
Load Balancing for a User-Level Virtualized 5G Cloud-RAN
Nishant Budhdev∗

National University of Singapore
nishant@comp.nus.edu.sg

Arka Maity∗†
Starfive Singapore

arka.maity@starfivetech.com

Mun Choon Chan
National University of Singapore

chanmc@comp.nus.edu.sg

Tulika Mitra
National University of Singapore

tulika@comp.nus.edu.sg

ABSTRACT
5G cellular networks support a wide variety of applications with
different Service Level Objectives (SLOs) over a shared infrastruc-
ture using virtualization. Virtualization enables network operators
to allocate a tailored set of computational resources in the cloud
to users from different applications based on their SLOs. Existing
virtualization approaches use slices to create logically independent
networks for each different application. However, these approaches
fail to provide adequate performance isolation among different
slices, leading to performance degradation.

In this paper, we present the design and implementation of a load
balancer called Dynamic Greedy Spike (DGS), for a cloud Radio
Access Network (RAN) architecture with user-level virtualization.
With user-level virtualization, network operators can now allocate
new users to any host in the cloud irrespective of their source base
station. DGS allocates these new users to different hosts to reduce
interference between users and improve isolation by modeling the
problem similar to weighted improper graph coloring. We imple-
ment a prototype of the user-level virtualized RAN architecture
called uvRAN using OpenAirInterface. We also perform large-scale
evaluations and show that uvRAN along with DGS provides signifi-
cant improvement in isolation, which improves performance while
reducing the compute resources required for baseband processing.

CCS CONCEPTS
• Networks → Mobile networks; Cloud computing; Network re-
sources allocation.

KEYWORDS
5G, cloud radio access networks, virtualization, load balancing
ACM Reference Format:
Nishant Budhdev, Arka Maity, Mun Choon Chan, and Tulika Mitra. 2022.
Load Balancing for a User-Level Virtualized 5G Cloud-RAN. In 17th ACM
Workshop on Mobility in the Evolving Internet Architecture (MobiArch’22),
October 21, 2022, Sydney, NSW, Australia. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3556548.3559623

∗Co-first authors
†Work completed while at National University of Singapore

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiArch’22, October 21, 2022, Sydney, NSW, Australia
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9518-2/22/10.
https://doi.org/10.1145/3556548.3559623

1 INTRODUCTION
With the introduction of the Fifth Generation (5G) of cellular net-
works, operators are expected to support applications with a wide
variety of SLOs. These applications can be broadly classified into
three main categories: (1) enhanced mobile broadband (eMBB) ap-
plications such as Augmented Reality/Virtual Reality (AR/VR) and
video streaming, requiring high throughput, (2) ultra-reliable and
low latency communication (uRLLC) applications such as remote
surgery, Vehicle-to-everything (V2X), and (3) massive machine type
communication (mMTC) applications such as smart cities that re-
quire low power communication with a large number of IoT devices.

In order to support the wide variety of SLOs from different ap-
plications on a common physical infrastructure, network operators
have introduced virtualization. The earliest works on virtualization
introduced Cloud Radio Access Networks (CRAN) [1] that virtual-
ized computational resources in the cellular network by splitting
RAN functionality into two components: the frontend component
called Radio Unit (RU) and the backend components consisting of
the Distributed Unit (DU) and Central Unit (CU). The RU is respon-
sible for radio transceive functions for converting radio signals
to/from digital samples. On the other hand, the DU and CU are
responsible for baseband processing functions such as de/coding,
de/modulation, antenna combiner etc. Network operators could
now allocate shared networking and computing resources optimally
among multiple DUs and CUs, to ensure all applications meet their
SLOs while reducing server sprawl caused by unused processing
capacity. Further works on virtualization propose using network
slicing [5, 19] to enable dynamic sharing of resources among dif-
ferent users/applications. These works divide the network into
independent logical partitions called slices that are designed to sup-
port tailored services for distinct application scenarios. Although
network slicing can improve flexibility by dynamic resource shar-
ing, existing slicing-based approaches do not provide sufficient
inter/intra-slice isolation amongst the different services to provide
guaranteed performance [2]. Previous works [11] shown that the
improper isolation between slices/users can disproportionately
impact uRLLC applications with stringent SLOs.

We address the aforementioned challenge in this work, and
present uvRAN which introduces user-level data plane virtualiza-
tion in the RAN to reduce inter/intra slice interference and improve
isolation. In uvRAN, the baseband processing corresponding to
each new user session can be executed on any host in the cloud,
independent of the user’s primary base station. Resource allocation
for uvRAN is challenging as the operators need to dynamically
allocate each new user to ensure its SLOs.

1

https://doi.org/10.1145/3556548.3559623
https://doi.org/10.1145/3556548.3559623

MobiArch’22, October 21, 2022, Sydney, NSW, Australia Budhdev et al.

Traditionally, all users with the same primary base station are
processed on the same DU/CU unit that is provisioned with enough
computational resources to achieve the SLOs for the worst-case
operational workload. However, calculating the worst-case oper-
ational workload is non-trivial for a user-level virtualized RAN
architecture as users can be allocated to any host in the cloud. At
the same time, inefficient allocation of users can cause them to miss
their baseband processing deadline. This is further exacerbated
in uvRAN as a large number of users can be mapped to a single
host leading to resource contentions and causing users to miss their
deadlines. These misses are called computational failures [9] and are
expensive in cellular networks as they cause unnecessary network
retransmissions that decrease spectral efficiency and affect other
users’ performance. We propose the Dynamic Greedy Spike (DGS)
load-balancer for uvRAN that allocates new users to hosts while
ensuring minimal interference between users. DGS uses weighted
graphs where each user is a vertex and the edge weight denotes
the interference between a pair of user flows. We design DGS to re-
duce the graph coloring cost where each color represents a unique
physical host in the cloud. Our contributions are as follows:

• Wepropose theDGS load balancer, an online greedy heuristic
for new user placement on the hosts in the cloud. DGS uses
improper graph coloring to model the interference among
different users.

• We demonstrate the feasibility and effectiveness of user-
level slicing in the data plane bymodifying OpenAirInterface
(OAI) [20], an open-source implementation of the Long Term
Evolution (LTE) stack, to support user-level virtualization.

We have performed a large-scale simulation to evaluate our re-
source allocation approach using real traces captured from network
operators that have over 1.2 million user sessions. Our experiments
show that compared to the typical CRAN architecture [1], uvRAN
with DGS can reduce the drop rate by order of magnitude while
requiring 2x fewer resources.

2 BACKGROUND AND RELATEDWORK
Traditionally, the cellular network consisted of discrete base sta-
tions, each responsible for processing data for all the users con-
nected to the base station. The introduction of virtualization has
enabled a disaggregated architecture called the Cloud RAN that
consists of two components. The frontend consists of the RU that is
responsible for radio functions such cyclic prefix addition/removal,
FFT/IFFT etc. The backend consists of DU and CU in the cloud and
is responsible for baseband processing functions. In principle, the
functions can be distributed in different ways [22] between the
RU and DU/CU. The distribution of the functions across the RU
and DU/CU is defined by the functional split used by the network
operator. We focus mainly on the lower layer functional split in
this paper, also called the ORAN 7-2x split, as it is the key for en-
abling user-level virtualization in CRAN. In 7-2x split, the RU is
responsible for low-level radio and L1 functions, and the rest of the
functions are processed in the cloud. Each DU/CU performs all the
required processing for the corresponding base station and multi-
ple DUs/CUs can be mapped to a single host, to share computing
resources among multiple base stations in the cloud.

Fr
eq

ue
nc

y

 unallocated

Physical
Resource Block

Time
Subframe (1ms)

 User 1
(eMBB) User 3

(uRLLC)

Slot 0 Slot 1

 User 1
(eMBB)

 User 2
(uRLLC) unallocated

180 KHz

 User 4
(mMTC)

Figure 1: Time-frequency structure for LTE cellular networks.
A Physical Resource Block (PRB) is the smallest schedulable
resource that can be allocated to a user for transmission on
the wireless spectrum.

Cellular network functions can be further separated into control
plane and data plane functions using Software Defined Network-
ing (SDN). Multiple recent works [4, 16, 18] use SDN to separate
control and data plane functions in the RAN, to enable dynamic
control policies. While SDN enables these approaches to dynami-
cally control functions such as network scheduling, packet routing,
and authentication, a common and key limitation of the aforemen-
tioned works is their inability to provide differentiation in data
plane processing for users with diverse Service Level Objectives
(SLOs). To resolve this, multiple works [8, 24] introduce data plane
programmability by creating multiple slices in the data plane, by
decomposing the data plane into a chain of functions. Each function
in the chain can be customized for a slice to support different slices
running on top of a shared set of hosts in the cloud.

Another limitation of existing works, which serves as one of
the motivations for our work, is the lack of performance isolation
among the slices processed in the cloud to guarantee SLOs for a
diverse set of applications running on the shared infrastructure.
POSENS [17] proposes a new RAN architecture to improve per-
formance isolation by distributing data plane processing, above
the Medium Access Control (MAC) layer, on different hosts. While
this is a step in the right direction, POSENS still requires common
Physical Layer (PHY) processing for all users associated with the
same base station, thus limiting the effectiveness of this approach.
Thus, we propose a new RAN architecture to further improve per-
formance isolation, by virtualizing a user’s data plane processing
to enable operators to distribute users to any host in the cloud.

With virtualization, network operators also need to allocate the
virtualized computational resources in the cloud.Multipleworks [13,
26] introduce load balancers to allocate computational resources
across multiple slices. These algorithms distribute new DUs/CUs to
different hosts in the cloud while improving throughput or reducing
power consumption. However, these algorithms are not suitable for
load balancing in uvRAN, as we require a fine grained allocation of
computational resources to users in the network. The load balancer
also needs to account for the dynamic nature of communication in
cellular networks as new users with different SLOs can be scheduled
each millisecond (subframe duration) in LTE, as shown in Fig. 1.
Additionally, most user sessions are only 1 subframe long and re-
quire less than 4 Physical Resource Blocks (PRBs) [25], the smallest
allocatable resource for a user. Thus, we need a new load balancing

2

Load Balancing for a User-Level Virtualized 5G Cloud-RAN MobiArch’22, October 21, 2022, Sydney, NSW, Australia

algorithm for uvRAN that can dynamically allocate new users in the
network with low-overhead while ensuring performance isolation.

3 SYSTEM OVERVIEW
uvRAN is built to improve scaling and performance isolation for
5G cellular networks which are critical for supporting a wide vari-
ety of SLOs such as high throughput, low latency, high reliability,
low-power communication etc. uvRAN consists of three major
components as shown in Fig. 2:

• User level virtualization to enable the cellular network to
scale efficiently as users’ baseband processing can be spread
across different hosts in the cloud irrespective of their pri-
mary base station. Network operators can increase the num-
ber of hosts to increase the available computational resources
during peak traffic to ensure SLOs for all applications.

• Load Balancer allocates new users to hosts in the cloud.
The load balancer acts as the global controller that collects
and aggregates network-wide metrics, such as CPU utiliza-
tion, network bandwidth, etc., from all hosts to determine
the optimal host for new users. The load balancer is trig-
gered when a new user session is created. Details of the Load
Balancer are given in Section 4.

• Task Allocator runs as a local controller on each host to
schedule the baseband processing tasks for each User Equip-
ment (UE) to different cores on the processor. The task al-
locator ensures that each user’s deadline is satisfied. The
Load Balancer and the Task Allocator operate independently,
and hence the proposed Load Balancer can be used with any
existing Task Allocator. The details of the Task Allocator are
beyond the scope of this paper.

Design & Implementation of uvRAN. The objective of user-
level virtualization is to distribute the monolithic baseband process-
ing of a base station to multiple users that can then be allocated to
different hosts in the cloud RAN. uvRAN achieves this by separating
the data plane RAN functions into two parts: user-level and base
station level functions. Base station functions include baseband
processing of data transmitted and received on common channels
responsible for critical requests such as random access, network
scheduling, ACK/NACK, broadcast, etc. These data are transmit-
ted/received periodically irrespective of the network load, i.e., the
workload corresponding to these channels is mostly constant. These
critical functions are executed by the base station thread and hence,
we use one-to-one static mapping between these threads and each
RU to ensure consistent performance. On the other hand, the pro-
cessing load for user-specific threads varies with user traffic in each
subframe [10]. The key challenge in the design and implementation
of user-level virtualization is the separation of the base station and
user-specific data functions while meeting real-time constraints.
This is solved by having multiple daemon threads for user-level
functions that are shared across all the users allocated to the host.
On the other hand, each RU has a dedicated daemon thread for
its base station level functions to provide maximum performance
isolation.

User-level virtualization is achievable due to two fundamental
principles of data plane processing. First, the processing of one
user is independent of other users in the subframe/slot in 4G/5G.

Resource
De/Mapping

RU

Load Balancer

Data Plane
Control Plane

Multiple
Hosts

Users

DU/CU

DU/CU

DU/CU

RU eMBB mMTC uRLLC

Task
Allocator(DGS)

Figure 2: The 3major components of the uvRAN architecture:
(1) user-level virtualization denoted by the distribution of
users from the same RU on different hosts, (2) DGS Load
Balancer in the control plane for allocating new users to
different hosts, and (3) local Task Allocator on each host for
managing tasks from different users allocated to a host.

Intuitively, this is true for any communication system; however, dif-
ferent users can transmit/receive data at the same time on different
frequencies. Combining/separating user data transmitted/received
on different frequencies, LTE needs to perform operations such
as IFFT/FFT, de/serialization, prefix removal/insertion, etc., on all
user data in the subframe. Since uvRAN follows ORAN 7-2 [22]
functional split which separates common cell processing and user
processing, all the aforementioned common functions are processed
on the RU. Split 7-2 provides the ideal trade-off between fronthaul
network bandwidth and savings due to centralized processing by
transmitting the clean analog signals while still keeping the ma-
jority of the baseband processing in the cloud [14]. Additionally,
network operators can use works such as Fronthaul Slicing Ar-
chitecture [12] that support slicing in the fronthaul networks for
sending/receiving individual user data to/from respective hosts.

The second principle is the minimal information required for
a user’s data plane processing. Data plane processing for a user
requires information such as bandwidth allocated, modulation
scheme, and the number of layers, which are determined by the net-
work scheduler usually a few milliseconds in advance. Conversely,
the output of each user’s processing for a subframe is required
within 2.5milliseconds in LTE as the base station needs to send an
ACK/NACK back to the user [3]. While all these dependencies come
with tight timing constraints, the amount of control data transmit-
ted/received between the user-level and base station level threads
is insignificant. Thus there is minimal network overhead in uvRAN
with user-level virtualization as Round Trip Time (RTT) between
hosts in the cloud is in the order of tens of microseconds [15]. Sec-
tion 5 provides more details about the prototype implementation
of uvRAN.

4 LOAD BALANCER
The load-balancer algorithm allocates new users to hosts when they
arrive in the network. These allocation decisions are irrevocable, as
migration between hosts can cause significant service disruption
for the user. First, we take a closer look at the different causes of

3

MobiArch’22, October 21, 2022, Sydney, NSW, Australia Budhdev et al.

computational failures that cause the users’ data within a subframe
to be dropped. The deadline for baseband processing exists as the
network needs to transmit an ACK/NACK to every active user in
each subframe [3].

4.1 Understanding subframe drops
To further understand the cause of these drops we use an oracle B:H
load-balancer, wherein𝐻 hosts are optimally allocated to 𝐵 base sta-
tions. The allocations are done after observing the entire workload
from all the base stations a-priori, to ensure a near-optimal alloca-
tion decision. Such an oracle load balancer cannot be implemented
in practice, but it can highlight the distribution of subframe drops
in real-world traces. We categorize the dropped subframes in the
above setup into three main categories:

• An interfering drop is caused when a subframe with mul-
tiple large user transmissions is not processed before its
deadline. These subframes are disproportionately vulnerable
to queuing delays due to the large amount of computational
resources required to successfully process them.

• A variable latency drop occurs when the processing time
for the subframe is randomly inflated due to the unpre-
dictable timing behavior of the host platform.

• A backlog drop occurs when the user’s data plane process-
ing is increased due to the wait for computational resources.
These drops can easily be avoided by either increasing the
amount of available computation resources or by improving
the efficiency of the load balancing algorithm.

We observe all these types of subframe drops even in an ideal
scenario, where each base station is allocated to a unique host.
However, as we reduce the number of computational resources
by decreasing the number of total hosts, the share of interfering
and backlog drops increase exponentially. This is caused by the
increased resource competition among users from different base
stations allocated to the same host. Additionally, users’ data pro-
cessing not only takes slightly longer to complete but users with
large data transmissions within a subframe are also disproportion-
ately dropped due to the long waiting time in the system. Overall,
we observe up to a 100x increase in the number of interfering and
backlog drops when the total number of hosts is halved as compared
to the ideal scenario.

4.2 Dynamic Greedy Spike (DGS) Algorithm
The idea behind the DGS algorithm is to minimize the aggregate
interference amongst different user flows. The aggregate user in-
terference can be understood in terms of a Susceptible Interference
Graph (SIG). The SIG is an undirected edge and vertex weighted
graph, as shown in Fig. 3. The vertices of the graph represent active
user flows, while the edges capture, the interference between a pair
of user flows. The vertex-weight is a positive integer that counts
the number of load spikes seen by a user flow up to and including
the current subframe. The edge-weight denotes the number of sub-
frames where the connecting vertices spike simultaneously. A user
load spike occurs whenever the user’s estimated execution time,
when running in isolation, exceeds a given threshold. The execution
time can be approximated using a linear model dependent on the
number of PRBs and Modulation and Coding Scheme (MCS).

u1

8

3

u2

8

1

7

1

1

u4

users on
same host

interfering
spikes

total spikes
for user

u3

Figure 3: SIG showing the users as vertices, user spikes as the
corresponding vertex weight, and interfering spikes as the
edge weight. The vertex color denotes the specific host that
the user is allocated to.

The SIG evolves in response to new user arrivals (vertex addi-
tion), load-spike transmission (vertexweight increment), interfering
load-spike transmission (vertex weight increment and edge weight
increment), and user timeouts (vertex and incident edge deletion).
Furthermore, the assigned host for a given user flow can be visual-
ized by its vertex color. The total coloring cost is defined as the sum
of edge weights whenever the adjacent vertex colors are the same.
This estimates the degree of interference suffered by the user flows
in the same host. This problem is similar to weighted improper
graph coloring [6], except that the color needs to be determined
online, with incomplete information. We should emphasize that,
while SIG topology is dependent only on the workload trace, the
color cost also depends on the user-to-host assignment.

DGS attempts to minimize the coloring cost change associated
with each allocation decision. We design a cost change estimator
to exploit the following two key properties of uvRAN. First, load
spikes from two different user flows can only interfere if they are
assigned the same host while being connected to different base
stations, as a single base station cannot schedule more than its total
bandwidth. Note that each host has to be capable of handling the
baseband processing of a single base station within the deadline.
Second, the interfering load spikes between any two pair of user
flows is upper-bounded by individual load spikes experienced by
any one of them. For every new user arrival, DGS computes the
interfering aggregate load spike for each host by summing up the
load spikes across all the base stations, except for the one that the
new user belongs to. The user is allocated to the host minimum
value of interfering aggregate load-spike.

5 EVALUATION
The evaluation section is organized into two parts. First, we verify
user virtualization on a realistic setup using OpenAirInterface, an
open-source LTE stack implementation. The data plane threads
for baseband processing are daemon threads with each core con-
taining exactly one thread. We evaluate the efficiency of the Host
and Task Allocator by running a large-scale simulation using PHY
benchmark [21] with real LTE traffic traces.

5.1 Prototype using OpenAirInterface (OAI)
We use a setup consisting of a USRP B210 for the RU and OpenAir-
CN for the core network. We implement uvRAN on OpenAirIn-
terface (OAI) and verify the system’s functionality by establishing
two-way communication, using ping packets, between the mobile

4

Load Balancing for a User-Level Virtualized 5G Cloud-RAN MobiArch’22, October 21, 2022, Sydney, NSW, Australia

 0
 500

 1000
 1500

 2000
 2500
 3000

 3500
 4000

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

eMBB

IoT

uvRAN Vanilla OAI

Figure 4: Comparison of throughput for eMBB user between
Vanilla OAI and uvRAN. The shaded area shows intervals
with reduced throughput for vanilla OAI.

user and public websites. We compare the memory and processing
overhead in uvRAN by using OAI’s in-built emulator and use a
similar workload by forcing each user to send UDP packets at a
constant bitrate of 400Kbps to a public server. uvRAN consumes
only ∼80MB higher memory than Vanilla OAI because of the need
to communicate between different daemon threads for satisfying
dependencies in the LTE stack. This overhead remains constant, as
it is independent of the number of users in the system. Instead, it
depends only on the base station configuration parameters such
as channel bandwidth, sampling frequency, bits per sample, etc.
Additionally, average core utilization is relatively low for uvRAN,
as we spread the processing across multiple cores. This is impor-
tant as uvRAN scales with an increasing number of cores/hosts
as compared to contemporary works that are limited to a single
core/host. Thus Vanilla OAI experiences severe performance degra-
dation when three users are active, often leading to user data being
dropped due to its inability to complete processing before the dead-
line. For a single user, uvRAN’s core utilization is only 1.5% higher
than Vanilla OAI due to the overhead of thread communication.
While the result is not surprising as uvRAN can utilize more re-
sources (cores), it shows that the user-level virtualization in uvRAN
is a viable solution with minimal overhead.

To evaluate the impact of users with different SLOs running on
the host, we consider two users from different use cases: eMBB and
IoT (mMTC communication). We simulate the eMBB user with a
TCP connection to saturate the wireless bandwidth. The IoT user
sends a 400-byte ping packet every 100ms to simulate transmis-
sions that are small and bursty in nature. The additional processing
load imposed by the ping (IoT) traffic is negligible as compared to
the TCP (eMBB) traffic. Fig. 4 shows the throughput of an eMBB
user for uvRAN and Vanilla OAI alongside an IoT user. From Fig. 4,
we can observe that the throughput of the eMBB user in Vanilla
OAI is significantly affected by the presence of background traffic
in the form of an IoT user. Interestingly, such a small increase in
CPU utilization can cause severe interference. On the other hand,
by assigning these users to different cores in uvRAN, the perfor-
mance of eMBB users remains unaffected enabling it to transfer 2x
more data. To summarize, the ability of uvRAN to distribute RAN
processing across multiple hosts leads to significant performance
gains, as compared to the traditional Vanilla OAI.

5.2 Large Scale Evaluation
We perform large-scale simulations using real traces [11] captured
from network operators to evaluate the impact of user-level virtual-
ization combined with DGS load balancer. Additionally, to simulate
multiple use cases, we classify users into three different user types
based on their traffic patterns using parameters such as Transport
Block Size [11]. The trace captures 1.2 million user sessions, of
which nearly 91% were classified as eMBB users. Additionally, the
trace consists of a small number of heavy-hitter eMBB users (0.06%)
whereas a large number of the users (∼60%) are short flow eMBB
users, which is in line with previous works [25].

Each host in the cloud uses a Xeon Gold-6126, a dual-socket
Skylake scalable platform each with 12 cores running at 2.6 GHz.
To simulate the user-level processing on each host, we use the PHY
benchmark [21]. For eMBB and mMTC, 99.9% of the subframes
should be processed within a deadline of 2.5 ms as the ACK/NACK
is sent to the user within 4ms [3]. uRLLC users have a much more
stringent requirement where 99.999% of the subframes have to be
processed within 0.5 ms as the ACK/NACK is expected within 1ms.
If a user misses the processing deadline, the data transmitted in the
subframe for the user is dropped.
Baseline Algorithms.We compare DGS against two offline algo-
rithms and two online algorithms. The offline algorithms construct
the SIG for a large segment of the workload trace (usually ∼ 90%)
and thereafter improperly color it with the number of hosts. In the
static B is to H Frac (B:HFrac) algorithm, the nodes in the SIG repre-
sent base stations, whereas, in POSENS [17], the nodes represent a
base-station slice pair. In the latter case, the SIG is larger as the allo-
cation happens at a much finer granularity. The improper coloring
problem is then formulated as an integer quadratic programming
problem to find the optimal allocation. The trace segment is also
slid across the workload trace to obtain different SIG and coloring
assignments and the final result obtained is an average over all
such assignments. We also consider two online algorithms: Least
Users First (LUF) and Join Shortest Queue with Processing Sharing
(JSQ). The LUF algorithm assigns new users to the host with the
least number of active users. JSQ allocates incoming user to the
host with the shortest instantaneous queue size [7].

Fig. 5 compares the subframe drop rate of DGS against both
offline and online algorithms for users with different throughput
and SLOs. DGS outperforms not only online algorithms like LUF
and JSQ, but also offline algorithms like B:HFrac and POSENs. DGS
performs especially well with heavy hitter eMBB users, as shown
in Fig. 5(a), because it allocates possible pairs of interfering users
to different hosts. Both static algorithms also perform significantly
better than the dynamic algorithms as they can exploit informa-
tion from the entire trace akin to an oracle. Moreover, POSENS
outperforms B:HFrac as it allocates the base-station slice pairs that
enables the network operator to perform load balancing at a finer
granularity. On the other hand, JSQ underperforms as it relies on
instantaneous host congestion for user placement. The instanta-
neous values can often cause the network operator to miss the
presence of heavy hitter eMBB users that are responsible for 40%
of the spectral utilization while accounting for less than 0.1% of
the users. Similarly, LUF also underestimates the impact of heavy
hitter eMBB users as it relies on only the number of users on a host

5

MobiArch’22, October 21, 2022, Sydney, NSW, Australia Budhdev et al.

5 10 15 20 25
Number of hosts

10

10

10

10-2

10

D
ro

p
ra

te

B:HFrac

DGS
JSQ

-1

-3

-4

-5

POSENS
LUF

5 10 15 20 25
Number of hosts

10-5

10-4

10-3

10-2

D
ro
p
ra
te

B:HFrac

DGS
JSQ

POSENS
LUF

5 10 15 20 25
Number of hosts

10-5

10-4

10-3

10-2

D
ro
p
ra
te

B:HFrac

DGS
JSQ

POSENS
LUF

(a) Heavy-hitter eMBB users (b) Small eMBB users (c) mMTC users

Figure 5: Subframe drop rate for different load balancing algorithms as the number of available hosts increases. DGS outperforms
others by improving performance isolation by reducing interference between users.

but does not take into account the spectral allocation of these users
determining their baseband processing needs.

Fig. 5(b) and (c) show that the advantage of DGS is significantly
reduced for light eMBB and mMTC users. These users are short-
lived flows that do not require significant processing and hence
can finish within their deadline. Additionally, these users intro-
duce minimal interference due to their short-lived nature. Overall,
DGS reduces the number of hosts required to 14 down from 17
as compared to POSENS, representing a net savings of more than
20%. Moreover, DGS is an online algorithm that executes at the
granularity of a single user similar to LUF, while still maintaining
a tractable amount of state.
uRLLC Allocations. All uRLLC users are allocated to a dedicated
set of hosts because the subframe processing deadline for uRLLC is
much lower at 0.5ms. The vast majority of the drops are variable
latency drops, and re-distributing the workload over more hosts
will not reduce these drops. Next, we explore the use of replication
on the reliability of transmission. With replication, we only require
at least one of the replicated hosts to complete processing before the
deadline. In our evaluation, replication is performed using 3 hosts.
However, replication can only achieve the latency requirements for
99.95% of the transmissions, which still falls short of the 99.999%
reliability requirement for uRLLC users. Thus RAN processing for
uRLLC users often requires special purpose accelerators that can
provide predictable performance [23] to ensure both high reliability
and low latency.

6 CONCLUSION
In this paper, we show how existing CRAN proposals do not pro-
vide sufficient scaling. To enable fine-grained scaling, we introduce
uvRAN that virtualizes user plane RAN processing. This enables
per-user orchestration and improves isolation between users in the
CRAN. We also propose a user-aware load balancer for allocating
new users at runtime. We have built a working prototype of uvRAN
on OpenAirInterface and show that uvRAN insulates users from in-
terfering with each other. Additionally, we show that using uvRAN
with the proposed load balancing algorithm DGS can improve the
user QoS while requiring fewer hosts.
Acknowledgements. This work was supported by the Singapore
Ministry of Education Academic Research Funds T1 251RES1910
and T1 251RES1905.

REFERENCES
[1] 2010. C-RAN - Road Towards Green Radio Access Network.
[2] 3GPP TR 38.801. 2017. Study on new radio access technology: Radio access

architecture and interfaces.
[3] 3GPP TS 36.321. 2017. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);

Medium Access Control (MAC) protocol specification.
[4] I. F. Akyildiz et al. 2015. SoftAir: A software defined networking architecture for

5G wireless systems. Elsevier Computer Networks (2015).
[5] X. An et al. 2017. On end to end network slicing for 5G communication systems.

Transactions on Emerging Telecommunications Technologies (2017).
[6] J. Araújo et al. 2012. Weighted improper colouring. Discrete Algorithms (2012).
[7] V. Gupta at al. 2007. Analysis of join-the-shortest-queue routing for web server

farms. Performance Evaluation (2007).
[8] M. Bansal et al. 2012. Openradio: A Programmable Wireless Dataplane. ACM

HotSDN (2012).
[9] D. Bega at al. 2018. CARES: Computation-Aware Scheduling in Virtualized Radio

Access Networks. IEEE Transactions on Wireless Communication (2018).
[10] N. Budhdev et al. 2018. PR 3: Power Efficient and Low Latency Baseband Pro-

cessing for LTE Femtocells. IEEE INFOCOM (2018).
[11] N. Budhdev et al. 2020. Poster: IsoRAN: Isolation and Scaling for 5G RAN via

User-Level Data Plane Virtualization. IEEE IFIP Networking Conference (2020).
[12] N. Budhdev et al. 2021. FSA: fronthaul slicing architecture for 5G using dataplane

programmable switches. ACM MOBICOM (2021).
[13] Y. Chen et al. 2017. A dynamic BBU–RRH mapping scheme using borrow-and-

lend approach in cloud radio access networks. IEEE Systems Journal (2017).
[14] U. Dötsch et al. 2013. Quantitative analysis of split base station processing and

determination of advantageous architectures for LTE. Bell Labs Technical Journal
(2013).

[15] D. Firestone et al. 2018. Azure Accelerated Networking:{SmartNICs} in the
Public Cloud. USENIX NSDI (2018).

[16] X. Foukas et al. 2016. FlexRAN: A Flexible and Programmable Platform for
Software- Defined Radio Access Networks. ACM CoNEXT (2016).

[17] G. Garcia-Aviles et al. 2018. POSENS: A Practical Open Source Solution for
End-to-End Network Slicing. IEEE Wireless Communications (2018).

[18] A. Gudipati et al. 2013. SoftRAN: Software defined radio access network. ACM
SIGCOMM (2013).

[19] NGMNAlliance. 2015. 5G: Next generation mobile networks. White paper (2015).
[20] N. Nikaein et al. 2014. OpenAirInterface: A flexible platform for 5G research.

ACM SIGCOMM Computer Communication Review (2014).
[21] M. Själander et al. 2012. An LTE uplink receiver PHY benchmark and subframe-

based power management. IEEE ISPASS (2012).
[22] Umesh et. al. 2019. Overview of O-RAN Fronthaul Specifications. (2019).
[23] V. Venkataramani et al. 2020. SPECTRUM: A software-defined predictable many-

core architecture for LTE/5G baseband processing. ACM Transactions on Embed-
ded Computing Systems (TECS) (2020).

[24] W. Wu et al. 2014. PRAN: Programmable radio access networks. ACM HotNets
(2014).

[25] Y. Xie et al. 2020. PBE-CC: Congestion control via endpoint-centric, physical-layer
bandwidth measurements. ACM SIGCOMM (2020).

[26] D. Zhu et al. 2013. Traffic and interference-aware dynamic BBU-RRU mapping
in C-RAN TDD with cross-subframe coordinated scheduling/beamforming. IEEE
ICC (2013).

6

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Overview
	4 Load Balancer
	4.1 Understanding subframe drops
	4.2 Dynamic Greedy Spike(DGS) Algorithm

	5 Evaluation
	5.1 Prototype using OpenAirInterface(OAI)
	5.2 Large Scale Evaluation

	6 Conclusion
	References

