato, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P Carloni. 2016. System-Level Optimization of
Accelerator Local Memory for Heterogeneous Systems-on-Chip. Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36, 3 (2016), 435–448.

[34] B Ramakrishna Rau. 1994. Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops. In Proceedings of
MICRO-27. The 27th Annual International Symposium on Microarchitecture. IEEE, 63–74.

[35] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J Kurdahi, Nader Bagherzadeh, and Eliseu M Chaves Filho. 2000. Mor-
phoSys: An Integrated Reconfigurable System for Data-Parallel and Computation-Intensive Applications. Transactions
on computers 49, 5 (2000), 465–481.

[36] James E Smith. 1982. Decoupled Access/Execute Computer Architectures. In ACM SIGARCH Computer Architecture
News, Vol. 10. IEEE Computer Society Press, 112–119.

[37] Yuxin Wang, Peng Li, and Jason Cong. 2014. Theory and Algorithm for Generalized Memory Partitioning in High-level
Synthesis. In Proceedings of the international symposium on Field-programmable gate arrays. ACM, 199–208.

[38] Yuxin Wang, Peng Li, Peng Zhang, Chen Zhang, and Jason Cong. 2013. Memory Partitioning for Multidimensional
Arrays in High-Level Synthesis. In Proceedings of the 50th Annual Design Automation Conference. ACM, 12.

[39] Dongjun Xu, Ningmei Yu, PD Sai Manoj, Kanwen Wang, Hao Yu, and Mingbin Yu. 2015. A 2.5-D Memory-Logic
Integration with Data-Pattern-Aware Memory Controller. Design & Test 32, 4 (2015), 1–10.

[40] Yanqin Yang, Meng Wang, Haijin Yan, Zili Shao, and Minyi Guo. 2010. Dynamic Scratch-Pad Memory Management
with Data Pipelining for Embedded Systems. Concurrency and Computation: Practice and Experience 22, 13 (2010),
1874–1892.

[41] Shouyi Yin, Zhicong Xie, Chenyue Meng, Leibo Liu, and Shaojun Wei. 2016. Multibank Memory Optimization for
Parallel Data Access in Multiple Data Arrays. In International Conference on Computer-Aided Design (ICCAD). IEEE,
1–8.

[42] Shouyi Yin, Zhicong Xie, Chenyue Meng, Peng Ouyang, Leibo Liu, and Shaojun Wei. 2017. Memory Partitioning
for Parallel Multipattern Data Access in Multiple Data Arrays. Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 2 (2017), 431–444.

[43] Shouyi Yin, Xianqing Yao, Dajiang Liu, Leibo Liu, and Shaojun Wei. 2015. Memory-Aware Loop Mapping on Coarse-
Grained Reconfigurable Architectures. Transactions on Very Large Scale Integration (VLSI) Systems 24, 5 (2015),
1895–1908.

[44] Shouyi Yin, Xianqing Yao, Tianyi Lu, Dajiang Liu, Jiangyuan Gu, Leibo Liu, and Shaojun Wei. 2017. Conflict-Free
Loop Mapping for Coarse-Grained Reconfigurable Architecture with Multi-Bank Memory. Transactions on Parallel and
Distributed Systems 28, 9 (2017), 2471–2485.

[45] Shouyi Yin, Xianqing Yao, Tianyi Lu, Leibo Liu, and Shaojun Wei. 2016. Joint Loop Mapping and Data Placement
for Coarse-Grained Reconfigurable Architecture with Multi-Bank Memory. In Proceedings of the 35th International
Conference on Computer-Aided Design. ACM, 127.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: October 20XX.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 CASCADE Architecture
	4.1 Stream Tuple Definition
	4.2 Stream Address Generation in Hardware
	4.3 Bank and Offset Functions
	4.4 Stream Engine (SE) Architecture
	4.5 Data Transfer from Off-Chip Memory

	5 CASCADE Compiler
	5.1 Definitions
	5.2 Extraction of Access, Execute Components
	5.3 Nested Loop Mapping
	5.4 Conflict-Free Memory Bank Allocation
	5.5 CGRA Mapper
	5.6 Synergistic Banking and CGRA Mapping

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusion
	8 Acknowledgements
	References

