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Abstract—In this paper, we propose a framework for syn-
thesis of application specific MultiProcessor System on Chip
(MPSoC) for multimedia applications. Our framework searches
for a design with minimum energy consumption under area and
period constraints. We simultaneously explore selection of voltage-
frequency levels, custom instructions, cache configurations, and
task mapping. We propose an optimal algorithm based on prune
and search operations to efficiently search the complex design
space. We also present a heuristic based on map and customize
stages to better handle the exponential complexity of the design
space, and rapidly find near-optimal solutions. These algorithms
are aided by two estimators that can quickly estimate period and
energy consumption of a given design point. Experiments reveal
that our framework can reduce energy consumption by 37.9% on
an average and 57.1% maximum reduction compared to solutions
obtained from a combination of existing techniques.

I. INTRODUCTION

MultiProcessor System-on-Chip (MPSoC) architectures
have significantly proliferated in portable devices, where they
have have to satisfy stringent requirements of the target appli-
cation(s) and/or the target device. For example, MPSoCs for
multimedia applications have to deliver a certain performance
to provide reasonable quality of service to the users (perfor-
mance constraint), must have area smaller than a certain limit
due to the size of the portable devices (area constraint), and
should have low energy consumption to increase the battery
life. Therefore, application specific MPSoCs are deployed in
portable devices [29] where an MPSoC is (extremely) cus-
tomized for a given application under an objective function
and various constraints. This paper focuses on customization
of MPSoCs for multimedia applications with the objective of
minimum energy consumption under performance and area
constraints. We explore the following four energy reduction
techniques (design parameters):
• Dynamic Voltage and Frequency Scaling (DVFS) al-

lows processors to operate at multiple discrete voltage-
frequency (v-f) levels. DVFS is particularly suitable for
multimedia applications where the slack of non-critical
tasks is exploited by the use of a lower v-f level to
reduce the energy consumption without sacrificing the
performance [26].
• Customization of processors aims to match the processing

elements of an MPSoC to the computational requirements
of the tasks at hand. Processor customization involves
addition/removal of functional units, hardware acceler-
ators, custom register files, etc. Custom processors are
typically realized through the use of Application Specific
Instruction set Processors (ASIPs) [12], where custom
instructions are added to access the custom hardware.
These custom instructions, when carefully designed, can
reduce instruction fetches and register file accesses and
improve the energy efficiency of a processor [19].
• The cache of a processor contributes significantly to its

power consumption [13], in particular static power be-
cause it consumes significant amount of on-chip area. Cus-
tomization of cache according to memory access pattern of

a task can significantly reduce energy consumption [10].
• Task mapping allows a designer to map tasks of an

application to the processors. Task mapping is done so
as to balance the workload across all the processors in
an MPSoC, improving their utilization and thus reducing
energy consumption of the MPSoC [4].

Given the above design parameters, customization of an
MPSoC for a target application becomes an optimization
problem where the MPSoC’s design space (resulting from the
options available for the design parameters) is explored for an
optimal solution. While there exist several works in literature
that have focused on a subset of the aforementioned design
parameters (for example, [12] considered processor customiza-
tion and task mapping; [13] considered cache customization),
these optimization techniques are designed to work efficiently
only with the considered set of design parameters. A mere
combination of these individual optimization techniques to
cover all the aforementioned design parameters is not the
most effective solution. In fact, the authors of [12] illustrate
that optimization with simultaneous processor customization
and task mapping resulted in solutions that are 16% better in
performance compared to when processor customization and
task mappings were performed independently one after the
other.

Motivational Example. We analyze three typical multi-
media applications (JPEG encoder, MP3 encoder and H.264
encoder) to observe the sub-optimality in using independent
optimization techniques for DVFS, processor customization,
cache customization, and task mapping. For each application,
we optimized the MPSoC for minimum energy consumption
under performance and area constraints, where multiple v-f
levels per task, multiple custom instructions per task, multiple
cache configurations per processor, and general task mapping
were used as the design parameters. Further details of the
experimental setup are provided in Section V. Figure 1 plots the
minimum energy design point obtained by the “independent”
and “integrated” optimization techniques. In the “independent”
technique, an optimal solution is sought for each design pa-
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Fig. 1: Comparison of ‘independent’ and ‘integrated’ optimiza-
tion techniques.



rameter one after the other. For example, first an optimal task
mapping is selected, then optimal v-f levels for all the tasks are
identified given the task mapping, and so on. It is important to
note that the sequence of independent optimization techniques
affects the optimality of the solution, and thus we exhaustively
attempted all possible orders of individual optimizations (for
n design parameters, independent optimizations can be per-
formed in n! ways). Therefore, the solution of “independent”
optimization technique is the best possible solution from the
use of independent individual optimization techniques. The
“integrated” optimization technique explores all the design
parameters in an integrated and synergistic fashion so as to
take into account the complex interplay of DVFS, processor
customization, cache customization and task mapping. For
example, use of custom instructions for a task modifies its
code size and memory access pattern, which in turn affects the
customization of the cache for the processor on which this task
will be mapped. Thus, the interplay of design parameters must
be considered to find a globally optimal solution.

It is evident from Figure 1 that an “integrated” optimization
technique has far better potential in reaching the globally
optimal solution than the “independent” technique. More im-
portantly, the quality of the solutions from the “independent”
technique are significantly inferior even when all the possible
ways of combining optimal solutions from individual tech-
niques are exhausted. For example, as shown in Figure 1,
the amount of energy saved using “integrated” technique is
atleast 26.1%. The advantage of synergistic use of various
optimization techniques comes at a price. The complexity of
the optimization problem, which depends on the number and
types of the design parameters, and the number of options
considered for those parameters, increases manifold. In fact,
the optimization problem with DVFS, processor customiza-
tion, cache customization and task mapping is an NP-Hard
problem [4]. For a glimpse of the optimization problem’s
complexity, consider an application with only four tasks, four
custom instructions per task, four v-f levels and four cache
configurations. Then, the total number of design points is
more than a billion. Therefore, a carefully crafted optimization
technique that takes into account the interplay of DVFS, pro-
cessor customization, cache customization and task mapping
is required to quickly find globally optimal or near-optimal
solutions. Our key contributions are:
• We propose a comprehensive framework for exploration of

a complex design space consisting of four design parame-
ters: DVFS, processor customization, cache customization
and task mapping.
• As part of the framework, we propose two analytical

estimators that use a minimal number of cycle-accurate
simulations, and hence speed up design space exploration.
• Additionally, we propose an optimal algorithm and a

heuristic to search the complex, exponential design space
for optimal or near-optimal solutions.
• Finally, we demonstrate the effectiveness of our frame-

work compared to an optimization technique consisting
of existing techniques using real multimedia applications.

II. RELATED WORK

There is a plethora of work on optimization of application
specific MPSoCs, where researchers have considered different
objective functions, constraints and design parameters. We
report the most relevant works categorized according to the
four design parameters described in Section I.

With regards to DVFS, the authors of [2], [7] used it to
balance workload across processors connected in a pipeline,
in order to reduce their energy consumption. They proposed
feedback controllers to monitor the occupancy levels of buffers
in the pipeline, and either increased or decreased the v-f level
of a processor accordingly. Chen et al. [9] also considered a
pipeline of processors with the availability of DVFS; however,

they minimized the energy consumption of the system under an
end-to-end application deadline using quadratic programming.
For processor customization, Bonzini et al. [6] studied the
effects on energy consumption and performance due to addition
of custom instructions in an ASIP. They built an estimation
model for a simplescalar-like processor to quickly evaluate
different custom instructions. In [5], the authors characterized
the energy benefits of extending the baseline instruction set
architecture of an FPGA based soft processor. Lin et al. [19]
targeted multiobjective optimization of an ASIP where custom
instructions are added considering area and energy consump-
tion. They used mixed integer linear programming (MILP) for
an optimal solution and a simulated annealing based heuristic
for a near-optimal solution.

Using cache customization, the authors of [10], [13] ex-
plored the design space of a cache (cache size, line size,
associativity) to select a cache configuration with minimum en-
ergy consumption. The authors proposed a heuristic to quickly
search through complex design space of cache configurations
for a near-optimal solution. Rawlins et al. [22] targeted run-
time adaptation of L1 data cache to minimize energy consump-
tion of a heterogeneous MPSoC architecture.

Jung et al. [18] customized an MPSoC, where custom
instructions and different v-f levels were used for the ASIPs
in the system. They employed MILP to find the design
point with minimum dynamic energy consumption under an
area constraint. Ruggiero et al. [23] considered an MPSoC
with variable number of processors and DVFS. They used a
design space exploration algorithm to determine the optimal
number of processors and v-f levels for a given application
to minimize the MPSoC’s power consumption under qual-
ity of service constraints. The authors of [3] considered re-
source allocation and voltage selection problem in an MPSoC.
They minimized MPSoC’s energy consumption with the use
of integer programming and constraint programming. Lu et
al. [20] considered the problem of task mapping/scheduling and
DVFS in homogeneous MPSoCs. They proposed a processor
utilization based algorithm for task mapping and exploited
the slacks available in periodic tasks to minimize energy
consumption. Sun et al. [12] proposed an iterative algorithm to
select custom instructions for ASIPs in an MPSoC along with
the mapping and scheduling of tasks to maximally improve
performance under an area constraint. A dynamic program-
ming based algorithm was introduced in [8] to find optimal
mapping of tasks on ASIPs of an MPSoC under a period
constraint, where custom instructions for ASIPs and interval-
based mapping were considered. The works in [15], [16], [25]
considered a pipeline of ASIPs for multimedia applications.
They maximized performance improvement per unit area [25]
or minimized area under performance constraints [15], [16]
while exploring custom instructions and cache configurations.
Pruning algorithms, heuristics, and integer linear programming
based approaches were proposed in these works.

It is clear that none of the above works considered com-
bined use of DVFS, processor customization, cache customiza-
tion, and task mapping, which has the potential to save
significant amounts of energy (see Figure 1). To the best of
our knowledge, our work is the first to use these techniques
together for energy minimization under performance and area
constraints in application specific MPSoCs for multimedia.

III. PROBLEM FORMULATION

MPSoC architecure. In this paper, we target applica-
tion specific MPSoCs that consist of customizable processors,
which can be realized with the use of ASIPs. As shown in
Figure 2, each processor has a private cache and local memory,
and communicates with other processors via dedicated commu-
nication buffers (for example, FIFO queues). Each processor
can be customized by both extending its baseline instruction
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Fig. 2: (a)Task graph (b)MPSoC architecture.

set architecture (with the addition of custom instructions) and
customizing its cache (size, line size, etc.). Additionally, each
processor can operate at several discrete v-f levels.

Application model. The target application domain com-
prises of multimedia applications, which contain compute-
intensive sub-kernels or tasks that are executed repeatedly. We
represent these applications as directed acyclic graphs1, where
vertices represent tasks and edges represent communication
between the tasks. The tasks are mapped to the processors,
and then buffers are instantiated only between those processors
whose mapped tasks need to communicate data. Benoit et
al. [4] categorized mapping of a task graph on an MPSoC with
fixed number of processors into: one-to-one mapping, where
only a single task is mapped to a processor; interval based
mapping, where only adjoining tasks are mapped to a proces-
sor; and, general mapping, where no restrictions are placed
at all. The type of task mapping determines the placement
of the communication buffers between the processors in an
MPSoC. In this paper, we use general mapping because it offers
greater flexibility and has the potential to reach a better solution
(explained later). Once the tasks are mapped, the MPSoC
executes those tasks in the form of a virtual pipeline because
multimedia applications inherently benefit from a pipelined
execution [24].

Figure 3 illustrates mapping of a task graph to a two
processor MPSoC using interval and general mappings. In
interval mapping, tasks T1 and T2 are mapped to the first
processor while T3 is mapped to the second processor. The
execution of the processors is similar to a virtual pipeline
with two stages. During an iteration of the pipeline, all the
tasks mapped on a processor are executed once. The period
of the virtual pipeline is equal to the maximum latency from
all of its stages in the steady-state, as marked in Figure 3.
In general mapping, tasks T1 and T3 are mapped to the
first processor and T2 is mapped to the second processor
to better balance the workload. In this case, the period is
determined by P2 which is smaller compared to the period
from interval mapping. The price is paid in terms of a longer
“initialization” period; however, this is done only once at the
start of the application. Note that the “initialization” schedule
(for example, execution of T1 twice before the execution of
T3) and “steady-state” schedule (for example, execution of T3
followed by T1) for any general mapping can be produced
using software pipelining [4].

Problem Statement. In the MPSoC architecture and appli-
cation model described above, each processor has a number
of cache configurations available for it. Each task can be
accelerated with a set of custom instructions, and thus each task
has multiple implementations corresponding to different sets of
custom instructions that can be used for it. Each set of custom
instructions for a task has an additional area cost. Additionally,
each task can be executed at one of the available v-f levels. The
latency and energy consumption of a task then depends on the
cache configuration of the processor on which it is mapped, and
the set of custom instructions and v-f level selected for it. The

1Cyclic graphs are converted to acyclic graphs by graph unfolding [30].
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Fig. 3: Different task mappings on an MPSoC.

area of the baseline processor, additional custom instructions
(from all the tasks mapped on the processor) and the cache
configuration determine the total area of the custom processor.
The area of the MPSoC is then the summation of the area
of all the processors and the communication buffers. Likewise,
energy consumption of the MPSoC is the addition of the energy
consumption of the processors (including custom instructions,
caches and local memories) and the communication buffers.
Putting it all together, the optimization problem can be formally
stated as follows: Given an application task graph, several
discrete v-f levels for each task, different sets of custom
instructions for each task, different cache configurations for
each processor, a steady state period constraint, and an area
constraint, the goal is to minimize the total energy consumption
of the MPSoC under the provided constraints. To solve this
optimization problem, one needs to search the resulting design
space for: (1) the optimal number of processors and mapping
of the tasks on them, (2) optimal cache configuration for each
of the individual processors, and (3) optimal set of custom
instructions and v-f level for each of the tasks. It is important
to note that our optimization problem cannot be solved naively
because of its exponential complexity that results from all the
possible combinations of v-f levels, sets of custom instructions,
cache configurations and task mappings.

IV. PROPOSED FRAMEWORK

We propose a framework, shown in Figure 4, to solve the
optimization problem described in the last section. Our frame-
work integrates three components. The profiler component uses
a cycle-accurate simulator to produce profiling information for
all the application tasks. Next, the profiling information is
exploited by the estimation component to estimate the steady-
state latency and energy consumption of the application tasks.
Finally, the design space exploration component searches for an
optimal or near optimal design point. The following paragraphs
explain these components in more detail.

A. Profiler

The input to the profiler consists of the following:
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• A multimedia application and its task graph, represented
as {T1, T2, ..., TN}.
• Baseline processor and input data representative of the

worst-case.
• R v-f levels for each task, represented as {V1, ..., VR}.
• Oi sets of custom instructions for task Ti, represented as
{CIi1, ..., CIiOi}. For a task Ti, CIi1 refers to the use of
only baseline processor without any custom instructions
(zero additional area).

• Q cache configurations for the processors, represented as
{C1, ..., CQ}.

The profiler uses a cycle-accurate simulator to profile all the
possible implementations of a task, where an implementation
refers to a combination of a set of custom instructions and a
cache configuration with the highest v-f level in the baseline
processor. For example, for task Ti, Oi × Q simulations,
all at the highest v-f level, are run to capture its latency,
power consumption and memory trace for all combinations of
sets of custom instructions and cache configurations. During
these simulations, input data representative of the worst-case
(provided by the designer) is used so that the MPSoC can
deliver the required performance at all times when deployed.
Estimation of the steady-state latency and power consumption
for a task at a v-f level other than the highest level is done in
the estimation component of our framework. It is important to
note that simulation of all possible task mappings with different
v-f levels, sets of custom instructions and cache configurations
is not practically feasible due to exponential nature of the
design space. Therefore, our profiler uses a minimal number
of simulations so as to keep simulation time low.
B. Latency and Energy Estimation

Two estimators are proposed in this section to estimate
steady-state latency and energy consumption of a number of
tasks mapped on a baseline processor with their corresponding
sets of custom instructions and v-f levels, and a cache config-
uration.

1) Accurate (Acure) Estimator: Single task. For a task with
a given set of custom instructions and a cache configuration,
we estimate its first iteration’s latency (Lv) and energy con-
sumption (Ev) at a v-f level v using:

Lv =
Lh × Fh

Fv

Pv =
Ph × (Vv)

2 × Fv

(Vh)2 × Fh

Ev = Pv × Lv

where Lh and Ph are the latency and power consumption at the
highest v-f level, captured in the profiler component. Given the
first iteration’s latency and energy consumption at a certain v-f
level, the steady-state latency and energy consumption at the
same v-f level depends primarily upon the cache configuration.
During repeated execution of a task, some of the cache misses
from the first iteration may become hits in subsequent iterations
due to reuse. We define “local miss” and “global miss” to
distinguish between those cache misses. Let M be the sequence
of memory requests accessed in an iteration of a task. Let m
be a memory request in M and let sm be the cache set that m
maps to. If M is simulated in isolation starting with an empty
cache and the first reference to m results in a cache miss, then
m is classified as: a) Local miss if there are less than N unique
references to cache set sm in M before m, where N is the
associativity of the cache and b) Global miss if m is not a local
miss. If m is a global miss or hit, it is not affected by the cache
state at the start of an iteration of M , that is, it behaves the same
way in every iteration. However, if m is a local miss, then it
may hit or miss in subsequent iterations depending on the cache
state at the start of an iteration of M . Intuitively, local misses
are the first n cold misses to each cache set that may benefit

Iter. Cache State (CS) Local Misses (LM) Global Misses
1 {m0,m5,m6,m7} {m0,m1,m2,m3} {m5,m6,m7}
2 {m0,m5,m6,m7} {m1,m2,m3} {m5,m6,m7}
3 {m0,m5,m6,m7} {m1,m2,m3} {m5,m6,m7}

TABLE I: Cache state across iterations of a task.

from reuse later. For an example, assume a direct mapped cache
with four sets, c[0...3]. Additionally, assume that the memory
request pattern of a task is {m0,m1,m2,m3,m5,m6,m7},
where {m0} maps to c[0], {m1,m5} map to c[1], {m2,m6}
map to c[2] and {m3,m7} map to c[3]. Let LM1 be the set
representing memory requests that resulted in local misses
during the first iteration of the task, and CS1 be the set
representing cache state at the end of the first iteration. Then,
LM1 = {m0,m1,m2,m3} ({m5,m6,m7} are global misses)
and CS1 = {m0,m5,m6,m7}. In the steady-state, m0 from
LM1 will always be a hit while {m1,m2,m3} will always
result in local misses. Table I illustrates local misses, global
misses and cache states across different iterations for the
running example.

In summary, the steady-state latency will be less than or
equal to the first iteration latency because the number of local
misses might reduce. The reduction in the number of local
misses is LMr =

∣∣CS1 ∩ LM1
∣∣. The steady-state latency

(Lss) and energy consumption (Ess) is then estimated using
the following equations:

Lss = L1 − (LMr ×ML)

Ess = E1 − (LMr ×ME)

where ML and ME refer to lower-level memory latency and
energy per access. L1 and E1 refer to the first iteration’s
latency and energy consumption of a task, including its com-
munication latency and energy respectively. Since the global
misses remain constant across iterations and have already
been captured in L1 and E1, they do not affect steady-state
latency and energy consumption. For estimation, both CS1 and
LM1 are computed by processing the memory trace captured
in the profiler component. Note that the steady-state latency
and energy consumption of a task can also be computed by
simulating it for multiple iterations in the profiler. However, for
long running tasks, the simulation time for multiple iterations
might be significant. Our estimation technique had errors of
less that 1% compared to cycle-accurate simulations of multiple
iterations (see Section VI), and hence we did not simulate
multiple iterations of a task in the profiler.

Multiple tasks. Now we extend our estimation technique
to multiple tasks. We assume that all the tasks are non-
preemptible which is a valid assumption [25] for multimedia
applications because each task has to process its input data
before sending it to the next task. When more than one task
is mapped to a processor, then each task can pollute the cache
state of other tasks. For the sake of simplicity, we explain our
estimation technique with two tasks T1 and T2; however it
can easily be extended to any number of tasks. Let CS1

1 and
CS1

2 be the cache states at the end of the first iteration of
tasks T1 and T2 respectively, and LM1

1 and LM1
2 be the sets

containing local misses during the first iteration. In steady state,
the number of misses reduces for a particular task when its
locally missed memory requests survive through the execution
of the other task. For a particular cache set sm, we define
the operator

⊙
as m′⊙m′′ = m′′, if m′′ is not null or else

m′⊙m′′ = m′. This means that the memory request m′′

(when m′′ 6= null) has replaced m′ in the cache set sm. Then,
the reduction in the number of local misses for T1 and T2 is:

LMr,T1 =
∣∣∣(CS1

1

⊙
CS1

2) ∩ LM1
1

∣∣∣
LMr,T2 =

∣∣∣(CS1
2

⊙
CS1

1) ∩ LM1
2

∣∣∣



Therefore, the steady-state latency and energy consumption of the two
tasks are:

Lss
T1,T2

= L1
T1

+ L1
T2
− ((LMr,T1 + LMr,T2)×ML)

Ess
T1,T2

= E1
T1

+ E1
T2
− ((LMr,T1 + LMr,T2)×ME)

If two communicating tasks are mapped to the same processor,
then they do not need to communicate through a communication
buffer. We capture the amount of data transferred (in words) and the
latency per word during the first iteration of a task in the profiler
component. Given this information, we estimate the communication
latency of a task by multiplying the latency per word with the amount
of data transferred. A similar approach is used for estimation of
the communication energy. Once the communication latencies and
energies of the two tasks are available, we subtract them from Lss

T1,T2

and Ess
T1,T2

to account for the saving in communication latency and
energy from their mapping on the same processor.

It is clear that our estimation technique allows to calculate the
steady-state latency and energy consumption of any number and order
of tasks from latency, energy consumption and memory trace of first
iterations of the individual tasks. Therefore, we do not simulate all the
possible mappings of tasks in the profiler component, which reduces
simulation time significantly.

2) Fast Estimator: The computational complexity of estimat-
ing steady-state latency and energy consumption in Acure estimator
depends upon the number of tasks and the size of their memory
traces. When the number of complex tasks mapped on a processor
increases, Acure estimator might become slow for rapid design space
exploration. Therefore, in Fast estimator, we trade-off the time spent
in processing of memory traces (to compute LM1

i and CS1
i for a task

Ti) with the estimation accuracy.

Single task. Like Acure estimator, first of all, the latency and
energy consumption of first iteration is estimated at the given v-f
level. Afterwards, rather than analyzing the memory trace, we use the
first iteration’s latency and energy consumption as the steady-state
latency and energy consumption of a task.

Multiple tasks. The steady-state latency and energy consumption
of two tasks, T1 and T2, is computed by adding the steady-state
latency and energy consumption of the individual tasks. The com-
munication latency and energy are accounted for in a similar fashion
to the Acure estimator. The accuracy of Fast estimator depends upon
the cache behavior. If the reduction in local misses across iterations
of a single task or across multiple tasks is significant, then the error
will be high.

C. Design Space Exploration

1) Prune and Search (Push) Algorithm: The Push algorithm
uses two basic operations “prune” and “search” to quickly push
itself through the complex design space towards the optimal design
point. The “prune” operation prunes certain parts of the design space
based on constraints, while the “search” operation finds a partial
solution in a subset of the design space. These partial solutions are
combined successively to reach the globally optimal design point.
Theoretically, the worst-case complexity of the Push algorithm is
exponential; practically, it is able to prune a large part of the complex
design space by exploiting the constraints.

Algorithm 1 shows the pseudo code of the Push algorithm. For
ease of understanding, consider that the design space is represented
as a tree, which is shown in Figure 5. The parameters of the design
space are summarized in the table. For the sake of simplicity, we
do not show all the nodes in the design space tree. Note that L1111

represents the latency of the task T1 with custom instruction set CI1,
v-f level V1 and cache configuration C1 (a similar notation is used for
energy as well). The annotations on edges illustrate the options of the
design parameters. Each level i of the tree corresponds to a call of the
Push procedure, where the algorithm has a partial solution for tasks
T1, T2, ..., Ti−1 (their corresponding sets of custom instructions and v-
f levels, stored in map[]), and the processors (with their corresponding
cache configurations, stored in eProcs) that have already been mapped
with those tasks. Let period, area and energy consumption of the
partial solution be currP, currA and currE respectively (stored in
currMetrics). With this partial solution at level i, the algorithm prunes
the subtrees based on constraints (lines 7-9) which are explained
later. Note that the areaPruning, periodPruning and energyPruning

Algorithm 1: Push Algorithm
1 tasks = {T1, T2...TN};
2 eProcs = {} ; // existing processors
3 map[] = {} ; // map[P] contains tasks mapped
on P

4 currMetrics = {currA = 0, currP = 0, currE = 0};
5 bestSol = {};
6 PUSH(tasks, eProcs,map,Ac, Pc)
7 if areaPruning(tasks, Ac) then return;
8 if periodPruning(tasks, Pc) then return;
9 if energyPruning(tasks, bestSol) then return;

10 if tasks 6= null then
11 Ti ← task i from tasks;

// map to an existing processor
12 for each P in eProcs do
13 for o = 1 to Oi do // custom instructions
14 for v = 1 to R do // v-f levels
15 map[P] ← Ti with CIio and Vv;
16 currMetrics = metrics(eProcs, map);
17 if currP ≤ Pc and currA ≤ Ac then
18 PUSH(tasks, eProcs,map,Ac, Pc);
19 else
20 restore currMetrics previous value;
21 remove Ti from map[P];

// map to a new processor
22 for c = 1 to Q do // cache configurations
23 for o = 1 to Oi do // custom instructions
24 for v = 1 to R do // v-f levels
25 nP = new processor with Cc;
26 eProcs ← nP;
27 map[nP] ← Ti with CIio and Vv;
28 currMetrics = metrics(eProcs, map);
29 if currP ≤ Pc and currA ≤ Ac then
30 PUSH(tasks, eProcs,map,Ac, Pc);
31 else
32 restore currMetrics previous value;
33 remove Ti from map[P];
34 remove nP from eProcs;

35 if tasks 6= null then
36 return failure;
37 else
38 update bestSol if required; return;

functions return true when the subtrees are pruned. If the pruning is
unsuccessful, then the algorithm maps task Ti either to one of the
existing processors (lines 13-22) or a new processor (lines 24-36)
ensuring the area and period constraints are met, and then moves on
to the next task by calling the Push procedure. Here, the algorithm
uses the metrics function (lines 17, 30) to calculate the area, period
and energy consumption of the new mapping using either the Acure
or Fast estimator from Section IV-B. This process is repeated until
all the tasks have been mapped or no more tasks can be mapped
given the area and period constraints (lines 37-38). Mapping of all
the tasks means a new solution is found, which is used to update
the best solution seen so far (stored in bestSol, line 40) if the new
solution’s energy consumption is better than the best solution.

For example, at level 1 in Figure 5, the current node indicates that
CI12 set of custom instructions and V1 v-f level have been selected for
task T1 which is mapped to a processor with C1 cache configuration.
The algorithm reaches the current node only after traversing the entire
left subtree for the task T1. The metrics for partial solution at level 1
are in currP, currA and currE, while bestE is the energy consumption
of the best solution seen so far. From the current node, task T2 can be
mapped either to the existing processor (left subtree, edge annotated
as e) or a new processor (right subtree, edge annotated as n). The
algorithm can prune the subtrees based on the following observations:

Area constraint. If all the remaining tasks are mapped to existing
processors without any custom instructions (use of baseline processor
only), then the total area will still be equal to currA because no
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Fig. 5: Illustration of Push algorithm.

additional area will be used for the unmapped tasks. If currA violates
the area constraint Ac, then it is safe to prune the subtree. In the
running example, the entire subtree will not be pruned for Ac ≥ 10.

Period constraint. A lower bound on the period can be es-
timated by mapping remaining tasks to separate processors and
using their lowest latency implementations (i.e Lmin

i ), that is,
max(currP, Lmin

i , ..., Lmin
N )). In the running example, currP = 1

and Lmin
2 = L2111 = 3, so lower bound on period equals max(1, 3)

= 3. If Pc = 2, then the entire subtree will be pruned.

Lowest possible energy consumption (LPE). For all the un-
mapped tasks, LPE is estimated as the summation of their minimum
energy consumptions, less their communication energies. That is, LPE
refers to the scenario where minimum energy implementations of all
the tasks are used with no energy spent in data communication. If
(LPE + currE) is greater than the energy consumption of the best
solution seen so far, then the entire subtree can be pruned as the
partial solution is already worse than the best solution. In the running
example, if the best solution’s energy is 4, then the entire subtree will
be pruned because LPE + currE = 5.

2) Map and Customize (MaC) Heuristic: To better handle the
exponential complexity, we propose a two stage algorithm consisting
of the “map” and “customize” stages. In the “map” stage, candidate
task mappings are produced considering a homogeneous MPSoC. In
the “customize” stage, already produced task mappings are used to
customize the MPSoC with the selection of custom instructions, v-f
levels and cache configurations. One can think of the “map” stage as
application-level balancer and the “customize” stage as system-level
balancer, which work in synergy to find a near-optimal solution.

Map stage. In this stage, a homogeneous MPSoC with variable
number of processors is considered. The input to this stage consists
of tasks = {T1, T2...TN}, and their code sizes and latencies on a
baseline processor with smallest cache configuration, lowest v-f level
and without any custom instructions. The goal is to generate a set of
task mappings that will possibly lead to a globally optimal solution.

Ideally, we would like to combine tasks that will complement each
other in terms of both the latency and the energy consumption. Let
us categorize tasks based upon their latencies as short and long tasks.
Likewise, we categorize tasks based upon their code size as small
and big tasks. Our intuition is that a small task well complements
a big task in terms of the cache configuration, while a short task
well complements a long task in terms of latency. Thus, we propose
to combine small-short tasks with big-long, and small-long with
big-short tasks, because they will result in a complementary effect
in their combined latency and energy consumption. If codei and
Li is the code size and latency of a task Ti respectively, then
we define code-latency product for a set of tasks {Ti, Tj , ...} as
CLP (i, j, ...) =

∑
x={i,j,...} codex × Lx. If the tasks are sorted in

ascending order according to CLP metric, then the smallest-shortest
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Fig. 6: Illustration of map stage: (a)Task graph (b)Task se-
quencing (c)Different task mappings.

task will set the lower bound while the biggest-longest task will set
the upper bound. All the other tasks will be dispersed in between
these bounds. We use the CLP metric to obtain a task sequence
Γ(N) where tasks with complementary characteristics are adjacent
to each other. Given N tasks, we consider them as N subsequences
and compute the CLP metric for each of them, followed by sorting
them in ascending order according to CLP . Then, we combine the
i-th subsequence with (N +1− i)-th subsequence, that is, combining
subsequences with complementary characteristics. After the first run, a
total of dN

2
e subsequences are obtained. We repeat the above process

till only one subsequence is left, which is the final sequence of tasks
with complementary characteristics. An example of task sequencing
for four tasks is shown in Figure 6. The annotation in each node
of the task graph on the left-hand side is (code, latency), while
the right-hand side illustrates the number of task subsequences and
their corresponding CLP metrics for each run. The final sequence
Γ(N) = {T2, T3, T1, T4} where {T2, T3} subsequence represents a
small-long and big-short combination, while {T1, T4} represents a
small-short and big-long combination.

After obtaining the task sequence using the CLP metric, we pro-
ceed to enumerate different mappings of the task sequence considering
variable number of processors as follows:

mapi = ∀Tj 7→ {P1, P2, ..., Pi} : 1 ≤ j ≤ N, i ≤ N

In essence, mapi represents mapping of all the tasks onto i number
of processors. We model the enumeration of task mappings as a
chains-on-chains problem [21], where the aim is to map j tasks on i
processor such that the mapping is load balanced, that is, the period is
minimized. Our intuition is that a balanced mapping at this stage will
possibly lead to better customization in the later stage. Although there
exist several polynomial-time algorithms for solving the chains-on-
chains problem [21], we use a dynamic programming based solution
from [4]. Figure 6(c) illustrates different task mappings for the final
task sequence of Figure 6(b) with their optimal periods.

Customize stage. The algorithm for customization of the MPSoC
for different task mappings is shown in Algorithm 2. For a task
mapping (stored in mapi), some area from the total available area
(stored in sArea) is allocated to each processor (stored in A[P])
proportional to its period (lines 9-10). This is based on the intuition
that a processor with higher period may have to use complex custom
instructions and bigger cache configuration to reduce its period. Given
the allocated area for a processor, we employ a modified version of the
Push algorithm, PushM (line 12), to find the optimal set of custom
instructions and v-f levels for all the tasks of the given processor,
and its optimal cache configuration. The PushM algorithm uses lines
13–22 of the Push algorithm, that is, an optimal solution is searched
for the given (existing) processor only, ignoring the addition of new
processors. The custom processor returned by the PushM algorithm
is added to the best solution for the current task mapping (stored in
bestSol[i]), while the area of the custom processor is subtracted from
the total available area (line 16). This process is repeated until all the
processors have satisfied the period constraint (line 11-16) or all the
processors currently in vProcs could not satisfy the period constraint
(lines 17-18). Finally, the algorithm returns the task mapping and
customized MPSoC with minimum energy consumption from all of
the input task mappings (line 22).

A working example of the algorithm is shown in Figure 7 for
one of the task mappings from Figure 6. The first column reports the
run of the algorithm while the rest of the columns report the area



Algorithm 2: Customize MPSoC
1 maps = {map1,map2, ...,mapN};
2 bestSol[] = {} ; // bestSol[i] for mapi

3 while maps 6= {} do
4 vProcs[] ← all the processors from mapi;
5 tasks[] ← tasks mapped to processors in vProcs;
6 sArea = Ac;
7 while vProcs 6= {} do

// allocate area proportional to
period

8 for each P in vProcs do
9 A[P] ← proportion of sArea using P’s period;

10 for each P in vProcs do
11 r = PushM(tasks[P], vProcs[P], {}, A[P], Pc);
12 if r 6= failure then
13 update bestSol[i][P] ; // solution for

P
14 remove P from vProcs;
15 sArea –= area returned by PushM();

16 if all P in vProcs failed then
17 break;

18 if vProcs 6= {} then
19 bestSol[i] ← failure;

20 remove mapi from maps;

21 return minimum energy solution from bestSol;

allocated to each processor and the total available area. For example,
in the first run, P1 and P2 are allocated an area of 8.75 and 2.5
respectively from total available area of 20. During the first run, the
PushM algorithm succeeds for P2 and fails for P1 and P3. Thus,
the area of the custom processor for P2 (1.5) is subtracted from the
total available area, which is redistributed among P1 (9.25) and P3
(9.25) for the next runs. In the second and third runs, the PushM
algorithm successfully customizes P3 and P1 under the allocated
area and period constraint.

V. EXPERIMENTAL SETUP

We used a commercial environment from Tensilica [1] to realize
application specific MPSoCs. We used Xtensa LX2 processors and
accompanying toolset RD-2011.2 which includes Xtensa ISS cycle-
accurate simulator, XTMP multiprocessor simulation environment,
and XPRES compiler. For each application task, we used XPRES
compiler to generate different sets of custom instructions, which
consist of any combination of FLIX, fused, vector and specialized
instructions. At least, five sets of custom instructions were generated
per application task. We used five different instruction cache config-
urations by changing cache sizes from 1 KB to 16 KB. Although
we only tested our framework with instruction cache configurations,
a designer can easily apply it to data cache configurations. For each
processor, we used five different frequency levels ranging from 533
MHz to 1.5 Ghz with their corresponding voltage levels. The Xt-
Xenergy tool from Tensilica is used to compute the energy consump-
tion of a processor at the highest v-f level, including its caches and
local memory for a given 90nm technology. The area of the processor
and its caches and local memories is also obtained from Tensilica
toolset. For communication buffers, we estimated their area and energy
consumption using CACTI [27].

Task Mapping: {T2} {T3} {T1,T4}        Ac = 20    Pc = 5  

Run 
 P1 (period = 7) P2 (period = 2) P3 (period = 7) sArea 

(20) A[P1] PushM A[P2] PushM A[P3] PushM 

1 8.75 -- 2.5 1.5 8.75 -- 18.5 

2 9.25 -- -- 1.5 9.25 9.0 9.5 

3 9.5 9.4 -- 1.5 -- 9.0 0.1 

Fig. 7: Illustration of customize stage.

Mapped Latency Error [%] Energy Error [%]
Tasks Acure Fast Acure Fast

1 0.54 1.72 0.69 2.92
2 0.61 1.99 0.82 3.10
4 0.75 4.82 0.97 6.65
8 0.86 8.31 1.04 9.98
16 0.91 11.20 1.22 13.52
20 1.07 13.64 1.29 15.71

TABLE II: Maximum error in the Acure and Fast estimators.
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Fig. 8: Comparison of different optimization techniques, nor-
malized to Acure-Push.

For evaluation, we used both real multimedia and synthetic
applications. We partitioned the multimedia applications into their
tasks as mentioned in [8] for JPEG encoder (5 tasks) and MP3 encoder
(5 tasks), and in [17] for H.264 encoder (7 tasks). For synthetic
applications, we generated task graphs using TGFF [11], and used
kernels from Mibench [14] and StreamIt [28] as tasks in those task
graphs. We chose ten kernels from Mibench and StreamIt where a
reasonable trade-off in performance and area was observed for dif-
ferent custom instructions and cache configurations. We created three
synthetic applications: SA1 with 10 tasks, SA2 with 15 tasks and SA3
with 20 tasks to evaluate the scalability of the proposed framework.
Given the above setup, the design space of each application contained
at least a billion design points. All the experiments were conducted
on an Intel Xeon 2.53 Ghz processor with 16 GB memory.

VI. RESULTS

Table II summarizes the error observed in computation of the
steady-state latency and energy using the Acure and Fast estimators,
compared to cycle-accurate simulation. The table reports the maximum
error observed, from amongst all the applications, when different
number of tasks are mapped on a processor with different sets of
custom instructions and cache configurations. The errors observed in
Acure estimator are very low and remain constant across the number
of tasks. On the other hand, the errors in the Fast estimator increase
with the number of tasks, reaching to a maximum of 15.71%. This
is because the cache behavior is disrupted when a greater number of
tasks are mapped to the same processor. Thus, the Acure estimator
will better guide the design space exploration algorithms than the
Fast estimator. In our framework, the Acure and Fast estimators can
either be combined with the Push algorithm or MaC heuristic, which
results in four possible optimization techniques. Additionally, we also
use the “independent” optimization technique described in Section I,
where optimal solutions are sought for in individual optimization
problems, and all the possible ways of combining individual optimal
solutions are exhausted. Since the “independent” technique can be
constructed from existing techniques, we use it as the state-of-the-art
for comparison purposes. Note that the use of Acure estimator with
the Push algorithm will yield the most optimal solution from amongst
all the five optimization techniques. Since our design spaces contain
at least billion points, it is not practical to apply all the possible period
and area constraints. We used Latin Hypercube Sampling to generate
50 uniformly distributed tuples for each application, where each tuple
represents a combination of area and period constraints.

Figure 8 plots the average energy consumptions of the solutions
obtained from various optimization techniques, normalized to the
energy consumption of the solution from Acure-Push technique under
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Fig. 9: Error distribution in different optimization techniques
for SA3 application.

Apps. # Acure Fast Acure Fast Ind.
Tasks Push Push MaC MaC

JPEG 5 910 770 4 3 75
MP3 5 1181 890 12 9 75

H.264 7 1492 1028 84 17 492
SA1 10 3662 2621 299 87 991
SA2 15 5021 3267 450 230 1982
SA3 20 7732 4919 785 540 3811

TABLE III: Exploration time (in secs) of optimization tech-
niques.

50 different constraints. From amongst all the applications, on average,
Fast-Push, Acure-MaC and Fast-MaC found 8%, 6% and 9% increase
in energy consumption compared to Acure-Push respectively. It is
noteworthy that the Acure-MaC outperformed Fast-Push for H.264
and SA3 applications even though the Push algorithm is optimal. This
is due to higher estimation errors in the Fast estimator compared to
the Acure estimator for H.264 and SA3 applications, which misguided
the Push algorithm. Out of all the five optimization techniques, the
“independent” technique performs the worst; on average, it resulted
in up to 37.9% increase in energy consumption. More importantly,
our most sub-optimal heuristic, Fast-MaC, improved the energy
consumption of the solutions by up to 76.25% on average when
compared to the “independent” technique. The maximum increase in
energy consumption from various optimization techniques compared
to Acure-Push yielded similar findings. At maximum, the “indepen-
dent” technique resulted in solutions that were up to 57.1% higher
in energy consumption, while Fast-Push, Acure-MaC and Fast-MaC
resulted in solutions that were 16%, 13% and 19% higher in energy
consumption respectively. Figure 9 plots the distribution of energy
difference between the solutions obtained from those technqiues with
the one obtained from Acure-Push for SA3 application. It is evident
that 85% of the solutions from the independent technique have more
than 20% increase in energy with respect to Acure-Push, while all the
solutions from Fast-Push, Acure-MaC and Fast-MaC have less than
20% increase in energy.

Table III reports the exploration time of all the five optimization
techniques in seconds. For each application, these exploration times
are calculated by taking an average of the total time spent in
finding solutions for all the 50 constraints. It is evident that the
optimization techniques with the Fast estimator are faster than the
Acure estimator. More importantly, the MaC heuristic is at least 9
times (SA3 application), faster than the Push algorithm. It is also
noteworthy that the “independent” technique’s exploration time is at
least 7 times more than our fastest heuristic Fast-MaC even with
76.25% sub-optimal solutions.

VII. CONCLUSION

We have proposed a framework to synthesize an energy-aware
application specific MPSoC. We synergistically explore the complex
interplay of DVFS, custom instructions, cache configurations and task
mapping. Our framework uses two analytical estimators, the Push
algorithm for optimal solutions and MaC heuristic for near-optimal
solutions. The experimental results show that the MaC heuristic is at
least 14 times faster than the Push algorithm with average errors of
up to 9%. Also, our MaC heuristic reduces energy consumption by up

to 76.25% on average with 7 times lower exploration time compared
to the “independent” optimization technique.
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