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Abstract

With the increasing popularity of deep learning on edge
devices, compressing large neural networks to meet the
hardware requirements of resource-constrained devices be-
came a significant research direction. Numerous compres-
sion methodologies are currently being used to reduce the
memory sizes and energy consumption of neural networks.
Knowledge distillation (KD) is among such methodologies
and it functions by using data samples to transfer the knowl-
edge captured by a large model (teacher) to a smaller one
(student). However, due to various reasons, the original
training data might not be accessible at the compression
stage. Therefore, data-free model compression is an ongo-
ing research problem that has been addressed by various
works. In this paper, we point out that catastrophic forget-
ting is a problem that can potentially be observed in ex-
isting data-free distillation methods. Moreover, the sample
generation strategies in some of these methods could result
in a mismatch between the synthetic and real data distribu-
tions. To prevent such problems, we propose a data-free KD
framework that maintains a dynamic collection of gener-
ated samples over time. Additionally, we add the constraint
of matching the real data distribution in sample generation
strategies that target maximum information gain. Our ex-
periments demonstrate that we can improve the accuracy of
the student models obtained via KD when compared with
state-of-the-art approaches on the SVHN, Fashion MNIST
and CIFAR100 datasets.

1. Introduction

Large-scale deep learning models have achieved over-
whelming success over many different learning tasks [25,
17, 24, 3]. However, the huge computational complexi-
ties and massive storage requirements make it challenging
to deploy them on edge devices with low power and stor-
age capacities such as mobile phones. Knowledge Distil-
lation [12] is a popular method used in compressing com-

plex models and has been proven to be successful in main-
taining model performance after compression [2, 26, 27].
The process can be defined as extracting knowledge from a
complex pre-trained neural network, called the teacher, to
train a relatively more compact student network. This ex-
traction is generally done by forcing the student to imitate
the responses of the teacher against the training data. Un-
fortunately, this data dependency can cause problems when
the compression process is carried out by groups other than
the model developers. In such scenarios, the group that at-
tempts compression might not have access to the training
data due to privacy-related issues or they might not have the
means to relocate and store the dataset if it is large in vol-
ume. Hence, the whole process could become infeasible.

Recognition of this problematic coupling of KD with
data has recently attracted attention from the scientific com-
munity [19, 5, 18]. A common way to address this prob-
lem is to use synthetic samples for distillation. This task
is often referred to as data-free knowledge distillation in
the literature. Most of the existing works utilize a neu-
ral network (generator) to generate synthetic samples. The
network parameters are updated throughout distillation via
feedback from the teacher network and/or teacher-student
performance gap (see Section 2.2). Although the reported
results are promising, they still need improvement for data-
free methods to become the standard way of compressing
image models. There are two aspects of the current data
synthesis strategies that we identified as performance bot-
tlenecks. The first one is that, using only newly gener-
ated samples to train the student after each time generator’s
weights are updated [4, 6, 10, 18, 19], could cause the stu-
dent network to forget the knowledge it acquired in the ear-
lier steps. The reason is that, unlike in regular KD, the syn-
thetic data distribution changes over time as the generator
is updated in data-free methods. Therefore, performing KD
only with a freshly generated batch, without having stored
samples from earlier iterations, could cast the student vul-
nerable against such distribution shifts. Secondly, targeting
the generation of samples over which the student and the



Figure 1: Proposed Data-Free Knowledge Distillation framework. At each iteration, the student is frozen and the generator is
trained to produce samples that are confidently classified by the teacher but not by the student. Later the generator is frozen
and the student is trained by a combination of samples inferred from the generator and retrieved from the memory bank. The
bank is updated with the newly generated samples at a pre-determined frequency.

teacher have maximum disagreement [6, 19], could yield
a student that is optimal for a different distribution than the
original data.

To address the above-mentioned performance bottle-
necks, we propose a memory mechanism to store generated
samples over iterations and a generator objective that targets
samples that both maximize teacher-student disagreement
and approximate real data distribution. Our contributions in
this work have three folds and can be summarized as:

• Identification of the catastrophic forgetting problem as
a performance bottleneck for available KD methods
using synthetic data.

• A data-free KD framework that mitigates catastrophic
forgetting by keeping memory of generated samples
over iterations.

• Preventing possible mismatches between the gener-
ated and the original data distributions with an en-
hanced sample generation strategy that improves upon
the state-of-the-art.

2. Related Works
2.1. Catastrophic Forgetting

The term Catastrophic Forgetting was defined by French
[7] to describe the loss of previously learned information
observed in neural networks when they are sequentially
trained to learn new information. Unlike natural cognitive
systems, neural networks cannot retain the knowledge they
had previously acquired while they keep learning from new
data. To preserve such knowledge, they should also be ex-
posed to old data at every update. Goodfellow et al. [9]
investigated the extent to which catastrophic forgetting af-
fects neural networks. To alleviate these effects, Kirkpatrick

et al. [14] proposed to selectively slow down the learning
rates of the weights associated with the previously learned
information.

2.2. Data-Free Knowledge Distillation

There are two main synthetic data generation approaches
in existing data-free KD works.

The first one is called model inversion and can be de-
scribed as inverting the information flow in a neural net-
work to reconstruct appropriate input samples based on the
imposed constraints. Nayak et al. [21] proposed to account
for the correlations between target classes while generat-
ing samples. They used these correlations to construct soft
target labels that describe how synthetic samples should
be. Yin et al. [29] used one-hot target labels and applied
the Jensen-Shannon divergence between the model-to-be-
inverted (teacher) and the student to diversify the synthetic
samples. Haroush et al. [11] leveraged the batch normal-
ization statistics to make the synthetic data better mimic the
real training data. One weakness of the model inversion-
based methods is that they require a vast amount of time to
create sufficiently large datasets for distillation [29]. An-
other one is that some methods include loss terms that con-
strain the synthetic images to be realistic in the learning ob-
jective. The synthesis of realistic images could violate the
goal of preserving privacy related to the training data.

The second approach is to use a generator that, once
trained, can produce synthetic data suitable for KD. Yoo
et al. [30] published an early work in this category and
proposed a Variational Auto Encoder (VAE) [13] to gen-
erate images that can be recognized by the teacher model.
Later, these images are used to distill the knowledge from
the teacher to the student. However, by separating the image
generation process from KD, this work does not directly at-
tempt to optimize distillation performance. Chen et al. [4]



used a data-free GAN [8] setup and included the distance
between the teacher and student responses as a term to be
minimized in the objective function. Micaelli and Storkey.
[19], and Fang et al. [6] targeted synthetic samples that
maximize the information gain for the student. Throughout
the paper, we will refer to these samples as ”novel” sam-
ples. The disagreement between the teacher and the student
is used as a proxy to quantify the information gain.

3. Method Description
Our framework contains a generator that produces syn-

thetic samples to distill knowledge from the teacher to the
student. We train the generator and the student in two sepa-
rate stages, alternatively. During the training stage of the
generator, the target is to produce samples that are both
novel to the student and can be classified by the teacher
with high confidence. Later, when the turn comes to the
student, it is trained to imitate the responses of the teacher
against the generated data. We also include a fixed-sized
memory mechanism to remind the student of the informa-
tion presented to it over time. In Section 3.1, we discuss
how the generator loss used in [6] could cause catastrophic
forgetting. Later in Section 3.2 we elaborate on our mem-
ory mechanism to mitigate catastrophic forgetting. More-
over, we use a loss function that conditions the generator to
produce novel samples that also approximate the real data
distribution. In Section 3.3, we construct our proposed loss
function by combining the ideas introduced in the papers [6]
and [4]. The overview of our framework is given in Figure
1 and procedural details are specified in Algorithm 2.

3.1. Catastrophic Forgetting in Data-Free KD
Methods Targeting Novel Synthetic Samples

In [6] the optimal generator produces samples that cause
the maximum teacher-student disagreement. Formally, the
optimal samples at epoch t (x̂∗(t)), could be obtained by the
Equation 1.

x̂∗(t) = argmax
x̂

D(T (x̂),S(t)(x̂)) (1)

where D is a function that measures the distance between
the outputs of the teacher (T ) and the student at epoch t
(S(t)). Assuming that S(t) is optimized for x̂∗(t) after epoch
t based on,

S∗(t+1) = argmin
S

D(T (x̂∗(t)),S(t)(x̂
∗
(t))) (2)

the x̂∗(t) will yield minimum teacher-student discrepancy in
the next epoch t+ 1. Therefore,

x̂∗(t) ∩ x̂
∗
(t+1) = ∅ (3)

x̂∗(t+1) = argmax
x̂

D(T (x̂),S∗(t+1)(x̂)) (4)

Here we emphasize that, once the student is optimized to
imitate the teacher for a set of novel samples, the teacher-
student disagreement over those samples will diminish.
Therefore, in the next turn, the generator will attempt to
produce different samples for which the student still can
not imitate the teacher’s responses. This can result in catas-
trophic forgetting as the distribution of our synthetic sam-
ples change over iterations causing the student to forget the
information gained in earlier time steps. An example case
is given in Figure 2. In the example, the teacher is trained
to classify 2-dimensional data points into 3 classes, denoted
by red, green, and blue. Later, a student model is trained
by the synthetic samples, marked with yellow crosses, at
each epoch. The synthetic samples change over epochs and
there is no common sample between synthetic sets across
epochs. It can be observed that when we train the student
with the synthetic samples generated at the 3rd epoch, the
knowledge learned earlier about the green class is forgot-
ten. This example visualizes catastrophic forgetting caused
by the above-mentioned data synthesis strategy, in an ob-
servable space.

3.2. Mitigating Catastrophic Forgetting

To prevent such problem, we propose to store some of
the samples generated throughout iterations, in a memory
bank. Since the number of accumulated memory samples
could increase linearly with the arbitrarily selected number
of training epochs, we use a fix-sized list to maintain our
bank. The bank is updated periodically at a desired rate by
inserting generated samples. If the sample list has reached
maximum size, we replace a randomly selected batch with
the batch of new samples. The procedure is described in
Algorithm 1.

Algorithm 1 Memory Bank Update

INPUT: A list structure SL that keeps track of recorded
samples, batch size B.
if SL is full then
out samples← SL.remove random(B)
REMOV E(out samples)

end if
sample B vectors (z) from N (0, 1)
in samples← G(z)
SL.append(in samples)
SAV E(in samples)

During distillation, if the stored sample list is not empty,
a batch of memory samples is selected randomly and com-
bined with freshly generated samples to train the student.



Epoch 1 Epoch 2 Epoch 3

Figure 2: Example of catastrophic forgetting during data-free distillation. The teacher and student decision boundaries are
plotted for 3 epochs. Real data samples are displayed in the teacher’s decision space and the synthetic samples are marked
with yellow crosses.

3.3. Generator Loss to Prevent Mismatch Between
Synthetic and Original Data Distributions

As mentioned in Section 2.2, targeting the generation of
novel samples has demonstrated promising results on sev-
eral benchmarks [6, 19]. However, this approach fails
to maintain high-quality distillation across different bench-
marks. We observed this issue after conducting experi-
ments with various new datasets and student architectures.
Throughout our experiments, the training/testing perfor-
mances of the student models were unstable and highly im-
pacted by the hyper-parameter choices. We attribute this to
the lack of constraint to generate samples that come from
a similar distribution as the training data. Without such
constraint, the distillation can result in a student network
that is optimized to imitate the teacher for a certain sample
subspace which is different from the original training data.
Thus, the student might fail to behave like the teacher when
presented with samples from the original data distribution.
Even if during the distillation, the novel samples coinciden-
tally correspond with real samples, once the student is op-
timized for them, the next batches of novel samples will
be different. If the distillation continues after such corre-
spondence, the student will forget the decision boundaries
related to the real data distribution, causing its accuracy on
the real test set to degrade.

To prevent this issue, we propose to generate samples
that both induce high discrepancy between teacher and stu-
dent predictions, and stimulate similar responses from the
teacher as the real data. Our optimization objective while
training the generator, has two main components and can
be denoted as,

Lgen = Lmatch + Ld (5)

We give the details of these components in the following
sections.

Matching Training Data Distribution To generate sam-
ples that match the distribution of the original training data,

we adopt the optimization objective described in [4] as

Lmatch = Loh + αLa + βLie, (6)

where α and β are coefficients to adjust the weighted con-
tributions of the participating terms. Loh is the one-hot loss
that causes the teacher outputs to be one-hot vectors when
minimized. It can be defined as the the cross-entropy be-
tween the teacher’s softmax outputs (ŷiT = T (x̂i))) and the
predicted one-hot labels (tiT = argmax(ŷiT )) when image
x̂i is the input.

Loh =
1

n

∑
i

tiT log(ŷ
i
T ) (7)

La stands for the activation loss and is motivated by the
observation of meaningful inputs causing higher valued ac-
tivation maps in a trained network. The term is defined as

La = − 1

n

∑
i

‖f iT ‖1 (8)

where f iT denotes the activation values observed at all of
the selected layers i of the teacher (T ).

Lastly, Lie is the term that imposes the generator to pro-
duce an equal amount of images from each category. When
minimized, the entropy of the number of images generated
per category gets maximized causing each category to have
a similar amount of samples. If we define the probabil-
ity distribution of class predictions as p(ŷT ) = 1

n

∑
i ŷ

i
T ,

where yiT is the softmax output vector for the sample i, then
the loss term can be denoted as

Lie = −
∑
j

p(ŷT )
j log(p(ŷT )

j) (9)

Here p(ŷT )j is the averaged occurrence frequency of the
class indexed by j among the generated samples.

Maximum Teacher-Student Discrepancy Commonly,
L1 distance or Kullback-Leibler (KL) divergence between



the teacher and student responses are used to quantify dis-
agreement in the loss function. Instead we choose Jensen-
Shannon (JS) divergence (Equation 12), inspired by [29].
The loss term can be denoted by

M =
1

2
(T (x̂) + S(x̂)) (10)

JS(T (x̂),S(x̂)) = 1
2 (KL(T (x̂) ‖M) +KL(S(x̂) ‖M))

(11)
Ld = 1− JS(T (x̂),S(x̂)) (12)

where KL stands for the KL divergence. Our motivation to
choose JS divergence to represent the discrepancy between
the predictions of the teacher and student, is discussed in
section 4.2.

3.4. Knowledge Distillation

In the knowledge distillation phase, the main objective is
to get the student responses as close to those of the teacher
as possible. To do so, we employ the L1 distance between
the responses of the teacher and student networks (Equation
13). An analysis on the impacts of other possible distance
terms was given in [6].

LKD = ‖tT − tS‖1 (13)

4. Experiments
In this section, we share the experiments we have con-

ducted to demonstrate the effectiveness of our proposed
method on four image classification datasets. Our results
are given in Table 1 together with those of the baselines,
for comparison. Moreover, we discuss how the inclusion of
each technique we propose and hyper-parameter choices re-
lated to them, affect distillation performance. We consider
DAFL [4], DFAD [6], EATSKD [20], DeGAN [1] and RD-
SKD [10] as our baselines for comparison using the same
student and teacher models. It is noted, to test the baselines
on the benchmarks that they had not reported results on, we
used the code on their GitHub repositories.

4.1. Datasets

In our experiments, we have used MNIST [16], SVHN
[22], CIFAR-10 [15], CIFAR-100 [15], and Fashion
MNIST [28] datasets as benchmarks. In all experiments we
use the DCGAN [23] inspired generator adopted from [4].

MNIST is an image classification dataset composed of
70,000 grey-scale images of handwritten digits from 0 to
9. Training set consists of 60,000 images while the testing
set consists of 10,000. This benchmark is simple and there-
fore student-teacher gaps in most methods are very small.
For the experiments on MNIST, we selected LeNet-5 [16]
as the teacher and LeNet-5-Half as the student. The teacher
model was achieving 98.9% accuracy on the test set. Our

Algorithm 2 Data-Free Knowledge Distillation

INPUT: A trained teacher network T (x; θT ), batch size B

Initialize the more compact student S(x; θS) network and
the generator G(z; θG)
for number of epochs do

for k steps do
sample B vectors (z) from N (0, 1)
x̂← G(z)
if memory bank is not empty then

sample batch x̂M from memory
x̂← CONCAT (x̂, x̂M )

end if
ŷT ← T (x̂)
ŷS ← S(x̂)
Calculate the loss term LKD given ŷT and ŷS
θS ← optimizer.step(backward(LKD, θS), θS)

end for
sample B vectors (z) from N (0, 1)
x̂← G(z)
ŷT , fT ← T (x̂)
ŷS ← S(x̂)
Calculate the loss terms Loh, La , Lie and LJS given
x̂, ŷT , ŷS , fT
Lgen ← Loh + αLa + βLie + LJS

θG ← optimizer.step(backward(Lgen, θG), θG)
if epoch % update frequency == 0 then

update memory bank
end if

end for

method performed comparably with the DAFL and DFAD
baselines while outperforming RDSKD. Our experiments
revealed that when we set the memory size as 10 batches
and update frequency as 1 per 5 epochs, the accuracy in-
creases more consistently (see Figures 4a and 4b). How-
ever, we achieved the best results with the update rate of
once in every 1 epoch and the memory bank size of 10
batches. Additionally, we plot the learning curves of the
student obtained by our method and the baselines, during
distillation. The Figures 3a and 3b demonstrate that our
method can reduce the variance among student accuracies
achieved throughout epochs. This is desirable in real-life
applications since, if there is no evaluation data during the
distillation process, it is best if the student model performs
at its peak when the process ends. Therefore, maintain-
ing high student accuracy over iterations is as important as
achieving it. Based on the plots, our method accomplished
these better than the baselines DAFL and DFAD.

SVHN is a colored digit classification dataset consisting
of over 600,000 labeled images. This dataset is similar to
MNIST with the difference of having RGB channels there-



MNIST SVHN CIFAR10 Fashion MNIST
T :LeNet5 T :ResNet34 T :ResNet34 T :ResNet34
S :LeNet-half S :ResNet18 S :ResNet18 S :ResNet18

Method FLOPs Accuracy FLOPs Accuracy FLOPs Accuracy FLOPs Accuracy
Teacher 433K 98.9% 1.16G 96.3% 1.16G 95.4% 1.16G 94.1%
Train with data 139K 98.6% 558M 96.0% 558M 93.9% 558M 94.0%
RDSKD 139K 97.6% 558M 94.6% 558M 90.8% 558M -
DAFL 139K 98.2% 558M 94.5%* 558M 92.2% 558M 90.4%*
DFAD 139K 98.3% 558M 94.7%* 558M 93.3% 558M 70.0%*
Ours 139K 98.2% 558M 95.4% 558M 91.3 % 558M 92.3%
Ours (w/ memory bank) 139K 98.3% 558M 95.0% 558M 92.4 % 558M 92.9%

Table 1: Accuracy results of student networks obtained by different data-free distillation strategies on several datasets. The
(*) mark indicates that the results are produced by running the original implementations on previously untested datasets.

fore the benchmark is again relatively simple. For the ex-
periments on SVHN, we selected ResNet-34 [16] as the
teacher and ResNet-18 as the student. The teacher model
was achieving 96.3% accuracy on the test set. Our method
outperformed all baselines. While testing the inclusion of
the memory bank, we used an update period of 5 epochs
and a memory size of 10 batches. For the remaining bench-
marks, we used the same memory bank settings.

CIFAR10 is a colored image classification dataset con-
sisting of over 60,000 labeled images from 10 categories,
each category containing 6000 samples. The number of
samples ratio for training and testing sets is 5/1. This bench-
mark contains less salient samples for classification and
therefore is more challenging than MNIST and SVHN. For
the experiments on CIFAR10, we selected ResNet-34 [16]
as the teacher and ResNet-18 as the student. The ResNet-34
teacher model was achieving 95.4% accuracy on the test set.
Our method containing the memory bank, outperformed
DAFL and RDSKD baselines while performing lower than
DFAD.

Fashion MNIST is a dataset of 70,000 grey-scale cloth
images from 10 different categories. The number of sam-
ples in the training and testing sets are 60,000 to 10,000
respectively. To compare our work with DAFL and DFAD,
we selected ResNet-34 [16] as the teacher and ResNet-18
as the student. The ResNet-34 teacher model was achieving
94.1% accuracy on the test set. Our method outperformed
both baselines. The improvement our method achieves over
Fashion MNIST is much clearer than it achieves over other
benchmarks. This could be due to a particular organization
of the teacher decision space, tightening the performance
bottleneck of the baselines caused by their above-mentioned
weaknesses. We note that the results of our baselines we re-
port are obtained after running repeated experiments with
different random initializations. Even after numerous trials,
DFAD could not maintain the distillation quality it achieved
in other benchmarks. We relate this to its frailty against

non-optimal hyper-parameter choices, which is also recog-
nized by [10].

CIFAR100 is a more extensive version of CIFAR10 with
100 object categories. There are 600 colored images for
each type of object. These total 60,000 samples are split
into training and testing sets with a 5 to 1 ratio. For the
experiments on CIFAR100, we selected ResNet-34 [16] as
the teacher and ResNet-18 as the student. The ResNet-34
teacher model was achieving 77.94% accuracy on the test
set. Our method containing the memory bank outperformed
all baselines.

CIFAR100
T :ResNet34
S :ResNet18

Method FLOPs Accuracy
Teacher 1.16G 77.94%
Train with data 558M 76.53%
DeGAN 558M 65.25%
EATSKD 558M 67.18%
DFAD 558M 67.70%
DAFL 558M 74.47%
Ours 558M 75.35%

Table 2: Accuracy results of student networks obtained
by different data-free distillation strategies on CIFAR100
dataset.

In summary, Tables 1 and 2 show that our method im-
proved the highest accuracy reached by distilled student net-
works for SVHN, Fashion MNIST and CIFAR100 datasets.
Moreover, although it performs lower than DFAD on CI-
FAR10, our method consistently maintained high perfor-
mance across different benchmarks. Considering these, we
can claim that our efforts in mitigating catastrophic forget-
ting and avoiding mismatch between synthetic and real data,
can improve the overall quality of data-free KD.



(a) (b)

Figure 3: Progression of student accuracy throughout distillation achieved by our method in comparison with DAFL and
DFAD.

(a) (b)

Figure 4: Impacts of update rate and memory size on the student training accuracy.

4.2. Ablation Study

To demonstrate how each component in our proposed
method impacts the distillation performance, we reported
the performances of our method after the inclusion of each
component (see Table 1). The addition of the constraint to
generate samples that match the original data distribution
improved accuracy compared to prior methods for SVHN
and Fashion MNIST benchmarks. Later, the inclusion of the
memory bank, boosted our performance in all benchmarks
except SVHN, yielding comparable results with DFAD on
MNIST and better performance than DAFL on CIFAR10.

Additionally, in Table 3, we compare the results obtained
by different choices of divergence terms that force the gen-
erator to produce novel samples for the student. For this
experiment, we used our method without the memory bank.
Choosing JS divergence over other alternatives caused a

JS L1 KLD
Student Accuracy 92.3% 92.1% 92.1%

Table 3: Effectiveness of different distance terms used to
produce novel samples for the student.

slight improvement in the performance. We attribute this
to the symmetric property of JS divergence as opposed to
the asymmetric KL divergence. While the KL divergence
quantifies the distance of two distributions from the refer-
ence point of one, JS divergence considers both reference
points. This is due to the definition of JS divergence given
in Equation 11 which contains a combination of both the
KL divergence of the student from the teacher and that of
the teacher from the student. Such way to represent the
teacher-student discrepancy could be more suitable than the
asymmetric KL divergence.



4.3. Memory Bank Update Frequency

The update frequency for the memory bank is a hyper-
parameter that needs to be pre-determined and set before
distillation. To find the optimal value, we compared the
behaviors of different update rates for MNIST dataset dis-
tillation. Since the randomness in the parameter initializa-
tion could have affected our comparison, we set the random
seeds manually. The memory bank size is limited to contain
at most 10 batches. We shared the outcome of our experi-
ments in Figure 4a. From the plot, it can be observed that
regardless of the choice of update rate, the usage of memory
bank improved the peak and final values of student accuracy
while also causing fewer fluctuations. Moreover, among the
update frequencies we tested, 1 update per 5 epochs per-
formed better than others by resulting in a more smooth
learning curve and higher student accuracy. Meanwhile, up-
dating the stored samples every epoch, caused larger fluc-
tuations relative to other choices. We attribute this to the
rapid refresh rate unable to store samples for enough iter-
ations. On the other hand, the less frequent update periods
such as 7 and 10 could be causing failure to memorize some
informative samples generated in between updates.

4.4. Memory Bank Size

Selection of the maximum number of batches to be
stored in the memory bank is another hyper-parameter
choice. To observe the isolated impacts of such choice,
we fix the update period to be 5 epochs and plot the learn-
ing curves obtained by different memory sizes. We again
used manual random seed for a fair comparison. Figure 4b
shows that storing at most 10 batches at any step throughout
distillation resulted both in a higher final student accuracy
and a smoother increase in accuracy. Additionally, we ob-
served a correlation between memory size and smoothness
of the curve, as keeping fewer samples in memory caused
larger fluctuations. We note that any choice of memory size
yielded a better performing student than not storing sam-
ples.

4.5. Distillation Among Different Architecture
Types

To the best of our knowledge, all prior work had reported
results on teacher-student pairs that contain the same type
of architectural blocks. For the LeNet5 teacher, the stu-
dent is typically picked as LeNet-half and for the ResNet34
teacher, ResNet18 is selected as the student. In this work,
we also practice distillation among networks with differ-
ent architectural blocks such as ResNet and MobileNetV2.
We used the same ResNet34 teacher trained on Fashion
MNIST as in Table 1 while changing the student to be
MobileNetV2. From Table 4, it can be observed that our
method achieved higher performance than DAFL even

Fashion MNIST
T :ResNet34 T :ResNet34
S :MobileNetV2 S :ResNet18

Method FLOPs Acc. FLOPs Acc.
Teacher 1.16G 94.1% 1.16G 94.1%
Train w/ data 16M 92.4% 558M 94.0%
DAFL 16M 85.7%* 558M 90.4%*
Ours 16M 91.3% 558M 92.9%

Table 4: Accuracy results of MobileNetV2 student net-
works obtained by different data-free distillation strategies
on Fashion MNIST dataset. The (*) mark indicates that the
results are produced by running the original implementa-
tions on previously untested settings.

when we change the student network architecture. The re-
sults we report of our methods were obtained by including
both the memory bank and the proposed generator loss in
our KD framework.

5. Conclusion & Future Work
In this paper, we identify two problems that impair data-

free knowledge distillation performance and propose meth-
ods to solve them. These are catastrophic forgetting and,
mismatch between synthetic and real data distributions.

Addressing the first problem, we proposed a memory
system where we keep the history of generated samples over
iterations. While this simple approach manages to suppress
the negative effects of catastrophic forgetting on student ac-
curacy, it also increases the secondary memory overhead
and slows down distillation. Therefore, we believe future
efforts could be directed to find more efficient ways to pre-
vent catastrophic forgetting in data-free KD. Some possible
improvements could be achieved by selectively storing sam-
ples and/or by storing compressed versions of the samples.

To remedy the second problem, we propose a data-free
KD strategy that constrains the generated novel samples to
match the distribution of the original data. This way, we
ensure that the synthetic samples distinguishing the teacher
from the student are not irrelevant to the original training
data. Additionally, to produce such distinguishing samples
we adopt Jensen-Shannon divergence as a loss term and
compare it with other alternatives.

Experimental results show that our framework not only
improves data-free knowledge distillation performance for
certain datasets, but also maintains high student accuracy
throughout the entire process.
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