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ABSTRACT

Coarse-Grained Reconfigurable Architectures (CGRAs) provide an

excellent balance between performance, energy efficiency, and flex-

ibility. However, increasingly sophisticated applications, especially

on the edge devices, demand even better energy efficiency for longer

battery life.

Most CGRAs adhere to a canonical structure where a homo-

geneous set of processing elements and memories communicate

through a regular interconnect due to the simplicity of the design.

Unfortunately, the homogeneity leads to substantial idle resources

while mapping irregular applications and creates inefficiency. We

plan to mitigate the inefficiency by systematically and judiciously

introducing heterogeneity in CGRAs in tandem with appropriate

compiler support.

We propose REVAMP, an automated design space exploration

framework that helps architects uncover and add pertinent hetero-

geneity to a diverse range of originally homogeneous CGRAs when

fed with a suite of target applications. REVAMP explores a compre-

hensive set of optimizations encompassing compute, network, and

memory heterogeneity, thereby converting a uniform CGRA into

a more irregular architecture with improved energy efficiency. As

CGRAs are inherently software scheduled, any micro-architectural

optimizations need to be partnered with corresponding compiler

support, which is challenging with heterogeneity. The REVAMP

framework extends compiler support for efficient mapping of loop

kernels on the derived heterogeneous CGRA architectures.

We showcase REVAMP on three state-of-the-art homogeneous

CGRAs, demonstrating how REVAMP derives a heterogeneous vari-

ant of each homogeneous architecture, with its corresponding com-

piler optimizations. Our results show that the derived heteroge-

neous architectures achieve up to 52.4% power reduction, 38.1%

area reduction, and 36% average energy reduction over the corre-

sponding homogeneous versions with minimal performance impact

for the selected kernel suite.
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1 INTRODUCTION

Resource-constrained edge devices rely on accelerators to deliver

high performance at low power. Application Specific Integrated

Circuit (ASIC) accelerators deliver the best power-performance,

but are inflexible, leading to higher non-recurring engineering cost.

Field Programmable Gate Arrays (FPGAs) are a popular alterna-

tive as reconfigurable accelerators. But bit-level reconfigurability

in FPGAs leads to lower energy efficiency. Coarse-Grained Recon-

figurable Architectures (CGRA) [24, 30] strike a balance between

flexibility and efficiency by introducing word-level and per-cycle

reconfigurability, making them ideal for acceleration at the edge.

Several academic CGRA architectures have been proposed in

recent years, such as ADRES [26], Morphosys [36], HyCUBE [19,

38], and commercial ones like Samsung Reconfigurable Processor

(SRP) [21], Wave DPU [27], DRP [13] and Plasticine [32]. Most ex-

isting CGRAs (e.g., SRP [21], Morphosys [36], ADRES [26]) adopt a

regular structure where identical PEs and memory are connected

with a uniform network. Designers have largely adhered to homo-

geneous CGRAs due to the lower hardware design effort, as well as

the complexities of a software compiler when mapping onto irreg-

ular hardware. Such homogeneity, however, leads to idle resources

as well as area and power inefficiencies. We thus see the need to

introduce heterogeneity through automated design space explo-

ration frameworks that can assist architects in delivering better

power-performance, paving the way for wider adoption of CGRAs.

We propose REVAMP (Figure 1), a novel design space exploration

framework comprising a set of micro-architectural optimizations

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.
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Figure 1: High-level overview of REVAMP

and corresponding compiler support for heterogeneous CGRA re-

alization for a suite of applications starting with a homogeneous

architecture. REVAMP offers a trade-off between generalization and

specialization by creating heterogeneous architecture for a spe-

cific domain with diverse kernels (e.g., edge computing for health-

care). Moreover, we are targeting CGRAs for acceleration at the

edge amenable to domain- and product-class-specific specializa-

tion. Hence, there is generally prior knowledge of the workloads

that REVAMP can use to derive a heterogeneous CGRA specialized

across target workloads.

In contrast to prior heterogeneous CGRA architectures with

localized heterogeneous optimizations, REVAMP introduces nov-

elty to the heterogeneous CGRA design process by being generic,

configurable, and scalable. REVAMP enables architects to explore

heterogeneous optimizations for diverse homogeneous CGRAs and

not a specific CGRA. We also introduce heterogeneity to a wider

scope, considering compute, interconnect, and memory. Finally,

we design the compiler to support the introduced heterogeneous

features. Our concrete contributions are:

• We propose a novel framework REVAMP for architects, com-

prising a set of optimizations to automatically derive a het-

erogeneous CGRA with higher efficiency given any homoge-

neous architecture and an application suite. The framework

is publicly available at [4]

• Our optimizations cover a wider scope of heterogeneity in-

cluding compute, interconnect, and PE-local storage.

• We develop compiler optimizations to support near-optimal

mapping on the derived heterogeneous architectures.

• We showcase REVAMP by deriving heterogeneous architec-

tures from three prominent homogeneous CGRAs. The het-

erogeneous CGRAs provide average of 38.5% power and

29.8% area reduction (highest 52.4% and 38.1%) compared to

the homogeneous counterparts. Application kernel execu-

tion on heterogeneous CGRAs shows average of 36% energy

reduction with minimal impact on performance compared

to the homogeneous versions, resulting in a 62% average

increase in energy efficiency for evaluated kernel suite.

2 INEFFICIENCY OF HOMOGENEOUS CGRAS

We analyze several prominent homogeneous CGRA architectures to

highlight their inefficiencies andmotivate the need for the proposed

heterogeneous optimizations.
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Figure 3: Snippet of DFG

2.1 Homogeneous CGRA

Figure 2 shows a canonical homogeneous CGRA. The CGRA con-

sists of a uniform array of processing elements (PE), each with

compute and memory elements (for configuration and data), inter-

connected with a network.

As CGRAs are fully software scheduled, the compiler plays a vi-

tal role. It extracts the compute-intensive loop kernel as a Data Flow

Graph (DFG) (Figure 3), where the nodes represent the operations

and the edges represent the data dependencies. The compiler is re-

sponsible for spatio-temporal mapping of the DFG onto the CGRA

with both inter- and intra-loop iteration parallelism. The sched-

ule gets repeated for each loop iteration, hence called a modulo

schedule. The number of cycles between two successive iterations

is known as the Initiation Interval (II), which is used as the perfor-

mance metric. The lower the II value, the higher is the throughput

of the loop execution. A compiler-generated CGRA modulo sched-

ule contains hardware operations and the data routing details for

each cycle. Prior to the execution, a binary representation of the

modulo schedule is loaded to the configuration memory of the PEs.

Input data is loaded to the on-chip data memory. During execution,

each PE reconfigures compute and routing according to the con-

figuration memory every cycle and repeats after II cycles. Figure 4

illustrates an example of such scheduling.

2.2 Homogeneity Leads to Inefficiency

Homogeneous CGRAs uniformly distribute the on-chip resources

and provide full flexibility to the compiler. Identical resource dis-

tribution eases compilation. It also simplifies the placement and

layout during chip design. Unfortunately in reality, the compiler

may not be able to fully utilize the resources for certain applications,

incurring unnecessary area, power overheads. CGRAs like SRP [21]

introduce different power modes and clustered PEs to reduce this

overhead by gating selected clusters. But complex power manage-

ments are at odds with resource-constrained devices and do not

offer additional choices and fine-grained control like heterogeneity.

Compute : In a homogeneous CGRA, the PEs have identical

hardware (e.g., ALU) supporting time-multiplexing of different op-

erations. However, for most applications, only a subset of the oper-

ations are used throughout execution for each PE and the hardware

for the remaining operations remain idle. In addition, a fully flexi-

ble compute unit requires more configuration bits, of which only a

few carry useful reconfiguration information. On the other hand,

the data dependencies in DFGs are inherently irregular (Figure

3), restricting the amount of parallelism that can be achieved and

impacting resource utilization.
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#pragma CGRA

for ( int i = 0 ; i <= N ; i++ ) {

a [ i ] = b [ i ] + c [ i ] ;

d [ i ] = a [ i ] * c [ i ] ;

}
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Figure 4: An example of CGRA scheduling. DFG (Figure 4c)

of loop kernel (Figure 4a) is scheduled (Figure 4d) on to a

2𝑥2 CGRA (Figure 4b). Prior to the execution, the schedule is

loaded to the configuration memory.

Interconnect : The interconnect delivers data from the source

PE to the destination PE corresponding to each data dependency

within the DFG. As the data flow is not uniform across the DFG,

the bandwidth and latency requirements are also inherently non-

uniform across the CGRA. Hence the available bandwidth cannot

be fully utilized across all links. Moreover, a homogeneous inter-

connect handles different data types (e.g., operands and predicates)

the same way when ideally they should be treated differently to

save energy.

Local Memory : Configuration memory takes up significant power

in architectures with spatial-temporal mapping given per-cycle

reconfiguration [20]. Typically the opcode, constants, and router

settings are encoded into a single configuration word in a homoge-

neous design. Yet, in reality, these components differ significantly.

Constants rarely change, whereas router configurations can change

each cycle. Also, identical configuration memory size for all PEs is

not desirable as the fraction of useful configuration bits depends on

how active a PE is. Thus for configuration memory, the inefficiency

is caused by both intra- and inter-PE homogeneity.

2.3 Quantifying Inefficiency of Homogeneous
CGRAs

We now quantify inefficiencies concretely with three prominent

homogeneous CGRA architectures that serve as our baselines.

HM-ADRES in Figure 5a is inspired by the ADRES [26] template

architecture with uniform PEs. Each PE contains a full-fledged ALU

with an adder, comparator, multiplier, logic unit, and load-store

unit (in PEs directly connected to the data memories).

Each PE has a local register file for storage of intermediate re-

sults and configuration memory. The PEs are placed in a grid and

communicate with only the immediate neighbors using ALU MOV

Table 1: Power breakdown of homogeneous CGRAs.

HM-ADRES HM-HyCUBE HM-Softbrain

Local Memory
Configuration 54.8% 57.7% 13.2%

Register File 25.6% - 30%

Compute 4.1% 3.8% 7.3%

Interconnect
Switches 1% 3.4% 9.9%

Registers - 12.47% -

Table 2: Area breakdown of homogeneous CGRAs.

HM-ADRES HM-HyCUBE HM-Softbrain

Local Memory
Configuration 41% 46.75% 3.45%

Register File 27.05% - 41.05%

Compute 19.04% 22.22% 29.28%

Interconnect
Switches 5.2% 13.63% 14.8%

Registers - 5.7% -

directive. All the PEs on a row or column are connected through a

bus to offer additional connectivity.

HM-HyCUBE in Figure 5b closely resembles HyCUBE [19, 38].

It has a full-fledged ALU just like HM-ADRES. We replace the mesh

network in HyCUBE [19] with a uniform folded torus for a fair

comparison. Rich SMART NoC [7] enables single cycle multi-hop

connections. Any two PEs in this design have multiple possible

paths, unlike HM-ADRES that has only one dedicated path between

connected PEs. Each PE in HM-HyCUBE has a crossbar switch;

so the PEs can simultaneously compute and communicate. HM-

HyCUBE only has configuration memory, while the input side

registers to the switches are used for intermediate data storage.

Both these architectures are coupled architectures in that the PEs

perform both memory access-related operations and computations.

HM-Softbrain (Figure 5c) is a Softbrain [28] style stream dataflow

architecture with decoupled memory access and computations [40].

Each PE comprises a fully-fledged ALU with the same capabili-

ties as HM-ADRES and HM-HyCUBE but without any load-store

units due to decoupled memory. Input data flows to the PE array

through input channels and the computed results flow to memory

through output channels. Stream units ensure that there is a contin-

uous data flow to the PE array. HM-Softbrain maps computations

only spatially unlike spatio-temporal mapping of the other two

CGRAs and hence does not need the configuration memory. A sin-

gle register per PE holds the configuration data. Each PE has a local

register file to store intermediate data values. The interconnect is a

circuit-switched network fully pre-configured by the compiler.

A common characteristic across the three architectures is that

they are homogeneous, with identical PEs of the same compute

capabilities, storage, and interconnect bandwidth.

2.3.1 Power and Area Breakdown. Table 1 and Table 2 show the

power and area breakdown of the different components within each

architecture. We assume all the architectures have 32-bit data paths

and configuration memory and register file to be 256B and 32B per

PE (if present in the architecture). Total static and dynamic power

with average switching activity is obtained using RTL synthesis

with Synopsys Design Compiler on a commercial 22nm process.

For architectures with spatio-temporal mapping (HM-ADRES

and HM-HyCUBE), the configuration memory consumes the most

power as it is relatively large and accessed every cycle. The area of
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Figure 5: Baseline homogeneous CGRA architectures derived from prominent CGRAs in literature.

the configuration memory is also quite significant, along with any

local register files.

A full-fledged ALU with a multiplier allows all compute options.

If the memory component is not dominant in an architecture, the

compute unit consumes a significant portion of power as is evident

with HM-Softbrain. Area wise it is the second-highest contribu-

tor for all three architectures. A highly flexible compute unit also

requires more configuration bits, increasing the storage cost.

In architectures with sophisticated interconnects (HM-ADRES

and HM-Softbrain), the network cost is significant. Apart from

any registers placed at the network, the muxes and the crossbar

switches are the largest contributor.

2.3.2 Resource Utilization. The efficiency of a system is the amount

of useful work done with the consumed resources. In CGRAs, the

ideal case will be to achieve 100% utilization across applications. As

the CGRA is fully software scheduled, the efficacy of the compiler

has a significant impact on utilization. We employ several opti-

mizations such as loop unrolling and loop fusion to maximize the

utilization.We analyze the average utilization (Table 3) of the CGRA

resources with five application kernels (GeMM, Convolution2D,

Stencil2D, crs, and ellpack) from PolyBench [31] andMachSuite [34]

benchmark suites that are compatible across all the three architec-

tures. The methodology is detailed in Section 4. The utilization is

very low due to uniform resources. For example, even though the

configuration memory consumes the most power in HM-ADRES

and HM-HyCUBE, the actual valid configuration bits are 12% and

21% of the total memory, respectively. The homogeneous nature of

the configurations leads to many unused bits.

Summary : Homogeneous CGRAs lead to idle resources that

impose power overheads. This motivates us to explore a comprehen-

sive set of optimizations that can break the uniformity and create

heterogeneous realization of the architectures that are more power-

efficient. We choose optimizations that can be applied broadly

Table 3: Resource utilization for CGRA elements.

HM-ADRES HM-HyCUBE HM-Softbrain

Compute Utilization 16.5% 28.2% 26.8%

Interconnect Utilization 1.6% 8.8% 13.1%

Valid Configurations 12.5% 21.5% -

across architectures. REVAMP enables design space exploration

for such heterogeneous architecture realization across a diverse

landscape of CGRAs.

3 REVAMP: EXPLORING CGRA
HETEROGENEITY

The REVAMP framework comprises micro-architecture level op-

timizations applicable across diverse CGRA architectures. It thus

retains the general-purpose nature of the CGRAs, while optimizing

their energy efficiency. We first elaborate on the optimizations for

compute, network, and PE-local memory.

3.1 Compute Heterogeneity

Each PE in CGRA has a compute unit, typically a full-fledged ALU

that can perform all arithmetic, logic, comparison, and memory

operations supported by the ISA. A full-fledged ALU provides the

most flexibility as every PE can execute every operation like a

general-purpose processor. On the other hand, PEs can be special-

ized to support only a single compute operation, closer to an ASIC,

at much lower power/area overheads.

Homogeneous CGRAs have identical ALUs in every PE. Our

proposed compute heterogeneity optimizations aim to preserve

the performance advantages of full-fledged ALUs, while heteroge-

neously customizing the ALUs across PEs to save power. REVAMP

seeks to accelerate a wide range of applications, rather than restrict-

ing the application scope. Specifically, given a suite of applications,
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it derives the compute unit of each PE to support a subset of opera-

tions by judiciously searching the design space across all the PE.

Converting full-fledged ALUs to more specialized heterogeneous

compute units reduces both static and dynamic power.

• Distribution of operation classes across the PE array : A subset

of operations is selected for each PE in correspondence with

the operation distribution of the target application suite and

the supported operations of the homogeneous architecture.

We classify the individual operations into five operation

types (see Table 6a). REVAMP correlates the frequency of

occurrence of each class of operations in the PE array with

that of the input application suite. For example, if ADD/SUB

operation class has a higher frequency of occurrence com-

pared to LOGIC class, more PEs will contain adders. The

approach is summarized below.

For particular operation class 𝐶 , let 𝑓 be the percentage

occurrence of operations (in a given application suite) be-

longing to class 𝐶 . If 𝑁𝑐 is the number of PEs supporting

class 𝐶 and 𝑁 is the total number of PEs,

𝑁𝑐

𝑁
≈ 𝛼 × 𝑓 , 𝑤ℎ𝑒𝑟𝑒 𝛼 ≥ 1

As a rule of thumb, we keep 𝛼 = 2 to provide sufficient

flexibility. 𝛼 can be set to explore multiple combinations.

In a coupled architecture where both memory access and

the computations are done in the PE array, a set of PEs will

be dedicated for memory access operations [14, 32]. In addi-

tion, the area, power cost of different operation classes are

considered. For example, multipliers or any special functions

like square root units consume more resources compared

to adders and comparators. Such bulky units are kept at a

minimum to support the required operation.

• Compute flexibility within a PE : Compute flexibility in this

context is the number of operation classes supported by

each PE. Operator classes described above are unevenly dis-

tributed for better heterogeneity. We define a hotspot index

for each PE. The PEs with higher hotspot indices can support

more classes of operations, and thus have higher compute

flexibility. Either the user can specify the hotspot index as

an input (static mode) or let the framework decide (dynamic

mode). In static mode, REVAMP spreads the operator classes

according to the provided hotspot index, such that those

with higher hotspot index will get higher flexibility. In dy-

namic mode, REVAMP maps a subset of applications onto

the homogeneous CGRA to identify the potential hotspots

and places the operation classes accordingly.

Figure 6b shows an example of a derived heterogeneous

compute architecture. Colour codes represent the statically

assigned hotspot indexes where the middlemost PEs have

the fullest compute capabilities and the capabilities gradu-

ally reduce when reaching the outermost PEs. As multipliers

have a larger area footprint, they are usually associated with

a higher index. When applying compute diversity, it is impor-

tant to maintain the equilibrium of the design with respect

to thermal characteristics and area.

Essentially, heterogeneous compute units save resources in

two ways. As each compute unit supports a limited subset
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Figure 6: Example of heterogeneous compute optimization

of operations, power, area savings are realized. In addition,

each PE now requires fewer configuration bits, thus also

translating to lower configuration memory requirements.

Implications for CGRA Compiler. Following summarizes how the

compute heterogeneity impacts the CGRA compiler.

• As the set of operations supported by each PE is not uniform,

the compiler should know what operations are supported

by each PE. This is fed as input to the compiler through the

heterogeneous architecture description file (supportedOps

in Algorithm 1).

• In mapping a particular operation to a PE node, we first need

to identify the candidate set of PEs. Hence, we search in the

set of supportedOps and consider only the PEs having the

respective compute unit.

• Diversified compute elements leads to resource scarcity for

some operations. We thus introduce scarcity cost. We cat-

egorize the nodes into classes of operations (ADD, MUL,

LOG, COMP, and MEM) and obtain the number of nodes in

each class. We define scarcity cost as the ratio between the

number of unmapped DFG nodes of an operation class and

the number of empty CGRA PEs supporting that particular

class. During DFG node placement on a PE, we calculate

scarcity cost for the remaining supported classes of that PE

to discourages the current placement if the cost to another

class is too high.

3.2 Network Heterogeneity

Interconnects play a significant role in CGRAs, supplying each

PE’s required operands when they are needed, so the PEs need

not stall and the performance is maximized. A homogeneous inter-

connect provides uniform bandwidth to every PE, whereas in an

ideal case, the interconnect should provide bandwidth on-demand,

according to the application requirements. Again, on one end of

the spectrum, we have general-purpose networks like those in

multi-core processors, where data is transported through a homo-

geneous, fixed-width network. On the other end, ASICs transport

data directly via point-to-point wires tailored to the specific data

width needed. In REVAMP, we seek to support the general-purpose

communications of diverse data types and traffic on customized

datapaths between CGRA PEs to lower the overheads. The key thus
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nect

lies in the compiler being able to map diverse data flows onto the

specific datapaths.

REVAMP explores two heterogeneous optimizations in the CGRA’s

on-chip network:

• Heterogeneity of the physical resources in the datapath.

• Heterogeneity in the bandwidth allocated for data transfer

of each individual data element.

State-of-the-art homogeneous CGRAs have different types of

interconnect networks like neighbour-to-neighbour [26], compiler-

scheduled packet-switched [19] and circuit switched [28]. The inter-

connect datapath consists of crossbars or muxes, datapath registers,

and wires. REVAMP optimizes each of these individual elements

and introduces heterogeneity.

3.2.1 Heterogeneous Bit-Width Interconnects : To incorporate het-

erogeneity to the interconnect, we diversify the bit-width of the

datapaths such that the compiler has a choice to select the most

efficient one.

• Internal vs External Datapaths: We subdivide the datapaths of

the interconnect as internal and external datapaths. Internal

is the connection within the PE forming datapath between

the compute unit and the switch boundary. External datap-

aths are the connections between PEs. Connections across

internal and external datapaths are made heterogeneous by

giving internal datapaths twice the number of wires com-

pared to external datapaths. For example, if the architecture

has an N-bit compute unit, internal datapaths will be N+1

bits while the external datapaths are N/2 +1 bits (The extra

bit is the data valid bit).

• PE microarchitecture with heterogeneous bit widths: Figure 7

shows an example micro-architecture of a PE that handles

multiple bit-width datapaths. The single crossbar is replaced

with two sliced crossbars of half the bit-width. Internal data-

paths are MSB and LSB combined, while external datapaths

can carry either LSB or MSB. Registers in the datapath are

used to establish the pipeline.

• Saving Resources with Proposed Interconnect Heterogeneity:

As evident from Section 2, most of the interconnect power

is contributed by the switches or the crossbar and datapath

registers, if any. The proposed optimization can reduce these

power consumption with minimal impact on performance,

optimizing the overall network power.

Once the external datapath size is reduced by half, the reg-

isters on the datapath are also reduced by half which saves

both static and dynamic power. Additionally, we can gate

these datapath registers to save more power.

In architectures with rich network connectivity, the switch

is normally a crossbar. Crossbar is essentially a sea of muxes

that takes up significant power and area that quadratically in-

creases with the degree of connectivity. As shown in Figure 7,

we slice the individual N bit crossbar to two N/2 bit crossbars.

Crossbar channel slicing reduces the internal complexity of

each individual crossbar, reducing the overall power and

area compared to a single full-sized crossbar.

3.2.2 Implications for CGRA Compiler. With heterogeneous bit-

width datapaths, the compiler needs to assign the dataflows accord-

ingly to minimize the performance impact.

• Single Cycle vs Streaming Data Transfers : In order to send an

N+1 bit data over N/2 +1 bit datapath, the original data word

is split into equal LSB (Least Significant Bits), MSB (Most

Significant Bits) and appended with a valid bit. If there is a

critical latency requirement, such links are prioritized. If so,

MSB and LSB can be sent simultaneously along two different

paths if routes are available. Else, data is either streamed

or sent on two paths at the same time depending on the

availability of routes and the cost associated with the routes.

If data transfer occurs on two different paths, the compiler

selects two of the lowest cost paths and assigns the LSB and

MSB transfers accordingly.

• Pipelined Streaming : There are scenarios where even critical

path edges need to be streamed depending on the availabil-

ity of routes. Increased latency can get accumulated along

the DFG nearly doubling the execution time. We introduce

pipelined streaming of data to hide the latencies. In a sched-

ule, if the data for two consecutive computations traverse

along independent paths, those transfers can be pipelined.In

the example shown in Figure 8, a sample DFG is mapped onto

three instances of 2x2 CGRAs. In case there is no streaming,

data traversal takes place within single clock cycle. In case of

streaming, data traversing between functional units take 2

clock cycles with LSB followed by MSB. If there is no pipelin-

ing, transferring output of E starts only after transferring

on output of A is completed. In this case the execution of

single iteration takes up 5 cycles and II=4 which is reduced

to a latency of 4 cycles with II=2 with pipelining.

• Different Data Types : Heterogeneity can be further imposed

depending on the type of data transferred. Once data is split

into LSB and MSB, the MSB may or may not carry useful

information. If this can be statically determined at the com-

pilation time, the MSB transfer can be fully eliminated (e.g.,

predicates carry useful information in LSB only).

3.3 Heterogeneity of Local Memory

The local memories in a PE store configurations and intermediate

data. REVAMP explores heterogeneity in the configuration memory

microarchitecture, by decoupling the configuration memory struc-

ture for different hardware components (see Figure 9). Decoupled
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Figure 9: Proposed decoupled configuration structure

configuration structure removes redundant and invalid configura-

tions, thus reducing the area and power overhead. The separate

structures can be clock gated, as the configuration memory reads

happen rarely with infrequent changes in configurations, reducing

dynamic power.

3.3.1 Decoupled Configuration Structure. We dedicate separate

configuration memories for constants, opcodes, switch, and store

only the valid configurations. Each of them has separate program

counter pointing to the latest read instruction. There is a common

configuration register that holds the entire current configuration

word. Program counters are incremented only if there is a change

required in the corresponding portion of the configuration entry in

the common configuration register. Common predicate structure

captures the validity and the variability of the sparse configurations.

If the valid bit of a particular element is false, it will directly update

the common configuration register.

3.3.2 Time Shared Switch Configurations . If the crossbar has a

higher degree, the size of the configuration becomes quite signifi-

cant. For example, the crossbar in HyCUBE [19] accounts for 33%

of the configurations. Yet, only a few of the crossbar ports are in-

volved in actual data transfers. So, we subdivide the individual

configuration word of the switch into two classes( based on cross-

bar direction) and allow only one class to change at a time. This

restricts the routing flexibility but halves the configuration require-

ment. We also take into account the hotspot index when adding

routing restrictions. If these restrictions lead to an unacceptable

performance impact, we ease the restrictions for PEs with a higher

hotspot index until a good balance is found.

3.3.3 Non-uniform Memory Sizes. We either pre-set the sizes in

configuration or use the hotspot index to diversify the memory

sizes allocated to each PE, allocating more memory for those with

a higher index. This can be applied to both the configuration store

and intermediate value store.

3.3.4 Implications for CGRA Compiler.

• Resource aware mapping: We extend the input heterogeneous

configurations to add details about the sizes, such that the

compiler can keep track of it. If it is not specified, we leverage

the hotspot index of compute heterogeneity. The compiler

updates the configuration resources and prevents any over-

flows by blacklisting the PEs whose configuration resources

are full.

• Improving configuration similarity: The compiler needs to

minimize the changes between consecutive configurations

such that the individual structures can be compressed even

further and switching is minimized. We introduce Similarity

Cost (see Algorithm 1) to discourage toggling of configu-

rations. Similarity Cost is calculated by comparing the last

configuration already store and the prospective configura-

tion from the current choice for node placement.

• If time shared switch configurations are enabled, the com-

piler adds more control into router selection such that it

prevents overlapping of classes. The compiler knows the

switch configurations belonging to the two classes and it

checks if any class is active in a given cycle. If the prospec-

tive route does not belong to the active class, it is discarded.

This check is done at each hop of the routing algorithm.

3.4 Heterogeneous CGRA Compiler

The compiler that maps the application kernels onto the CGRA is

pivotal in determining the performance. As the CGRA architecture

is tightly coupled with the compiler, the heterogeneous optimiza-

tions need to be partnered with compiler optimizations. Earlier, we

have highlighted how heterogeneous architectural optimizations

bring about challenging implications to the CGRA compiler. Here,

we detail how we extend the HyCUBE [19] mapper and compiler

to accommodate these optimizations related to heterogeneity.

Figure 10 illustrates the compilation flow. All the heterogeneous

CGRA optimizations are included in the mapping stage. Hence

the DFG generation is similar to the state-of-the-art approaches.
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The CGRA mapper takes as input a DFG and the architectural

description, which details the heterogeneous microarchitectural

optimizations (i.e., any heterogeneous CGRA instance generated

by REAVMP), and generates the modulo schedule for execution in

binary format. The objective of the mapping algorithm is to achieve

the minimum possible Initiation Interval (II). The mapper initially

takes the minimum II as the maximum of resource minimum II

(ResMII) and recurrence minimum II (RecMII). Minimum II is used

to create a time-extended version of the CGRA resource graph

known as the Modulo Routing Resource Graph (MRRG) [8]. The

mapper takes an iterative approach, where the II value is increased

by one in each iteration, to obtain a valid mapping of the DFG

onto the MRRG taking all the heterogeneous optimizations into

account. For each II value, the sorted DFG nodes are first placed

in candidate locations followed by routing. It uses heuristic cost

models to determine the best placements and routes.

Problem Definition. Given a DFG 𝐷 = (𝑉𝐷 , 𝐸𝐷 ) where 𝑉𝐷 cor-

respond to nodes of the graph and 𝐸𝐷 to the edges of the graph

and a heterogeneous CGRA instance, the problem is to obtain the

minimally time extended MRRG𝑀𝐼 𝐼 = (𝑉𝑀 , 𝐸𝑀 ) which has a valid

mapping 𝜙 = (𝜙𝑉 , 𝜙𝐸 ) of 𝐷 on𝑀𝐼 𝐼 .

Compute heterogeneity: Let us define𝑂𝑣 as the set of operations

supported by 𝑣 where 𝑣 ∈ 𝑉𝑀 and 𝑂𝑣 ⊂ 𝑂 , 𝑂 is the set of all sup-

ported operations. In an architecture with heterogeneous compute

units, ∀𝑢 ∈ 𝑉𝐷 , 𝑖 𝑓 𝜙𝑉 (𝑢) = 𝑣,𝑢𝑜𝑝 ∈ 𝑂𝑣 where 𝑢𝑜𝑝 is the operation

of the node 𝑢. As illustrated in Figure 10, the compute constraints

are taken into account and scarcity cost updated when selecting the

set of candidate destinations for the node placement.

Interconnect heterogeneity: The problem statement is redefined

to accompany the proposed heterogeneous interconnect. Given a

DFG 𝐷 = (𝑉𝐷 , 𝐸𝐷 ), we create a edge-splatted DFG 𝐷 ′
= (𝑉𝐷 , 𝐸

′
𝐷
),

∀𝑒 ∈ 𝐸𝐷 , 𝑒
′
= {𝑒𝑚𝑠𝑏 , 𝑒𝑙𝑠𝑏 }, where 𝑒𝑚𝑠𝑏 , 𝑒𝑙𝑠𝑏 are equal splits of

𝑒 . If there exist a valid mapping 𝜙 ′
= (𝜙 ′

𝑉
, 𝜙 ′

𝐸
) of 𝐷 ′ on 𝑀𝐼 𝐼 ,

∀𝑒 ′ ∈ 𝐸 ′
𝐷
, 𝜙 ′

𝐸
(𝑒 ′) = {𝜙 ′

𝐸
(𝑒𝑚𝑠𝑏 ), 𝜙

′
𝐸
(𝑒𝑙𝑠𝑏 )}. If 𝑒

′ ∈ {set of single

cycle paths}, 𝜙 ′
𝐸
(𝑒𝑚𝑠𝑏 ) == 𝜙 ′

𝐸
(𝑒𝑙𝑠𝑏 ). The set of single cycle paths

is determined statically depending on whether any valid data is

carried on MSB or whether data transfer is within the same PE.

Edges carrying predicates is an example of such single cycle paths.

Interconnect related optimizations are applied in the route selection

stage of the mapper.

Heterogeneity of local memory: Memory resource availability

is checked during the candidate PE selection stage and the candi-

date is discarded if sufficient resources are not available. Similarity

Algorithm 1:Mapping single DFG node onto MRRG

Data: DFG node,Partially mapped MRRG

Result: Candidate destinations with minimum cost for placement

and routing, Route

1 InitialCandi = 𝑔𝑒𝑡𝐸𝑚𝑝𝑡𝑦𝑁𝑜𝑑𝑒𝑠 (𝑀𝑅𝑅𝐺) ;

2 ResAvaiCandi = 𝑐ℎ𝑒𝑐𝑘𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑎𝑛𝑑𝑖) ;

3 ComputeAvaiCandi = 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑅𝑒𝑠𝐴𝑣𝑎𝑖𝐶𝑎𝑛𝑑𝑖) ;

4 MappedParentChild = 𝑔𝑒𝑡𝑀𝑎𝑝𝑝𝑒𝑑 (𝐷𝐹𝐺𝑁𝑜𝑑𝑒) ;

5 foreach dest in ComputeAvaiCandi do

6 foreach node in MappedParentChild do

7 isSingleCycle = 𝑖𝑠𝑆𝑖𝑛𝑔𝑙𝑒𝑅𝑜𝑢𝑡𝑒 (𝐷𝐹𝐺𝑁𝑜𝑑𝑒,𝑛𝑜𝑑𝑒,𝑑𝑒𝑠𝑡 ) ;

8 if isSingleCycle then

9 {Route,Cost} = getMinCostRoute(DFGNode,node,dest);

10 else

11 isCriticalPath = 𝑖𝑠𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑃𝑎𝑡ℎ (𝐷𝐹𝐺𝑁𝑜𝑑𝑒,𝑛𝑜𝑑𝑒) ;

12 if isCriticalPath then

13 𝑑𝑒𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 (𝑡𝑟𝑢𝑒) ;

14 {𝑅𝑜𝑢𝑡𝑒𝐿𝑆𝐵,𝐶𝑜𝑠𝑡𝐿𝑆𝐵 } =

𝑔𝑒𝑡𝑀𝑖𝑛𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒 (𝐷𝐹𝐺𝑁𝑜𝑑𝑒,𝑛𝑜𝑑𝑒,𝑑𝑒𝑠𝑡 ) ;

{𝑅𝑜𝑢𝑡𝑒𝑀𝑆𝐵 ,𝐶𝑜𝑠𝑡𝑀𝑆𝐵 } =

𝑔𝑒𝑡𝑀𝑖𝑛𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒 (𝐷𝐹𝐺𝑁𝑜𝑑𝑒,𝑛𝑜𝑑𝑒,𝑑𝑒𝑠𝑡 ) ;

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝐿𝑆𝐵 +𝐶𝑜𝑠𝑡𝑀𝑆𝐵 ;

𝑅𝑜𝑢𝑡𝑒 = {𝑅𝑜𝑢𝑡𝑒𝐿𝑆𝐵, 𝑅𝑜𝑢𝑡𝑒𝑀𝑆𝐵 };

15 𝐶𝑜𝑠𝑡+ = 𝑠𝑐𝑎𝑟𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡 (𝑛𝑜𝑑𝑒,𝑀𝑅𝑅𝐺) +

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐶𝑜𝑠𝑡 (𝑛𝑜𝑑𝑒,𝑀𝑅𝑅𝐺,𝑅𝑜𝑢𝑡𝑒) ;

16 return {𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑠𝑡𝐷𝑒𝑠𝑡, 𝑅𝑜𝑢𝑡𝑒 };

17 Function getMinCostRoute(DFGNode,RelNode,dest)

18 𝑟𝑜𝑢𝑡𝑒𝑠𝑊 𝑖𝑡ℎ𝐶𝑜𝑠𝑡 = 𝑔𝑒𝑡𝑅𝑜𝑢𝑡𝑒𝑠 (𝑅𝑒𝑙𝑁𝑜𝑑𝑒,𝑑𝑒𝑠𝑡 ) ;

19 if timeSharedSwitchConfig then

20 𝑟𝑒𝑚𝑜𝑣𝑒𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑒𝑑 (𝑟𝑜𝑢𝑡𝑒𝑠𝑊 𝑖𝑡ℎ𝐶𝑜𝑠𝑡 ) ;

21 𝑚𝑖𝑛𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒 = 𝑔𝑒𝑡𝑀𝑖𝑛𝐶𝑜𝑠𝑡 (𝑟𝑜𝑢𝑡𝑒𝑠𝑊 𝑖𝑡ℎ𝐶𝑜𝑠𝑡 ) ;

22 return minCostRoute;

Cost to capture frequent toggling of configurations is added at the

minimum cost selection phase.

Algorithm 1 shows how heterogeneous optimizations are applied

in mapping one of the DFG nodes. Given an unmapped DFG node,

first, the possible placement destinations are filtered considering

memory heterogeneity (Line 2) and compute heterogeneity (Line 3).

The algorithm then iterates over possible placement destinations

estimating the routing cost to already mapped parents or children.

In the case of streaming, the cost is calculated for both LSB and

MSB transfers (Line 14). It will consider the configuration memory

availability in determining the minimum cost route (Line 19-20).

Finally, the total cost for the placement destination is calculated

considering similarity cost and scarcity cost (Line 15).

4 EXPERIMENTAL EVALUATION

4.1 Experimental Methodology

We apply REVAMP framework on three prominent but distinctly dif-

ferent homogeneous CGRAs to derive heterogeneous architectures

with the proposed optimizations. The derived heterogeneous archi-

tectures along with the homogeneous versions are implemented in

System Verilog RTL [1] and synthesized on a commercial 22nm pro-

cess using Synopsys Design Compiler to obtain the power and area

values. The compiler optimizations for REVAMP are implemented
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Table 4: Application kernels used in the evaluation

Application Kernel Description Domain Nodes Edges

GeMM General Matrix Multiply Linear Algebra 61 77

Conv2d 2-dimensional convolution Deep Learning 59 72

CRS Compresses Sparse Row, SPMV Graphic Processing 27 33

ellpack SPMV ELLPACK format Graphic Processing 41 50

stencil2d 2-dimensional stencil computation Image Processing 27 33
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Figure 11: Design space exploration of heterogeneous vari-

ants of HM-HyCUBEwithREVAMP, arriving at HT-HyCUBE.

in C++, extending an existing CGRA compiler [19] to take in as

inputs a comprehensive architectural description in JSON format

and the dataflow graph (DFG) corresponding to the loop kernel of

an application. The LLVM [10] based DFG generator is used for

generating the DFG from C/C++ application code of the kernels.

Benchmark Applications. Table 4 shows the set of application

kernels used with our framework. These kernels, selected from

MachSuite [34] and PolyBench [31] benchmark suites, are computa-

tionally intensive and suitable for acceleration on CGRAs covering

widely used application domains.

4.2 Derived Heterogeneous Architectures

Figure 11 illustrates the design space exploration by REVAMP on

HyCUBE [19] (HM-HYCUBE). We select the architecture instance

with the best balance in terms of power, area, and throughput as

the derived heterogeneous design. Similarly, corresponding hetero-

geneous architectures are derived for ADRES [26] (HM-ADRES)

and Softbrain [28] (HM-Softbrain). Note that the PE array size

(6 × 6), clock frequency (100 MHz), and the granularity of opera-

tions (32-bit) are kept constant across the three architectures to

make a fair comparison. Table 5 summarizes the heterogeneous

optimizations added by the framework on the derived architectures.

Let us name the derived heterogeneous architectures as HT-ADRES,

HT-HyCUBE, and HT-Softbrain. Figure 12 provides a visual depic-

tion of the derived heterogeneous architectures and Table 6 details

their specifications.

Compute heterogeneity is applied to all three architectures. As

shown in Table 6, the compute units of HT-ADRES andHT-HyCUBE

are identical because their execution models are similar with close

coupling of memory and compute operations, resulting in a similar

distribution of the operations. As Softbrain decouples the memory

Table 5: Heterogeneous optimizations applied on the selected

homogeneous architectures

HM-ADRES HM-HyCUBE HM-Softbrain

Heterogeneous Compute ✓ ✓ ✓

Heterogeneous Interconnect ✗ ✓ ✓

Local

Memory

Configuration ✓ ✓ ✗

Data ✓ ✗ ✓

Table 6: Derived heterogeneous architectures specifications

ADRES HyCUBE Softbrain

HM HT HM HT HM HT

Compute Units

Adders 36 36 36 36 36 36

Multipliers 36 7 36 7 36 16

Comparators 36 6 36 6 36 7

Logic 36 19 36 19 36 13

Load/Store 12 12 12 12 - -

Datapath (bit) 33 33 33 33 - 17 33 33 - 17

Config Memory per PE (B) 256 66.5/87.8 256 75.5 /105.7 9 9

Local Memory (B) 16 8/16 - - 16 8/16

address generation operations from the PE array, themultiplications

become significant for most applications. Hence, a higher number

of multipliers are used to reduce the impact on performance.

Both HT-HyCUBE and HT-Softbrain end up with heterogeneous

interconnect as the rich network architectures in their homoge-

neous versions allow greater options for heterogeneity. But ADRES

has a more restricted network where each PE has dedicated con-

nections with every other PE in the same row/column. Hence two

PEs are connected by at most one path and diagonal PEs are not

connected. This narrows the scope for applying interconnect hetero-

geneity. Moreover, HM-ADRES interconnect does not have complex

switches or registers.

Only architectures with spatio-temporal mapping require con-

figuration memory. This eliminates configuration memory-related

optimizations in HT-SoftBrain. In addition to the decoupled con-

figuration structure, for HT-ADRES and HT-HyCUBE we vary the

memory size in each PE, where hotspot PEs have twice the memory

of other PEs.

We now analyze the derived heterogeneous architectures to

quantify the power/area gains with heterogeneity and how it im-

pacts the performance. We use power, area utilization, performance

(in terms of II), average energy, and power efficiency of the PE array

to evaluate the efficiency of the architecture.

4.3 Power-Performance Trade-off

REVAMP aims to explore the heterogeneous optimizations to im-

prove the power efficiency of CGRAs while minimizing the impact

on performance compared to the homogeneous versions. We quan-

tify the performance of an architecture by the II (Initiation Interval)

values for selected application kernels mapped on that architec-

ture through our compiler. The lower the II value, the higher the

throughput of the application on that architecture. Table 7 summa-

rizes the obtained II values for derived heterogeneous architectures

and the homogeneous versions. We use the best unrolling factor for

each of the three baselines and the same DFG across homogeneous

and heterogeneous versions.
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Figure 12: Derived Heterogeneous Architectures (The letters A, M, L, C and Mem stands for Adder, Multiplier, Logic unit,

Comparator and Memory unit respectively. The local memories are specified in Bytes(B)).
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Figure 13: Energy reduction with heterogeneity.

Table 7: Initiation Interval(II) obtained for homogeneous and

derived heterogeneous architectures.

ADRES HyCUBE Softbrain

HM HT HM HT HM HT

GeMM 5 5 6 7 1 1

Convolution2d 4 4 4 4 1 1

CRS 6 6 4 4 1 1

ellpack 5 5 4 5 1 1

Stencil2d 4 5 4 4 1 1

The slight increase in II for two kernels in HT-HyCUBE is be-

cause of some critical paths (backedges) missing single cycle routes,

while in HT-ADRES it is the limited connections to heterogeneous

compute. However, we show that the energy consumption in het-

erogeneous CGRA reduces significantly to provide an excellent

energy-performance trade-off in battery-operated devices.

Figure 13 illustrates the total energy for execution (normalized

w.r.t homogeneous) of the kernels. We obtain 36% average energy

reduction, while the maximum is 50.1% in HT-ADRES.

We compare the power efficiency of the PE array for homoge-

neous architectures and the derived heterogeneous architectures

averaged across all the kernels. As we are highlighting the het-

erogeneity impact, we consider only the PE array in this analysis

assuming conflict-free data flow from the external memories. Fig-

ure 14 shows that heterogeneity increases the power efficiency of
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Figure 14: Performance-power comparison of the PE array.

Node labels indicate the power efficiency in MOPS/mW. HT-

HyCUBE (𝐴𝑆𝑠𝑢𝑏 ) is derived using subset of the application

suite (GeMM, Convolution2d and Stencil2d), for which opti-

mal point is different.

the PE array by 1.5x. The ability of REVAMP in exploring the effect

of different application suites on power-performance of heteroge-

neous CGRA optimizations is also highlighted by the design point

HT-HyCUBE (𝐴𝑆𝑠𝑢𝑏 ) ś an architecture derived from a subset of the

kernels (GeMM, Convolution2d, Stencil2d) partnered with hetero-

geneous optimizations can have substantially higher performance.

4.4 Application-Level Evaluation

We showcase the design-space exploration with REVAMP on a few

applications at the edge.An application comprises one or more

compute-intensive kernels, which are suitable for acceleration. We

select five applications (from Mibench [16], CortexSuite [37] bench-

mark suites and C++ implementation of MobileNet V1 [18] and

LeNet-5 [22]) and extract the compute-intensive kernels to form

the kernel suite for each domain. These kernel suites are then fed

as input to REVAMP along with HM-HyCUBE as the homogeneous
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Table 8: Selected applications

Application Domain Kernels

Lenet-5 [22], Mobilenet V1 [18] Deep Learning Convolution, GeMM, Average Pooling

GSM [16] Telecommunication
APCM_inverse_quantization, APCM_quantization,

Autocorrelation, Gsm_coder, Gsm_decoder, Weighting_filter

Motion Detection [37] Computer vision GrayscaletoRGB, RGB2Grayscale, Taylor_app

Rijndael [16] Security encrypt, decrypt
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Figure 15: Energy comparison for applications running on

derived HT-HyCUBE architectures.

CGRA input. Table 8 summarises the selected applications, their

domain, and the extracted kernel suite.

REVAMP performs the design space exploration converging to 04

Pareto-optimal heterogeneous architectures for each application

domain. Figure 15 shows normalized energy consumption (against

the HM-HyCUBE) when kernels execute on individually gener-

ated heterogeneous architectures. We compare the energy for ker-

nel execution as the remaining execution and data transfers are

identical in both homogeneous and heterogeneous versions. Every

kernel demonstrates a reduction in energy consumption, implying

application-level energy savings.

4.5 Resource Utilization and Power/Area
Breakdown

We showed in Section 2 that there is a significant resource under

utilization in the homogeneous architectures. We now analyze how

the proposed optimizations impact resource utilization. We define

compute utilization as the ratio between the total number of com-

pute operations in the DFG and the number of available compute

units (number of compute units in the PE array multiplied by the II

value of the corresponding DFG on the architecture). For a more

precise comparison, we consider the adder, multiplier, logic, com-

parator, and memory elements within a PE as separate individual

compute units in contrast to Table 3 where we simply assumed

one compute unit per PE. We calculate the interconnect utilization

as the percentage of used links with respect to the total available

links (number of links in the PE array multiplied by the II value

for the DFG). In terms of configurations, we take the percentage

of valid configuration bits from the total amount of configuration

bits used (this includes valid configurations and redundant/NOP

configurations). As there are only II configurations in each PE, a

portion of the memory will be empty in most of the cases. In a

decoupled structure, this void occurs only in bit-masked predicate

( Figure 9) , which reduces empty memory size by nearly 7x.
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Figure 17: Power and Area Distribution

Figure 16 shows the resource utilization for the derived hetero-

geneous architectures compared with the homogeneous versions.

There is a significant improvement in the resource utilization for

interconnect and configuration memory. The compute utilization

is improved by around 1.8x, and interconnect, configuration utiliza-

tion are improved by 3.1x and 3.9x, respectively.

4.6 Analysis of Subcomponent Impact

Figure 17 shows the power and area breakdown across individual

components of heterogeneous architectures compared with the

homogeneous architectures. Still, the distribution in heterogeneous

architecture is quite similar to that of homogeneous architecture.

If individual components are considered, for spatio-temporal archi-

tectures, the configuration memory component produces the most

significant reduction in terms of power and area. This is evident

for HyCUBE and ADRES in figure 17. When the memory compo-

nent is less significant, for example in spatial Softbrain architecture,

compute heterogeneity provides significant reduction especially in

terms of power. Similarly, the impact of network heterogeneity is

most significant when the starting point is a homogeneous CGRA

with sophisticated networks consuming substantial resources.

Throughput can be affected by microarchitecture and mapping
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quality of individual sub-components or a combination of sub-

components. The increase in II value (Table 7) for Stencil2d execu-

tion in HT-ADRES is from the compute heterogeneity. For GeMM

and ellpack, the increase of II value in HT-HyCUBE is mainly due

to the combination of compute and network heterogeneity.

4.7 Compilation Time

To analyze how heterogeneity affects the original compiler perfor-

mance, we compare the compilation time averaged over the set of

kernels. Figure 18 shows that HT-ADRES takes the same compila-

tion time as HM-ADRES. In contrast, compilation time is faster in

HT-HyCUBE, because the restrictions of the search space end up

reducing the search time. In the case of Softbrain, the compilation

is much faster (few ms) than HyCUBE or ADRES, as the decoupling

of memory access from compute simplifies the mapping. There

is a slight increase in compilation time for HT-Softbrain versus

HM-Softbrain, mainly because of additional search due to network

heterogeneity. Still, the average compilation time is around 1 sec.

5 RELATED WORK

Some prior CGRAs introduced a limited amount of heterogeneity,

essentially just compute heterogeneity, in an ad-hoc fashion to a

specific CGRA architecture. REVAMP, on the other hand, covers a

broader range of heterogeneity across compute, storage and inter-

connect, and is a design framework that explores and judiciously

introduces heterogeneity for a variety of CGRA architectures.

Compute: Compute heterogeneity proposed in the literature can

largely be classified as those with a variety of compute units that

support different, specialized operations or units with varying pre-

cision. PACT-XPP [5] and Plasticine [32] combine two types of

functional units one for memory based operations and the other

for ALU operations. BilRC [3], DPU [27], PPA [29] and SNAFU [14]

further separate the multipliers from the ALU. RASP [12] func-

tional units are augmented with floating-point dividers and real

datatype adders. But, BilRC [3] and RASP [12] report 68% and 43.9%

average utilization, respectively. EGRA [2] decomposes the single

ALU functionality into four different units as logic only, logic+shift,

logic+add, and logic+shift+add to form clusters with different com-

binations. Apart from ALU clusters, there are memory tiles and

multiplier tiles. EGRA does the mapping at the expression level

instead of operator level that is more suited for regular applications.

However, the general architecture derived from the template has

ALUs with full functionality (logic+shift+add).

Among prior works that propose different precision levels among

the functional units, TRANSPIRE [33] supports a combination of in-

teger and floating-point functional units, while on-the-fly CGRA [6]

incorporates heterogeneous compute units each with diverse levels

of approximation.

Interconnect: There has been little prior CGRA research into het-

erogeneous interconnects. ADRES [26] and Morphosys [36] have

regular neighbor-to-neighbor mesh with additional links connect-

ing all the elements in a row and column. Homogeneous torus,

switch-based and NoC-based interconnects are present in TRAN-

SPIRE [33], Softbrain [28] and HyCUBE [19], respectively. Apart

from the inherent heterogeneity in meshes (where the edges of the

mesh have less traffic), the only heterogeneity seen in the intercon-

nect is the hierarchical layout when the architecture is clustered,

for example in Morphosys [36].

Memory: Memories in PEs include register files for intermedi-

ate data storage and memories for the storage of reconfiguration

words. Most prior literature addresses overhead from memories in-

dependently and proposes different compression techniques [11, 35].

These works still maintain the uniformity of the design, rather than

moving to a heterogeneous architecture.

CGRA compiler: There are prominent CGRA compilers based

on simulated annealing (DRESC [25]), graph theory (EPIMap [17],

Graph Minor [8]), Graph Neural Networks (LISA[23]), hierarchi-

cal mapping (HiMaP[41]), ILP (CGRA-ME[9]), and heuristics (Hy-

CUBE [19]). Usually these basic approaches are customized to cater

for specific architectures. Specially, for the heterogeneous archi-

tectures discussed earlier, the compiler is customized. For example

EGRA [2] does the mapping at expression level. Plasticine [32]

maps based on patterns.

CGRA design tools: As the compiler is tightly coupled with the

architecture, the design process of CGRAs is quite complex. A few

prior works (CGRA-ME [9], DSAGEN [39] and Pillars [15]) address

this issue by proposing end-to-end design frameworks for CGRAs.

These tools perform the simulation and RTL generation for a pro-

vided architecture. However, they do not support heterogeneity.

6 CONCLUSION

CGRAs are at a nascent stage of development, with a few commer-

cial products, and many exciting research CGRA architectures pro-

posed in the last decade. Just as the widespread adoption of FPGAs

is enabled by extensive toolchain support, design tools for CGRAs

can help pave the way for their wider adoption. Design tools are

particularly critical for CGRAs given the closely coupled hardware-

software interface, with CGRA hardware completely scheduled by

the CGRA compiler. Here, we propose REVAMP, a design space

exploration framework for heterogeneous CGRA realization. The

derived heterogeneous architectures achieve 38.5% average reduc-

tion in core power and 29.8% reduction in core area with 36% total

energy reduction.
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A ARTIFACT APPENDIX

A.1 Abstract

REVAMP artifact includes the complete framework comprising the

heterogeneous architecture generator, heterogeneous CGRA map-

per, parameterized RTL and scripts for power, area calculation. We

elaborate on the REVAMP tool flow with an example of generating

a pareto-optimal heterogeneous CGRA from a 4x4 homogeneous

CGRA targeting five application kernels.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: REVAMP architecture generator, Heterogeneous CGRA

mapper

• Program: Application kernels included in DFG (data-flow graph)

format

• Compilation: cmake 3.5 or higher, C++ 8.X or 9.X for CentOS 8.X,

Synopsys Design Compiler (tested on R-2020.09, Proprietary)

• Model: Technology library for synthesis (Proprietary)

• Run-time environment: CentOS 8.X with cmake, C++, nlohmann

json, and Synopsys DC installed. Python virtual environment in-

cluded. Root access will be needed in setting up prerequisites.

• Hardware: CPU

• Metrics: Generated heterogeneous architectures and design space

exploration in terms of power efficiency, area efficiency, and perfor-

mance.

• Output: Numerical performance estimations from compiler, archi-

tecture power and area estimations from RTL synthesis

• Experiments: Python scripts along with a README file elaborat-

ing on the workflow.

• How much disk space required (approximately)?: ∼ 500MB

• How much time is needed to prepare workflow (approxi-

mately)?: ∼ 10 min

• How much time is needed to complete experiments (approxi-

mately)?: ∼ 5 hrs

• Publicly available?: yes

• Code licenses (if publicly available)?: MIT License

• Workflow framework used?: Workflow automated using python

scripts

• Archived (provide DOI)?: 10.5281/zenodo.5848404

A.3 Description

A.3.1 How to Access. Download the tool package from Zenodo.

Unzip and run all the below mentioned commands inside the

./REVAMP folder.

cd REVAMP

A.3.2 Hardware Dependencies. Our experiments were run on a

server with 10 Intel Xeon cores running at 2.70GHz and 2GB RAM.

Synthesis using commercial tools will take a substantial amount of

time; hence we recommend a server with comparable memory and

core counts.

A.3.3 Software Dependencies. CentOS 8.Xwith cmake 3.5 or higher

and c++ 8.X are installed. The architecture generator and the CGRA

mapper are developed in C++ and require nlohmann json as a

prerequisite. Synopsys Design Compiler(DC) R-2020.09 is used to

estimate the power and area of the generated heterogeneous ar-

chitectures. Python scripts are used to automate the flow and the

required python virtual environment configurations are provided.

A.3.4 Data Sets. We include application kernels in DFG (data-flow

graph) format generated with the Morphor DFG generator

(https://github.com/ecolab-nus/Morpher_DFG_Generator.git).

A.3.5 Models. We use proprietary standard cells on a commercial

technology node for synthesis and hence they are not included

herewith. We provide scripts for synthesis with Design Compiler

where one can modify the scripts to include an available technology

node. Details will be given in the next section and in the README.

A.4 Installation

A.4.1 Prerequisites.

• Check cmake(3.5 or newer) and C++ versions(8.X or 9.X for

CentOS)

The framework was tested on CentOS 8.5 and C++ 8.5.

• Installing nlohmann JSON:

chmod +x install_json.sh

./install_json.sh (Will require root access)

• Check for synthesis tools:

Run the following command to ensure design compiler is

configured properly.

which dc_shell

• Activate python virtual environment

virtualenv revamp_env

source revamp_env/bin/activate

pip3 install -r py_environment.txt

A.4.2 REVAMP Toolchain Installation. Execute the following com-

mand to build the heterogeneous architecture generator and the

heterogeneous CGRA mapper.

python3 scripts/installation.py

A.5 Experiment Workflow

We demonstrate the REVAMP workflow by performing heteroge-

neous design space exploration with a 4x4 homogeneous CGRA

and set of application kernels as inputs.

The workflow comprises 4 main steps.

• Heterogeneous architecture generation:

Inputs:

ś Path to folder containing application kernels in DFG for-

mat (./APPLICATIONS/applications/)

ś Homogeneous architecture description in JSON format

(hycube_original_4x4_torus.json in

./HOMOGENEOUS_ARCHITECTURE/)

ś User configurations

(./ARCHITECTURE_GENERATOR/config.json)

Tool:

ś REVAMP Architecture Generator

(./ARCHITECTURE_GENERATOR/src/build/generator)

Outputs:

ś Generated heterogeneous architectures in JSON format

(./ARCHITECTURE_GENERATOR/

generated_architectures)

ś Heterogeneous parameter configurations for RTL

(./ARCHITECTURE_GENERATOR/

generated_architectures_RTL_config)
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The file naming suggests the applied heterogeneity

Ex: heterogeneous_CGRA_compute_L_network_config

means all three elements of heterogeneity, i.e compute, net-

work and memory are applied.

To execute: python3 scripts/revamp_run_generator.py

• Heterogeneous CGRA compiler:

Inputs:

ś Application kernels in DFG format

ś Generated heterogeneous architecture description in JSON

format

Tool:

ś REVAMP heterogeneous mapper (Developed as an addon

for Morphor CGRA mapper, https://github.com/ecolab-

nus/Morpher_CGRA_Mapper.git)

(./HETEROGENEOUS_MAPPER/src/build/

heterogeneous_compiler*)

Outputs:

ś Performance in terms of II (Initiation Interval) of themapped

kernel and throughput in MOPS. (./mapper.log,

./HETEROGENEOUS_MAPPER/throughput.rpt)

To execute: python3 scripts/revamp_run_mapper.py

• RTL synthesis:

Inputs:

ś Parameterized RTL

(./HOMOGENEOUS_ARCHITECTURE/RTL/)

ś Generated heterogeneous RTL parameter configurations

ś Scripts to run Design Compiler

(./synthesis_scripts)

NOTE: Update ADDITIONAL_SEARCH_PATH variable with

path to your technology db files and

TARGET_LIBRARY_FILES with technology db name in ./syn-

thesis_scripts/common_setup.tcl

Tool:

ś Synopsys Design Compiler (Proprietary)

Outputs:

ś Power and area estimates

(./synthesis_scripts/power.rpt,

./synthesis_scripts/area.rpt)

To execute: python3 scripts/revamp_run_synthesis.py

NOTE: This step will take ∼4 hrs. To skip this step for the

given example please copy power.rpt and area.rpt in ./synthe-

sis_scripts/synthesis_output to ./synthesis_scripts and move to

analysis of the results.

• Design analysis and converging to Pareto optimal:

Analysis of performance, power, and area to decide on the

Pareto-optimal heterogeneous architecture.

To execute: python3 scripts/revamp_run_analysis.py

output: ./analysis_reports

Complete workflow can be executed automatically by running the

following command. Please ensure the synthesis script is updated

with available cells and process technology files.

chmod +x revamp_run.sh

./revamp_run.sh

To run without synthesis (if access is restricted for Synopsys

tools),

chmod +x revamp_run_wo_synthesis_ex.sh

./revamp_run_wo_synthesis_ex.sh

NOTE: This will take ∼5 hours to complete.

We provide detailed steps and commands in the README pro-

vided herewith.

A.6 Evaluation and Expected Results

We demonstrate the functionality of the artifact with a smaller

CGRA (4x4) and with a restricted search scope. To derive the pareto

optimal heterogeneous architecture from the generated architec-

tures, we analyze the power, area and performance.

A summary of the results is saved in ./analysis_reports.

• comparetoHomogeneous.rpt : Ratio between derived archi-

tectures vs baseline architecture(ex: power(derived architec-

ture)/power(baseline architecture)) for throughput, power,

and area

• dse.rpt: optimal design choices in terms of power efficiency

and area efficiency, and the impact on throughput

• dse.png: Visualizes the design space of the considered archi-

tectural instances.

Expected analysis reports from a trial run of the above example

is added in ./analysis_reports_expected/4x4_CGRA.

We have added the analysis reports for design space exploration

corresponding to Figure 11 of the paper in

./analysis_reports_expected/6x6_CGRA.

Though the tool does not restrict CGRA size, we use a smaller

CGRA size(4x4) and a more constrained search space for faster

validation of the tool functionality.

A.7 Experiment Customization

We elaborate on how REVAMP supports customization in the

README provided. Users can experiment on different homoge-

neous architectures, different search scopes and application DFGs

by customizing the user inputs to the framework, prompting RE-

VAMP to derive different heterogeneous CGRAs.

A.8 Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/\artifact-

review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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