
Lifetime Reliability Aware Architectural Adaptation

Thannirmalai Somu Muthukaruppan, Tulika Mitra
Department of Computer Science
National University of Singapore
{tsomu,tulika}@comp.nus.edu.sg

Abstract—Relentless CMOS technology scaling has resulted
in increased on-chip temperature leading to serious concerns
about lifetime reliability of micro-processors. Though dynamic
thermal management techniques can control peak temperature,
they often fail to meet the reliability targets due to the
complex interplay between temperature and reliability. In this
paper, we propose a dynamic reliability management (DRM)
technique that exploits architectural adaptation in conjunction
with dynamic voltage/frequency scaling (DVFS). We employ
an online Bayesian classifier that can efficiently detect the
reliable configurations, while a performance prediction model
selects the one with best performance among all the reliable
configurations. We later extend our approach to meet both
reliability and thermal constraints. Experimental results reveal
that our adaptive DRM technique achieves reliability targets
while reducing performance overhead by 42.30% compared to
DVFS and 28.68% compared to DVFS with fetch gating.

I. INTRODUCTION

Technological scaling in deep sub-micron level has re-
sulted in increased power density and on chip temperature,
which directly impact the processor lifetime reliability. Ex-
tensive studies have demonstrated the detrimental impact of
non-ideal scaling on permanent errors caused by wear out
phenomena such as electro migration, stress migration, gate
oxide breakdown and thermal cycles [13]. As the lifetime
degradation at future technology generations is expected
to increase, it has become important to design reliability
solutions at the architectural level.

The goal of any dynamic reliability management (DRM)
technique is to improve the lifetime reliability of the mi-
croprocessor with minimal impact on performance. Most
applications have limited instruction-level parallelism (ILP)
and cannot take advantage of extensive ILP exploitation
techniques present in current generation out-of-order ar-
chitectures. When the ILP of an application is limited,
various architectural parameters can be scaled down to the
appropriate level such that performance remains the same
but the power density and consequently the reliability can
be improved. In this paper, we propose a dynamic reliability
management (DRM) technique that adapts at runtime the
following micro-architectural parameters: (a) supply voltage
and frequency, (b) fetch gating (fraction of cycles where
instruction fetching is disabled), (c) issue width (number of
instructions issued per cycle), (d) instruction window size
(maximum number of instructions in-flight), and (e) cache

way disabling (number of cache ways disabled in the set-
associative cache). The detailed rationale behind the choice
of these parameters will be presented in Section III.

15	

20	

25	

30	

35	

40	

45	

50	

55	

60	

65	

70	

75	

3.5	
 4	
 4.5	
 5	
 5.5	
 6	
 6.5	
 7	
 7.5	
 8	

M
TT

F
(y

ea
rs

)

Performance (BIPS)
a)	
 Issue	
 Width	
 b)	
 Window	
 Size	
 c)	
 Cache	
 Way	

d)	
 Fetch	
 Ga8ng	
 e)	
 Frequency	
 Combina8on	
 of	
 a,b,c,d,e	

Figure 1: MTTF vs. Performance for different adaptation
mechanisms for the benchmark bzip2

Figure 1 shows the impact of different adaptation mecha-
nisms on both mean time to failure (MTTF) and performance
corresponding to the benchmark bzip2. MTTF is defined as
the mean time expected until the first failure of the processor.
The experimental setup will be described in Section V.
We assume the lifetime reliability target (MTTF) as 30
years. The performance is plotted as billion instructions
processed per second (BIPS). The baseline contains the
highest performing value for each adaptation parameter
and hence provides maximum performance with minimum
reliability (7.5 BIPS with MTTF equal to 21 years). Then
we adapt each parameter individually, while keeping the
remaining parameters constant at the highest performing
value. Clearly, voltage/frequency scaling has the largest
steps and can improve reliability to more than 60 years at
significantly lower performance of 5.25 BIPS. The other
architectural mechanisms, in contrast, improve reliability
moderately with little impact on performance. The figure
also shows that adapting a combination of these parameters
(the yellow points in Figure 1) can satisfy the reliability
target with much better performance compared to DVFS
alone. Our objective, thus, is to engage a combination of
these parameters so as to reach the reliability target without
sacrificing much performance.

It is challenging to design a DRM technique that exploits
multiple different architectural mechanisms in conjunction
with DVFS. We need to identify, in each adaptation interval

at runtime, the optimal configuration (choice of values for
the different parameters) that meets the reliability target
with the best performance for an application (or the phase
of an application). To filter out unreliable configuration
points, we design a software-based Bayesian classifier [15].
In order to identify the optimal configuration among the
reliable ones, we develop an analytical model that can
predict the performance of a configuration corresponding to
the currently executing application.

20#

22#

24#

26#

28#

30#

32#

34#

36#

38#

40#

76# 78# 80# 82# 84# 86# 88#

M
TT

F
(y

ea
rs)

Temperature (C)

UnReliable/TempUnsafe UnReliable/TempSafe Reliable/TempUnsafe Reliable/TempSafe

M
TT

F
(y

ea
rs

)

Temperature (C)

20#

22#

24#

26#

28#

30#

32#

34#

36#

38#

40#

76# 78# 80# 82# 84# 86# 88#

M
T

T
F

(y
ea

rs
)

Temperature (C)

UnReliable/TempUnsafe UnReliable/TempSafe Reliable/TempUnsafe Reliable/TempSafe

Figure 2: MTTF vs. temperature for different architectural
configurations for the benchmark crafty

Due to the exponential dependency of lifetime reliability
on the temperature [12], one can expect the dynamic thermal
management solutions (DTM) to be employed for DRM.
However, there exist subtle differences between tempera-
ture and reliability management goals. The objective of
DTM techniques is to optimize performance while keeping
peak temperature below certain threshold. On the other
hand, DRM maximizes performance while meeting lifetime
reliability target. Lifetime reliability is impacted through
chip-wide higher temperature rather than just the peak
temperature at a particular localized structure. Moreover,
certain mechanism like DVFS used for thermal management
might have negative impact on reliability [12]. The need for
independent but synergistic DTM and DRM techniques is
illustrated in Figure 2. We plot MTTF versus peak temper-
ature observed for different micro-architectural configura-
tions corresponding to benchmark crafty. We assume peak
temperature threshold of 82oC and lifetime reliability target
(MTTF) as 30 years. We partition the graph into four regions
(clockwise): (1) thermally safe and reliable, (2) thermally
unsafe and reliable, (3) thermally unsafe and unreliable, and
(4) thermally safe and reliable. It is evident from Figure
2 that there exist configurations in all the four partitions.
Therefore, it is imperative that we design customized tech-
niques specially targeted at improving reliability.

II. RELATED WORK

Traditionally, DTM techniques were employed as a con-
venient proxy to improve the lifetime reliability of the pro-
cessors [12]. Commonly employed mechanisms that reduce
temperature include DVFS, activity migration [6], [11], fetch

gating and clock gating. However, these techniques do not
consider the lifetime reliability problem explicitly.

Several techniques have been proposed for lifetime re-
liability (also known as hard errors) management. Srini-
vasan et al. [12] proposed an architectural level analytical
model, called Reliability-Aware Micro-Processor (RAMP),
for temperature induced lifetime reliability. They explore the
effectiveness of optimizing the architectural configurations
and the voltage/frequency settings statically to meet the
reliability target. Karl et al. [10] proposed the use of a
proportional-integral-derivative (PID) controller based DRM
technique. The most common technique employed for DRM
is DVFS, possibly with a feedback controller. Dynamic
wearout centric job scheduling in chip multiprocessor pro-
posed in [7] employs a fine grained reliability management
at the module-level of the cores. As these approaches
focus only on the lifetime reliability, the peak temperature
constraint is not considered.

We show that dynamically adapting architectural config-
urations along with DVFS can provide better performance
and meet both reliability and/or thermal constraints. Also,
while previous works are mostly reactive in nature, i.e., the
performance is throttled only when reliability constraint is
violated, we propose a predictive DRM technique.

III. PARAMETER SELECTION

We identify the following parameters as potential adapta-
tion candidates in conjunction with DVFS: (a) fetch gating,
(b) issue width, (c) instruction window size, and (d) selective
cache way disabling. These parameters are easy to adapt at
runtime and also have considerable impact on temperature
and lifetime reliability. We choose eight different frequency
levels (3.6GHz to 2.5GHz) for DVFS. We use five different
fetch gating levels: 0 – 4. When the fetch gating level is
set to T (1 ≤ T ≤ 4), the fetch unit disables fetching
once every T cycles (0 being the default no fetch gating
configuration). We employ five different issue widths: 2–6.
When the issue-width is altered, the additional functional
units and the appropriate register file ports are disabled
so as to reduce leakage power. The instruction window
can be scaled to four different sizes: 16, 32, 48, and 64
instructions. The adaptation is achieved by dividing the
instruction window into four banks of equal sizes, each con-
taining 16 instructions. Each bank can be enabled or disabled
independently [4]. We have to wait for all the instructions
from a bank to be committed before it can be disabled. Thus
instruction window resizing has more overhead compared
to fetch gating and issue width scaling. We assume a 4-
way set-associative 64KB L1 data cache. The data cache
can be resized through selective cache way disabling [1].
We can thus achieve 16KB to 64KB L1 data cache size.
To ensure the correctness of the program, the blocks from
the disabled cache ways have to be flushed before they are
disabled. Note that we only adapt the data cache and not the

0.00%	

2.00%	

4.00%	

6.00%	

8.00%	

10.00%	

12.00%	

14.00%	

luc
as	

cra
0y
	

bzi
p2
	

art
	

eq
ua
ke
	

gcc
	

mc
f	

sw
im
	

ap
plu
	

ga
lge
l	

ga
p	

gzi
p	

vo
rte
x	

pa
rse
r	

%
	
 p
er
fo
rm

an
e	

lo
st
	
 fo

r	
 1
%
	
 in
cr
ea
se
	

in
	
 li
fe
Bm

e	

	

Issue	
 Width	
 Window	
 Size	
 Fetch	
 GaBng	
 Cache	
 Way	

Figure 3: Performance-reliability tradeoff.

0.00%	

10.00%	

20.00%	

30.00%	

40.00%	

50.00%	

60.00%	

luc
as	

cra
1y
	

bz
ip2
	

art
	

eq
ua
ke
	

gcc
	

mc
f	

sw
im
	

ap
plu
	

ga
lge
l	

ga
p	

gzi
p	

vo
rte
x	

pa
rse
r	

%
	
 p
er
fo
rm

an
e	

lo
st
	
 fo

r	
 1
%
	

re
du

cD
on

	
 in
	
 te

m
pe

ra
tu
re
	

Issue	
 Width	
 Window	
 Size	
 Fetch	
 GaDng	
 Cache	
 Way	
 	

Figure 4: Performance-temperature tradeoff.

instruction cache. This is because fetch gating can achieve
similar effect as instruction cache resizing. We assume that
the architecture has specific instructions that can change the
configurational parameters at runtime.

The best adaptation mechanism is the one that can satisfy
the reliability or the thermal targets with minimal impact
on performance. For each benchmark program from SPEC
2000, we first identify the most compute intensive phase that
leads to either increased steady-state temperature or worst
reliability under the baseline non-adaptive configuration (see
Section V). Next we adapt each parameter individually and
quantify its impact on improving the reliability (or reducing
the steady-state temperature) of the identified phase.

Figure 3 (Figure 4) shows the percentage of performance
lost in order to increase the lifetime reliability MTTF (reduce
the steady-state temperature) by 1% compared to the default
configuration. As each parameter has a range of values,
we find the mean performance lost for 1% increase in
MTTF (or decrease in temperature) compared to the default
configuration. It is obvious from the figures that instruc-
tion window resizing contributes to serious performance
degradation while attempting to improve either reliability or
temperature. This is because, scaling window size has only
localized impact on power consumption and considerable
performance overhead per transition. Therefore, we decide
to eliminate window resizing from further consideration.

In terms of reliability, cache way disabling is the clear
winner with minimal impact on performance. There are two
reasons behind this behavior. First, for applications with
smaller memory footprint, small data cache size suffices and
reduces power consumption by disabling the unused cache
ways. For applications with larger memory footprint, smaller

cache size increases the number of cache misses and thus
reduces the switching activity in the core due to the delayed
delivery of data from memory. This leads to reduced power
density in the back end of the core and hence increased
reliability. Even though moderate hardware modifications
are required for selective cache way disabling [1], the
benefits are considerable from both thermal and reliability
management perspective. However, employing only cache
way disabling is not sufficient to meet the target lifetime
reliability. From Figure 1, it is evident a combination of
mechanisms should be employed to achieve the desired
MTTF. Thus, our final set of parameters adapted at runtime
are issue-width scaling, fetch gating, selective data cache
way disabling in conjunction with DVFS.

IV. DYNAMIC RELIABILITY MANAGEMENT

We now present our dynamic reliability and thermal
management framework based on architectural adaptation.
The reliability and/or thermal management module is peri-
odically invoked once every adaptation interval: 107 cycles
or 2.8ms at 3.6 GHz. As our focus is on temperature induced
lifetime reliability issues and the temperature changes occur
very slowly, we set the adaptation interval in the order of
milliseconds. At every adaptation interval, we first check
if there is any significant variation in the workload charac-
teristics, that is, whether there is a new application or the
same application has moved into a new phase [5]. If the
workload characteristics change, then we may need to adapt
the architectural parameters. This is achieved through two
major components: (1) the monitoring module, and (2) the
configuration search module.

Monitoring module: The monitoring module employs a
combination of measurements and modeling to estimate the
MTTF and the temperature corresponding to the current
workload. We assume that the processor is fitted with circuit-
level multi-use sensors similar to the ones presented in
ElastIC architecture [14]. These sensors can characterize
performance, lifetime degradation, temperature, and power
consumption at fine granularities. Once the data from the
sensors and the physical parameters (such as supply voltage,
current, and activity factor) are collected, the MTTF and the
temperature are estimated. The MTTF estimation relies on
the RAMP [12] model and is entirely implemented in soft-
ware. The MTTF computation in the RAMP model involves
complex operations and frequent exponentiation, which are
avoided through pre-computation and fast exponentiation.
Thus the overhead is estimating MTTF and temperature is
negligible compared to the adaptation interval.

Configuration Search Module: The goal of this module
is to select the configuration with maximum performance
that satisfies the MTTF and/or thermal constraints. The
configuration search module is also implemented entirely
in software and consists of two major components: A) naive
Bayesian classifier and B) performance prediction module.

A. Naive Bayesian Classifier
Our objective in configuration search is to quickly filter

out the unreliable and/or thermally unsafe configurations.
We employ a naive Bayesian classifier for this purpose.
Classification problems are characterized by the need to
classify an input pattern into one of the output categories.
Among the various classifiers (naive Bayesian, decision trees
and neural network) available, we chose naive Bayesian
classifier [15] because its simplicity allows each input pat-
tern to contribute towards the final classification decision.
It offers several additional advantages such as fast training
time, minimal computation time, and the ability to add new
attribute without re-training.

For our configuration filtering problem, we need to select
both the workload characteristics and the adaptive architec-
tural configurations as input parameters. Thus each input
pattern consists of seven parameters: (a) issue width, (b)
fetch gating level, (c) operating frequency, (d) number of
integer instructions issued per cycle, (e) number of floating
point instructions issued per cycle, (f) number of memory
instructions issued per cycle, and (g) number of branch
instructions issued per cycle. The output is yes or no
classification indicating whether the workload, configuration
pair satisfy the reliability and/or the thermal constraint. Note
that the inputs to the classifier are the number of instruc-
tions issued rather than number of instructions committed
because the number of instructions issued influence the
temperature and hence the MTTF of the microprocessor,
whereas the number of instructions committed determines
the performance of the microprocessor. This estimation of
number of instructions issued per cycle is obtained through
the performance prediction model discussed in Section IV-B.
Among the architectural parameters, we decide to leave out
the number of cache ways as an input to the classifier.
This is because the effect of cache resizing can be captured
sufficiently with the performance prediction model.

We train the classifier off-line either during system in-
stallation and/or when the system conditions (e.g., ambient
temperature) change. The training set is generated by run-
ning a set of micro-benchmarks under various configurations
and checking if the MTTF and/or thermal constraints are
satisfied. The micro-benchmarks contain loops with varying
mix of integer, floating point, memory, and branch instruc-
tions. The instruction mix are generated in a pseudo random
fashion to account for the variability in the workloads that
may execute on the processor. To overcome the problem
of random sampling, we employ Latin hypercube sampling
to enumerate 100 representative configurations from the
configuration space. We train the classifier with 50 micro-
benchmarks each running on the 100 selected configurations.

After training, we test our classifier using a number of
SPEC 2000 benchmarks. We simulate each benchmark at
100 configurations points and determine if the execution
violates the MTTF constraint. We compare our simulation

outcome with the corresponding output from the classifier.
Classification errors can be categorized into false positive
and false negative. A classifier commits false positive error
when it erroneously classifies a reliable configuration point
as unreliable. False negative errors are committed when the
classifier erroneously classifies an unreliable configuration
point as reliable. We observe that our classifier is very
accurate with only 6.4% false negatives and 8.5% false
positives, on an average, across all the benchmarks. Note
that the only impact of a false positive error is reduced
performance as the configuration will not be selected, while
false negative errors may violate the reliability constraint.
When a selected configuration fails to meet the reliability
target during execution, it will be detected in the monitoring
module. The module will then invoke emergency fail safe
mechanisms such as clock gating and/or power gating to
bring the situation under control. We extend our classifier to
incorporate both the MTTF and the temperature constraints
to develop our dynamic thermal and reliability management
(DTRM) technique. We obtain the training set by running the
micro-benchmarks under various configurations and check-
ing if both the MTTF and the temperature constraints are
satisfied. We train this combined classifier and observe 7.9%
false negative and 9.2% false positive.

B. Performance Prediction Model
The performance prediction model is required for two

reasons. First, we need to predict the performance of the
reliable and thermally safe configurations for the current
workload so as to choose the optimal one. Secondly, the
classifier requires the workload characteristics (instruction
mix issued per cycle) for a configuration to be classified.

The inputs to the performance prediction model are the
number of integer, floating point, memory and branch in-
structions committed in the previous adaptation interval as
well as the total number of instructions committed Nuseful,
which could be obtained from hardware performance coun-
ters present in modern microprocessors.

Our performance prediction model is inspired by the in-
terval based models proposed in [8], [9]. The interval based
model suggests that there exists a sustained background
performance level that is punctuated by transient miss-events
such as branch mis-prediction and cache misses. The cycles
per instruction (CPI) can be expressed as

CPI = CPIsteady + CPImiss (1)

CPImiss = CPIbmiss + CPIicmiss + CPIdcmiss (2)

where CPIsteady is the sustained background performance
in the absence of miss-events and CPIbmiss, CPIicmiss
and CPIdcmiss denote the performance loss incurred due
to branch mis-predictions, instruction cache miss and data
cache miss, respectively. CPImiss can be computed by
counting the number of corresponding miss-events and miss
penalties as follows,

CPImiss =
Nicmiss × Picmiss +Nbmiss × Pbmiss +Ndcmiss × Pdcmiss

Nuseful
(3)

where Nicmiss, Nbmiss and Ndcmiss are the number of
instruction cache miss, data cache miss, and branch
mispredictions over our adaptation interval. Data cache
miss can be further divided into L1 data cache miss
CPId1cmiss and L2 cache miss CPId2cmiss. The penalty
values (Picmiss, Pbmiss and Pdcmiss) are computed using
the first order superscalar model [9]. We observe that the
performance impact of miss events CPIbmiss, CPIicmiss,
CPId2cmiss are fairly constant across configurations except
for L1 data cache (CPId1cmiss), which we adapt. This is
because changing issue width and fetch gating has minimal
impact on the number of miss events.

Memory Exploration Module: As we adapt L1 data cache
dynamically, CPId1cmiss varies across the cache config-
urations. When a new program phase P

′
is encountered,

the memory exploration module is triggered. As there are
only four data cache configurations, we execute phase P ′

with all the four cache configurations, one per adaptation
interval. We sample and memoize the L1 data cache miss
rate CPId1cmiss for the various cache configurations. We
use this information if phase P

′
is encountered again.

Prediction: For the current configuration C,
CPIsteady(C) = CPI(C)− CPImiss(C) (4)

CPImiss(C) = CPI
′
miss(C) + CPId1cmiss(C) (5)

where CPI
′

miss(C) represents all the miss events except L1
data cache miss. In general, at a new configuration C ′

CPI
′
miss(C

′
) = CPI

′
miss(C) (6)

Now the CPI for the configuration C
′

can be expressed as,
CPI(C

′
) = CPIsteady(C

′
) + CPI

′
miss(C) + CPId1cmiss(C

′
) (7)

CPId1cmiss is provided by the memory exploration module.

We now need to determine CPIsteady(C
′
). At fetch

gating level T, the number of instructions delivered per
cycle to the pipeline is T

T+1 × FW , where FW is the fetch
width. In the steady state, the number of instructions issued
per cycle must be the same as the number of instructions
fetched per cycle. Thus IPCsteady(C

′
) at configuration

C
′
= 〈IW,FG〉 can be expressed as

IPC
ideal
steady(IW, FG) = min(IW,

T

T + 1
× FW) (8)

We refer IPCsteady(C
′
) as IPCidealsteady(C

′
) because the

equation assumes that all the instructions are of unit latency.
To account for variable functional unit latency, we compute
a ratio µ between ideal steady state IPC and observed steady
state IPC for the current configuration C.

µ =
IPCsteady(C)

IPCideal
steady

(C)
=

1

CPIsteady(C)× IPCideal
steady

(C)
(9)

As the latency of the functional units are not adapted, the
value µ remains constant across the configuration.

IPCsteady(C
′
) = µ× IPCideal

steady(C
′
) (10)

CPI(C
′
) =

1

IPCsteady(C
′)

+ CPI
′
miss(C) + CPId1cmiss(C

′
) (11)

Our Bayesian classifier accepts the number of instructions

issued corresponding to different classes as input.

IPC
X
issue(C

′
) = IPCissue(C

′
)×

NX
useful

Nuseful

(12)

where IPCXissue(C
′
) (NX

useful) is the number of instructions
issued per cycle (total number of instructions committed) of
type X (integer, floating point, memory, or branch).

C. Search Space Pruning
Our configuration design space consists of four axes

(frequency, issue width, fetch gating and cache ways).
From Equation 8, it is evident that IPCsteady is limited
by both issue width and fetch gating. Increasing either
of them alone will not facilitate increase in performance.
Thus the four dimensional design space can be reduced
to three dimensional design space (frequency, cache ways,
and IPCsteady). For each point in this space, the classifier
determines whether that particular configuration meets the
constraints. The search process can be further optimized by
doing linear search for frequency, cache ways and binary
search along the IPCsteady axis. This optimization is based
on the fact that at a particular frequency level F

′
and steady

IPC IPC
′
, if IPC

′
does not meet the MTTF constraints,

then all the configurations with IPCsteady values higher
than IPC

′
will not meet the reliability or temperature

constraint either. This is because higher performance leads
to higher temperature, which has negative impact on the
lifetime reliability. For F frequency levels, I levels of
IPCsteady values and C cache configurations, the maximum
number of configurations explored are O(F × C × ln(I)).
In our adaptive framework, we have eight frequency values,
six IPC steady values and four cache ways, resulting in a
total of 192 configuration points. The configuration search
module takes approximately 10K cycles (2.8 µs at 3.6 Ghz)
to determine the optimal point in the worst case.

V. EXPERIMENTAL EVALUATION

We use SimpleScalar [2] simulator with Wattch [3] power
models for our experiments. Our baseline non-adaptive
processor is modeled as 6-way issue, 64-entry instruction
window, 64 KB L1 data and instruction cache, 2MB L2
unified cache and 4K entry bimod branch predictor. Our
adaptive architecture has four possible issue widths (2–
6), five possible fetch gating (1–4, no fetch gating), four
possible L1 data cache sizes (64KB – 16KB). We vary the
processor frequency from 3.6 GHz to 2.5 GHz. We assume
10 µs penalty to change the frequency settings [16]. We use
Hotspot-5.0 [11] for thermal simulation with a floor plan
similar to Alpha 21364. To include the effects of temperature
on leakage power, we use the leakage power density value
provided in [13]. RAMP [12] is employed to evaluate the
lifetime reliability. We set the reliability budget (MTTF) in
our experiments as 30 years [12]. For DTRM technique,
the maximum temperature allowed is 82oC. We use 14
benchamarks from SPEC 2000.

We compare our architectural adaptation based DRM
technique, called Adaptive, with the following approaches:
(a) DVFS: state-of-the-art hardware based DRM technique
employing only DVFS. We use a PI-controller based scheme
[6], and (b) Freq-FG: a technique combining two different
mechanisms for reliability management, PI-controlled DVFS
and fetch gating [16]. For mild stress, a constant fetch
gating level of 3 is engaged. As the stress becomes severe,
controller based DVFS is employed.

0.00%	

5.00%	

10.00%	

15.00%	

20.00%	

25.00%	

30.00%	

35.00%	

luc
as	

cra
/y	
 bzi

p2	
 art
	

equ
ake

	

gcc

	

mc
f	

sw
im	

app
lu	

gal
gel
	

gap
	

gzip
	

vor
tex

	
 	

par

ser
	

Ave
rag

e	

Slo
wd

ow
n	

DVFS	

Freq-­‐FG	

DRM	

Figure 5: Comparison of different DRM techniques

Figure 5 plots the slowdown in performance compared
to the baseline non-adaptive architecture at maximum fre-
quency (without any thermal or reliability constraints). Our
adaptive technique outperforms others, i.e., it achieves lower
performance degradation. On an average, Adaptive has
10.22% slowdown, while DVFS and Freq-FG have 17.72%
and 14.33% slowdown, respectively. Thus Adaptive reduces
performance degradation by 42.30% compared to DVFS and
28.68% compared to Freq-FG.

Figure 6 plots the time varying trends in IPC, frequency,
architectural parameters, and performance (BIPS) for bzip2.
These plots provide insight into why Adaptive performs
better. A higher value of an architectural parameter implies
better performance. We do not adapt the architectural pa-
rameters in Base and DVFS. Adaptive manages to operate at

4"

9"

14"

Pe
rf

or
m

an
ce

(B

IP
S)

70"
75"
80"
85"
90"
95"
100"

Te
m

pe
ra

tu
re

(C

)

2"
3"
4"
5"
6"

Fe
tc

h
G

at
in

g

2"

7"

Is
su

e
W

id
th

1"
2"
3"
4"
5"

C
ac

he

W
ay

s

2.5"

3"

3.5"

4"

Fr
eq

ue
nc

y
(G

hz
)

0.5"

2.5"

4.5"

IP
C

Time%%!"#$

%"#$

&"#$

'"#$

("#$

!"
#$

%&'($$

)*+,-./$ 0+1/$ 2345$

4"

9"

14"

Pe
rf

or
m

an
ce

(B

IP
S)

70"
75"
80"
85"
90"
95"

100"

Te
m

pe
ra

tu
re

(C

)

2"
3"
4"
5"
6"

Fe
tc

h
G

at
in

g

2"

7"

Is
su

e
W

id
th

1"
2"
3"
4"
5"

C
ac

he

W
ay

s

2.5"

3"

3.5"

4"

Fr
eq

ue
nc

y
(G

hz
)

0.5"

2.5"

4.5"

IP
C

Time%%!"#$

%"#$

&"#$

'"#$

("#$

!"
#$

%&'($$

)*+,-./$ 0+1/$ 2345$

4"

9"

14"

Pe
rf

or
m

an
ce

(B

IP
S)

70"
75"
80"
85"
90"
95"

100"

Te
m

pe
ra

tu
re

(C

)

2"
3"
4"
5"
6"

Fe
tc

h
G

at
in

g

2"

7"

Is
su

e
W

id
th

1"
2"
3"
4"
5"

C
ac

he

W
ay

s

2.5"

3"

3.5"

4"

Fr
eq

ue
nc

y
(G

hz
)

0.5"

2.5"

4.5"

IP
C

Time%%!"#$

%"#$

&"#$

'"#$

("#$

!"
#$

%&'($$

)*+,-./$ 0+1/$ 2345$

4"

9"

14"

Pe
rf

or
m

an
ce

(B

IP
S)

70"
75"
80"
85"
90"
95"

100"

Te
m

pe
ra

tu
re

(C

)

2"
3"
4"
5"
6"

Fe
tc

h
G

at
in

g

2"

7"

Is
su

e
W

id
th

1"
2"
3"
4"
5"

C
ac

he

W
ay

s

2.5"

3"

3.5"

4"

Fr
eq

ue
nc

y
(G

hz
)

0.5"

2.5"

4.5"

IP
C

Time%%!"#$

%"#$

&"#$

'"#$

("#$

!"
#$

%&'($$

)*+,-./$ 0+1/$ 2345$Adaptive Baseline DVFS

Figure 6: Time varying trends for bzip2.

higher frequency (and thus have better performance) because
it scales micro-architecture structures to reduce power con-
sumption. We also observe more transitions in frequency in
other techniques compared to Adaptive, resulting in thermal
cycling and consequently worse reliability.

As there is no existing techniques for integrated temper-
ature and reliability management, we compare our DTRM
technique with the DRM technique. The set point for DRM
technique is only MTTF=30 years but DTRM technique has
the additional set ppint for temperature (82oC). DTRM tech-
nique is an easy extension of our adaptive DRM technique
where the classifier is trained to choose the configurations
that meet both the temperature and the reliability target. We
observed that, the DTRM technique, on an average, has to
sacrifice 11.95% performance to meet both the temperature
and the reliability targets.

VI. CONCLUSIONS

We propose a dynamic reliability management technique
that adapts micro-architectural parameters in conjunction
with DVFS. Our adaptive method achieves the reliability tar-
get while reducing performance overhead by 42.30% com-
pared to DVFS alone and 28.68% compared to DVFS with
fetch gating. We also extend our technique to incorporate
temperature constraints along with reliability constraints.

ACKNOWLEDGMENT

This work was supported by Singapore Ministry of Educa-
tion Academic Research Fund Tier 2, MOE2009-T2-1-033.

REFERENCES
[1] D.H. Albonesi. Selective cache ways: on-demand cache

resource allocation. In MICRO, 1999.
[2] Austin et al. Simplescalar: an infrastructure for computer

system modeling. IEEE Computer, 2002.
[3] Brooks et al. Wattch: a framework for architectural-level

power analysis and optimizations. SIGARCH Comput. Archit.
News, 2000.

[4] Buyuktosunoglu et al. A circuit level implementation of
an adaptive issue queue for power-aware microprocessors.
GLSVLSI, 2001.

[5] Dhodapkar et al. Managing multi-configuration hardware via
dynamic working set analysis. In ISCA, 2002.

[6] Donald et al. Techniques for multicore thermal management:
Classification and new exploration. ISCA, 2006.

[7] Feng et al. Maestro: Orchestrating lifetime reliability in chip
multiprocessors. In High Performance Embedded Architec-
tures and Compilers. 2010.

[8] Jayaseelan et al. Dynamic thermal management via architec-
tural adaptation. In DAC, 2009.

[9] Karkhanis et al. A first-order superscalar processor model. In
ISCA, 2004.

[10] Karl et al. Reliability modeling and management in dynamic
microprocessor-based systems. DAC, 2006.

[11] Skadron et al. Temperature-aware microarchitecture.
SIGARCH Comput. Archit. News, 2003.

[12] Srinivasan et al. The case for lifetime reliability-aware
microprocessors. SIGARCH Comput. Archit. News, 2004.

[13] Srinivasan et al. The impact of technology scaling on lifetime
reliability. DSN, 2004.

[14] Sylvester et al. Elastic: An adaptive self-healing architecture
for unpredictable silicon. Design Test of Computers, IEEE,
2006.

[15] Zhao et al. Face recognition: A literature survey. ACM
Comput. Surv., 2003.

[16] Kevin Skadron. Hybrid architectural dynamic thermal man-
agement. DATE, 2004.

