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Abstract

Considering both spatial and temporal partitioning,
though potentially profitable, increases the complexity of
the design space of applications for run-time reconfigurable
architectures. In particular, the number of ways to partition
is exponential and dynamic reconfiguration cost is difficult
to estimate. These difficulties are particularly challenging
for the implementation of neighborhood searches over the
design space, such as the sheer amount of design space to
be searched and time taken to evaluate each design point
accurately. In order to address these challenges, this pa-
per presents a framework that enables fast navigation of
the design space using any neighborhood search schemes.
The key is a neighborhood relation which spans the en-
tire spatial and temporal partitioning design space. Com-
puted over a SEQUITUR compressed loop trace structure,
this relation enables the fast estimation of neighboring de-
sign points. We implemented two neighborhood searches,
Hill-Climb and Tabu search, to evaluate our technique. On
four non-trivial benchmarks, these searches are accelerated
by up to two orders of magnitude when using our proposed
technique while finding optimal results most of the time.

1. INTRODUCTION

Dynamically reconfigurable system-on-chip (SoC) solu-
tions where an embedded processor core is tightly coupled
with programmable logic (e.g., FPGAs, PLDs etc.) have
recently become commercially viable. Examples include
Xilinx II-Pro, Virtex 4 FX [1]. Typically, the programmable
logic may be subjected to two forms of partitioning: spatial
and temporal. Spatial partitioning allows multiple kernels to
share the hardware at any single time instance while tempo-
ral partitioning allows different configurations to be recon-
figured at different time instances (thus employing dynamic
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Fig. 1: Four partitioning strategies.

run-time reconfiguration). The former has the advantage of
high resource utilization but limits the speed up obtainable
from each kernel. The latter has the advantage of resource
virtualization while incurring the penalty of reconfiguration
overhead. This paper seeks to combine the two by enabling
the fast exploration of a design space that encompasses both
approaches.

When considering both spatial and temporal partitioning,
a design point may fall into one of the following categories,
as shown in Figure 1. Static Single-kernel(SS) is the case
where a single kernel is implemented in hardware without
dynamic reconfiguration. Neither spatial nor temporal par-
titioning is required. In Figure 1, only loop a is selected
to be realized in hardware. Static Multi-kernel(SM) is the
case where the hardware is spatially partitioned among mul-
tiple kernels. There is no temporal partitioning. In Figure
1, loops a and c share the hardware. the rest are executed
in software. Dynamic Single-kernel(DS) is the case where
the hardware is temporally partitioned such that at any point
exactly one kernel occupies the entire hardware. There is no



spatial partitioning in this case. In Figure 1 loop a and loop
c occupy the hardware at time 7y and #,, respectively. Loop
b and d are executed in software. Finally, Dynamic Multi-
kernel(DM) is the case where the Hardware is both spatially
and temporally partitioned. In Figure 1, loop a,b share the
hardware between time 7y and #, and they are swapped out
by loops c, d at time .

Factors such as the application’s runtime behavior, the
available hardware resource and the reconfiguration over-
head determines which of the four will yield better results.
Restricting the search space to any one of these categories
may result in sub-optimal results. The entire design space
has to be explored in order to achieve the optimal solution.
Furthermore, the estimation of the reconfiguration cost is
non-trivial due to the non-deterministic nature of control-
flow applications. These factors complicate the evaluation
of the design point.

Neighborhood searches such as GRASP[5] and Tabu[6]
have been used to solve complex combinatorial problems
effectively. Thus one way to traverse the design space is
to use some form of neighborhood search. A key insight
in speeding up such searches is that all these techniques in-
volve evaluating the neighbors of the current design point.
Such evaluations are often time-consuming. In this paper,
we will propose a way of speeding up such neighborhood
searches. In particular, the main contributions of this paper
are the following. Firstly, We define a neighborhood rela-
tionship among the design points that facilitates the navi-
gation of the entire design space, both spatial and tempo-
ral. Secondly, We propose an efficient way of computing
reconfiguration cost for the neighboring design points. Last
but not least, Our experiments show that by employing our
neighborhood estimation over a SEQUITUR-compressed
loop trace, speeds up neighborhood searches by up to two
orders of magnitude. Furthermore, it reports the optimal
design point most of the time.

2. PRELIMINARIES

In this section, we formally define notions used in the
description of our technique in Section 3.

2.1. The design space

The design space in the context of this paper is defined
in terms of the following parameters.

e Kj...Ky: Candidate kernels (loops)

® ki1...kim,: Different hardware implementation instances of
kernel K; with varying area and performance

o a(k; j): Arearequired by kernel instance k; ;

o s(k; j): Savings in execution time due to choosing k; ; of ker-
nel K; over its software execution

e Loop trace indicating the run-time execution sequence of the
candidate kernels

e A: Total hardware area constraint

e p: Time to perform one reconfiguration

The loop trace and candidate loops can be obtained
through profiling [11]. The savings and area estimates of al-
ternate hardware implementations can be obtained through
behavioral synthesis and other methods of estimation. The
details of profiling and estimation are beyond the scope of
this paper and are orthogonal to its contribution. For partic-
ular architectures, we assume that p and A are constants.

2.2. Configurations and partitions

We define a configuration to be a non-empty set of ker-
nels. A configuration instance is a particular implementa-
tion of a configuration. A configuration instance is obtained
from a configuration by choosing particular instances cor-
responding to each member kernel. Using the example in
Figure 1, a configuration can be of the form {K,,K;} but
configuration instance will be of the form {k, ;, k. j}, where
ka.i,kp ; are hardware instances of loops a and b, respec-
tively. The total area required by all the kernel instances
in a configuration instance must not exceed the hardware
area constraint. Given a configuration, selecting an optimal
configuration instance is a sub-problem of the entire design-
space exploration problem. Switching from one configura-
tion to another incurs a reconfiguration cost.

A set of configurations is called a partition. Similarly,
a partition instance is a particular implementation of a par-
tition. A partition instance is obtained from a partition by
choosing particular instances corresponding to each mem-
ber configuration. A partition consisting of a single con-
figuration corresponds to static configuration. This is SS
when the configuration is a singleton, and SM otherwise. A
partition with more than one configuration implies dynamic
reconfiguration. This is DS when all the configuration are
singletons, and DM otherwise. An empty partition implies
that no kernel was chosen for hardware implementation. It
should be noted that a chosen partition implicitly implies
that the other kernels have been designated for software im-
plementation. For a partition P, we refer the set of kernels
designated for hardware implementation as HW (P) and the
set of the kernels designated for software implementation as
SW(P) ={Ki,...,Ky} —HW(P).

We have chosen to enforce a constraint that a loop ker-
nel can appear in at most one configuration in a partition.
The reason for such a constraint is if a loop is allowed to
have multiple hardware versions, then it becomes necessary
to dynamically infer the context under which a particular
hardware version of the loop should be loaded, which fur-
ther complicates the problem.



We now define the savings (in execution time) for con-
figuration and partition instances.

s(C) = kZ s(kij) (1)
,',I'GC
s(P)="Y s(C)—n(P) xp 2
CceP

Equation 1 shows the savings of a configuration instance.
The savings of a configuration instance is simply the sum
of the savings of its member hardware kernel instances. We
compute the total savings of a partition instance in Equa-
tion 2 by offsetting the total reconfiguration time against the
total savings of the member configuration instances. n(P)
is the expected number of reconfigurations for partition in-
stance P and p is the time to perform one reconfiguration.

We shall now describe how our neighbors of a given
current point in the design space can be evaluated over a
SEQUITUR-compressed trace of loops.

3. FAST EVALUATION OF NEIGHBORING
DESIGN POINTS

We consider the exploration of the design space de-
scribed above using some neighborhood search scheme.
One of the key components that is common among these
search strategies is the evaluation of the design points within
a certain neighborhood. We shall now describe a neighbor-
hood relationship between partitions that both complete in
coverage of the partitioning space and does not recompute
unnecessarily when evaluating the neighbors of an eval-
uated partition. The necessary components of our tech-
niques are 1)Loop traces encoded using SEQUITUR gram-
mar, 2)Evaluation of a single partition (without any eval-
uated neighbors), 3)The neighborhood relationship proper
and 4)Evaluation of a partition’s neighboring points. We
shall now describe each of these.

3.1. Evaluating a partition

We evaluate a partition by determining the optimal way
to implement the partition. The savings of a partition in-
stance depends on the savings of its member configuration
instances and the number of reconfigurations. However, all
the partition instances corresponding to a partition requires
the same number of reconfigurations for a given loop trace.
In the example shown in Figure 1, if loops a and b are put
in one configuration, and c and d are put in another, there
will be only one reconfiguration per iteration of the outer
while loop, regardless of the instances of the loops chosen
to be implemented in hardware. Therefore, an optimal par-
tition instance can be obtained by simply choosing optimal
configuration instances. Given this insight, we need both a
method for choosing an optimal configuration instance and
a method for calculating the number of reconfigurations.
These are described in the following subsections.

3.1.1. Computing optimal configuration instance

Each loop kernel is associated with a number of alternative
hardware implementations. A naive approach to find the
optimal instance corresponding to a configuration would be
to enumerate all feasible instances. However, this approach
does not scale either with the number of kernels or with the
number of instances corresponding to each kernel.

We handle this problem by pruning the number of in-
stances corresponding to a kernel. We only keep the pareto-
optimal instances corresponding to each kernel. Intuitively
speaking, these instances are more efficient in terms of area
utilization, giving better speedups with less area. After this
pruning, the optimal configuration instance is found by an
exhaustive enumeration of the remaining feasible configu-
ration instances. We do not synthesize the configuration
instances at this stage. Rather, the savings of a particular
configuration instance is estimated using Equation 1 along
with the area requirement.

3.1.2. Loop trace compression using SEQUITUR graph

We can compute the reconfiguration cost of any given par-
tition by going through the entire trace. However, this step
could be costly in terms of computation due to the size of
the traces. Therefore, we compress the loop trace using
SEQUITUR, in a format amenable for reconfiguration cost
computation, as shown in the later subsections.

The SEQUITUR algorithm developed by Nevill-
Manning [12] compresses a sequences of symbols
(loop ids) by building hierarchical structures of frequently
repeated sub-sequences. The SEQUITUR algorithm repre-
sents a finite string G as a context free grammar. whose
language is a singleton set {c}. The SEQUITUR grammar
can be represented as a directed acyclic graph. Each leaf
vertex in the DAG corresponds to a candidate loop. Each
intermediate vertex in the DAG represents a sub-trace and
the root vertex represents the entire loop trace. An in-order
traversal of the sub-graph rooted at a vertex retrieves the
corresponding sub-trace. For example, an in-order traversal
of the graph shown in Figure 3 generates the sequence
ababacacbcbcababacacbcebed.

3.1.3. Computing the number of reconfigurations

We can efficiently compute the number of reconfiguration
of a partition through a single bottom-up traversal of the
SEQUITUR DAG G = (V,E) where V is the set of vertices
and E the set of edges with complexity O(V+E). During
the traversal for a particular partition, each vertex v in the
DAG is labeled with the following: (1) the first and last
hardware kernel in the the loop sub-trace represented by
v, and (2) total number of reconfigurations for the loop
sub-trace represented by v. During the same bottom-up



traversal, we can compute the labels corresponding to an
intermediate vertex by looking at the labels of its children
as follows. Let v be an intermediate vertex with children
vi...vk. Let n(v), f(v), and I(v) represent the number of
reconfigurations, first and last configuration of vertex v.
Then n(v) = Y n(v;) — Z;‘;ll x;, where x; is equal to 1 if
1(vi) = f(viy1) and O otherwise. The leaf vertices would
be the base case where the loop sub-trace consists of only
one candidate loop corresponding to the leaf vertex. Let v
be a leaf vertex. n(v) would be 1 if the candidate loop has
been designated for hardware, 0 otherwise. f(v) and I(v)
would be the candidate loop if the candidate loop has been
designated for hardware, null otherwise. At the end of the
traversal, the label at the root vertex yields the number of
reconfigurations corresponding to the entire loop trace.

3.2. The neighborhood relationship

The neighbor of a partition (in the design space) is ob-
tained by either (1) removing a hardware kernel from any
of the member configurations (removing the entire configu-
ration if the configuration becomes empty) or (2) adding a
kernel currently in software into the partition(thus designat-
ing it for hardware implementation), either into one of the
existing configurations or as a new configuration containing
only this new kernel.

Figure 2 shows a partition {{a},{b,c}} with all of
its neighboring partitions. =~ The removal of kernel ¢
from the partition gives us the neighboring partition
{{a},{b}}. There are 3 ways to add kernel d into the par-
tition. Thus, adding d gives us partitions {{a},{b,c,d}},
{{a,d},{b,c}} and {{a},{b,c},{d}}. Removal of kernel
b gives us partition {{a}, {c}} and removing kernel a leaves
us with {b,c}. There are 6 neighbors in all. The partition
{{c}} cannot be {{a},{b,c}’s neighbor because they differ
by more than one kernel.

A partition {{K_}} cannot be P’s neighbor because they
differ by more than one kernel. In general, a partition P has
|SW(P)| x (|P| 4+ 1)+ |HW(P)| neighbors, where HW (P)
and SW (P) are the set of hardware and software kernels for
partition P, respectively. |P| is the number of configurations
in partition P. This relationship is complete in the sense
that any partition may be constructed starting from an empty
partition (by adding the kernels one by one) and the empty
partition may be reached by deconstructing any partition as
well (by removing the kernels one by one).

From Figure 2, we observe that the reconfiguration cost
of the neighboring design points cannot be computed sim-
ply by adding or subtracting the number of occurrence of
the kernel added or removed to the design point. For exam-
ple, when kernel ¢ is removed, the reconfiguration cost does
not decrease by 2 even though c¢’s occurrences in the loop
trace is 2. In the next section, we propose a way to compute

partition: {a}, {b}
rec count: 3

partition: {ad}, {b,c}

Trace: acbdbac rec count: 6

partition: {a}, {c} | |
rec count: 4

partition: {a}, {b,c}
rec count: 4

partition: {a}, {b,c,d}
rec count: 4

partition: {a}, {b,c},{d}
rec count: 6

partition:{b,c}
rec count: 1

Fig. 2: Neighborhood relations example

the reconfiguration cost of neighbors efficiently by making
use of the SEQUITUR graph.

3.3. Evaluating the neighbors simultaneously

In Section 3.1.3, we have shown how to compute the
number of reconfigurations of a partition efficiently using a
compressed loop trace. However, the number of neighbors
of a partition can be quite large. Therefore, traversing the
SEQUITUR graph for each neighbor can be quite expensive.
Instead, given a partition P, we propose a method to com-
pute the reconfiguration cost of all its neighbors through a
single bottom-up traversal of the SEQUITUR graph.

Our method is based on the observation that only certain
sequences in the loop trace need to be considered in order to
compute the reconfiguration cost of a neighboring partition.
Let K be an arbitrary kernel in configuration C of partition
P,ie., K € C € P. The loop trace contains many sequences
of the form of < K,,S,K,S',K, > where K,,K, € HW (P)
and S,S’ are (possibly empty) sequences of software ker-
nels. In each of these sequences, there are three mutually
exclusive possibilities:

1. K, or K, is in the same configuration as K. In this case,
removing K has no effect on the number of reconfigu-
rations.

2. K, and K, are in the same configuration, but not in the
same one as K. In this case, removing K results in the
savings of two reconfigurations.

3. Ky, K, and K are in distinct configurations. In this case,
removing K results in the saving of one reconfigura-
tion.

The effect of removing a kernel K can thus be computed
after identifying all distinct sequences of the form s =<
K,,S,K,S' K, > and the number of times, w(s), each of
these sequences occurs in the trace. The decrease in number
of reconfigurations d(s) can then be computed based on the
three cases above. The total savings in number of reconfig-
urations is Y d(s) x w(s). The effect of adding kernels can
be computed in a similar way.

Therefore, given a partition P, we need to enumerate
all sequences of the form < K, S, K;, ', K, > and their fre-
quency for each candidate kernel K;. This will allow us to



Fig. 3: A SEQUITUR graph labeled with H and S tags

compute the number of reconfigurations of a partition ob-
tained through addition (if in software) or removal (if in
hardware) of kernel K; from partition P. By employing
an extension of the labeling proposed in Section 3.1.3, this
can be performed through one bottom-up traversal of the
SEQUITUR graph.

3.3.1. Extending the labeling and enumerating the se-
quences

We observe that these sequences < Ky, S,K;, S, K, > will
always span two consecutive sub-traces. The extreme case
of these sub-traces would be one sub-trace having one loop
and the other sub-trace having two loops. Given that the
each vertex in the SEQUITUR graph represents a sub-trace,
we need to label the vertices in a way that allows such se-
quences to be identified easily.

Consider sub-traces represented by (not necessarily dis-
tinct) vertices v; and v; | that are next to each other in the
original trace (i.e. v; and v;1| would be children of the same
parent vertex direct siblings). Assume further that the sub-
trace represented by v; to be < ..., K1,S51,K>,S5 > and the
sub-trace represented by v;;; to be < §3,K3,54,K4,... >
where K|,K>,K3,Kqs € HW(P) and S1,S>,S3,S4 represents
(possibly empty) sequences of software kernels. In order to
enumerate the < K, S,K, S, K, > sequence that spans these
2 sub-traces, we need to consider two cases. If K is in hard-
ware, then both K, and K3 are candidates for K. If K is in
software, then all kernels occurring in S and S3 are candi-
dates for K. We further note that once K; is identified, K,
and K, can be easily identified by finding the nearest pre-
ceding and subsequent hardware kernel.

The above consideration leads to the conclusion that both
the first two and the last two hardware kernels of the sub-
traces are needed to identify K., K and K,. All software
kernels in the sub-trace occurring before the first hardware
kernel and after the last hardware kernel are also needed.

Thus, we label each vertex, v;, with a H tag and an S tag,
as shown in Figure 3, where kernels a, ¢ and d have been
chosen for hardware implementation.

The H tag consists of two pairs of indices The first pair
would be the first two hardware kernels of the sub-trace
represented by v;. The second pair would be the last two
hardware kernels in the same sub-trace. In cases when the
sub-trace represented by the v; does not contain at least 2
hardware kernels (e.g., in the case of leaf vertices), the non-
existent hardware kernels would be labeled with “_.

The S tag consists of two (possibly empty) sets of in-
dices. The first set contains the software kernels that occur
in the sub-trace represented by v; before the first hardware
kernel. The second set contains the software kernels that oc-
cur in the sub-trace represented by v; after the last hardware
kernel. In cases when the sub-trace does not contain any
hardware kernels, all the kernels contained in the sub-trace
are added to both sets.

This labeling process, i.e., computing the H and S tags, is
done in a single bottom-up traversal of the SEQUITUR tree.
Assuming that all the children vertices of v; are properly
labeled, the H and S tags of v; can be computed using the H
and S tags of the first and last child of v;.

With the H and S tags in hand, we can now enumerate
the < K,,S,K;,S', K, > sequences of v;. It turns out that
this can be done in the same bottom-up traversal by exam-
ining the labels of v;’s siblings and concatenating the possi-
ble sequences. For example, according to the tags of vertex
C, there is only one hardware kernel a that occurs in the
sub-trace represented by vertex C and b is the only soft-
ware kernel that occurs after a. According to the tags of
vertex D, the first hardware kernel of the sub-trace repre-
sented by vertex D is a. Thus the the sequence <a,b,a>
spans the two sub-traces represented by vertex C and D. In
fact, the sequence <a,b,a> also spans the sub-traces rep-
resented by two consecutive occurrences of vertex C. Thus,
this sequence occurs twice in the sub-trace represented by
vertex B and since vertex B itself has an occurrence count of
2, the sequence <a,b,a> occurs four times in total. With all
the necessary sequences enumerated, all the neighbors of a
design point can be evaluated easily based on Equation 2.

3.4. Putting it all together

A crucial step during a neighborhood search usually in-
volved the following steps: evaluation of the current design
point, comparison with neighboring design points and even-
tually selecting one particular neighboring design point to
be the next step of the search. Figure 4 shows what hap-
pens during such a step in a search. It shows a partial view
of the relevant design space, enumerated sequences and la-
beled SEQUITUR graph for 2 consecutive steps of a search.
The current design point is shown in bold while the ignored
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Fig. 4: An example of a move between neighboring design points.

design points during the step are shaded.

Initially, the current partition of the search is
{{a},{c,d}}. When considering the move of adding ker-
nel b into configuration {a} (i.e. move to {{a,b},{c,d}}),
the occurrence count of enumerated sequences < a,b,a >
and < ¢,b,c > used to compute the change in the recon-
figuration cost in such a move. Since kernel a and b would
be in the same configuration, the increase in reconfiguration
count is 2. Similar computations can be made for the other
neighbors and are left as an exercise for the reader. The par-
tition {{a,b},{c,d}} is selected(the criterion depends on
the search algorithm) for the next step in the search. Conse-
quently, the SEQUITUR tree needs to be relabeled according
to the methods described in section 3.3.1. To complete the
move, sequences < a,c¢,b > and < b,a,c > are enumerated
to reflect the case that kernel b is now in hardware. The
search can thus continue after the move is completed.

4. EXPERIMENTAL EVALUATION
4.1. Experimental setup

We use four non-trivial benchmarks for our experimen-
tal evaluation: a JPEG encoder(cjpeg), a JPEG decoder
(djpeq), an encryption key exchange program (dh), and an
MPEG encoder (mpegenc). We use the Trimaran compiler
infrastructure [7] to generate the input parameters for the
design space exploration problem. In particular, we have
implemented a loop profiler that selects a loop kernel (both
inner and outer) as a candidate if its computation time ex-
ceeds more than 1% of the entire application.

In view of a lack of estimation tools, we have to pre-
generate the area and timings estimation. We applied loop
unrolling with various loop unroll factors to each candidate
loop kernel. To obtain hardware performance and area re-
quired for each kernel instance, we automatically generate
Handel-C code [2] from Trimaran’s Elcor intermediate rep-
resentation. The timings and area estimations of these alter-
nate hardware implementations are subsequently obtained
through synthesis using the Celoxica DK design suite and

Xilinx ISE tools. The target FPGA for synthesis is the Xil-
inx 2000E model[1]. To evaluate our framework, we de-
veloped three searches: Exhaustive, Hill-Climb and Tabu.
Exhaustive search In a pre-processing phase, we com-
pute the optimal configuration instances corresponding to
all possible configurations of the candidate kernels using
the method described in section 3.1.1. The main phase then
enumerates all possible partitions. The enumeration algo-
rithm used is by Kreher and Stinson [10]. This algorithm
ensures the proper enumeration of all the partitions. The
savings of a partition is defined as the savings of its opti-
mal instance. Evaluation of the savings of a partition is de-
scribed in Section 3.1. The partition instance with the max-
imum savings is chosen as the optimal partition instance. It
should be noted that apart from how the optimal configura-
tion instances are chosen, the Exhaustive search algorithm
does not make use of the rest of the framework.

Hill-Climb search  We start with an empty partition. This
ensures that our solution is at least as good as an all-
software solution to begin with. We then evaluate all its
neighbors using the technique described in the previous
subsection. We choose the neighbor with the maximum sav-
ings (i.e., minimum execution time). The search then moves
to this new design point and examines its neighbors. We al-
ways maintain the best partition obtained so far. The search
terminates at a design point if we cannot find any partition
in the neighborhood that is better than the current best par-
tition. It should be noted that our Hill-Climb search draws
heavily on the framework described in Section 3, making
full use of the neighborhood relationships and the efficient
evaluation of the neighbors.

Tabu search We modify the Hill-Climb search so that
the search does not terminate when a local maximum is
reached. Instead, we maintain a tabu list of design points
which have been visited and the most profitable neighbor
is always visited, regardless of whether the neighbor yields
more savings than the current design point. If the particular
neighbor design point is on the tabu list, the next most prof-
itable neighbor not present on the tabu list is visited. The
search terminates when the number of moves made reaches



Benchmark | Num. of Size of
Candidate | Comp. Trace

Avg. Exhaustive | Avg. Hill-Climb | Avg. Tabu
Search Time Search Time Search Time

Kernels KBytes (sec) (sec) (sec)
cipeg 11 1 17719.72 0.24 3.17
djpeg 7 4.3 17.34 0.04 1.06
dh 7 72 3837.87 3.73 112.04
mpegenc 6 74 245.88 0.96 18.44

Table 1: Running times of the algorithms
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Fig. 5: Speedups plotted against increasing hardware resource

a certain limit. In our experimentation, d the number of en-
tries on the tabu list is 100 and the maximum number of
moves is a logarithm of the design space size to base 1.05.

We have implemented the search algorithms in C++ com-
piled by gcc version 4.1.2. We run the experiments on a
2.8 GHz Pentium 4 machine in the GNU-Linux environ-
ment. All the run-time of the search algorithms reported are
based on Pentium’s hardware cycle counters. The Trimaran
framework allows us to define a VLIW machine with 4 in-
teger units, , 1 branch unit and and 1 load/store unit. We ob-
tain the cycle-accurate measure of the all-software solution
based on the simulator reports of the Trimaran framework.

Table 1 show the number of candidates kernels for each
benchmark and the average running times of the imple-
mented searches for all benchmarks. These values are ob-
tained by running the experiments with varying input pa-
rameters described in section 4.2. This table demonstrates
the infeasibility of the exhaustive search approach. The
number of kernels increases the running exponentially, even
though cjpeg has the smallest compressed trace among all
the benchmarks, the running time was close to 4 hours to
run the exhaustive search. Table 1 shows the average run-
ning time of the Hill-Climb search and Tabu search as well.
It should be noted that the length of the trace dominates the
running time when the number of kernels is the same. We
can conclude this by observing that the running time of dh is
longer compared to djpeg even though the number of ker-
nels is the same. Our experiments show that Hill-Climb is
able to find the optimal design point more than 90% of the
cases while Tabu search found the optimal design point in
all of our experiments.
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Fig. 6: Speedups plotted against increasing reconfiguration time

4.2. Scaling the hardware resource and reconfiguration
time

Both Figure 5 and Figure 6 plots the results of exhaus-
tive search in order to give an idea of the design space. The
lines on the graphs have been labelled with the benchmark
name and the plotted points with shapes to indicate the type
of the solution. For example, following Figure 5, bench-
mark dh yields a SM partition under a resource constraint
of 5K slices and then a DS partition under the resource con-
straint of 6K slices. Beyond, the resource constraint of 16K
slices, dh is optimally implemented with SM. It should be
noted that while many of the plotted points show DM to be
the optimal partition, the kernels included in the partition
are not uniformly the same for the same benchmark. Some-
times, as resource constraints increase or decrease, certain
kernels has to be moved to software or hardware, though the
resulting partition is still ostensibly DM.

Figure 5 plots the speedups of the optimal design point
through exhaustive search against increasing resource area.
The reconfiguration time is set at 10 useconds. We observe
that placing multiple kernels in hardware yields the optimal
results in most cases except for dh. For the dh benchmark,
if the resource available goes beyond 15K slices, the SM
will give better speedup than DM. This is because when the
area is large enough to be shared by all the kernels, we no
longer gain from dynamic reconfiguration. If the resources
available decrease below 7K slices, DS and SM gives bet-
ter speedup. This could be because the available resources
becomes too small to hold multiple kernel. It should be
mentioned that though the graph shows DM to be an opti-
mal design point most of the time, the partition solutions for
each benchmark are not the same throughout.

Figures 6 plot speedups of the optimal design point as
reconfiguration time increases. The area is fixed at 10,000
logic slices. The speedups of cjpeg and djpeg remain al-
most constant because the optimal design point gives a par-
tition which yields quite a small reconfiguration cost while
achieving the speedup at the same time. As a result, the
change in the reconfiguration cost is insufficient to alter the
optimal design point. For the dh benchmark, if the reconfig-



Benchmark | tabu-trace | tabu-seq | he-trace | he-seq
cjpeg 97.24x 10.34x 10.12x 1.13x
djpeg 21.77x 8.57x 6.20x | 13.92x
dh 45.35x 11.06x 31.62x | 8.33x
mpegenc 439.18x 18.72x | 242.92x | 9.29x

Table 2: Slow-down of trace and seq Tabu and Hill Climb

uration time is small, it will still employ dynamic reconfig-
uration with multiple kernels. The trade-off between more
kernels and reconfiguration cost comes in when the recon-
figuration time increases beyond 15useconds.

4.3. Impact of using SEQUITUR and the neighborhood
relation

In order to demonstrate the difference made when the
SEQUITUR compressed trace and neighborhood relationship
are used, we implemented -trace and -seq versions of the
Tabu and Hill-Climb search. The -trace version traverses
the uncompressed loop trace to compute the reconfigura-
tion cost of a design point. The -seq version traverses the
compressed SEQUITUR loop trace and calculates reconfigu-
ration cost without the neighborhood relationship, i.e. using
the technique described in section 3.1.3 every time a design
point is evaluated. Table 2 shows the various slow-downs of
these implementation compared to the Tabu and Hill-Climb
searches that employ both the SEQUITUR compressed trace
and neighborhood relationship. The slow down is signifi-
cant. Although using the -seq version gives about an order
of magnitude of speedup compared with the -trace ver-
sion, employing the neighborhood relationship makes the
search a further order of magnitude faster in general, except
in the case of Hill-Climb search for cjpeg.

5. RELATED WORKS

Research work on hardware-software partitioning may
be categorized according to the granularity of computation
being placed in reconfigurable logic. Many works [4, 3]
have focused on partitioning acyclic task graphs (i.e. as-
signing task nodes to either software or hardware for execu-
tion). The main motivation behind such approaches is to ex-
ploit task-level parallelism. The reconfiguration cost model
considered is simple because each hardware task needs only
be reconfigured once.

Other works [11, 13] focused on selecting loops for
hardware implementation to exploit instruction level par-
allelism. Among these, Koch et al’s [9] proposal of con-
figuration merging is similar to our work. They proposed
a dynamic programming algorithm to determine a way to
merge the configurations with minimal number of reconfig-
urations. However, it should be noted that minimizing re-

configurations does not imply maximal overall performance
gain. More recently, Huynh et al.[8] proposed an iterative
heuristic approach to partition applications for dynamically
reconfigurable custom instruction sets.

6. CONCLUSION

In this paper, we considered the problem of exploring
the design space of dynamically reconfigurable SoCs for
spatial and temporal partitioning . Specifically, we pro-
posed a means of speeding up neighborhood searches of
such design spaces by a novel method of estimating the de-
sign points near the current one in a compressed trace. We
showed that our technique works for both Hill-Climb and
Tabu search. On four benchmarks, we found that using our
neighboring design point computation method, the searches
were faster by up to two orders of magnitude while report-
ing near-optimal solution most of the time.
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