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1 Motivation

The source of meaning of formulas in the previous chapters were models. Once a
particular model is chosen, say a valuation for propositional logic, the meaning
of every formula can be investigated. The formula is considered to hold or not
to hold, depending on the given valuation, which assigns truth values T or F to
every propositional atom in the formula.

Sometimes, we would like to consider different valuations to be related to
each other. For example, we may want to describe scenarios that an agent
considers believable, when considering certain facts. Here the agent’s belief
structure defines the relationship between two scenarios. An agent can then be
said to believe a proposition, given a scenario of facts, if the proposition holds
in all scenarios that he considers believable.

As another example, we may be interested in necessity and possibility. Here,
a scenario is considered possible based on a given situation, if the scenario is
consistent with some underlying framework of reality, such as the laws of physics,
or philosophical concepts. A proposition would then be called necessarily true,
if it holds in all possible scenarios.

Ways of reasoning about situations or scenarios are called modalities. In the
modality of belief, we will be able to say that an agent believes a proposition;
and in the modality of necessity, we will be able to say that a proposition is
necessarily true. We shall introduce modal logic to capture such modalities, by
first extending the syntax of propositional logic with modal operators, and then
formally define their semantics, based on situations (or scenarios).

2 Syntax

For simplicity, we limit our investigation to a propositional modal logic in this
lecture; a study of modal predicate logic is beyond the scope of this module. We
add two modal operators to the syntax of propositional logic, namely � and ♦.
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Definition 1. For a given set A of propositional atoms, the set of well-formed
formulas in propositional modal logic is the least set F that fulfills the following

rules:

• The constant symbols ⊥ and ⊤ are in F .

• Every element of A is in F .

• If φ is in F , then (¬φ) is also in F .

• If φ and ψ are in F , then (φ ∧ ψ) is also in F .

• If φ and ψ are in F , then (φ ∨ ψ) is also in F .

• If φ and ψ are in F , then (φ→ ψ) is also in F .

• If φ is in F , then (�φ) is also in F .

• If φ is in F , then (♦φ) is also in F .

Depending on the modality that we are interested in, we may pronounce �φ as:

• an agent A believes that φ holds (modality of belief), or

• φ necessarily holds (modality of necessity).

Recall that in propositional logic, not all operators are strictly required. We
could for example consider φ∨ψ as an abbreviation of ¬(φ∧φ). Thus a propo-
sitional logic with all operators except the ∨ operator is not less expressive than
a propositional logic with all operators. We include ∨ for the convenience of
succinctly expressing a disjunctive relationship between two formulas.

A similar situation holds for modal logic. We may consider ♦φ to be an
abbreviation for ¬(�(¬φ)). For the sake of convenience, we include ♦ as an
operator, although it can be expressed in terms of �.

Once we have decided to treat ♦φ as an abbreviation for ¬(�(¬φ)), we can
work out how to pronounce ♦φ in our example modalities.

• If �φ means that an agent A believes φ, then ♦φ ≡ ¬(�(¬φ)) means that
it is not the case that the agent believes ¬φ. In English, we may say that
A considers φ plausible.

• If �φ means necessarily φ, then ♦φ ≡ ¬(�(¬φ)) means that it not nec-
essarily the case that φ does not hold. In other words, φ may possibly

hold.

3 Semantics

We have seen that the goal of modal logic is to be able to reason about scenarios.
In different application domains, these scenarios have different relationships with
each other. For example, in the modality of necessity, a scenario x can be seen
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to be related to a scenario y, written R(x, y), if y is possible, assuming the facts
described by x. Since we operate in a propositional setting, each scenario is
characterized by a valuation, which is an assignment of propositional variables
to T or F . In modal logic, we call such scenarios worlds.

Definition 2. A model M over a particular set of propositional atoms A is:

• a set of worlds W ,

• a binary relation R ⊆W ×W , called the accessibility relation, and

• a mapping called labeling function L :W → A→ {T, F}.

Note that for any world x ∈W , the application L(w) results in a function from
A to {T, F}, in other words a valuation. Models of modal logic that are based
on possible worlds are often called Kripke models in honour of the logician Saul
Kripke, who was instrumental in laying the foundation of modal logic.

Example 1. Consider the following Kripke model, where L lists the proposi-

tional atoms that evaluate to T in the respective world.

W = {x1, x2, x3, x4, x5, x6}
R = {(x1, x2), (x1, x3), (x2, x2), (x2, x3), (x3, x2), (x4, x5), (x5, x4), (x5, x6)}
L = {(x1, {q}), (x2, {p, q}), (x3, {p}), (x4, {q}), (x5, {}), (x6, {p})}

We can depict the model graphically as follows.
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Formulas in modal logic do not simply evaluate to T or F , but do so relative to
a particular world x. The following relation  formalizes this concept.

Definition 3. Let M = (W,R,L), x ∈ W , and φ a formula in basic modal

logic. For any x ∈W , we define x  φ as the smallest relation satisfying:

• x  ⊤ always holds,
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• x  ⊥ never holds; we write x 6 ⊥

• x  p iff p ∈ L(x)

• x  ¬φ iff x 6 φ

• x  φ ∧ ψ iff x  φ and x  ψ

• x  φ ∨ ψ iff x  φ or x  ψ

• x  φ→ ψ iff x  φ implies that x  ψ

• x  �φ iff for each y ∈W with R(x, y), we have y  φ

• x  ♦φ iff there is a y ∈W such that R(x, y) and y  φ.

Here the definition of x  ♦φ follows from our definition of ♦. If ♦φ is an
abbreviation for ¬�¬φ, then x  ♦φ is defined by x  ¬�¬φ, which means
that x  �¬φ does not hold. Thus, ¬φ does not hold for all y ∈ W with
R(x, y). This means that there is at least one y ∈ W such that R(x, y) and
y  φ.

Example 2. Consider the same Kripke model as presented in the previous

example.
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• x1  q

• x1  ♦q, x1 6 �q

• x5 6 �p, x5 6 �q, x5 6 �p ∨�q, x5  �(p ∨ q)

• x6  �φ holds for all φ, but x6 6 ♦φ

We said x6  �φ holds for all φ, but x6 6 ♦φ Greek letters denote formulas,
and are not propositional atoms. Terms where Greek letters appear instead of
propositional atoms are called formula schemes.

Exercise 1. For each of the following formulas, give an example for a Kripke

model, in which the formula holds in all worlds of the model.
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• ♦p ∧ ¬�p

• ♦⊤

• �⊥

• ♦p ∧ ♦q → ♦(p ∧ q)

Definition 4. A set of formulas Γ entails a formula ψ of basic modal logic if,

in any world x of any model M = (W,R,L), whe have x  ψ whenever x  φ

for all φ ∈ Γ. We say Γ entails ψ and write Γ |= ψ.

We write φ ≡ ψ if φ |= ψ and ψ |= φ.
The following list states a few well-known equivalences.

• De Morgan rules: ¬�φ ≡ ♦¬φ, ¬♦φ ≡ �¬φ.

• Distributivity of � over ∧:

�(φ ∧ ψ) ≡ �φ ∧�ψ

• Distributivity of ♦ over ∨:

♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ

• �⊤ ≡ ⊤, ♦⊥ ≡ ⊥

Exercise 2. Prove the distributivity of ♦ over ∨ using the definition of |=.

Definition 5. A formula φ is valid if it is true in every world of every model,

i.e. iff |= φ holds.

Examples of valid formulas:

• All valid formulas of propositional logic

• ♦¬φ→ ¬�φ

• �(φ ∧ ψ) → �φ ∧�ψ

• ♦(φ ∨ ψ) → ♦φ ∨ ♦ψ

• Formula K: �(φ→ ψ) ∧�φ→ �ψ.

The last formula is named K after Saul Kripke. It plays an important role as
the modal logic version of modus ponens. in modal logic.
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4 Logic Engineering

We have seen that in a particular context �φ could mean:

• It will always be true that φ

• Agent Q believes that φ

• It is necessarily true that φ

Other modalities allow us to express:

• It ought to be that φ

• Agent Q knows that φ

• After any execution of program P , φ holds.

Since ♦φ ≡ ¬�¬φ, we can infer the meaning of ♦ in each context.

�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ φ is consistent with Q’s beliefs
Agent Q knows that φ For all Q knows, φ.

4.1 Valid Formulas wrt Modalities

In each modality, we can investigate whether particular formulas should be
considered valid. A close examination of the modalities allows us to build the
following table.

�φ �
φ
→
φ

�
φ
→

�
�
φ

♦φ
→

�
♦φ

♦⊤ �
φ
→

♦φ

�
φ
∨�

¬φ

�
(φ
→
ψ)

→
�
φ
→

�
ψ

♦φ
∧ ♦
ψ
→

♦(
φ
∧ ψ

)

Agent Q believes that φ × √ √ √ √ × √ ×
It is necessary that φ

√ √ √ √ √ × √ ×
It ought to be that φ × × × √ √ × √ ×
Agent Q knows that φ

√ √ √ √ √ × √ ×

Thus by reasoning from known properties of a modality, we can infer the validity
of additional formulas in the modality.
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4.2 Properties of R

We can also infer a “meaning” for the accessibility relation R by investigating
the respective modalities. For example, in the modality of necessity, R(x, y)
expresses that y is possible, assuming the facts described in x.

�φ R(x, y)

Agent Q believes that φ y could be the actual world according to Q’s
beliefs at x

It is necessarily true that φ y is possible world according to info at x

It ought to be that φ y is an acceptable world according to the in-
formation at x

Agent Q knows that φ y could be the actual world according to Q’s
knowledge at x

Recall from the study of discrete mathematics that we can classify binary rela-
tions according to their properties.

• reflexive: for every x ∈W , we have R(x, x).

• symmetric: for every x, y ∈W , we have R(x, y) implies R(y, x).

• serial: for every x there is a y such that R(x, y).

• transitive: for every x, y, z ∈ W , we have R(x, y) and R(y, z) imply
R(x, z).

• Euclidean: for every x, y, z ∈W with R(x, y) and R(x, z), we have R(y, z).

• functional: for each x there is a unique y such that R(x, y).

• linear: for every x, y, z ∈ W with R(x, y) and R(x, z), we have R(y, z) or
y = z or R(z, y).

• total: for every x, y ∈W , we have R(x, y) and R(y, x).

• equivalence: reflexive, symmetric and transitive.

Since we have connnected modalities to the validity of certain formulas on
the one hand, and to relations on the other hand, it will come as no surprise that
the validity of formulas corresponds to properties of the accessibility relation.
This relationship is the basis of correspondence theory.
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4.3 Correspondence Theory

We would like to establish that some formulas hold whenever R has a particular
property. In order to investigate this relationship, it will be useful to be able
to ignore L, and only consider the (W,R) part of a model, which we will call a
frame. We shall then establish formula schemes based on properties of frames.

Theorem 1. Let F = (W,R) be a frame. The following statements are equiv-

alent:

1. R is reflexive;

2. F satisfies �φ→ φ;

3. F satisfies �p→ p for any atom p

Proof.

1 ⇒ 2: Let R be reflexive. Let L be any labeling function; M = (W,R,L). We
need to show for any x: x  �φ→ φ.

Suppose x  �φ. Since R is reflexive, we have x  φ. Using the semantics
of → we can conclude: x  �φ→ φ

2 ⇒ 3: Just set φ to be p

3 ⇒ 1: Suppose the frame satisfies �p→ p. Take any world x from W .

Choose a labeling function L such that p 6∈ L(x), but p ∈ L(y) for all y
with y 6= x.

Proof by contradiction: Assume (x, x) 6∈ R. Then we would have x  �p,
but not x  p. Contradiction!

Theorem 2. The following statements are equivalent:

• R is transitive;

• F satisfies �φ→ ��φ;

• F satisfies �p→ ��p for any atom p

Exercise 3. Prove Theorem 2.

Exercise 4. Prove that �⊥ corresponds to R = ∅.

Exercise 5. Find a property of R that corresponds to the formula ♦⊤, and

prove it.
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The following table summarizes important correspondences. Note that names
on the left are traditional names of the formulas used in modal logic literature.
name formula scheme property of R
T �φ→ φ reflexive
B φ→ �♦φ symmetric
D �φ→ ♦φ serial
4 �φ→ ��φ transitive
5 ♦φ→ �♦φ Euclidean

(�φ→ ♦φ) ∧ (♦φ→ �φ) functional
�(φ ∧�φ→ ψ) ∨�(ψ ∧�ψ → φ) linear
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