
Shared Reconfigurable Fabric for Multi-core Customization

Liang Chen, Tulika Mitra
Department of Computer Science
National University of Singapore

{chenliang,tulika}@comp.nus.edu.sg

ABSTRACT
Processor customization in the form of application specific
instructions can provide significant power and performance
boost to an embedded application while maintaining high
flexibility. The emergence of multi-core architectures opens
up the possibility of creating an application-specific hetero-
geneous computing platform by customizing a set of homo-
geneous cores. We propose a multi-core architecture where
the cores share a reconfigurable fabric that accommodates
the custom instructions. We develop an efficient algorithm
that exploits this shared fabric through customization and
runtime reconfiguration to minimize the execution time of
multi-threaded applications. Experimental results reveal
that shared reconfigurable fabric helps applications achieve
substantial speedup compared to per-core private fabrics.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms
Algorithm, Performance, Design

Keywords
Shared reconfigurable logic, multi-core.

1. INTRODUCTION
Computing systems have made an irreversible transition

towards parallel architectures with the emergence of multi-
cores. At the same time, we are witnessing the development
of a very dynamic and diverse landscape of embedded ap-
plications especially in the consumer electronics space. A
multi-core chip fabricated with a set of identical cores is
fundamentally at odds with the diversity of the applications.
At the other end of the spectrum, multiprocessor system-on-
chip (MPSoC) platforms are being increasingly deployed in
high-performance embedded systems. MPSoCs employ het-
erogeneous processing elements (e.g., general purpose pro-
cessors, DSPs, application-specific hardware accelerators) to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’11, Jun 05-10 2011, San Diego, CA, USA
Copyright 2011 ACM 978-1-4503-0636-2/11/06 ...$10.00.

construct a system that perfectly matches the application re-
quirements. However, system integration and lack of flexi-
bility are some of the major challenges faced by the designers
in creating platforms with such disparate architectures.

Extensible processor cores, where the existing base ISA
can be enhanced with application-specific custom instruc-
tions, are emerging as promising alternative in this context.
A custom instruction encapsulates frequently executed com-
putational pattern. Custom instructions are implemented as
hardwired datapaths in the existing processor core and help
improve the power and performance of the application. A
heterogenous multi-core may consist of a number of extensi-
ble processor cores, where each core has been customized [8,
9]. As all the cores share the same base ISA, application de-
velopment on such platforms is relatively straightforward.

Custom instructions can be implemented either in ASIC
(e.g., Xtensa [3]) or in reconfigurable logic (e.g., Stretch [4]).
Reconfigurable logic provides a flexible solution where the
custom instructions can be changed for different applica-
tions. Moreover, the custom instructions implemented in
the fabric can change even within the lifetime of an applica-
tion under software directives. Of course, this virtualization
of the fabric comes at the cost of reconfiguration delay.

A straightforward extension of extensible processors to
multi-cores will be to couple each core with its own reconfig-
urable fabric [1]. However, for multi-threaded applications
with pronounced imbalance in execution time and custom
instructions requirement among the threads, this fixed parti-
tioning of the resource is not an ideal solution. We propose a
multi-core architecture where the extensible cores can share
a runtime reconfigurable fabric as shown in Figure 1. By
sharing the resource among multiple cores, reconfigurable
logic can be more efficiently integrated (at far less power
and area cost) into multi-core architectures.

I-Cache D-Cache

FP Reg Int Reg 128-bit Wide Reg

FPU ALU

Execution Engine

I-Cache D-Cache

Int Reg128-bit Wide Reg

ALU

FP Reg

FPU

Execution Engine

Shared Instruction Set Extension Fabric
(ISEF)

128-bit Wide Reg

et Extension Fabric
EF)

Exte bric

128-bit Wide Reg

Shared Instruction S
(ISE

Sh tion Se
E

CORE 1 CORE 2

Figure 1: Proposed multi-core architecture with
shared reconfigurable fabric.

To exploit this architecture, one needs to select the ap-
propriate set of custom instructions and partition them into
different configurations so as to maximize the performance
of a multi-threaded application. This is a complex opti-
mization problem. In this paper we first provide an optimal
solution for temporal and spatial partitioning of the custom
instructions. The optimal solution has limited scalability
due to its high computational complexity. Hence we propose

an iterative refinement algorithm that quickly attains good
quality solution. We thoroughly evaluate our technique with
real embedded applications. The evaluation confirms that
sharing reconfigurable fabric among the cores leads to far
superior solutions compared to per-core dedicated fabric.

Related Work. Multiple extensible cores sharing recon-
figurable fabric is a relatively unexplored research direction.
ReMAP (Reconfigurable Multicore Acceleration and Par-
allelization) [10] is a heterogeneous multi-core architecture
where the threads share a common reconfigurable fabric in
a time-multiplexed, round-robin fashion. The architecture
supports limited spatial sharing as the fabric is strictly di-
vided up into equal partitions. Shared reconfigurable copro-
cessor has been proposed in [2] to improve the throughput
of multiple processes concurrently executing on a multi-core
system. The focus is on time-multiplexed sharing of the
same physical kernel by multiple processes while maintain-
ing process isolation. In both [10] and [2], the reconfig-
urable fabric is loosely coupled with the cores, whereas in
our architecture, it is integrated in the processor datapath.
Finally [1] investigates the synergy between multi-core pro-
cessors and rISE — an architecture where reconfigurable
device is used to implement the custom instructions. How-
ever, they use dedicated reconfigurable logic per core. Most
importantly, none of these works provide design space explo-
ration algorithm to exploit the architecture. For single-core
extensible processor with reconfigurable logic, [5] has pro-
posed an algorithm for temporal and spatial partitioning of
the custom instructions. However, this algorithm cannot
be directly extended to multi-threaded applications that re-
quire optimizing the critical path.

2. ARCHITECTURE
Our proposed architecture with shared reconfigurable fab-

ric is a multi-core version of the commercial Stretch pro-
cessor [4] with minimal modification as shown in Figure 1.
Stretch processor incorporates Xtensa processor [3] and the
Stretch Instruction Set Extension Fabric (ISEF). The ISEF
is software-configurable datapath based on programmable
logic. It consists of arithmetic/logic elements and multiplier
elements interlinked in a programmable routing fabric. This
configurable fabric acts as a functional unit to the proces-
sor and resides alongside other traditional functional units
such as ALU and FPU. A set of programmer defined custom
instructions are implemented in this fabric.

We propose a multi-core architecture where instead of al-
locating private ISEF for each core, we let a cluster of cores
(2 or 4) share a larger ISEF. The idea of sharing resources
between neighboring cores is inspired by the conjoined-core
chip multiprocessing [7] where the cores share instruction
cache, data cache, and FPU. The interface between the pro-
cessor core and the ISEF is through 32-entry 128-bit wide
register files per core. The architecture supports dedicated
load/store operation to move data between memory and the
wide register files. We allow the shared ISEF to write to the
wide register file of each core. A simple round-robin arbiter
ensures that only one core can issue a custom instruction to
the shared logic every ISEF cycle (note that the ISEF cycle
may be multiple of the processor cycle).

A distinguishing aspect of ISEF is that it is run-time
configurable. If the computation resource requirement of
the custom instructions exceeds the capacity of ISEF, then

the instructions can be partitioned into different configura-
tions. Stretch has two mechanisms for managing ISEF con-
figurations — software-directed configuration pre-loading or
hardware-assisted reconfiguration. In hardware-assisted re-
configuration, when a custom instruction is issued, the hard-
ware checks and loads the corresponding configuration into
the ISEF if it is not already present. As we allow multi-
ple threads to share a configuration, it is possible that a
thread might move ahead and issue instructions from the
next configuration while other threads are still issuing in-
structions from the current configuration. This would result
in repeated swapping in and out of the configurations. To
avoid this problem, we only allow software-directed loading
of new configuration. A new configuration is loaded when
all the threads have completed using current configuration.

3. PROBLEM DEFINITION
Our architecture is a multi-core system withN cores where

all the cores share a reconfigurable fabric (RF). We will use
the more generic term reconfigurable fabric instead of ISEF
for the rest of the paper. Let AREA be the area of the
shared RF and ρ be the reconfiguration latency.

We assume a multi-threaded application with at most N
threads running on this multi-core system, i.e., at most one
thread is mapped to each core. A thread Ti is modeled as a
sequence of ni tasks Ti,1 . . . Ti,j . . . Ti,ni . Note that our tech-
nique is not restricted to linear chain of tasks per thread.
If a thread is modeled as a task graph, the tasks can be
scheduled through a topological sort of the task graph that
respects the dependencies among the tasks. The resulting
linear schedule is used as input to our technique. Moreover,
it is easy to model applications with pipelined parallelism
(e.g., streaming application). Each pipeline stage of the ap-
plication can be modeled as a thread that maps to a core.
All the tasks corresponding to a pipeline stage can be sched-
uled to create a sequence of tasks for that thread.

Each task is associated with multiple custom instruction
set (CIS) versions. A CIS version consists of a set of custom
instructions extracted from the corresponding task. The
CIS versions are generated according to the tradeoff between
area and execution time. Let {c0i,j , . . . , c

mi,j

i,j } denote the set

of possible CIS versions for task Ti,j . In addition, let tki,j
and ak

i,j denote the execution time and area requirement

of the CIS version cki,j . We assume c0i,j corresponds to the

completely software implementation of the task, i.e., a0
i,j =

0. That is, for each task Ti,j , we have a choice of one software
implementation and mi,j implementations accelerated with
custom instructions. In addition, a0

i,j < . . . ak
i,j < . . . <

a
mi,j

i,j and t0i,j > . . . tki,j > . . . > t
mi,j

i,j . The CIS version of a

task must fit into the available area, i.e., ak
i,j ≤ AREA.

Example. Figure 2(a) shows an example of two threads
with CIS versions. We assumeAREA = 10. The first thread
has 4 tasks while the second thread has 5 tasks. Each task
has multiple CIS version. For example, task T1,1 has 3 CIS
versions with 0 (software), 1 and 4 area units. The corre-
sponding execution times are 300, 50, and 30 time units.

Our objective is to select a CIS version for each task and
appropriate reconfiguration points so as to minimize the exe-
cution time of the multi-threaded application, i.e., minimize
the execution time of the critical thread.

T1,1
{0,200}
{1,120}

{0,220}
{4,150}
{5,80}

{0,220}
{2,90}

{0,250}
{2,230}
{5,150}
{6,120}

{0,180}
{2,50}

{0,300}
{1,50}
{4,30}

{0,180}
{2,120}
{4,90}
{5,80}

{0,450}
{1,200}
{2,50}

{0,120}
{1,100}
{3,80}
{5,60}

}
}

T1,2

}
} T1,3

}
}

T1,4

{
{

T2,1

{
{
{

T2,2

{
{T2,3

{
{
{
{

T2,4

{
{T2,5

�=50

������

������ ������

������

������

(a) 2 threads with CIS versions

(b) shared RF = 10; time = 710 (c) private RF = 2x5; time = 730

(d) shared RF = 10; time = 510 (e) private RF = 2x5; time = 590

�����
�	
������

�����
�	
������

�����
�	
������

�����
�	
������

(f) Partitioning heuristic in IR

{1,50} T1,1

{0,120}} T1,4

{1,200}} T1,3

{0,180}} T1,2

{1,50} T1,1

{2,50}{T2,5

{2,230}{T2,4

{2,90}{T2,3

{0,220}{T2,2

{1,120}{T2,1

{2,50}{T2,5

{0,250}{T2,4

{2,90}{T2,3

{0,220}{T2,2

{1,120}{T2,1

{0,120}} T1,4

{2,50} T1,3

{2,120}} T1,2

{1,50} T1,1

{1,120}{T2,1

{2,50} T1,3

{1,50} T1,1

{0,180}} T1,2

{0,120}} T1,4

{5,80}{T2,2

{2,90}{T2,3

{6,120}{T2,4

{2,50}{T2,5

{4,30} T1,1 {1,120}{T2,1

{5,80} T1,2

{2,50} T1,3

{3,80} T1,4

{5,80}{T2,2

{2,90}{T2,3

{5,150}{T2,4

{2,50}{T2,5

{1,120}{T2,1

{0,180}} T1,2

{2,50} T1,3

{0,120}} T1,4

{5,80}{T2,2

{2,90}{T2,3

{6,120}{T2,4

{2,50}{T2,5
������

{area,time}

Figure 2: Motivating Example.

Static configuration. Let us first concentrate on a re-
stricted version of the problem where we do not allow any
dynamic reconfiguration of the fabric. Let xk

i,j be a binary

variable that is set to 1 if the CIS version cki,j is chosen cor-
responding to task Ti,j and 0 otherwise. Then our goal is to
minimize the following objective function:

max
i=1,...,N

ni∑
j=1

mi,j∑
k=0

xk
i,j × tki,j

subject to the following constraints

N∑
i=1

ni∑
j=1

mi,j∑
k=0

xk
i,j × ak

i,j ≤ AREA; ∀i, j
mi,j∑
k=0

xk
i,j = 1

This is 0-1 Integer Linear Programming (ILP) problem.

Example. Figure 2(b) and 2(c) show the optimal solutions
with shared and private RFs respectively. In case of private
RF per core, we assume each core has access to 10/2 = 5
units of RF. It is easy to prove that shared RF will always
lead to better execution time than private RFs. In our ex-
ample, we get 710 units of execution time with shared RF
compared to 730 units of execution time with private RFs.

Dynamic reconfiguration. Allowing dynamic reconfigu-
ration of the fabric adds significant complexity to the prob-
lem. Let P be the total number of configurations. In the
worst case, each task can have its exclusive configuration,
i.e., P ≤

∑N
i=1 ni. Let p(Ti,j) be the configuration that Ti,j

belongs to. Then we have the constraint p(Ti,j) ≤ p(Ti,j+1)
as partitions contain consecutive tasks. Clearly, each con-

figuration must satisfy area constraint. Therefore∑
∀i,j s.t. p(Ti,j)=q

mi,j∑
k=0

xk
i,j × ak

i,j ≤ AREA q ∈ {1 . . . P} (1)

The execution time of the application is the summation of
the execution time of each configuration plus the reconfig-
uration latency. The execution time in each configuration
corresponds to the critical thread in that configuration. So
our goal is to minimize the following objective function:

ρ× (P − 1) +

P∑
q=1

max
i=1,...,N

 ∑
∀j p(Ti,j)=q

mi,j∑
k=0

xk
i,j × tki,j

 (2)

Concretely, our goal is to select the CIS version of each task
(i.e., assign the xk

i,j binary variables) and assign the config-
uration for each task p(Ti,j) such that the total execution
time specified by Equation 2 is minimized.

Example. Figure 2(d) and 2(e) show the optimal solutions
for shared and private RFs with dynamic reconfiguration.
Reconfiguration latency (ρ) is 50 and 25 corresponding to
shared and private RFs, respectively. For shared RF, the ap-
plication has been partitioned into 2 configurations with ex-
ecution times 290 unit and 170 unit, respectively. Hence the
total execution time is (290+170+50 = 510) unit. Shared
RF allows flexibility in terms of allocating area to each
thread. However, the reconfiguration for all the threads have
to be synchronized as discussed in Section 2. Thus load-
imbalance among the threads can have a negative impact.
If the threads have private RFs as in 2(e), each thread can re-
configure its own fabric independently and asynchronously.
In our example, T1 reconfigures 2 times while T2 reconfig-

ures 4 times. Still the optimal solution with private RFs
requires 590 time units compared to 510 unit for shared
RF. This is because T2 has inherently more requirement of
custom instructions that can be satisfied with shared RF.
Therefore, the design space exploration algorithm needs to
carefully take into account the tradeoff between imbalance
in load and area requirement among the threads.

The presence of both the partition variables and the CIS
version selection variables in the objective function intro-
duces non-linearity making ILP solution infeasible. A much
simpler version of the partitioning problem where all the
threads have identical number of tasks and the same par-
titioning is applied to all the threads (there is no recon-
figuration delay and CIS versions) is known as the multi-
stage linear array assignment problem (MLAA) [6]. The
MLAA problem has been shown to be NP-complete. We
now present an optimal solution to our problem followed
by an efficient iterative refinement algorithm that achieves
close to the optimal solution.

4. OPTIMAL SOLUTION
The optimal solution is constructed in a bottom-up fash-

ion by first computing the solutions per thread, then combin-
ing them for multi-threading without reconfiguration before
finally proceeding to incorporate multiple configurations.

Algorithm 1: Compute timei,s,e(A) for all i, s, e, A

for i← 1 to N do
for s← 0 to ni do

for e← s+ 1 to ni do
for A← 0 to AREA do

for k ← 0 to mi,j do
if (ak

i,e ≤ A) then
timei,s,e(A) = min(timei,s,e(A),
timei,s,e−1(A− ak

i,e) + tki,e)

Single thread. The term
∑
∀j p(Ti,j)=q

∑mi,j

k=0 x
k
i,j × tki,j in

Equation 2 defines the execution time of thread Ti in con-
figuration q. Only a consecutive subsequence of tasks from
Ti can be mapped to a configuration. Let Ti,s+1 and Ti,e

(s ≤e) be the start and end task of the subsequence of tasks
from Ti mapped to a particular configuration. Then the
execution time of the subsequence can be defined as

timei,s,e =

e∑
j=s+1

mi,j∑
k=0

xk
i,j × tki,j

Note that according to our definition timei,0,ni corresponds
to the execution time of the entire thread from task Ti,1 to
task Ti,ni . Moreover, we assume that timei,s,s = 0 corre-
sponds to the execution time of an empty sequence of tasks.

We first pre-compute the minimum value of timei,s,e for
all possible values of i, s, e under different area constraints.
We design a dynamic programming algorithm to compute
these values. The recursive equation is

timei,s,j(A) = min
k=0,...,mi,j

ak
i,j≤A

(timei,s,j−1(A− ak
i,j) + tki,j)

where timei,s,j(A) (with s < j) is the minimum execution
time of the subsequence Ti,s+1 . . . Ti,j under area constraint
A. Basically, we start with the task Ti,s+1 and add one
task at a time till we reach the task Ti,e. For the task

Ti,j , we go through all its CIS versions that can fit in the
area A. For each such CIS version cki,j , we allocate its area

ak
i,j and the remaining area A − ak

i,j is given to the tasks
Ti,s+1 . . . Ti,j−1. The execution time under this allocation is
the execution time of the task Ti,j with CIS version cki,j and
the minimum execution time of the previous tasks under the
remaining area constraint timei,s,j−1(A − ak

i,j). Then we
choose the CIS version that produces minimum execution
time under this scenario. In other words, we set xk

i,j = 1
for that CIS version and 0 for all the other CIS versions.
Algorithm 1 illustrates this computation. The complexity
of the algorithm is O(N × n2 ×m×AREA) where n is the
average number of tasks per thread and m is the average
number of CIS versions per task.

Algorithm 2: Compute time〈s1,e1〉...〈sN,eN〉

for i← 1 to N do Ai = 0;
for A← 0 to AREA do

critical = 0; maxTime = 0;
for i← 1 to N do

if timei,si,ei(Ai) >= maxTime then
maxTime = timei,si,ei(Ai); critical = i;

Acritical = Acritical + 1;
return maxTime;

Multi-threading with Static Configuration. Let us sup-
pose subsequences [T1,s1+1 . . . T1,e1] . . . [TN,sN+1 . . . TN,eN]
have been mapped to a particular configuration. The exe-
cution time of this configuration will be determined by the
subsequence with maximum execution time. We also need
to satisfy the area constraint of the configuration (see Equa-
tion 1). We define time〈s1,e1〉...〈sN,eN〉 as the execution time
of the subsequences [T1,s1+1 . . . T1,e1] . . . [TN,sN+1 . . . TN,eN]
mapped to a configuration. We propose Algorithm 2 to effi-
ciently compute the minimum value of time〈s1,e1〉...〈sN,eN〉.

Our goal is to partition AREA among all the threads so
as to minimize the execution time of the critical thread.
Initially, we set the area assigned to each thread (Ai) to
0. In each step, we allocate unit area to the critical thread
so as to reduce its execution time. The correctness of the
algorithm can be easily proved through induction on area
A, as the execution time can be potentially decreased only
by assigning the area increment to the critical thread.

Note that time〈0,n1〉...〈0,nN 〉 corresponds to the minimum
execution time of the entire application with single configu-
ration. That is, Algorithm 2 can generate the optimal solu-
tion for N threads with shared RF without reconfiguration.
The complexity of this algorithm is O(N ×AREA).

Multi-threading with Dynamic Reconfiguration. We
now proceed to introduce reconfiguration. Let us define
time〈s1,e1〉...〈sN ,eN 〉|P as the minimum execution time of the
task subsequences [T1,s1+1 . . . T1,e1] . . . [TN,sN+1 . . . TN,eN]
with P configurations including reconfiguration overhead of
ρ× (P − 1). For one configuration, time〈s1,e1〉...〈sN ,eN 〉|1 =
time〈s1,e1〉...〈sN ,eN 〉. We define a recursive equation to com-
pute the execution time for P configurations given the exe-
cution times for P − 1 configurations as follows.

time〈s1,e1〉...〈sN ,eN 〉|P = min
∀i si≤vi≤ei

(time〈v1,e1〉...〈vN ,eN 〉

+ρ+ time〈s1,v1〉...〈sN ,vN 〉|(P − 1))

The equation states that we need to explore all possible com-
bination of starting points in each thread for the P th config-
uration. This is achieved by setting vi (starting points of P th

Algorithm 3: Optimal Algorithm

P = 1;
repeat

P = P + 1;
improve = false;
for all combinations of ei (0 ≤ ei ≤ ni) do

min = time〈0,e1〉...〈0,eN 〉|(P − 1);
for all combinations of vi (0 ≤ vi ≤ ei) do

temp = time〈0,v1〉...〈0,vN 〉|(P − 1) + ρ+
time〈v1,e1〉...〈vN ,eN 〉;
if temp < min then

min = temp;
improve = true;

time〈0,e1〉...〈0,eN 〉|P = min;
until !improve;
opt = time〈0,n1〉...〈0,nN 〉|P ;
return opt;

configuration) between si and ei for each thread Ti. Then
time〈v1,e1〉...〈vN ,eN 〉 denotes the execution time of the P th

configuration. The remaining tasks are assigned to the P−1
configurations and time〈s1,v1〉...〈sN ,vN 〉|(P − 1) denotes the
corresponding execution time. We add the reconfiguration
overhead. The combination of starting points that provides
the minimum execution time is the optimal solution.

Algorithm 3 describes the dynamic programming algo-
rithm to find the optimal solution. We start with P = 1
configuration and increment the number of configurations
by one in each step. We compute the execution time for all
possible partitions and then select the one with the mini-
mum execution time. If the execution time improves with
the additional configuration, we continue. Otherwise, the
algorithm terminates. Clearly, the algorithm has exponen-
tial complexity of O(nN) where n is the number of tasks
per thread. However, this algorithm produces the optimal
solution and provides a solid reference point.

5. ITERATIVE REFINEMENT

Algorithm 4: Iterative Refinement (IR) Algorithm

add static configuration to SetP ;
min = time〈0,n1〉,...〈0,nN 〉;
while SetP 6= φ do

choose config p from SetP with max execution time;
for i← 1 to N do

si = Start[p][i]; ei = End[p][i];A = Area[p][i];
find vi with min |timei,si,vi(A)− timei,vi,ei(A)|;

temp = time〈s1,v1〉...〈sN ,vN 〉+time〈v1,e1〉...〈vN ,eN 〉+ρ;
if temp < Time[p] then

min = min− (T ime[p]− temp);
replace p with partitions of p in SetP ;
update Start, End, Area, T ime;

else
remove p from SetP ;

return min;

Now we present an iterative refinement technique (see Al-
gorithm 4) that avoids the exponential complexity of the
optimal algorithm while achieving close to optimal solution.
The basic idea is to start with the static configuration and
partition one of the configurations in each step. Suppose
we have P configurations (represented by SetP) after P − 1

partitioning steps. Corresponding to each configuration, we
maintain the start and end tasks of each thread (Start,
End), the area required by each thread (Area), and the
execution time (T ime). We then choose the configuration
p with the maximum execution time and attempt to parti-
tion it. The heuristic partitions each thread independently
as follows. If in configuration p, thread Ti was allocated
area Area[p][i], then we allocate the same area to each of
its partition. We then select the point vi so as to maxi-
mize the balance between the two partitions of Ti. Once the
partitioning points for all the threads have been selected, we
compute the actual execution time per partition by invoking
Algorithm 2 and add the reconfiguration overhead. If the
execution time of p reduces with partitioning, then we add
the new configurations to SetP . Otherwise, we remove p
from further consideration. The algorithm terminates when
we cannot optimize any configuration through partitioning.
The complexity per iteration is O(N ×n+N ×AREA). As
the number of reconfigurations is typically quite small, the
algorithm terminates quickly.

Example. We illustrate the algorithm with the example in
Figure 2(a). We start with the static configuration, i.e.,
the solution in Figure 2(b) with execution time 710. Here
T1 occupies 2 units of area whereas T2 occupies 7 units of
area. We try to partition each thread independently as
shown in Figure 2(f). Each partition of T1 is assigned 2
units of area. With this constraint, the best partitioning
point is after task T1,2. As T2 is the critical thread, 1 unit
of unassigned area is added to its allocated 7 units of area.
With area 8, the best partitioning point of T2 is after task
T2,3. Now we determine the execution time of the configu-
ration {〈T1,1T1,2〉, 〈T2,1T2,2T2,3〉}, which is 290. The execu-
tion time of the other configuration {〈T1,3T1,4〉, 〈T2,4T2,5〉}
is 170. Hence the execution time of 2-configuration solution
is (290+170+50=510), which is better than 1-configuration
solution. Next we try to partition each of the configurations.
But further partitioning does not improve execution time.
So the algorithm returns the 2-configuration solution, which
is the optimal solution as shown in Figure 2(d).

6. EXPERIMENT EVALUATION

����

����

����

����

�	

�� ���� ���� ���� ���� �	

��
����������������������������
����

��
��
��
��
��
���

��
��
��
��
��
��
��
���

���
��
��
��
��
��
��
��

� !

���"

����

���#

����

���$

�	

�� ���� ���� ���� ���� �	

% �&% �&

�������'��(������
)*������'��(������
��������+���)���

)*�������+���)�����'����,�
)*�������+���)����-��

Figure 3: Execution time versus area for MP3 and
JPEG with different architectures on 2 cores.

We perform our experimental evaluation on the Stretch
platform [4]. We first evaluate our technique with JPEG
encoder and MP3 encoder applications. We identify five
hot kernels for each of these application through profiling.
We partition each application into 2 pipeline stages. Each

����

����

����

����

���	

�

�� ���� ���� ���� ���� �

�����������������������������������

��
��
 �
��
��
��!

��
��
��
��
��
��
��
���

��"
��
��
��
��
 �
��
��

##�

����

����

����

����

�

�� ���� ���� ���� ���� �

##��

����

����

����

���	

�

�� ���� ���� ���� ���� �

##�$

����

����

����

����

���	

�

�� ���� ���� ���� ���� �

##��##��

�������%��&������
'(��!���%��&������

��������)���'���
'(��!����)���'�����%��!�*�

'(��!����)���'����+��

Figure 4: Execution time versus area for synthesized applications with different architectures on 4 cores.

pipeline stage is mapped to one processor core. Our goal is
to minimize the execution time of the critical pipeline stage.

To evaluate the scalability of our technique, we also ex-
tract a large number of kernels (e.g., ycc2rgb, dequantize,
idct, huffmenen, rgb2ycc, crc32, adpcmdec, autocor, dc-
tquan, cjpeg, djpeg, rgb2cmyk, des, fir etc.) from embedded
benchmark suites. We combine multiple kernels from the
same application domain to create four applications each
with 4 threads. The average number of tasks per thread
ranges from 2–7. For these synthesized applications, our
goal is to minimize the execution time of the critical thread.

For each kernel, we manually generate custom instructions
for Stretch platform by using Stetch C language. We achieve
different CIS versions by changing the unroll factor of the
compute intensive loops or the number of custom instruc-
tions. The higher unroll factor results in larger hardware
area requirement and better performance gain. The profiler
in Stretch provides us the performance and hardware area
of the CIS versions of each task.

For each application, we compare five different solutions:
(a) static configuration with private RFs (Algorithm 1), (b)
static configuration with shared RFs (Algorithm 2), (c) dy-
namic configuration with private RFs (Algorithm 3 with
N = 1), (d) optimal solution (optimal) for dynamic con-
figuration with shared RF (Algorithm 3), and (e) itera-
tive refinement (IR) solution for dynamic configuration with
shared RF (Algorithm 4). If N cores share AREA, then we
assume each core has AREA/N amount of private RF.

The configuration time of the whole RF of Stretch is
100µs. For each application, we vary the RF size between 0
to 1.0 (in steps of 0.01) of the area required to implement
the best CIS versions of the constituent kernels for solu-
tion (b) and set the reconfiguration delay proportionately.
When maximum area is available, an application achieves
the speedup limit without reconfigurations. The execution
time of different solutions are normalized w.r.t. the execu-
tion time of purely software implementation on multi-core.

Figure 3 shows the results for MP3 and JPEG applica-
tions. As expected, dynamic techniques perform better than
static techniques for both shared RF and private RF. How-
ever, what is interesting is that static shared RF consistently
outperforms private RF with dynamic reconfiguration. That
is, even without reconfiguration, sharing the reconfigurable
logic already provides substantial improvement. As an ex-
ample, for MP3 application at 60% of the maximum area
requirement, shared dynamic RF and shared static RF re-
duce execution time to 33% and 54% of software execution
time. The corresponding numbers are only 64% and 70% for
private dynamic RF and private static RF. Sharing RF with

reconfiguration is the clear winner among all four choices.
The solutions provided by the iterative refinement algorithm
are either identical or closely match the optimal solutions.

Figure 4 shows the results for synthesized applications.
The results are similar. Sharing brings about significant im-
provement to performance. Moreover, iterative refinement
algorithm is quite effective for all the points.

Finally, we compare the running time of IR versus opti-
mal algorithm on Intel Xeon 2.53GHz processor with 16GB
memory. We synthesize applications with varying number
of tasks per thread. The optimal algorithm is not scal-
able. It takes 220ms (3 tasks/thread) to 7 minutes (10
tasks/thread). With 20 tasks per thread, optimal algorithm
fails to return any solution even after running for 10 hours.
IR, on the other hand, returns solutions within 1 ms (3
tasks/thread) to 240 ms (20 tasks/thread).

7. CONCLUSION
We propose a multi-core architecture with shared reconfig-

urable logic to implement application-specific instructions.
We develop an efficient algorithm that can minimize the
execution time for multi-threaded applications running by
selecting appropriate custom instructions and reconfigura-
tion points. By comparing the system with private recon-
figurable logic per core, we conclude that sharing reconfig-
urable logic brings substantial acceleration for applications.

Acknowledgements. This work was partially supported
by MOE Singapore research grant MOE2009-T2-1-033.

8. REFERENCES
[1] Z. Chen, R. N. Pittman, and A. Forin. Combining multicore

and reconfigurable instruction set extensions. In FPGA, 2010.

[2] P. Garcia and K. Compton. Kernel sharing on reconfigurable
multiprocessor systems. In FPT, 2008.

[3] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2), 2000.

[4] R. E. Gonzalez. A software-configurable processor architecture.
IEEE Micro, 26(5), 2006.

[5] H. P. Huynh and T. Mitra. Runtime reconfiguration of custom
instructions for real-time embedded systems. In DATE, 2009.

[6] R. K. Kincaid, D. M. Nicol, and D. R. Shier. A multistage
linear array assignment problem. Operations Research Journal,
38, 1990.

[7] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-core
chip multiprocessing. In MICRO, 2004.

[8] S.L. Shee and S. Parameswaran. Design methodology for
pipelined heterogeneous multiprocessor system. In DAC, 2007.

[9] F. Sun, S. Ravi, A. Raghunathan, and N.K. Jha.
Application-specific heterogeneous multiprocessor synthesis
using extensible processors. IEEE TCAD, 25(9), 2006.

[10] M.A. Watkins and D.H. Albonesi. ReMAP: A reconfigurable
heterogeneous multicore architecture. In MICRO, 2010.

