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Contemporary many-core architectures, such as Adapteva Epiphany and Sunway TaihuLight, employ per-core software-controlled
Scratchpad Memory (SPM) rather than caches for better performance-per-watt and predictability. In these architectures, a core is
allowed to access its own SPM as well as remote SPMs through the Network-On-Chip (NoC). However, the compiler/programmer
is required to explicitly manage the movement of data between SPMs and off-chip memory. Utilizing SPMs for multi-threaded
applications is even more challenging, as the shared variables across the threads need to be placed appropriately. Accessing variables
from remote SPMs with higher access latency further complicates this problem as certain links in the NoC may be heavily contended
by multiple threads. Therefore, certain variables may need to be replicated in multiple SPMs to reduce the contention delay and/or
the overall access time. We present Coordinated Data Management (CDM), a compile-time framework that automatically identifies
shared/private variables and places them with replication (if necessary) to suitable on-chip or off-chip memory, taking NoC contention
into consideration. We develop both an exact Integer Linear Programming (ILP) formulation as well as an iterative, scalable algorithm
for placing the data variables in multi-threaded applications on many-core SPMs. Experimental evaluation on the Parallella hardware
platform confirms that our allocation strategy reduces the overall execution time and energy consumption by 1.84x and 1.83x
respectively when compared to the existing approaches.
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1 INTRODUCTION

Many-core architectures containing tens or hundreds of cores on chip are emerging in different domains, ranging
from embedded systems to server clusters, for meeting ever-increasing performance requirements. Typical many-core
architectures consist of homogeneous or heterogeneous cores with multiple levels of coherent data- and instruction-
caches connected using Network-on-Chip (NoC) for fast communication. Having multiple levels of coherent caches is

This work is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Industry-IHL Partnership Grant NRF2015-IIP003
and Huawei International Pte. Ltd. Authors’ addresses: V. Venkataramani, C. Mun Choon, T. Mitra, School of Computing, National University of Singapore,
Computing 1, 13 Computing Drive, Singapore 117417. Authors’ Email addresses: {vvanchi, chanmc, tulika}@comp.nus.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 20XX Association for Computing Machinery.
Manuscript submitted to ACM

https://doi.org/0000001.0000001


2 V. Venkataramani, et al.

Accelerator

In-order 
Core

SPM

Network 
Interface

DMA
Engine 

R

DRAM

Host
core(s)

Mem.
Ctrl

SPM0
SPM1
SPM2
SPM3

SPM12
SPM13
SPM14
SPM15

:

Global Address
Space

Fig. 1. A generic SPM-based many-core architecture and its memory address space.

not scalable due to the directory structures used for maintaining the state of the blocks in different caches. A number of
recent works [16, 54] have proposed mechanisms for either area/power reduction of directory-based cache coherence
or support for non-coherent caches [33]. However, these mechanisms are not sufficient when scaling to systems with
thousands of cores [10].

Software programmable or Scratchpad Memory (SPM) [7] has been used as an alternative to caches in embedded
systems due to energy-efficiency, timing predictability, and scalability. An SPM contains an array of SRAM cells. A
portion of the memory address space is dedicated to the SPM. Any address that falls within this dedicated address
space can directly index into the SPM to access the corresponding data. Thus, SPMs are power-efficient as they do not
require tag arrays and comparators that are essential to caches. Coherency among multiple SPMs is maintained at the
software level, thereby eliminating hardware area/power required for cache coherence. The downside is that either
the compiler or the programmer needs to take an active role in allocating appropriate data to the SPM explicitly and
efficiently. Therefore, data management is the single most challenging issue in systems equipped with SPMs. Since data is
managed explicitly, the programmer knows the latency for each memory access. Thus, SPM based architectures are also
extensively used for their timing predictability. Still, many emerging architectures are deploying SPM as on-chip memory
due to its aforementioned benefits. These include embedded many-core architectures like IBM Cell [13], Adapteva
Epiphany [35], and Kalray MPPA [24]. SPM-based many-cores have now also made their way into super-computing
domain including the fastest and most power-efficient supercomputer [46] Sunway TaihuLight [18].

Figure 1 shows a simplified schematic of the new generation of SPM based many-core architectures (e.g., Epiphany,
TaihuLight). Each core contains a unified SPM for instructions and data. Each SPM holds a distinct portion of the global
address space to be used by the applications. As the address space is global, a core can access the data in remote SPMs
as well, transparently supported by the underlying architecture. The cores are connected to a NoC that enables a core
to access remote SPMs with varying latency based on the distance. Each core is equipped with a DMA (direct memory
access) engine to transfer data between the off-chip memory and the local SPM.

Data management for single-threaded applications is a very difficult problem focusing on accurately identifying
the “hot" data to be placed in the SPM. Many-core architectures with remote SPM access option adds another layer of
complexity as data can be allocated and accessed from a remote SPM (higher access latency than local SPM) rather than
off-chip memory. Additionally, memory requests from different cores may need to share the same physical link in the
NoC, leading to queuing of requests in the link, causing delay. Thus, data allocation needs to take this delay into account
when determining the placement. In multi-threaded applications, the execution time is determined by the critical
thread and data allocation needs to ensure that the execution time of the individual threads are balanced. Additionally,
multi-threading complicates the problem further as data can be shared across multiple threads. The placement of
these shared data in appropriate SPM is crucial to performance. Moreover, we argue that the replication of shared
data in multiple on-chip SPMs can further reduce the overall execution time. Thus, for multi-threaded applications on
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SPM-based many-core architectures, we not only need to decide on-chip versus off-chip allocation, but also the on-chip
placement (which SPM) and the replication degree of shared data (how many copies) with minimal contention delay.

Data allocation for SPM-based systems has been studied extensively. Most of these works focus on data allocation
for single-core systems running single-threaded applications [4, 14, 37, 47]. Works on SPM-based multi-core systems
[37, 43, 50] deal with pipelined or multi-process applications and ignore optimal placement of shared data in SPM. Also,
these works do not consider NoC latency in deciding data placement, as they are designed for systems with a bus based
interconnect. For example, [43] considers data placement for multi-threaded applications on multi-cores where all the
cores are connected to a bus. Hence, every non-local SPM access has exactly the same latency. This uniform remote
SPM access latency assumption does not hold good in NoC based systems where the access latency depends on the
number of hops between the source and the destination. An optimal placement of data needs to take into account the
variable NoC latency. Though replication of data is well studied in Content Distribution Networks [26] and Distributed
systems [20] for lower latency and/or fault tolerance, none of the works in the SPM management literature considers
the possibility of replication of shared data, that is, judiciously trading in area for performance.

Data management schemes [6, 31, 32] have also been proposed for IBM Cell architecture [13], consisting of a Power
Process Element and eight Synergistic Processing Elements (SPE) with 256KB SPM each. In order for an SPE to access
data from a remote SPM, it first needs to bring in the data into its local SPM through DMA. In contrast, the architectures
we are considering enable direct access of remote SPM data (without DMA). Thus, the SPM management problem for
architectures like Epiphany is very different from IBM Cell and opens up new challenges and opportunities.

Optimization of multi-threaded applications on contemporary SPM-based many-core architectures requires compile-
time, NoC-aware data placement techniques. To the best of our knowledge, there are no prior works that exploit the
unique opportunity offered by these architectures to orchestrate the on-chip data management towards performance
and energy benefits of the applications. Given this context, we propose a compile-time, coordinated data management
framework called CDM, for many-core SPMs. Our main contributions are as follows:

• We formally define the data allocation problem for multi-threaded applications on SPM-based many-cores
including the possibility of replication of read-only shared data.
• We propose NoC contention and latency aware compile-time framework to automatically determine the location
of data variables (on-chip or off-chip), the replication degree of shared data (how many SPMs), and on-chip
placement (which SPMs) so as to minimize the application execution time (i.e., the maximum execution time
across all the threads of the application). We design an Integer Linear Programming (ILP) formulation and also
an iterative, scalable solution for this optimization problem.
• We implement and evaluate our proposed solutions on the Epiphany architecture with real world applications.
The performance-energy improvements are measured from actual execution of these applications on the Parallella
hardware platform.

2 RELATEDWORK

2.1 Many-core architectures:

Many-cores have been designed and commercially used in both cache-based [33, 42] and Scratchpad Memory based [13,
19] architectures. Xeon Phi Knights Landing [42] is a cache-coherent many-core architecture, employing distributed tag
directory-based caches connected by a ring/Mesh interconnect. [33] introduced a non-coherent many-core architecture
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called Intel Single-chip Cloud Computer, where each tile consists of 2 cores with private 16KB instruction and data
cache, a shared 256KB L2 cache and 16KB Message Passing Buffer, connected in a 2D Mesh.

Apart from cache-based many-cores, a number of works have considered Scratchpad-based many-core architecture
due to its extreme scalability and high performance-per-watt efficiency. IBM Cell [13] consist of a Power Process
Element and 8 Synergistic Processing Elements (SPE), each containing a 256KB SPM. The address space of SPE is
private, so threads can only communicate through main memory. Adapteva Epiphany [19] is an energy-efficient,
SPM-based many-core architecture suitable for embedded systems. Epiphany is a tile based architecture containing
16/64 tiles (with support up to a maximum of 4096 tiles), each consisting one RISC core, DMA Engine, Network Interface
and 32KB SPM, connected using a 2D Mesh interconnect. This architecture provides shared address space allowing
threads to communicate with each other by accessing non-local SPM. Sunway TaihuLight [18] is the world’s fastest and
most power-efficient supercomputer, which utilizes accelerators containing 8X8 compute processing elements, each
containing a local SPM (64KB) to alleviate memory bandwidth bottlenecks in applications.

2.2 SPM Management:

Single-process: SPM allocation has been extensively studied for sequential applications. Earlier works did allocation
for program code [3, 22, 51], program data [4, 14, 37, 47] or both [52, 53]. Program code allocation needs to ensure that the
program flow is unchanged and supports recursive functions while program data allocation needs to consider different
types of data - stack [4, 48], global [4, 25, 29, 34, 36, 48] and heap [14, 17]. SPM allocation schemes can also be classified
as compile-time and run-time techniques based on the time at which SPM contents are decided.

Compile-time techniques may use profile information to identify frequently accessed data that needs to be placed on
SPM. Since data placement is decided before hand, this technique does not incur additional overhead during application
execution. Compile-time techniques can further be classified into static allocation and dynamic overlay. In Static

allocation scheme, the SPM contents are not changed during an application run. Dynamic programming [3] and 0-1
(binary) Integer Linear Programming [53] are commonly used static techniques for selecting data to be placed on the
SPM. Dynamic overlay based SPM allocation changes SPM contents at pre-determined program points. [49, 52] use
liveness analysis and ILP formulation to determine program points at which SPM contents need to be changed so as to
minimize the total energy. Though dynamic overlay changes the contents of SPM, it does not incur run-time overhead
as these program points are decided during compilation.

In [15, 34, 39], variables that need to be placed on SPM are determined during run-time. These mechanisms are
especially useful when SPM size is not available during compilation. These works reduce runtime overhead by pre-
computing part of the variable allocation during compilation.

Multi-process/Multi-core: A number of works have allocated scratchpad memory in multi-process systems in
which sharing scratchpad space and concurrent execution are crucial. [37] partitions the entire scratchpad address
between all processes based on the gains obtained when they are run alone. This simple approach may not utilize
scratchpad space completely since processes have varying lifetimes. [50] presents a set of strategies for sharing
Scratchpad address space between multiple processes for reducing energy consumption. In this work, processes can
have disjoint address space (restoring not required), entire address space (need to copy and bring data for every context
switch) and a hybrid of both (replacement only for shared address data). Additionally, this work assumes that all
processes have equal priority and processes are executed in a round-robin fashion. [43] proposes an integrated task
allocation, scheduling and SPM allocation approach for reducing the Worst Case Execution Time. It uses a Task-Graph
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based input and formulates the problem using ILP and provides heuristics methods to obtain close to optimal allocation.
It considers Virtually Separate SPM and allows tasks to access other SPMs with increased latency.

Mechanisms for SPM only systems: The aforementioned methods assume that scratchpad is present in addition
to caches. Therefore, they map data to SPM for reducing energy and access latency for frequent data. However, a
number of architectures like Epiphany, TaihuLight and IBM Cell have SPM only. Methods have thus been proposed for
managing Stack Data [31], code [32] and heap variables [27] for SPM only IBM Cell architecture.

[31] performs circular management of stack data using DMA at a function (stack frame) granularity. The basic idea
is to copy existing stack frames to memory (if no space is left) and copy function stack frames to SPM just before
they are called. [31] also provides helper methods to find the global address for a corresponding local SPM address
and vice-versa for allowing functions to access parameters passed as pointers. [27] performs heap management by
re-implementing malloc function and allocates space for heap variables in local memory if space is available. Otherwise,
it copies some of the existing heap variables to main memory before allocating heap variables. It uses a hash table
for storing local SPM to global address mapping for getting the correct location of heap variables. [21] proposes a set
of primitives that can be incorporated inside the OS. In this technique, application requests for space locally, within
the chip, or across chips and obtains the space if available. In contrast, the proposed approach in this work improves
application performance by careful allocation of memory objects using compile-time, static analysis and profiling.

Though allocation of stack and global variables on SPM have been proposed before, none of the aforementioned
works perform SPM allocation for shared variable across threads in multi-threaded applications on many-core systems.
[43] is the only work that allocates shared variables across tasks in an application. However, they do not perform
efficient allocation as they assume constant latency for all remote SPM accesses. Additionally, this work assumes at
most one on-chip copy of a variable. As stated before, few works have proposed mechanisms for managing stack data
[31], code [32] and heap variables [5], [6] for SPM on IBM Cell architecture. However, this architecture provides private
address space for processing elements and does not contain NoC connecting different SPMs. Therefore, these works
cannot be applied in architectures where threads can access data from remote SPMs.

To the best of our knowledge, ours is the first work to propose an optimal data allocation for multi-threaded
applications on SPM based many-core architectures to reduce the overall application execution time, with evaluation
on a real platform.

3 MOTIVATING EXAMPLE

We illustrate the importance of judicious data allocation and replication (if necessary) using a simple motivating example.
The execution time of a multi-threaded application is determined by the slowest thread. Therefore, we need to place
the variables in such a way that the execution time of the slowest thread in the application is minimized. To simplify
the illustration, we assume that the execution time incurred due to computations are the same and set to zero in all
the threads. Thus, data allocation is the only component that can be exploited to reduce the execution time of this
application. For illustration purposes, we use system parameters of the Adapteva Parallella platform as stated in Table 1
in this motivating example.

We choose a multi-threaded kernel containing sixteen threads where all the threads access the global variables A
and B. In addition, each thread accesses a private variable C. Figure 2(a) shows the source code of this application while
Figure 2(b) summarizes the number of accesses and the access types for each of these variables.

The execution time due to memory accesses can be computed as the sum of (i) access latency of the variables,
depending on where the variable is located: local SPM, remote SPM, or off-chip memory (AccessLatency), (ii) latency
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#define N 80
#define ALPHA 2
int A[N]; int B[16];
void thread_func(void *p)
{
int *tid = (int*) p;
int C[N];
for(int i = 0; i < N; i++)
C[i] = (*tid)*i;

for(int i = 0; i < N; i++)
B[*tid] = ALPHA*(A[i] + A[N-i-1]) + C[i];

}

Variable Acc.
Type

Sharers
(Threads)

Acc. Per
thread

A[80] R All 160

B[16] W All 1

C[80] R Private 160

(a) (b)

Fig. 2. Motivation example: (a) Multi-threaded application source code (b) variables used

spent in bringing data from off-chip to on-chip SPM or vice-versa (DMA), (iii) cycles spent in creating multiple copies
(Replication) and (iv) delay due to contention between memory requests in the NoC and Memory Controller (ContDelay)
(Refer to Section 4.2.1 for detailed explanation). For achieving optimal performance, we need to allocate the frequently
accessed variables in on-chip memory such that the execution time of the slowest thread is reduced. This includes both
the stack (variable C) as well as the global variables (variables A and B).

In conventional SPM based many-cores, the variables are allocated in off-chip DRAM by default and the program-
mer/compiler needs to explicitly bring the data to the on-chip SPM. However, newer Software Development Kits (SDK)
like CO-PRocessing THReads (COPRTHR-2) [45] and OpenSHMEM [40] automatically allocate stack variables in local
SPMs while global variables are still allocated in DRAM. In this default strategy, stack variable (C) is allocated in each
core’s SPM while the global variables (A, B) are allocated in DRAM as shown in Figure 3(a). Every global variable
access first utilizes the NoC to reach the Memory Controller (MC) and then reads/writes data from/to off-chip DRAM.
Thus, there will be delay due to contention among the memory requests as the threads share the NoC and the MC.
Conventional SPM many-core architectures use in-order cores due to power and thermal constraints, where only one
memory request can be issued per core at any given time. Hence, delay in the links cannot be caused by two memory
accesses issued from the same thread. From Figure 3 (a), we observe that contention delay dominates the total execution
time of each thread in this default strategy. This is because, each memory request contends at the MC for obtaining
data from off-chip DRAM. Delay due to contending memory requests in the NoC is negligible compared to the delay
experienced at the MC as off-chip DRAM access latency is much higher than on-chip hop latency. Moreover, there is
very little difference between the execution time of the different threads.

In this example, each threads issues a total of 160+1=161 accesses to global variables (A, B). We illustrate further how
the execution time for a particular thread, say thread T15, is computed. The thread T15 issues a total of 161 off-chip
memory requests. Each memory access follows the path C15 → C14 → C13 → C12 → C8 → C4 → C0 → MC . The
total access latency would be 161 × o f f chipLat = 161 × 500 = 80, 500 cycles. Contention delay will occur if more
than one thread try to access the same link. In the worst case, the delay can be computed as the sum of the requests
from the different sources that utilize a link minus the maximum value of request among all the sources. Thus, T15
will experience delay in all the links except C15 → C14, as it is utilized by only one thread. For example, maximum
delay that can happen in the link C14 → C13 is (161 + 161) −MAX (161, 161) = 161 ×HopLat = 241.5 cycles as accesses
from T15 and T14 utilize this link. In total, the delay in the NoC for T15 is 5, 796 cycles. Maximum delay that arises due
to queuing of requests in MC is (161 × 16 − 161 = 2415) × o f f chipLat = 1, 207, 500 cycles as all the threads share
NoC → MC link (detailed explanation of queuing delay computation in Section 5.1).

The total access latency for writing to a given variable j , from thread k is #Accessk j × (distanceki ×HopLat +AccLat)
where Accessk j denotes the number of times j is accessed by core Ck , AccLat denotes the SPM access latency, and
Manuscript submitted to ACM



Scratchpad-Memory Management for Multi-threaded Applications on Many-Core Architectures 7

HopLat denotes the number of cycles per hop in the NoC. Ci denotes the nearest neighbor of Ck with variable j in its
SPM (i = k if j is present in the SPM of Ck ) and distanceki is the number of hops between Ck and Ci . A remote SPM
read access incurs 2 × distanceki latency for the round-trip.
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Fig. 3. Optimal data allocation for the motivating example using (a) off-chip memory for global variables, (b) off-chip + on-chip
memory with single copy of variables and (c) off-chip + on-chip memory with multiple copy of variables.

It is evident that placing the global variables in off-chip memory leads to high execution time. We first bring in global
variables to on-chip memory but put the constraint that a variable can have only a single copy in the entire memory
system. The goal is to determine whether to bring the variable on-chip or not and to choose the location of that single
copy so as to minimize the total execution time. Figure 3(b) shows the allocation results under this strategy. Shared
variables (A, B) are brought on chip and allocated in SPM10 and SPM0 respectively as it yields the least execution
time. Private variable C is allocated in the local SPM for minimal latency as before. With limited SPM, there will be
competition among the variables and only a subset of the variables will be placed on-chip by this strategy. As shown in
Figure 3 (b), the total execution time under this strategy including one-time DMA cost is 7,061 cycles. From this figure,
we see that the DMA cost is the same across the threads because all the threads need to wait for DMA to complete
before the computation starts. Although contention delay at the MC is zero as all the variables are allocated in on-chip
SPM, there is still contention in the NoC due to remote SPM accesses to the single copy of each variable. Note that the
access latency and contention delay is now different for each thread depending on the distance of its respective core
from the single copy of the variable. T0 is the critical thread in this allocation as it has the highest access latency for
variable A and NoC contention delay.

We further optimize performance by strategically replicating read-only shared variables across multiple SPMs. For
example, Figure 3 (c) shows that as A is a read-only variable and all the threads access it, it may be replicated to reduce
access latency and contention delay. Note that B cannot be replicated as it is a write shared variable and there is no
hardware support for coherence among the on-chip copies. For making multiple copies, it is better for one thread to
bring the data from off-chip memory through DMA and utilize on-chip network to create multiple copies as (i) the
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contention delay arising from queuing of requests in MC and NoC is reduced and (ii) on-chip network is significantly
faster than copying directly from off-chip DRAM. However, all the threads that access a variable need to wait till the
data is brought in from DRAM through DMA and multiple on-chip copies are created. The overhead of replication is
the cost of making multiple copies using NoC.

In this example, (Figure 3 (c)), the rationale behind the partial replication of A (4 versus 16 copies) comes from the
cost (DMA plus replication) versus benefit (memory access latency and contention delay) analysis. Note that, apart
from determining the number of copies, we also need to determine the placement of these copies. The contention delay
reduces in the NoC with multiple copies of the variable; but it cannot be zero as some threads still need to access remote
SPM. The total execution time under Multiple copy including one-time DMA cost and replication cost is 3,454 cycles.
T15 is the critical thread in this allocation as it accesses variable A from remote SPM14 and has highest access latency
for variable B. Thus, the total execution time is 2.05x lower in Multiple copy approach compared to the Single copy
approach. The current policy of Epiphany compiler is to only allocate the stack and code segments in the SPM and the
global data stays in off-chip memory. Compared to this default strategy, Multiple copy has 374.7x lower execution
time.

4 COORDINATED DATA MANAGEMENT

In this section, we state the objectives of the data allocation problem. We then explain the proposed Coordinated Data
Management (CDM) framework for allocating multi-threaded application variables in SPM-based many-cores.

Objective: Assume that a multi-threaded application consists of a set of threads T . Let t be the number of threads
in this application. Let C be the set ofm processing cores in the system andM be the set of memory resources in the
system. The system hasm + 1 memory resources,m on-chip SPMs plus off-chip DRAM with maximum capacity c1, c2,
. . . , cm+1, where indexm + 1 represents the DRAM. Let L denote the set of links in the NoC and the Memory Controller.
Thus, t threads is running onm cores (t ≤ m) with thread Ti assigned to core Ci . LetMemLatik denote the latency of
accessing memory resourceMk by threadTi . The application accesses n data variables (v1,v2, . . .vn ) of sizew1,w2, . . .

wn with accessi j denoting the number of times Ti accesses variable vj .
The execution time Ei of a thread Ti can be represented as the sum of computation time (Ecompi ) and total memory

accesses time (Ememi ) (Equation 1). Application execution time can be represented as the execution time of the critical
thread (Equation 2). Our objective in this work is to allocate data variables on the available memory resources such that
capacity constraints are satisfied and the application execution time is minimized.

Ei = Ecompi + Ememi (1)

E = MAX (E1, E2, . . . , Et ) (2)

CDM framework: The input to the proposed CDM framework is a multi-threaded application source code with
marked regions of interest. The SPMs have limited space and require programmer/compiler to explicitly bring in data
from off-chip to local memory. In general, the loops in an application may access a number of variables (e.g., arrays)
with large sizes. It may not be possible to accommodate the entire array into SPM. Loop tiling is a common technique
used to restrict the working set size. Conventionally, polyhedral model is used to perform automatic loop tiling [2, 9, 30].
We recommend the programmers to tile the loops either manually or using any of the aforementioned tools (e.g.,
PLUTO [9]) for efficient use of SPMs.

The CDM framework consists of the following components as shown in Figure 4:

• Application Analysis: Used for obtaining memory profile per-thread for all the data variables in a given application.
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• Data Allocator - It takes the per-thread memory profile and system configuration as input and obtains replication
degree of variables and their placements using two different strategies: (i) an ILP formulation (exact solution)
and (ii) Synergistic NoC Aware Placement, SNAP, a scalable algorithm (near-optimal solution).

We now describe these two components in detail.

Proposed Solution - Framework

Application
Analysis

Source 
Code

Source code 
Modification 

and 
re-compilation

Binary 
executable

Variable 
placement 
outcome

1. Profiling 
using 
representative 
inputs

2. Assign variables using 
ILP / Heuristics algorithm 
using profile results

3. Modify code based on allocation 
results

Architecture 
model -

SPM/DRAM 
size, latency

Architecture model –
SPM / DRAM size, latency

Memory 
profile

Data 
Allocator

Placement 
Strategy

Fig. 4. Workflow of the proposed Coordinated Data Management (CDM) framework.

4.1 Application Analysis

We use static and dynamic analysis to obtain the per-thread memory access profile.

4.1.1 Static Analysis: We perform static analysis using LLVM Intermediate Representation (IR) to identify the
access types of the global variables: Read-Only, Write-Only and Read-Write. We also obtain the start and end address of
every global variable and the base address of the stack variables for the dynamic analysis phase.

Replicable variables can be independently brought on-chip by the threads. This is not ideal as (i) off-chip memory
latency is much higher than on-chip memory, and (ii) the redundancy leads to contention in the network and off-chip
memory. Thus, a coordinated mechanism is proposed for bringing in replicable variables from off-chip to multiple local
SPMs. In this mechanism, one of the threads brings in the data from off-chip memory to local SPM and writes it in the
other SPMs interested in a copy using the NoC. The number of on-chip copies of replicable variables, called replication
degree, is dependent on the on-chip, off-chip network bandwidth and the number of accesses performed by the different
threads. The replication degree is obtained using the different variable placement strategies as described in section 4.2.

4.1.2 Dynamic Analysis: We run and profile the application with representative inputs to obtain per-thread
dynamic memory access traces. We use these traces in conjunction with the static analysis to obtain the per-thread
Memory Profile. We use representative inputs for obtaining the memory profile. Note that we show in Section 6 that
our mechanism provides similar performance improvement for different input sizes/data for the same benchmark even
though we rely on profiling.

Array Partitioning: In shared-memory, multi-threaded programming model, the shared array variables are typically
declared as global variables. Depending on the parallelization strategy, each thread may access one or more regions
of these variables. We identify the array regions accessed by a particular thread (using dynamic memory trace) and
partition the arrays into smaller-sized sub-arrays for easier data management.

Loop Tiling: Loop tiling is a natural requirement for SPM-based architectures. A tiled loop is confined to access a
smaller portion of a large array at any point in time. In such loops, we only need to allocate the space required for the
tile in the SPM instead of the entire array. As the execution moves from one tile to next, the data corresponding to
the new tile is brought into on-chip SPM from the off-chip memory. Thus, in case of tiling, we perform profiling and
identify the space requirement and accesses for a given tile.

We now generate Memory Profile for each variable vj in the format: name , size , type , access1j , . . ., accessi j , . . .,
accessest j where accessesi j denotes the number of accesses of vj by Ti ∀i ∈ [1, t].
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In the profiling stage, the variable type is statically determined while accesses per variable is obtained from dynamic
memory profile. Variation in number of accesses due to input can only change the performance. However, functional
correctness cannot be affected as the variable type is obtained using static analysis.

4.2 Data Allocator

In this stage, the memory profile of the application and SPM configuration (size, access latency between cores and
memory resources, etc.) are utilized to allocate variables in on-chip or access it directly from off-chip memory, such that
the application execution time is minimal. The SPM allocation for multi-threaded application variables with replication
can be modeled as an Uncapacitated Facility Location Problem (UFLP), which has been proved to be NP-Complete [28].
We first formulate the SPM allocation problem for multi-threaded applications using architecture specific parameters.
Next, we find an exact optimal solution of this allocation problem using Integer Linear Programming (ILP) formulation.
We also propose SNAP, a scalable algorithm for obtaining feasible solutions in shorter span of time. This is because ILP
solvers can take enormous time to obtain an optimal solution for this NP-complete problem.

4.2.1 Problem Formulation: Let us assume that the application accesses r_n replicable (Read-Only) and nr_n non-
replicable variables (Write-Only, Read-Write). Let r_vj of size r_w j ,∀j ∈ {1, . . . , r_n} represent the replicable variables
and nr_vj of size nr_w j ,∀j ∈ {1, . . . ,nr_n} represent the non-replicable variables accessed in this application. Let
r_accessi j denote the number of times replicable variable r_vj is accessed by threadTi andnr_accessi j denote the number
of times non-replicable variable nr_vj is accessed by the same thread. Section 5.1 specifies how architecture specific
parameters and overheads defined in this section are obtained using architecture manuals and micro-benchmarking.

Memory Resource Access Latency: Let HopLat represent the number of cycles spent per hop, i.e., transferring a
message packet from one router to another in the NoC. ∀i ∈ {1, . . . ,m}, ∀k ∈ {1, . . . ,m + 1}, let distanceik represent
the number of hops for core Ci to reach memory resource Mk and AccLatk represent the latency to only access the
resource. Let o f f chipLat represent the off-chip memory (k = m + 1) access latency. The total latency to access Mk

from core Ci in a many-core architecture with a 2D Mesh interconnect and XY routing is:

MemLatik =


distanceik × HopLat + AccLatk , if k ≤ m, write

2 × distanceik × HopLat + AccLatk , if k ≤ m, r ead

of f chipLat, if k =m + 1

(3)

For reads, distance is multiplied by two, as it comprises of one request and one response message.
XY is a deterministic dimension-order routing scheme in which packets from source moves along the X-dimension

first followed by the Y-dimension until the destination is reached. Thus, every source, destination pair have only one
path. This scheme is predominantly used in recent many-core architectures due to its simplicity and deadlock freedom
[23]. Note that the proposed mechanism can work with any deterministic dimension-order routing scheme. Handling
systems with adaptive routing schemes is left as future work.

Data transfer using on-chip and off-chip network: The DMA cost, costdma to bring in data from off-chip
memory:

costdma (var_size) = var_size ×
Systemf r eq

of f chip_rdx
(4)

wherevar_size is the size of the variable, o f f chip_rdx (in MB/s) denotes the transfer rate for copying data from off-chip
DRAM to SPM, and Systemf r eq is the core frequency.

The cost for writing data back to off-chip memory, costwb using DMA is:

costwb (var_size) = var_size ×
Systemf r eq

of f chip_wdx
(5)
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where o f f chip_wdx (in MB/s) denotes the transfer rate for writing data to off-chip DRAM from SPM.
Creating multiple copies of a variable incurs overhead costcopy as the on-chip network is used to transfer data to all

the required threads.
costcopy (var_size) = var_size ×

Systemf r eq

NoC_wdx
(6)

where NoC_wdx (in MB/s) denotes the transfer rate for writing data from one SPM to another.
Memory Access Overhead: If a Read-Write variable is placed on chip, it needs to be brought from off-chip memory

to SPM and written back from SPM to off-chip memory. However, for Write-Only and Read-Only variables, data needs
to be written/read to/from off-chip memory. The overhead ovhdj for allocating and bringing variable vj of sizew j to
on-chip memory resource can be defined as:

ovhdj =


copydma (w j ), if j is R

copywb (w j ), if j is W

copydma (w j ) + copywb (w j ), if j is RW

(7)

Threads accessing replicable variable r_vj of size r_w j experience an additional overhead of costcopy (r_w j ) ×

(#Copies(r_vj ) − 1) when multiple on-chip copies are created.
Allocation decisions: Let xi jk with value 1 denote that thread Ti accesses replicable variable r_vj from memory

Mk . Let yjk = 1 mean that replicable variable r_vj is allocated in memory Mk and djk with value 1 denote that
non-replicable variable nr_vj is allocated in memory Mk . Let aj = 1 imply that replicable variable r_vj is allocated
on-chip, while bj = 1 imply that non-replicable variable nr_vj is allocated on-chip.

Access latency per data item: The total latency r_costi j spent by thread Ti for accessing replicable variable r_vj
is represented using overheads, access latency and decision variables as:

r_costi j = (ovhdj × aj ) + (costcopy (r_w j ) ×

m∑
k=1
(yjk − 1)) +

m+1∑
k=1
(r_accessi j ×MemLatik × xi jk ) (8)

The total latency nr_costi j incurred by Ti for accessing non-replicable variable nr_vj can be defined as:

nr_costi j = (ovhdj × bj ) +
m+1∑
k=1
(nr_accessi j ×MemLatik × djk ) (9)

Contention delay: A memory access experiences contention in a link present in the NoC (and/or) the memory
controller when there are other accesses that are simultaneously trying to utilize the same link. For variables allocated
off-chip, requests need to reach the node (S) connecting NoC to the Memory controller. We define Path(i,k) as the set
of links utilized by core i to reach destination k using NoC routing protocol. The total number of accesses issued by Ti
that utilize a link l (dependent on the variable placement decision), LAccil can be computed as:

LAccil =
m∑
k=1

nnr∑
j=1

nr_accessi j × djk +
m∑
k=1

nr∑
j=1

r_accessi j × xi jk , (i f l ∈ Path(i, k ))

+

nnr∑
j=1

nr_accessi j × dj (m+1) +
nr∑
j=1

r_accessi j × xi j (m+1), (i f l ∈ Path(i, S ))

(10)

Contention at the link between NoC and MC can be computed as:

LAcciMC =

nnr∑
j=1

nr_accessi j × dj (m+1) +
nr∑
j=1

r_accessi j × xi j (m+1) (11)

When multiple threads access a link at the same time, one of them will be successful. Based on this, the worst-case
delay delayil in Ti attributed to the queuing of requests in every link l belonging to the set of links (L) in NoC and MC
is computed as:
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delayil =

HopLat × (

∑t
p=1 LAccpl −MAX (LAcc1l , LAcc2l , . . . , LAcct l )), LAccpl > 0

0, Otherwise
(12)

HopLat is replaced by o f f chipLat when contention happens in the link between NoC and Memory Controller.
For example, in Figure 3 (a), threads T15 and T14 may always contend at link 14→ 13. The worst case delay in this

case is (161 + 161) − MAX (161, 161) = 161 × HopLat = 241.5 cycles. Note that Epiphany uses separate meshes for
off-chip and on-chip requests.

Total Memory Access Cost: Execution time of a thread Ti due to memory accesses (Ememi ) can be computed as:

Ememi =

nr_n∑
j=1

nr_costi j +
r_n∑
j=1

r_costi j +
∑
l∈L

delayil (13)

Objective Function and Constraints:
The objective function is represented as:

Minimize : MAX (E1, E2, . . . , Et ) (14)

where Ei represents the execution time of thread Ti subject to the following constraints:
Capacity constraint:

nr_n∑
j=1

nr_w j × djk +

r_n∑
j=1

r_w j × yjk ≤ ck ,k ∈ 1, . . . ,m

Non-replicable variables related constraints:

a) Data allocated in only one memory resource:
m+1∑
k=1

djk = 1, j ∈ {1, ...,nr_n}

(b) Variable allocated on-chip or off-chip:
bj ≥ djk ,∀k ∈ {1, ...,m}, j ∈ {1, ...,nr_n}

Replicable variables related constraints:

(a) Variable read from one memory resource only by a thread even with multiple copies:
m+1∑
k=1

xi jk = 1, j ∈ {1, ..., r_n}, i ∈ {1, ..., t}

(b) Identify where variable is allocated:
yjk ≥ xi jk ,∀k ∈ {1, ...,m + 1}, j ∈ {1, ..., r_n} and i ∈ {1, ..., t}

(c) Variable allocated on-chip or off-chip:
aj ≥ yjk ,∀k ∈ {1, ...,m}, j ∈ {1, ..., r_n}

Binary constraints:
djk ∈ [0, 1],∀j{1, ...,nr_n},k ∈ {1, ...,m + 1},bj ∈ [0, 1],∀j ∈ {1, ...,nr_n}

xi jk ∈ [0, 1],∀i ∈ {1, ..., t}, j ∈ {1, ..., r_n} and k ∈ {1, ...,m + 1}

yjk ∈ [0, 1],∀j ∈ {1, ..., r_n},k ∈ {1, ...,m + 1},aj ∈ [0, 1],∀j ∈ {1, ..., r_n}
We obtain the exact solution for this problem through Integer Linear Programming (ILP) formulation.
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4.2.2 Synergistic NoC Aware Placement (SNAP):. Computing the exact solution of the NP-complete variable
placement problem by implementing it using ILP does not scale with number of threads and variables (refer Table 5
for data allocator run-time). Therefore, an iterative strategy: Synergistic NoC Aware Placement (SNAP) is proposed
in this work to determine the placement (leave it on DRAM or bring it on-chip), replication degree of variables and
location from which each thread accesses a variable (in case of multiple copies) for improving multi-threaded application
performance. Every thread has one opportunity to allocate variables in an SPM closer to it. If there are n variables and t
threads, there will be a total of n ∗ t iterations.

All the global variables are first allocated in DRAM and access latency (per variable) and contention delay is calculated
per application thread. Next, for each thread, the (execution time, thread id) pair is computed and added to a vector
ExecTimePQ , while indices of all variables accessed by each thread is added to remVar . ExecTimePQ , remVar , memory
profiling results from application analysis and system parameters are then supplied to SNAP algorithm as input.

The execution time of a multi-threaded application is determined by the slowest thread (Equation 2). At every
iteration in SNAP (Algorithm 1, Lines 1 - 29), we first identify the critical thread (note that the critical thread may change
from one iteration to next as we allocate variables to SPMs). Then, we try to improve its performance by reducing the
latency of the variable that has the maximum access latency density (Line 6), by moving it to a location closer to the
critical thread. The access latency density is computed as (access latency + contention delay) / (variable size) using
Equations 3, 12.

We find the memory location that can accommodate the maximum access latency density variable and yields the
least thread execution time for the critical thread by trying all SPMs with increasing NoC hop latency (Lines 8 - 25). In
each iteration of this loop, we find all SPMs that are rad hops away from the critical thread and have sufficient space to
hold the variable. If there is no SPM that has sufficient space, we increase rad by one and try again. For each location
found in this step, we invoke allocateVar procedure to (i) update DMA and replication cost for each thread that accesses
this variable (Equations 4, 6) (ii) place the variable in that location (iii) identify the location from which each thread will
access this variable from and (iv) update the contention delay and application execution time (Equations 2, 12).

In this algorithm, we accept an allocation only if the execution time monotonically decreases (Line 19) at every
iteration. This condition is essential as the overall application execution time may increase (due to change in access
latency and contention delay in other threads), although the critical thread’s execution time reduces. However, when
the other threads have similar execution time as the critical thread and the same replicable variable (vid) as the highest
density variable, the new application execution time will be higher as replication cost is added to all the accessing
threads. If this decision is not allowed, the best solution can be worse than optimal. Therefore, we look ahead and try to
replicate vid until it is the highest latency density variable in subsequent critical threads. We accept all these allocation
decisions only if the overall application execution time reduces (Line 23).

Recall that the total number of steps in SNAP strategy is n ∗ t in the worst case. We terminate early if the critical
thread has (i) no more variables to allocate and (ii) zero contention delay (Line 5). However, we allow other threads to
look into the unconsidered variables when contention delay is non-zero. This is because when threads allocate variables
in other SPMs, the critical thread’s contention delay may reduce.

5 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of our proposed Coordinated Data Management framework on the
SPM-based Epiphany many-core architecture.

Manuscript submitted to ACM



14 V. Venkataramani, et al.

Algorithm 1: Synergistic NoC Aware Placement (SNAP) algorithm
Input :W - set containing size of each variable,m - #on-chip SPM, Alloc - variable allocation result, Alloc[j][k] =

1 =⇒ variable j is allocated in memory resourceMk , 0 otherwise, ExecTimeVec- vector containing
(execution time, thread id) pair, remVar- list of variables accessed by each thread

Output :Alloc

1 while ExecTimeVec , ∅ do
2 tid ← ExecTimeVec [0].second;
3 Erase ExecTimeVec [0];
4 if remVar [tid] == ∅ and contDelay[tid] != 0 then continue ;
5 else if remVar [tid] == ∅ then break ;
6 vid ← getMaxLatDensityVar(tid);
7 Loc_curr ← currVarLoc [vid][tid];
8 for rad ← 0 toMAXRAD do
9 dest_ids = getDest(tid , rad ,W [vid]);

10 if dest_ids == ∅ then continue ;
11 Loc_new ← −1; E_new ← E;
12 foreach dest in dest_ids do
13 E_temp ← allocateVar(E, vid , dest );
14 if E_new[tid] < E_temp[tid] then
15 Loc_new ← dest ;
16 E_new ← E_temp;
17 end
18 if Loc_new , −1 then
19 if дetMax(E_new) < дetMax(E) then
20 Update best solution, Alloc , system state and E;
21 else if vid is replicable and дetMax(E_new) − repl_cost > E[tid] then
22 Look ahead and allocate until vid is the highest latency density variable in subsequent critical

threads;
23 Update best solution, Alloc , system state and E if application execution time decreases;
24 break;
25 end
26 Update execution time of threads in ExecTimeVec as per E;
27 ExecTimeVec.sort();
28 end
29 return Alloc;

5.1 Epiphany platform

Figure 1 illustrates an abstracted Adapteva Parallella platform used in our evaluation and Table 1 summarizes its
specifications. The Adapteva Parallela platform is designed for developing parallel processing applications using the on-
board Epiphany chip. The 16-core Epiphany SoC consists of an array of simple RISC processors (eCores) programmable
in C connected together in a 2D-mesh NoC and supporting a single shared address space. The Epiphany SoC acts
as an accelerator and is supported by a Xilinx Zynq SoC on the same development board. The Zynq SoC contains
dual-core ARM Cortex-A9 processors, Memory Controller and eLink (implemented in Field Programmable Gate Arrays)
for connecting Zynq SoC and Epiphany. The ARM processor can launch multi-threaded applications on Epiphany.
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Memory Architecture: Each eCore contains a unified 32KB SPM for both program instructions and data. As SPM
is more energy-efficient than caches, Epiphany does not provide cache memory at any level of the memory hierarchy.
Apart from accessing the local SPM, an eCore can also access any remote SPM through the mesh network at a latency
proportional to the number of hops between the source and the destination core. The eCores can also access 1GB
shared off-chip memory (SDRAM) with high latency. We estimate the local SPM (AccLatk , ∀k ∈ [1,m]) and off-chip
DRAM (offChipLat) access latency to be 1 and 500 cycles, respectively (eCores running at 600 MHz) by executing
micro-benchmarks. The off-chip access latency is high as Epiphany accesses SDRAM through the Zynq SoC. The
Epiphany supports a 32-bit shared memory address map, where each eCore is assigned a unique address space. The
first 12 bits of the address space indicate the row and the column index of the eCore (12-bits can support up to 4,096
cores) while the remaining 20 bits specify the exact location within the corresponding SPM. As the address space is
shared, an eCore can access any SPM location.

Network-on-Chip: Epiphany architecture is supported by a 2D-mesh Network-on-Chip (eMesh). The eMesh NoC
consists of three distinct and orthogonal channels, cMesh for on-chip writes, xMesh for off-chip write transactions,
and rMesh for all read requests. The on-chip and off-chip write channels have data transfer rates of 8 and 1 byte per
cycle, respectively, while reads are issued once per 8 cycles. The data transfer rates are higher for writes as Epiphany is
generally used for Message Passing applications where communication latency is crucial for performance. As mentioned
previously, the mesh interconnect allows an eCore to access non-local SPMs (known as Remote SPMs) with varying
latency using the row and column index of the remote SPM. Remote SPM accesses take a deterministic path in the
network using XY routing. In XY routing, an access moves along the row-axis first and then along the column-axis.
Each router hop (HopLat used in Equation 3) takes 1.5 cycles as mentioned in the Epiphany reference manual [1].

Programming model: A number of Software Development Kits (SDK) like eSDK, CO-PRocessing THReads
(COPRTHR-2) [45] and OpenSHMEM [40] are available for programming on Epiphany. The COPRTHR-2 library
provides API for POSIX thread (pthread) like programming model and DMA transfer between the on-chip and the
off-chip memory. It also automatically allocates stack variables and instructions in on-chip memory. The OpenSHMEM
library is utilized for efficient inter-core data transfers.

Direct Memory Access (DMA): Each eCore has a DMA engine for transferring data between on-chip SPM and
off-chip DRAM. We use micro-benchmarks to obtain the on-chip and off-chip memory data transfer rate. The read
(costdma in Equation 4) and write (costwb in Equation 5) data transfer rates between off-chip DRAM and local SPM
are measured to be 87.71 MB/s and 234.35 MB/s. The read and write (costcopy used in Equation 6) data transfer rate
between the farthest on-chip SPMs are measured to be 392.00 MB/s and 1236.81 MB/s, respectively. The read data
transfer rate is lower than the write data transfer rate as the number of the bytes transferred per cycle in the read mesh
is lower than the write mesh.

Table 1. Specifications of Parallella platform with Epiphany

Cores
2 ARMv7 host cores
16 Epiphany in-order (dual-issue) cores, 600 MHz

SPM Unified I & D, 32KB, 4 banks, 1-cycle access latency
Network 2D Mesh, 1.5 cycle per hop latency, XY routing
Memory 1GB, 500-cycle access latency
DMA data
transfer rate

on-chip: write 1236.81 MB/s, read 392 MB/s
off-chip: write 234.35 MB/s, read 87.71 MB/s

5.2 Experimental Setup

5.2.1 Benchmark Application Kernels. The characteristics of the multi-threaded benchmark application kernels
used in our experimental evaluation are shown in Table 2. The applications from the prevalent multi-threaded benchmark
suites e.g. PARSEC[8] (primarily designed for the high-performance computing domain) cannot be compiled directly on
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the Epiphany architecture due to lack of support for libraries (e.g., Standard Template Library used in these applications).
Hence, we choose a set of representative application kernels, such as 1DFFT, 2DCONV, ATAX, GEMM, GESUMMV, from
the embedded, multi-threaded benchmark suites Rodinia[12] and Polybench/C[38]). We also include AESD and AESE,
which are commonly used kernels for decryption and encryption of data, respectively. Additionally, we choose three
kernels: PHY_ACI, PHY_DEMAP and PHY_MICF from the Long Term Evolution (LTE) Uplink Receiver PHY benchmark
[41]. The PHY benchmark implements baseband processing in mobile base stations. There has been increasing interest
in mapping baseband processing to many-core architectures instead of conventional ASIC- or DSP-based designs for
improved programmability and flexibility. In particular, a number of existing works [44], [11] have explored mapping
of the PHY benchmark on the Epiphany architecture. However, none of the previous works have considered SPM
management on the Epiphany architecture.

5.2.2 Porting of Kernels on Epiphany. We evaluate our SPM-management approach on Adapteva Parallella
platform with on-board Epiphany architecture as presented in Section 5.1. Table 1 summarizes the system configuration.

Few kernels (e.g. PHY_MICF, PHY_ACI), in Table 2 offer pthread-based multi-threaded versions. For the remaining
benchmark kernels that are available in OpenCL/OpenMP versions, we manually port them for Epiphany. The kernels
PHY_ACI and PHY_DEMAP use twelve threads, while the remaining kernels all utilize sixteen threads. We implemented
these kernels using COPRTHR-2 and OPENSHMEM libraries (described previously in Section 5.1). We manually
determine the optimal thread to core mapping so that the threads with higher levels of data sharing are mapped to
neighboring cores on chip. We pin the threads to the appropriate cores according to this mapping.

We also perform loop tiling (loop blocking) for the benchmarks where the total data set size exceeds the on-chip SPM
capacity. We carefully select the tile size such that the entire working set corresponding to a tile can be accommodated
on-chip. The data corresponding to a tile is brought into and out of the SPM through DMA operations in the beginning
and the end of the execution of the tile, respectively. Thus, there are no off-chip memory accesses during the execution
of each iteration of the tiled code. Conventional SPM-allocation approaches that are agnostic to the exact placement and
replication of the data cannot optimize this tiled code any further. However, starting with the tiled code, our coordinated
data management framework can significantly improve both the performance and the energy consumption by carefully
controlling the placement and the replication of the shared variables.

Table 2 shows that per-thread code plus stack size of the kernels varies from 5.69 KB to 12.24 KB. As mentioned in
Section 5.1, the code and the stack are automatically allocated in on-chip SPM using COPRTHR2 [45] library. Hence,
we only consider the allocation of global data in this work. The global data size ranges from 20.05 to 12,288 KB, clearly
exceeding the on-chip SPM capacity (32KB per SPM x 16 = 512KB) and necessitating loop tiling. Note that 32KB SPM
space per core needs to accommodate the code, global data, heap, and stack segments. We reserve space for code and
stack variables as per kernel requirements in Table 2 and utilize the remaining space for global data. Thus, the global
working set size of our tiled code ranging from 20 to 257 KB can be easily accommodated in on-chip SPMs. None of the
benchmark kernels uses heap; the reserved SPM space for the heap can be managed using existing approaches [14], [6].

We statically analyze the tiled application programs and profile their execution with representative inputs to obtain
the memory access traces as explained in Section 4.1. Given the memory access profile, the CDM framework generates
the replication degree and the placement of the global data variables. We use the python library of Gurobi optimizer
version 6.5.2 to solve the ILP formulations.

A POSIX-thread like shared memory program is utilized in this work, i.e., each thread executes the same function.
In Epiphany architecture, every thread needs to access data either directly from off-chip DRAM or after explicitly
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Table 2. Characteristics of the application kernels. PHY_ACI and PHY_DEMAP have 12 threads while others have 16 threads.

Kernel Input Code+Stack
(KB)

Global Data
(KB)

Original Tiled
1DFFT 1024 8.57 20 20
2DCONV 1024 X 1024 8.73 8,192 128
AESD 256 KB 9.67 513 257
AESE 256 KB 9.78 513 257
ATAX 1024, 1024 X 1024 9.16 4,108 140
GEMM 1024 X 1024 8.55 12,288 132
GESUMMV 1024, 1024 X 1024 9.18 8,204 140

PHY_ACI
4Antenna, 2Layers,
64QAM, 100 RB 10.72 182 182

PHY_DEMAP
4Antenna, 2Layers,
64QAM, 100 RB 5.69 450 150

PHY_MICF
4Antenna, 4Layers,
64QAM, 100 RB 12.24 117 117

copying it on SPMs. SHMEM library provides shmem_malloc function which is executed in all the threads and contain
the same local address. Similarly, local SPM addresses can be converted to global address using library function
e_get_global_address by passing the local address and location of the target SPM id. SHMEM/COPTHR-2 library also
provides blocking and non-blocking DMA copy. We bring in data for the next iteration while current iteration is
being executed by using non-blocking DMA calls. A coordinated mechanism is proposed for replication as the off-chip
memory data transfer rate is much lower than the on-chip NoC memory data transfer rate. Thus, we wait for the first
copy to be brought on to the chip before multiple copies are created using NoC. SHMEM library also provides efficiently
implemented broadcast and multicast functions. These library functions are used for replicating variables.

Since these library functions provide layers of abstraction, we only change variable placements using SNAP-S and
SNAP-M results. Thus, the API calls for data transfer between off-chip memory and SPM, and replication are suitably
modified for the different strategies, re-compiled and executed on the Parallela board to measure the execution time
and energy consumption. We use the timer function provided by the Parallela platform for execution time.

5.2.3 Energy measurement. The Epiphany co-processor does not have sensors for measuring the chip power.
Therefore, we measure the average power consumption of the entire Parallela board using ODROID Smart Power and
compute the energy consumption as the product of the average power and the execution time.

5.2.4 Evaluation Mechanisms. To the best of our knowledge, there are no existing works that perform SPM
allocation for multi-threaded applications onmany-core systems for improving the application execution time. Therefore,
we devise a GREEDY strategy as our baseline in which variables are sorted in descending order of access densities (total
accesses/size) and allocated in the SPM of the highest accessing thread. Variables are allocated in DRAM if there are is
no space in any of the accessors.

To measure the importance of NoC placement and contention delay while allocating variables, we consider two
strategies. In the first strategy, ILP-S, we obtain the exact data placement using ILP in multi-threaded applications with
single copy of each variable that yields the least overall execution time. In the second strategy, SNAP-S, we evaluate
how the proposed SNAP allocation strategy reduces the execution time of the critical thread by placing variables
appropriately with single copy of variables. At every step in SNAP-S and SNAP-M, the critical thread is obtained based
on the current location of variables and the access counts obtained from one-off dynamic profiling using representative
inputs using Equation 13.

Next, we evaluate the importance of replication in addition to NoC placement and contention through two strategies:
ILP-M and SNAP-M. ILP-M finds an exact solution for the data allocation problem with multiple copies of replicable
variables (when required). SNAP-M on the other hand, finds the allocation based on the proposed SNAP strategy with
replication of variables.
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The application source code is modified based on the outcome obtained from the above mechanisms to allocate and
place variables in SPM or off-chip memory.

5.3 Memory Access Profile Characterization

We present the memory access characteristics of the kernels obtained from profiling.

5.3.1 Distribution of stack and global variables: As can be observed from Table 2, the code plus stack size is
much smaller than the global data size. In particular, the global data occupies 96.78% (on average) of the global data and
stack space. Recall that our benchmarks do not use heap segment. Figure 5 shows the distribution of the global and
stack accesses. Clearly, a significant fraction of the memory accesses are to global data except for PHY_DEMAP.
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Fig. 5. Distribution of data memory accesses

5.3.2 Sharing degree: We show the sharing degree of the global data memory accesses in Figure 6 (a). The Y-axis
shows the distribution of global data accesses to variables with different sharing degree: 1, 2, 4, 6, 12, and 16. For
example, the orange part of the bar graph show the percentage of global data memory accesses to variables with 16
sharers. Note that this figure excludes the private stack accesses. From this figure, we identify that PHY_DEMAP is
completely data parallel with no sharing as all the accesses are to variables with sharing degree 1. For 2DCONV, we
observe that the maximum sharing degree across all variables is 2. This is because each thread shares the first and last
row of the input matrix with the previous and following thread respectively. PHY_MICF has variables shared between 4
and 16 threads. PHY_ACI has maximum sharing degree of 12 as it has only 12 threads. For the remaining kernels, global
variables are either accessed only by one thread or by all 16 threads.

5.3.3 Distribution of access types: Figure 6 (b) shows the distribution of global data memory access types, where
R means Read only, W means Write only, and RW means Read-Write accesses. Apart from accessing private variables
belonging to the above types (R_PVT, W_PVT and RW_PVT), many of the kernels have significant Read-Only shared
(R_SHAR) variables. These variables are ideal candidates for replication. Similarly, the number of accesses to Read-Write
shared variables (RW_SHAR) is close to zero in most of the kernels.

5.4 Global Data Allocation Results

Figure 7 shows the outcome of global data placement and replication with different data placement strategies: GREEDY,
ILP-S, SNAP-S and ILP-M, SNAP-M. Note that the tiled version of the kernels can already accommodate the entire
working global data set in on-chip SPM and there are no off-chip accesses. For most benchmarks, a portion of the
global data memory accesses go to remote SPMs using ILP-S and SNAP-S strategies. This is because ILP-S and SNAP-S

allow only one copy of a global variable even if it is shared across multiple threads. Most of these remote SPM accesses
Manuscript submitted to ACM
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encountered in ILP-S and SNAP-S can be converted to local SPM accesses by using replication mechanism in ILP-M

and SNAP-M respectively. However, firstly it is not possible to achieve 100% local SPM accesses in kernels that have
read-write shared variables as reported in Figure 6 (b), for example: 1DFFT and ATAX. Secondly, in some cases, even
when there are Read-only shared variables among threads, it might not be possible to perform complete replication as
on-chip SPM space is limited. For example, in PHY_ACI, each thread accesses a total of 32.8 KB data belonging to either
private RW or shared R access types. However, since each SPM only has 32KB for instructions, stack and data, it is not
possible to replicate all the read-only variables and achieve 100% local SPM accesses. Finally, some applications may
not perform full replication due to cost (DMA and replication copy latency) versus benefit (memory access latency,
contention delay) analysis. For example, in PHY_MICF, the optimal strategy ILP-M does not perform full replication and
some variables are still accessed from remote SPMs.

Space utilization: Table 3 shows the amount of space allocated across all SPMs for global data under the different
allocation strategies. As each kernels have different working set sizes, the space allocation varies. Also, ILP-M and
SNAP-M utilizes the available SPM space more than ILP-S and SNAP-S respectively. This is because ILP-M and SNAP-M

strategies employs replication of shared variables to reduce the memory access latency and NoC queuing delay using
the extra SPM space available on-chip.

Table 3. Total on-chip SPM space (in KB) allocated across all cores for global data using different strategies
1DFFT 2DCONV AESD AESE ATAX GEMM GESUMMV PHY_ACI PHY_DEMAP PHY_MICF

GREEDY 20 128 257 257 140 132 140 182 150 117
ILP-S 20 128 257 257 140 132 140 182 150 117

SNAP-S 20 128 257 257 140 132 140 182 150 117
ILP-M 26 143 278 274 148 192 200 220 150 225

SNAP-M 34 143 278 274 164 192 200 225 150 300

Replication degree: Figure 7, also captures the replication degree using the number of local and remote accesses. In
PHY_ACI, even though every shared variable is Read-only, full replication is not performed as sufficient on-chip space is
not available to accommodation all variables. Hence, only crucial variables to performance are replicated with a degree
of 1, 2 or 3. In ATAX, only 1 copy of Read-Write variables is present while 7 copies of shared Read variables exist. In
1DFFT, shared variables have a replication degree of either 4 or 5 based on cost versus benefit analysis, while single copy
of Read-write variables is present. PHY_DEMAP does not do any replication as there are no shared variables (Figure 6).
From Figure 7, we find that 2DCONV, AESD, AESE, GEMM, GESUMMV and PHY_MICF have zero remote accesses. These
benchmarks have sufficient space to accommodate all shared variables (Table 3) and hence are able to replicate them
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Fig. 7. Data allocation results when using different strategies

in all accessing threads. In order to demonstrate the effectiveness of SNAP-M towards partial replication, we restrict
the available SPM space to 16KB and obtain the replication degree of all benchmarks (Table 4). In this experiment, the
replication degree of shared variables in AESE, AESD reduces to 2, while PHY_MICF reduces to 1, 2 or 6.

Table 4. Replication degree in SNAP-M when each SPM has 16KB space

1DFFT 2DCONV AESD AESE ATAX GEMM GESUMMV PHY_ACI PHY_DEMAP PHY_MICF
Repl.
Degree 1,4,5 2 2 2 1,7 16 16 1,2,3 N.A. 1,2,6

Run-time of Data allocator: Table 5 summarizes the run-time of the data allocator for obtaining variable placement
decisions when using the different strategies. From this table, we observe that for some application kernels, ILP based
solutions ILP-S and ILP-M take substantial run-time and do not produce the optimal allocation result even after days
as many combinations need to be explored in the contention component of the allocation problem for obtaining the
optimal placement of variables. Hence, pruning allocation paths is challenging. However, the execution time of GREEDY,
SNAP-S and SNAP-M are much lesser as they have polynomial run-time complexity.
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Table 5. Run-time (in sec) for obtaining data allocation results using different strategies. Allocation results are obtained with a
timeout of 1 hour, for strategies that do not terminate (indicated using *)

1DFFT 2DCONV AESD AESE ATAX GEMM GESUMMV PHY_ACI PHY_DEMAP PHY_MICF
GREEDY 0.0003 0.0005 0.0003 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002 0.0002
ILP-S * 0.2563 * * * * * * 0.0708 *

SNAP-S 0.0211 0.0138 0.0124 0.0102 0.0060 0.0071 0.0126 0.0109 0.0018 0.0084
ILP-M * 0.0122 2.2361 0.1463 * 0.1957 0.1628 * 0.0735 4.0351

SNAP-M 0.0218 0.0124 0.0114 0.0077 0.0062 0.0026 0.0057 0.0058 0.0120 0.0082

5.5 Performance and Energy Improvement

We now compare the performance and energy behavior of the different allocation strategies as explained in Section
5.2.4. To evaluate the effectiveness of NoC latency/contention aware placement and replicating shared variables, we
use GREEDY as the baseline to compare with the proposed allocation mechanisms. The reduction in execution time is
attributed to the distribution of accesses across threads, the type of accesses performed on a given variable and the
sharing degree of the variables. We do not present the results for ILP-S and 1DFFT, ATAX, PHY_ACI utilizing ILP-M

strategy as the ILP solver does not produce the optimal solution event after 1 day.
As seen in Figure 8, the proposed SNAP-M approach provides an average speedup of 1.84x and energy reduction

of 1.83x when compared to the GREEDY strategy. Specifically, the kernels AESD, AESE and GEMM (Figure 8 (b)) can
achieve higher performance as they contain shared variables that are heavily accessed by all the threads. 1DFFT has
1.14x improvement with SNAP-M when compared to GREEDY as it has fewer accesses to Read-only shared variables.
In 1DFFT, accesses to any read-write shared variable is dominated by one thread and allocated to its private SPM.
Therefore, frequent accesses are served locally, while other threads contribute to infrequent remote accesses. 2DCONV
has very little sharing as only the first and last row of the input matrix is shared. The improvement in execution time
for PHY_ACI, PHY_MICF are similar to the percentage of accesses to the replicable variables, while PHY_DEMAP has
no variables to replicate. The improvement in ATAX, GESUMMV are not significant as the performance bottleneck
relies on computations and other variables in the kernel. From figure 8, we also observe that the speedup and energy
reduction in SNAP-M is similar to the optimal solution obtained from ILP-M. SNAP-M also obtains a higher speedup
than SNAP-S in all benchmarks, using replication when necessary. Note that SNAP-M does not fully replicate Read-only
variables in 1DFFT as the benefit is lesser than the cost. Therefore, creating multiple copies is crucial for improving
application performance in SPM-based many-cores as it reduces memory access latency and contention delay.

From Figure 8, it is seen that SNAP-S provides an average speedup and energy reduction of 1.09x when compared
to the GREEDY strategy. GREEDY allocates variables in the thread that accesses it the most. This strategy works well
for private variables and shared variables that are predominantly accessed by one thread. Therefore, SNAP-S can only
improve performance by placing shared variables that have similar accesses from all sharers. The speedup in AESD,

AESE, 1DFFT, PHY_MICF, PHY_ACI show the importance of considering NoC latency, contention delay and improving
the critical thread when determining the placement of variables. Kernels 2DCONV, PHY_DEMAP have a speedup of 1
as the placement decisions are similar in both SNAP-S and GREEDY. GESUMMV, ATAX cannot be improved much as
private variables and computations are crucial for performance.

Thus, we observe that the proposed SNAP-S and SNAP-M mechanisms are effective in reducing the execution time
and energy of the evaluated kernels.

In SPM based many-core architectures like Epiphany, the current policy of the compiler is to only allocate the
stack/local variables and code segments in the SPM. The global data stays in off-chip memory. Note that even GREEDY
does not currently exist in Epiphany like architectures. Allocating selected global data to on-chip memory with
appropriate replication degree is the contribution of this work. We evaluate the end-to-end performance of a multi-
threaded application (includes overheads in bringing data on-chip, creating multiple copies and accessing it from remote
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(a) Benchmarks 1 - 7
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(b) Benchmarks 8- 10
Fig. 8. Execution time and energy in different allocation strategies normalized to GREEDY.

locations) under SNAP-M and the default allocation strategy (global variables are left off-chip). Table 6 summarizes the
speedup of SNAP-M with respect to default strategy. From this Table, we find that SNAP-M has an average improvement
of 22.9x when compared to the default allocation strategy.

Table 6. Speedup of SNAP-M w.r.t. default allocation in off-chip DRAM

1DFFT 2DCONV AESD AESE ATAX GEMM GESUMMV PHY_ACI PHY_DEMAP PHY_MICF
24.0 8.3 43.9 44.1 5.6 28.4 7.8 16.6 5.9 44.4

5.6 NoC latency and contention delay

It is not possible to isolate and measure NoC latency and contention delay on our platform as it is coupled with
computations and memory accesses. Thus, to show these effects, we allocate all the local variables in AESE benchmark
in local SPM and do a design space exploration on locations for two shared variables, assuming that there is single
copy of each variable. Each variable can be allocated in 16 possible on-chip locations. For two variables, we have a
total of 16x16 = 256 possibilities. The distribution of execution time in shown in Figure 9. From this figure, we find
that the speedup of the optimal placement with respect to the placement with the highest execution time is 1.32. This
shows that variable placement is crucial for improving application performance. From Figure 9, we find that placing
both variables in the same locations leads to the highest execution time primarily because of contention delay. GREEDY
belongs to this category as both variables were allocated in SPM 0. We also find that the difference in execution time
between SNAP-S and optimal allocation is close to each other.

5.7 Scalability of the proposed solution

From Section 5.4, we observed that the ILP solver does not produce the allocation outcome even after 1 day. In this
section, we show how the proposed SNAP algorithm scales with increasing number of threads. We utilize the kernels
Manuscript submitted to ACM
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that can be extended to 256 threads and scale the memory profile accordingly. Next, we allocate data variables using
SNAP-M. Note that we only have 16 cores in the Parallella platform. Table 7 states the SNAP-M run-time for different
kernels. From this table, it is seen that run-time for obtaining solutions is less than 10 seconds for all these kernels.

Table 7. SNAP allocation strategy run-time (in sec) for 64/256 threaded application in a 64/256 core system

Benchmark 2DCONV AESD AESE ATAX GEMM GESUMMV
64-threads 0.24 0.19 0.15 0.24 0.10 0.23
256-threads 7.01 4.54 3.54 7.85 2.67 7.37

6 DISCUSSION

Different input sizes: In the profiling stage, the variable type is statically determined through compiler while accesses
per variable is obtained from dynamic memory profile. Variation in the number of accesses per variable due to different
inputs can only change the performance. However, functional correctness cannot be affected as variable type is obtained
using static analysis. We run the applications with two different inputs by changing the size and the data value. Table
8 shows how the speedup in SNAP-M with respect to the GREEDY. From this figure, we see that the performance
improvement is similar across inputs. This is because changing the input data does not change the memory profile
dramatically, while input size only varies the number of iterations executed in the application.

Table 8. Speedup of SNAP-M with respect to GREEDY for different inputs.

1DFFT 2DCONV AESD AESE ATAX GEMM GESUMMV PHY_ACI PHY_DEMAP PHY_MICF
ProfileInput 1.14x 1.03x 9.98x 10.05x 1.00x 2.89x 1.03x 1.06x 1.00x 1.20x

Input1 1.14x 1.01x 10.21x 10.23x 1.00x 2.69x 1.01x 1.03x 1.00x 1.14x
Input2 1.14x 1.03x 9.99x 10.01x 1.00x 2.81x 1.01x 1.05x 1.00x 1.17x

Other platforms: In CDM framework, the memory profile information of the multi-threaded application and
systems specifications, i.e. SPM size, NoC interconnect configuration, etc. are taken as input for finding optimal data
allocation. Therefore, this work can be utilized for other platforms as long as the system parameters can be obtained.

Allocation of Heap variables: In this work, none of the benchmark kernels uses heap. Hence, we do not manage
data allocation for such variables. However, the reserved SPM space for the heap can be managed if necessary using
existing approaches [6, 14].

7 CONCLUSION

In this work, we propose Coordinated Data Management (CDM), a compile-time framework for allocating multi-
threaded applications variables in SPM based many-cores. This framework identifies shared/private variables and
obtains access counts (per thread) through dynamic profiling. It next utilizes the profiling results in an exact Integer
Linear Programming (ILP) formulation as well as SNAP, an iterative, scalable algorithm for placing the data variables in
multi-threaded applications, taking NoC into consideration and replicates variables when required on available memory
resources. The proposed scalable strategy SNAP-M improves the application execution time by 1.84x and achieves an
energy savings of 1.83x with respect to GREEDY.
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