
Automatic Conjecturing of P-Recursions
Using Lifted Inference

Jáchym Barv́ınek1, Timothy van Bremen2, Yuyi Wang3, Filip Železný1, and
Ondřej Kuželka1

1 Czech Technical University in Prague, Prague, Czech Republic
2 KU Leuven, Leuven, Belgium

3 ETH Zurich, Zurich, Switzerland

Abstract. Recent progress in lifted inference algorithms has made it
possible to solve many non-trivial counting tasks from enumerative com-
binatorics in an automated fashion, by casting them as first-order model
counting problems. Algorithms for this problem typically output a single
number, which is the number of models of the first-order logic sentence
in question on a given domain. However, in the combinatorics setting, we
are more interested in obtaining a mathematical formula that holds for
any given structure size. In this paper, we show that one can use lifted
inference algorithms to conjecture linear recurrences with polynomial
coefficients, one such class of formulas of interest.

Keywords: Lifted inference · Weighted Model Counting · Conjectures.

1 Introduction

In this paper we study the connections between enumerative combinatorics and
first order model counting (FOMC), which is the problem of computing the
number of models of a given first-order logic sentence. In enumerative com-
binatorics, one is typically interested in counting structures that satisfy some
given properties; these structures can be graphs, sets, functions etc. Many enu-
merative combinatorics problems can be equivalently stated as FOMC prob-
lems. For instance, the problem of counting all labeled graphs on n vertices
can be equivalently seen as counting the number of models of the sentence
(∀x : ¬e(x, x)) ∧ (∀x∀y : e(x, y)⇒ e(y, x)) on the domain ∆ = {1, 2, . . . , n}.

The main appeal of FOMC for enumerative combinatorics is the availability
of a growing body of results identifying tractable classes of FOMC problems.
In a seminal result, Van den Broeck [14] and Van den Broeck, Meert and Dar-
wiche [15] proved that computing FOMC for any sentence in the two-variable
fragment of first-order logic, FO2, can be done in time polynomial in the size
of the domain. Subsequently, Beame, Van den Broeck, Gribkoff and Suciu [1],
showed that, in general, this is not the case for the three-variable fragment. How-
ever, this does not mean that there are no tractable classes of FOMC problems
beyond FO2. Two tractable fragments, called S2FO2 and S2RU, were identified
in [9]. Later, Kuusisto and Lutz [10] extended the tractability results for FO2 by

2 Barv́ınek et al.

allowing the addition of a single functionality constraint, which has been recently
further generalized by Kuželka [11] into the two variable fragment of first-order
logic with counting quantifiers ∃=k, ∃≥k and ∃≤k, also known as the C2 frag-
ment [8]. The latter fragment already allows expressing counting problems over
non-trivial structures such as k-regular graphs.

One shortcoming of FOMC for applications in enumerative combinatorics is
the fact that, when we run a FOMC algorithm on some problem, it always gives
us a single number for the given domain size. However, for enumerative combi-
natorics, we would prefer a more analytic solution. For instance, consider the C2

sentence (∀x∃=1y : F (x, y))∧ (∀y∃=1x : F (x, y)), which asserts that the relation
F is a permutation. Computing the FOMC of this sentence on domains of sizes
1, 2, 3, 4 gives us the results 1, 2, 6, 24, which we know are factorials of the
domain sizes. Hence, ideally we would want to obtain a general solution of the
form n!, or at least an = n · an−1, a0 = 1. The latter expression is a recurrence
equation. It turns out that for many counting problems studied in combina-
torics, there exist such linear recurrences with coefficients that are polynomials
in n (i.e. in the domain size). In this paper we test whether one can use lifted
algorithms for FOMC to conjecture such recurrent equations. We show that we
are able to rediscover recurrent equations for a diverse collection of counting
problems expressible in C2 and even conjecture new ones, such as for problems
of counting the number of 2-regular-2-colored labelled graphs and 2-regular-3-
colored labelled graphs for which no known recurrence exists. In particular, one
of the sequences for these problems appears in the The On-Line Encyclopedia
of Integer Sequences (OEIS4) but its recurrence does not and, for the other one,
OEIS does not even contain the sequence. Although there have been previous
works on automatic conjecture making in mathematics, e.g. works of Colton and
his colleagues [5, 4] in number theory, our work is, to our best knowledge, the
first that allows one to automatically generate enumerative-combinatorics con-
jectures about combinatorial structures specified declaratively in a fragment of
first-order logic. The key component that allows this approach to work are lifted
inference algorithms [14, 15, 11] without which we would not even be able to get
data for generating the conjectures.

2 Background

In this section, we give some background on first-order logic, the FOMC problem
and P-recursive sequences.

2.1 First-order Logic and Model Counting

We deal with the function-free, finite domain fragment of first-order logic. An
atom of arity k takes the form P (x1, . . . , xk), where P/k comes from a vocabulary
of predicates (also called relations), and each argument xi is a logical variable

4 https://oeis.org

Automatic Conjecturing of P-Recursions Using Lifted Inference 3

from a vocabulary of variables. A literal is an atom or its negation. A formula
is formed by connecting one or more literals together using conjunction or dis-
junction. A formula may optionally be surrounded by one or more quantifiers of
the form ∃x or ∀x, where x is a logical variable. A logical variable in a formula
is said to be free if it is not bound by any quantifier. A formula with no free
variables is called a sentence. We follow the usual semantics of first-order logic.

In this paper we restrict ourselves to the two-variable fragment of first-order
logic with counting quantifiers, which is usually referred to as the C2 fragment
[8]. This fragment is obtained by restricting the allowed sentences to contain
only two variables (w.l.o.g. we can assume that these variables are x and y)
and allowing quantifiers ∃=k, ∃≤k, ∃≥k together with the standard ∀ and ∃
quantifiers. The quantifiers ∃=k, ∃≤k, ∃≥k stand for exist exactly k, exist at most
k and exist at least k, respectively.

Example 1. A function f : ∆ → ∆ is called an involution if f(f(x)) = x for
all x ∈ ∆. If we want to encode involutions in C2, we use the sentence: Ψ =
(∀x∃=1y : f(x, y)) ∧ (∀x∀y : f(x, y) ⇒ f(y, x)). Here, the first conjunct uses
the counting quantifier ∃=1 to force the relation f to be a function (i.e. to have
exactly one value y for every value of x) and the second conjunct forces it to be
involutive.

Below, we define first-order model counting.

Definition 1 (First-order model count) The first-order model count (FOMC)
of a sentence φ over a domain of size n is defined as:

FOMC(φ, n) = |modelsn(φ)|

where modelsn(φ) denotes the set of all models of φ over the domain ∆ =
{1, . . . , n}. We call the sequence of numbers an = FOMC(φ, n) the FOMC se-
quence of φ.

Example 2. Consider the sentence Ψ = ∀x∃=1y : f(x, y)∧∀y∃=1x : f(x, y). What
is the FOMC of this sentence over the domain ∆ = {1, 2}? To answer this ques-
tion, we can enumerate the models of Ψ which in this case are {f(1, 1), f(2, 2)}
and {f(1, 2), f(2, 1)}, so the answer is that FOMC is 2 in this case. In general,
since we know the models of Ψ correspond to permutations, we also know the
answer must be n! when |∆| = n even without enumerating all models explicitly.

Lifted inference [12–14, 7] studies ways to compute the FOMC much faster
than by direct enumeration of models.5 An important notion from the lifted
inference literature is that of domain liftability [14], which we define below for
the case of FOMC.
5 Most algorithmic results in the lifted inference literature are presented for weighted

first-order model counting (WFOMC), but for the combinatorics applications that
we consider in this paper, it will be mostly sufficient to restrict our attention to
FOMC even though there is, in fact, WFOMC under the hood of the algorithms
that we use for FOMC—this is because existing algorithms use weights to compute
FOMC with existential quantifiers [15] and with counting quantifiers [11].

4 Barv́ınek et al.

Definition 2 (Domain liftability) An algorithm for computing FOMC in a
fragment of first-order logic is said to be domain-lifted if it runs in time poly-
nomial in the size of the domain for any fixed sentence from this fragment (the
polynomial may depend on the sentence). A fragment of first-order logic is said
to be domain-liftable if such a domain-lifted algorithm exists for it.

In this paper we rely on the following result asserting the tractability of
computing the FOMC for sentences from the C2 fragment of first-order logic [11],
which builds on previous works of Van den Broeck [14], Van den Broeck, Meert
and Darwiche [15] and Kuusisto and Lutz [10].

Theorem 1 (Kuželka, 2021 [11]). The fragment of first-order logic limited
to two variables with counting quantifiers, C2, is domain-liftable.

2.2 P-Recursive Sequences

In this paper we are interested in finding P-recursive relations for FOMC se-
quences. First, we briefly introduce P-recursivity.

Definition 3 A sequence of integers {an}∞n=0 is called P-recursive if there exists
k ∈ N and polynomials pi for each i = 0, ..., k with integer-valued coefficients such
that for each n > k it holds:

k∑
i=0

pi(n)an−i = 0. (1)

Here, we call the number k to be the order of the sequence and maximum degree6

d ≥ 0 of the polynomials pi to be the degree of the sequence. Furthermore, we
denote with ci,j the coefficient of pi at the j−th power. This way, we can rewrite
(1) in more detail as:

k∑
i=0

d∑
j=0

an−ici,jn
j = 0. (2)

Example 3. The Fibonacci sequence is P-recursive with d = 0, k = 2, p0(n) =
−1, p1(n) = p2(n) = 1.

Example 4. The sequence of factorials n! is P-recursive with d = 1, k = 1, p0(n) =
−1, p1(n) = n.

P-recursive sequences are of interest because the recurrence relations offer a
straightforward and computationally inexpensive way to represent and evaluate
the sequence terms, and perform other computations. See, for example, [6] for
more details.

We will call the closed form expression of the form an+1 = f(an) derivable
from (1) for some P-recursive sequence {an}∞n=0 the P-recursive relation cor-
responding to the sequence. In this paper we will be trying to conjecture such
relations automatically.

6 It is convenient to consider the zero polynomial to have degree 0 and a single coef-
ficient 0.

Automatic Conjecturing of P-Recursions Using Lifted Inference 5

3 Approach

In this paper we take a pragmatic approach for conjecturing P-recursive rela-
tions. We assume that we are given a sentence in C2, encoding the combinatorial
structures that we want to count. For instance, to count functions from ∆ to
∆, the C2 sentence would be ∀x∃=1y : F (x, y). We use an FOMC algorithm7

to generate a sequence of numbers. We generate as many terms of this sequence
as computationally tractable or up to 50 when the recurrence is already known
and more is not needed. We then input the computed sequence terms into the
method described below, which itself determines the number of samples from the
sequence required to learn a conjecture. The conjecture, if found, is validated
against the remaining terms not sampled to conjecture the equation. Success of
the method does not constitute a proof that the equations we find are correct,
or even that the sequence is P-recursive, but it allows us to be reasonably confi-
dent about them as conjectures. Of course, our confidence in them depends on
the length of the validation sequence. Failure of the method to find a conjecture
indicates that the sequence is either not P-recursive, or it is P-recursive with
such a high order and/or degree that the input sequence provides insufficient
information to reconstruct the recurrence equation.

3.1 Conjecturing Recurrence Relations

Our method resembles the one described in [2], but is simpler and adapted to our
specific use case. Suppose we have the first l terms of a sequence (a0, ..., al−1),
and we are trying to conjecture a P-recursive relation for given values of the
metaparameters k, d. From Equation (2), we can directly obtain a system of
l − k linear equations with unknowns ci,j . The right hand side of each equation
is zero, so we can view the problem as looking for the kernel of a certain matrix M
depending on k, d, {an}l−1n=0 and implicitly defined by Equation (2). Specifically,
the system of equations obtained is equivalent to the matrix equation M · c = 0
with:

Mi,j = ai+k−(j mod (k+1))(i+ k)b
j

k+1c (3)

cj = cb j
k+1c,j mod (k+1) (4)

for i = 0, . . . , l−1−k and j = 0, . . . , (k+1)(d+1)−1. (This is mostly reindexing
resulting from flattening the table ci,j from (2) into the vector c. See how the

quotients
⌊

j
k+1

⌋
correspond to i’s in (2) and the remainders j mod (k + 1)

correspond to j’s, and the i+ k here corresponds to n in (2).)
Note, that for a P-recursive sequence defined by polynomials pi, we can

generate a linear space of equivalent representations: certainly, we can multiply
each of the polynomials pi in (1) by another fixed nonzero polynomial to obtain a

7 The implementation that we use is based on the algorithm described in [11]. This
algorithm needs access to an FO2 weighted FOMC oracle, for which we use our own
optimized version [3] of the algorithm described in [1, Appendix C].

6 Barv́ınek et al.

different representation of the same sequence. In general sometimes even different
linearly independent vectors of ci,j can describe equivalent representations.

Example 5. Consider the sequence an = n4. It can be verified that for k = d = 2
any triple of polynomials (p0, p1, p2) ∈ span{(−5n2 + 14n− 10,−32n− 32, 5n2−
6n+2), (−40n2 +101n−65, 40n2 +48n+112, 11n−7)} gives a valid P-recursive
formula for this sequence. Our method unambiguously identifies this linear space
when provided {n4}8n=0.

Now, we consider the nullspace of the matrix Mk,d({an}l−1n=0), which we de-
note as ker Mk,d({an}l−1n=0), to describe a P-recursivity conjecture for a sequence
starting with {an}l−1n=0 if the following property holds: There exists a number
l∗ < l, such that

ker Mk,d({an}l
∗−2
n=0) 6= ker Mk,d({an}l

∗−1
n=0) (5)

but for each l′, l∗ < l′ ≤ l it holds that:

ker Mk,d({an}l
′−1
n=0) = ker Mk,d({an}l

∗−1
n=0) 6= {0}. (6)

This could equivalently be rephrased in machine learning terminology as follows:
We consider the kernel to be a conjecture if it correctly predicts all the following
sequence terms after l∗ but is not unambiguously learnable from less than l∗

samples. The difference l − l∗ is a measure of the strength of corroborating
evidence for the conjecture following from the extra sequence terms available
and can be seen as an analogue of the size of validation set in machine learning.
Note that to construct the polynomials pi from the kernel, we can take any
linear combination of its basis vectors. In practice, the dimension of this space
is often 1.

To find the metaparameters k, d we used a simple grid-search iterating over
the pairs (k, d) ∈ {0, . . . l− 1}2 in the order of increasing k + d. If no conjecture
can be found this way, the algorithm exits with a failure status.

Example 6. Suppose we are given the five term sequence {an}4n=0 = (1, 1, 2, 6, 24)
and k = d = 1. The corresponding matrix is:

M =

a2 a1 1a2 1a1
a3 a2 2a3 2a2
a4 a3 3a4 3a3
a5 a4 4a5 4a4

 =

1 1 1 1
2 1 4 2
6 2 18 6
24 6 96 24

 (7)

The kernel has dimension one and is ker M = span{(−1, 0, 0, 1)}. This would be
the same if we dropped the last term of the sequence, but different if we dropped
the last two. This is equivalent to dropping the bottom row(s) of M. Therefore
l∗ = 4. We can use this basis vector to write a recurrence relation:

(−1 · n0 + 0 · n1)an + (0 · n0 + 1 · n)an−1 = 0 (8)

which makes the conjectured sequence an = nan−1 = n!, whose correctness can
be validated by the sample a4 not needed to obtain this result.

Automatic Conjecturing of P-Recursions Using Lifted Inference 7

P
ro

p
er

ty
O

E
IS

ID
k
d

K
n
ow

n
l∗

l
T

im
e

P
-r

ec
u
rs

iv
e

re
la

ti
o
n

co
n
je

ct
u
re

d
a
0
,a

1
,a

2
,a

3

P
er

m
u
ta

ti
o
n
s

A
0
0
0
1
4
2

1
1

Y
es

4
5
0

1
h

3
m

in
a
n

=
n
a
n
−
1

1
,

1
,

2
,

6

D
er

a
n
g
em

en
ts

A
0
0
0
1
6
6

2
1

Y
es

7
5
0

1
2
m

in
a
n

=
(n
−

1
)(
a
n
−
2

+
a
n
−
1
)

1
,

0
,

1
,

2

In
v
o
lu

ti
o
n
s

A
0
0
0
0
8
5

2
1

Y
es

7
5
0

4
m

in
a
n

=
a
n
−
1

+
(n
−

1
)a

n
−
2

1
,

1
,

2
,

4

1
-r

eg
u
la

r
g
ra

p
h
s

(i
n
v
o
lu

ti
v
e

d
er

a
n
g
em

en
ts

)
A

0
0
1
1
4
7

1
1

Y
es

4
5
0

1
h

5
m

in
a
n

=
(2
n
−

1
)a

n
−
1
.

H
er

e
w

e
u
se
n

=
2
|∆
|a

s
th

e
p
ro

p
er

ty
is

tr
iv

ia
ll
y

u
n
sa

ti
sfi

a
b
le

fo
r

o
d
d
|∆
|.

1
,

1
,

3
,

1
5

2
-r

eg
u
la

r
g
ra

p
h
s

A
0
0
1
2
0
5

3
2

Y
es

1
4

5
0

6
m

in
2
a
n

=
(n
−

1
)(

2
a
n
−
1

+
(n
−

2
)a

n
−
3
)

1
,

0
,

0
,

1

2
-r

eg
u
la

r
∩

2
-c

o
lo

re
d

g
ra

p
h
s

A
0
5
4
4
7
9

2
2

N
o

1
5

3
2

1
7
h

5
0
m

in
a
n

=
2
(n
−

1
)(

2
n
−

1
)(

(2
n
−

3
)a

n
−
2

+
a
n
−
1
).

A
ls

o
u
si

n
g
n

=
2
|∆
|.

1
,

0
,

6
,

1
2
0

2
-r

eg
u
la

r
∩

3
-c

o
lo

re
d

g
ra

p
h
s

N
/
A

4
3

N
o

2
3

3
1

1
1
h

4
0
m

in
a
n

=
(n
−

1
)(
a
n
−
1

+
(n
−

2
)(

2
a
n
−
2

+
3
a
n
−
3

+
6
(n
−

3
)a

n
−
4
))

1
,

0
,

0
,

6

2
-c

o
lo

re
d

g
ra

p
h
s

A
0
4
7
8
6
3

–
–

–
–

4
0
0

9
m

in
D

o
es

n
o
t

a
p
p

ea
r

to
b

e
P

-r
ec

u
rs

iv
e.

1
,

2
,

6
,

2
6

3
-c

o
lo

re
d

g
ra

p
h
s

A
1
9
1
3
7
1

–
–

–
–

4
0
0

2
0
m

in
D

o
es

n
o
t

a
p
p

ea
r

to
b

e
P

-r
ec

u
rs

iv
e.

1
,

3
,

1
5
,

1
2
3

T
a
b
le

1
.

E
x
a
m

p
le

s
o
f

a
p
p
ly

in
g

o
u
r

co
n
je

ct
u
ri

n
g

m
et

h
o
d

to
so

m
e

F
O

M
C

se
q
u
en

ce
s

o
f

p
ro

p
er

ti
es

in
C

2
.

T
h
e

“
K

n
ow

n
”

co
lu

m
n

in
d
ic

a
te

s
w

h
et

h
er

a
P

-r
ec

u
rr

en
ce

fo
rm

u
la

co
u
ld

b
e

fo
u
n
d

in
O

E
IS

o
r

o
th

er
so

u
rc

es
.

F
o
r

th
e

se
q
u
en

ce
s

m
a
rk

ed
a
s

“
N

o
”
,

w
e

co
n
si

d
er

th
e

co
n
je

ct
u
re

d
re

cu
rr

en
ce

re
la

ti
o
n

to
b

e
a

n
ov

el
d
is

co
v
er

y
(t

o
th

e
b

es
t

o
f

o
u
r

k
n
ow

le
d
g
e)

.
T

h
e

se
q
u
en

ce
s

m
a
rk

ed
a
s

“
Y

es
”

w
er

e
co

rr
ec

tl
y

re
d
is

co
v
er

ed
b
y

o
u
r

a
u
to

m
a
te

d
m

et
h
o
d
.

T
h
e
l∗

co
lu

m
n

is
th

e
m

in
im

u
m

n
u
m

b
er

o
f

sa
m

p
le

s
re

q
u
ir

ed
to

le
a
rn

th
e

se
q
u
en

ce
in

th
e

se
n
se

d
efi

n
ed

in
S
ec

ti
o
n

3
.

T
h
e
l

co
lu

m
n

is
th

e
a
ct

u
a
l

n
u
m

b
er

o
f

se
q
u
en

ce
te

rm
s

w
e

w
er

e
a
b
le

to
co

m
p
u
te

w
it

h
in

th
e

to
ta

l
ti

m
e

sh
ow

n
in

th
e

la
st

co
lu

m
n
.

8 Barv́ınek et al.

4 Experiments

We computed the FOMC sequences for several logical properties and attempted
to compute as many terms as possible in reasonable time. We then used those
sequences to find a conjecture about P-recursivity. For some of the properties,
a P-recursive relation is already known and our algorithm merely reproduces it.
However, for two of those properties, the algorithm conjectured a relation for
which we found no such relation on OEIS. The FOMC sequences were computed
using our own implementation as explained in Section 3, and ran on a single
3.7GHz Intel i5-9600KF processor core with up to 32 GiB memory available.
This was computationally the most difficult part.

The code for finding the recurrence relation was implemented in Mathematica
12 [16]. This process was usually quick and found a solution within seconds if
it existed with low degree and order. For sequences which do not seem to be
P-recursive, this is comparably slower as the grid search is attempting many
high-valued metaparameter candidates. The results are summarised in Table 1.

Since we were using the Mathematica software, we noticed that some of the
recurrences could automatically be converted to closed-forms. For example, for
the 1-regularity, we obtained the formula8 an = 2nπ−

1
2Γ (1

2 +n). We got similar
symbolic solutions also for permutations and derangements. For the rest of the
problems, Mathematica was not able to find a solution of the recurrences in
terms of standard special functions. Methods for solving recurrence equations
could thus be used to extend our pipeline with closed forms at output where
available.

5 Conclusions

In this short paper we proposed a methodology for generating conjectures about
P-recursivity of combinatorial sequences using techniques from lifted inference.
We demonstrated the potential of the approach by showing that we can redis-
cover non-trivial recurrence relations from the literature, as well as conjecture
new ones. It is likely that these conjectures could be proven by an expert enu-
merative combinatorialist. In the future, we want to move from conjecturing the
recurrences to proving them algorithmically, thus, if we exaggerate a bit, making
an automatic enumerative combinatorialist.

Acknowledgements

JB and OK were supported by the Czech Science Foundation project “Gener-
ative Relational Models” (20-19104Y). JB was also supported by a donation
from X-Order Lab. TvB was supported by the Research Foundation – Flan-
ders (G095917N). FZ was supported by the Czech Science Foundation project
20-29260S.

8 Here, the expression obtained from Mathematica was originally expressed using the
Pochhammer symbol which we rewrote using the gamma function.

Automatic Conjecturing of P-Recursions Using Lifted Inference 9

References

1. Beame, P., Van den Broeck, G., Gribkoff, E., Suciu, D.: Symmetric weighted first-
order model counting. In: PODS. pp. 313–328. ACM (2015)

2. Berthomieu, J., Faugère, J.C.: Guessing linear recurrence relations of sequence
tuples and p-recursive sequences with linear algebra. In: Proceedings of the ACM
on International Symposium on Symbolic and Algebraic Computation. pp. 95–102
(2016)

3. van Bremen, T., Kuzelka, O.: Faster lifting for two-variable logic using cell graphs.
In: Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial In-
telligence, UAI 2021 (2021)

4. Colton, S.: Automated conjecture making in number the-
ory using hr, otter and maple. J. Symb. Comput. 39(5),
593–615 (2005). https://doi.org/10.1016/j.jsc.2004.12.003,
https://doi.org/10.1016/j.jsc.2004.12.003

5. Colton, S., Bundy, A., Walsh, T.: Automatic invention of integer sequences. In:
Proceedings of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on on Innovative Applications of Artificial Intelligence, July
30 - August 3, 2000, Austin, Texas, USA. pp. 558–563 (2000)

6. Flajolet, P., Sedgewick, R.: Analytic combinatorics. cambridge University press
(2009)

7. Gogate, V., Domingos, P.M.: Probabilistic theorem proving. In: UAI. pp. 256–265.
AUAI Press (2011)

8. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable
first-order logic. Bull. Symb. Log. 3(1), 53–69 (1997)

9. Kazemi, S.M., Kimmig, A., Van den Broeck, G., Poole, D.: New liftable classes for
first-order probabilistic inference. In: NIPS. pp. 3117–3125 (2016)

10. Kuusisto, A., Lutz, C.: Weighted model counting beyond two-variable logic. In:
LICS. pp. 619–628. ACM (2018)

11. Kuzelka, O.: Weighted first-order model counting in the two-variable fragment with
counting quantifiers. J. Artif. Intell. Res. 70, 1281–1307 (2021)

12. Poole, D.: First-order probabilistic inference. In: IJCAI. pp. 985–991. Morgan Kauf-
mann (2003)

13. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In:
IJCAI. pp. 1319–1325. Professional Book Center (2005)

14. Van den Broeck, G.: On the completeness of first-order knowledge compilation for
lifted probabilistic inference. In: NIPS. pp. 1386–1394 (2011)

15. Van den Broeck, G., Meert, W., Darwiche, A.: Skolemization for weighted first-
order model counting. In: KR. AAAI Press (2014)

16. Wolfram Research, Inc.: Mathematica, Version 12.2 (2020),
https://www.wolfram.com/mathematica, champaign, IL, 2020

