
The Importance of Being Formal

Martin Henz

July 10, 2013

Predicate Logic

1 Need for Richer Language

Propositional logic can easily handle simple declarative statements such as:

Student Peter Lim enrolled in CS3234.

Propositional logic can also handle combinations of such statements such as:

Student Peter Lim enrolled in Tutorial 1, and student Julie Brad-
shaw is enrolled in Tutorial 2.

However, statements involving formulations such as “there exists...” or “ev-
ery...” or “among...” are difficult to express in propositional logic. A statement
of the form

Every student is younger than some instructor.

talks about concepts such as

• being a student,

• being an instructor, and

• being younger than somebody else

These are properties of elements of a set of objects. We express them in predicate
logic using predicates.

Example 1. The statement

Every student is younger than some instructor.

is expressed using the following predicates.

• S: For example, S(andy) could denote that Andy is a student.

1

• I: For example, I(paul) could denote that Paul is an instructor.

• Y : For example, Y (andy, paul) could denote that Andy is younger than
Paul.

A practical problem arises when such predicates are used to express statements
such as

Every student is younger than some instructor.

How do we express “every student”? We need variables that can stand for
constant values, and a quantifier symbol that denotes “every”. Using variables
and quantifiers, we can write:

∀x(S(x)→ (∃y(I(y) ∧ Y (x, y)))).

Literally: For every x, if x is a student, then there is some y such that y is an
instructor and x is younger than y.

Example 2. Consider the following statement.

Not all birds can fly.

Using the following predicates,

B(x): x is a bird

F (x): x can fly

we can express the sentence as follows:

¬(∀x(B(x)→ F (x)))

Example 3. Consider the following statement.

Every girl is younger than her mother.

Using the following predicates,

G(x): x is a girl

M(x, y): x is y’s mother

Y (x, y): x is younger than y

we can express the sentence as follows:

∀x∀y(G(x) ∧M(y, x)→ Y (x, y))

Note that in the previous example, the variable y is only introduced to denote
the mother of x. If everyone has exactly one mother, the predicate M(y, x) is a
function, when read from right to left.

We introduce a function symbol m that can be applied to variables and
constants as in

∀x(G(x)→ Y (x,m(x)))

2

Example 4. Consider the following statement.

Andy and Paul have the same maternal grandmother.

Without function symbols, we would have to write

∀x∀y∀u∀v(M(x, y) ∧M(y, andy) ∧
M(u, v) ∧M(v, paul)→ x = u)

However, with the function symbol m, we can simply write:

m(m(andy)) = m(m(paul))

2 Predicate Logic as a Formal Language

At any point in time, we want to describe the features of a particular “world”,
using predicates, functions, and constants. Thus, we introduce for this world:

• a set of predicate symbols P

• a set of function symbols F

Every function symbol in F and predicate symbol in P comes with a fixed arity,
denoting the number of arguments the symbol can take. Function symbols with
arity 0 are called constants.

Definition 1. The set of terms in predicate logic is given by the BNF:

t ::= x | c | f(t, . . . , t)

where x ranges over a given set of variables V, c ranges over nullary function
symbols in F , and f ranges over function symbols in F with arity n > 0.

Example 5. If n is a nullary function symbol (constant), f is a unary function
symbol, and g is a binary function symbol, then examples of terms are:

• g(f(n), n)

• f(g(n, f(n)))

Example 6. If 0, 1, 2, 3 are nullary functions (constants), s is unary, and +,−
and ∗ are binary, then

∗(−(2,+(s(x), y)), x)

is a term.

Occasionally, we allow ourselves to use infix notation for function symbols as in

(2− (s(x) + y)) ∗ x

3

Definition 2. The set of formulas in predicate logic is defined by the BNF:

φ ::= P (t1, t2, . . . , tn) | ⊥ | > | (¬φ) | (φ ∧ φ) | (φ ∨ φ) |
(φ→ φ) | (∀xφ) | (∃xφ)

where P ∈ P is a predicate symbol of arity n ≥ 0, ti are terms over F and

x is a variable.

We allow for nullary predicate symbols. The predicates that they denote do
not depend on any arguments, and as such are similar to propositional atoms
in propositional logic.

Convention 1. Just like for propositional logic, we introduce convenient con-
ventions to reduce the number of parentheses:

• ¬,∀x and ∃x bind most tightly;

• then ∧ and ∨;

• then →, which is right-associative.

We extend the the notion of a parse tree, to provide for functions, predicates
and quantifiers.

Example 7.
∀x((P (x)→ Q(x)) ∧ S(x, y))

has parse tree
∀x

∧

→

P

x

Q

x

S

x y

2.1 Equality

Equality is a common predicate, usually used in infix notation.

=∈ P

Example 8. Instead of the formula

= (f(x), g(x))

we usually write the formula
f(x) = g(x)

4

2.2 Free and Bound Variables

Consider the formula

∀x((P (x)→ Q(x)) ∧ S(x, y))

with the following syntax tree:
∀x

∧

→

P

x

Q

x

S

x y

The quantifier ∀x refers to all occurrences of x below it in the syntax tree. We
say that the quantifier binds the variable occurrence. The variable occurrence
x is said to be bound by ∀x. A variable that is not bound by any quantifier is
called free. For example, the variable y is a free variable in the formula above.
Consider the formula

(∀x(P (x) ∧Q(x)))→ (¬P (x) ∨Q(y))

with the following syntax tree:
→

∀x

∧

P

x

Q

x

∨

¬

P

x

Q

y

Here, the occurrences of x in P (x)∧ P (x) are bound by ∀x, whereas the occur-
rence of x in ¬P (x) is free.

In order to define the semantics of quantifiers, we need to be able to replace
free occurrences of variables systematically by terms, using an operation called
substitution.

Definition 3. Given a variable x, a term t and a formula φ, we define [x⇒ t]φ
to be the formula obtained by replacing each free occurrence of variable x in φ
with t.

Example 9.

[x⇒ f(x, y)]((∀x(P (x) ∧Q(x)))→ (¬P (x) ∨Q(y)))

= ∀x(P (x) ∧Q(x)))→ (¬P (f(x, y)) ∨Q(y))

5

→

∀x

∧

P

x

Q

x

∨

¬

P

x

Q

y

becomes
→

∀x

∧

P

x

Q

x

∨

¬

P

f

x y

Q

y

The notion of substitution of x by t in φ, denoted [x ⇒ t]φ poses a technical
difficulty when t contains a variable y and x occurs under the scope of ∀y in φ.

Example 10.
[w ⇒ f(v, v)](S(w) ∧ ∀v(P (w)→ Q(v)))

∧

S

w

∀v

→

P

w

Q

v

Here the variable v occurs in the term that is to be substituted for

w. However, there is an occurrence of w under a ∀w. Thus, a naive execution
of the substitution would “slip” occurrences of w “under” the scope of ∀w. This
is to be avoided; any variable in t needs to be free in [x⇒ t]φ.

Definition 4. Given a term t, a variable x and a formula φ, we say that t is
free for x in φ, if no free x leaf in φ occurs in the scope of ∀y or ∃y for any
variable y occurring in t.

In order to compute [x ⇒ t]φ, we demand that t is free for x in φ. If this
condition does not hold, we consistently rename bound variables in φ.

Example 11.
[w ⇒ f(v, v)](S(w) ∧ ∀v(P (w)→ Q(v)))

6

⇓

[w ⇒ f(v, v)](S(w) ∧ ∀z(P (w)→ Q(z)))

⇓

S(f(v, v)) ∧ ∀z(P (f(v, v))→ Q(z))

3 Semantics

3.1 Models

Definition 5. Let F contain function symbols and P contain predicate symbols.
A model M for (F ,P) consists of:

1. A non-empty set U , the universe;

2. for each nullary function symbol f ∈ F a concrete element fM ∈ U ;

3. for each f ∈ F with arity n > 0, a concrete function fM : Un → U ;

4. for each P ∈ P with arity n > 0, a function PM : Un → {F, T}.

5. for each P ∈ P with arity n = 0, a value from {F, T}.

Example 12. Let F = {e, ·} and P = {≤}.
Let model M for (F ,P) be defined as follows:

1. Let U be the set of binary strings over the alphabet {0, 1};

2. let eM = ε, the empty string;

3. let ·M be defined such that s1 ·M s2 is the concatenation of the strings s1
and s2; and

4. let ≤M be defined such that s1 ≤M s2 iff s1 is a prefix of s2.

Examples of elements of U are ε and 10001. The term 1010 · 1100 is given the
meaning 1010 ·M 1100 = 10101100 in M, whereas the term 000 · ε is given the
meaning 000 ·M ε = 000.

7

3.2 Equality Revisited

Usually, we require that the equality predicate = is interpreted as same-ness.
This means that allowable models are restricted to those in which a =M b holds
if and only if a and b are the same elements of the model’s universe.

Example 13. Continuing Example 12, we require in every model M that
000 =M 000 holds and that 001 =M 100 does not hold. We write 001 6=M 100
to denote the latter.

Example 14. Let F = {z, s} and P = {≤}.
Let model M for (F ,P) be defined as follows:

1. Let U be the set of natural numbers;

2. let zM = 0;

3. let sM be defined such that s(n) = n+ 1; and

4. let ≤M be defined such that n1 ≤M n2 iff the natural number n1 is less
than or equal to n2.

With the above restriction on equality, we can see that the relation =M is a
subset of ≤M; we write =M⊆≤M.

3.3 Free Variables and the Satisfaction Relation

We can give meaning to formulas with free variables by providing an environ-
ment (lookup table) that assigns variables to elements of our universe:

l : V → U.

We define environment extension such that l[x 7→ a] is the environment that
maps x to a and any other variable y to l(y). Using this definition, we can now
define when a model satisfies a formula.

Definition 6. The model M satisfies φ with respect to environment l, written
M |=l φ:

• in case φ is of the form P (t1, t2, . . . , tn), if a1, a2, . . . , an are the results of
evaluating t1, t2, . . . , tn with respect to l, and if PM(a1, a2, . . . , an) = T ;

• in case φ is of the form P , if PM = T ;

• in case φ has the form ∀xψ, if the M |=l[x 7→a] ψ holds for all a ∈ U ;

• in case φ has the form ∃xψ, if the M |=l[x 7→a] ψ holds for some a ∈ U ;

• in case φ has the form ¬ψ, if M |=l ψ does not hold;

• in case φ has the form ψ1 ∨ ψ2, if M |=l ψ1 holds or M |=l ψ2 holds;

8

• in case φ has the form ψ1 ∧ ψ2, if M |=l ψ1 holds and M |=l ψ2 holds;
and

• in case φ has the form ψ1 → ψ2, if M |=l ψ2 holds whenever M |=l ψ1

holds.

If a formula φ has no free variables, we call φ a sentence. In this case, M |=l φ
holds or does not hold regardless of the choice of l. Thus for sentences φ, we
leave out the environment, and write M |= φ or M 6|= φ.

Definition 7. Let Γ be a possibly infinite set of formulas in predicate logic and
ψ a formula. We say that Γ entails ψ, written Γ |= ψ, iff for all models M and
environments l, whenever M |=l φ holds for all φ ∈ Γ, then M |=l ψ.

Definition 8. We say that a formula ψ is satisfiable, iff there is some model
M and some environment l such that M |=l ψ holds.

Definition 9. A set of formulas Γ is called satisfiable, iff there is some model
M and some environment l such that M |=l φ, for all φ ∈ Γ.

Definition 10. Let Γ be a possibly infinite set of formulas in predicate logic
and ψ a formula. The formula ψ is called valid, iff for all models M and
environments l, we have M |=l ψ.

Note that both validity and entailment require to consider all possible models.
Not only are we free to choose the universe, we are also free to decide the
interpretation of every function and predicate symbol. As a result, the number
of models is usually infinite (and usually not countably infinite). This makes it
very hard to prove validity and entailment, using semantic techniques.

The question arises how to effectively argue about all possible models. Would
it be possible to define a method of natural deduction that allows us to answer
the questions of entailment and validity?

4 Proof Theory

4.1 Inheriting Natural Deduction of Propositional Logic

If we consider propositions as nullary predicates, propositional logic is a sub-
language of predicate logic. It will come as no surprise that we can translate
the rules for natural deduction in propositional logic directly to predicate logic.
Each of the following rules applies to any formulas φ and ψ of predicate logic.

φ ψ

φ ∧ ψ
[∧i]

φ ∧ ψ

φ

[∧e1]

φ ∧ ψ

ψ

[∧e2]

9

φ

φ ∨ ψ
[∨i1]

ψ

φ ∨ ψ
[∨i2]

φ ∨ ψ

�

�

�

�
φ
...
χ

�

�

�

�
ψ
...
χ

χ

[∨e]

�

�

�

�
φ
...
ψ

φ→ ψ

[→ i]

φ φ→ ψ

ψ

[→ e]

�

�

�

�
φ
...
⊥

¬φ
[¬i]

φ ¬φ

⊥
[¬e]

⊥

φ

[⊥e]
¬¬φ

φ

[¬¬e]

4.2 Equality

We mentioned in “Semantics of Predicate Logic” that equality is usually inter-
preted to mean identity, which means that in a model a =M b holds if and
only if a and b are the same elements of the model’s universe. It is safe to
assume t = t for any term t, because both sides of the equation will evaluate to
the same element, regardless of the context (environment) in which we operate.
The following equality introduction rule expresses this reasoning.

10

t = t

[= i]

The next rule, equality elimination, allows us to replace a term t1 by another
term t2, provided that t1 = t2 is already proven. More precisely, in order to
prove a formula ψ, in which a term t2 appears (possibly multiple times), it is
sufficient to prove t1 = t2 and the formula ψ′ that results from ψ by replacing
t2 by t1. The rule stated below uses a formula φ in which a free variable x
represents the positions of t2 in ψ, thus ψ = [x⇒ t2]φ, and ψ′ = [x⇒ t1]φ.

t1 = t2 [x⇒ t1]φ

[x⇒ t2]φ

[= e]

Using these two rules, we show: We show:

f(z) = g(z) ` h(g(z)) = h(f(z))

as follows:
1 f(z) = g(z) premise
2 h(f(z)) = h(f(z)) = i
3 h(g(z)) = h(f(z)) = e 1,2

Note that the formula h(g(z)) = h(f(z)) in Line 3 has the form [x ⇒ t2]φ,
where t2 is g(z) and φ is h(z) = h(f(z). If we use f(z) for t1, then Rule = e
asks us to prove t1 = t2 (Line 1), and [x⇒ t1]φ (Line 2).

4.3 Universal Quantification

Elimination of Universal Quantification Once you have proven ∀xφ, you
can replace x by any term t in φ, provided that t is free for x in φ, and thus
“eliminate” the universal quantification.

∀xφ

[x⇒ t]φ

[∀x e]

This rule is justified by the semantics of ∀xφ, since in a particular context
(environment) any term t denotes a value in the model, and φ holds for all such
values, if ∀xφ holds in the model.

In t any function symbols of the logic, as well as variables that are known
in the context can be used.

11

Example 15. We shall prove: S(g(john)),∀x(S(x)→ ¬L(x)) ` ¬L(g(john))
1 S(g(john)) premise
2 ∀x(S(x)→ ¬L(x)) premise
3 S(g(john))→ ¬L(g(john)) ∀x e 2
4 ¬L(g(john)) → e 3,1

Introduction of Universal Quantification The introduction rule for uni-
versal quantification is more complicated. Let us consider a new kind of box
that allows us to introduce a fresh variable. For example,�

�
�
�...

z

is a box in which the variable z can be used in terms, as in�

�

�

�
...

f(z) = f(z)
...

z

Let us say we introduce a variable x0 in a box. Without any assumptions on
x0, we prove a formula ψ, in which x0 appears. The fact that x0 appears in ψ,
we can characterize by writing ψ as [x ⇒ x0]φ. Since we have not made any
assumptions on x0 within the box, we have shown that [x ⇒ x0]φ holds for all
possible instantiations of x by values of the universe; in other words, we can
conclude ∀xφ. �

�
�
�

...
[x⇒ x0]φ

x0

∀xφ
[∀x i]

The variable x0 must be fresh; we cannot introduce the same variable twice in
nested boxes. Freshness of course guarantees that x0 is free for x in φ.

Example 16. We shall prove the sequent ∀x(P (x)→ Q(x)),∀xP (x) ` ∀xQ(x)
1 ∀x(P (x)→ Q(x)) premise
2 ∀xP (x) premise

3 P (x0)→ Q(x0) ∀x e 1 x0
4 P (x0) ∀x e 2
5 Q(x0) → e 3,4

6 ∀xQ(x) ∀x i 3–5

12

4.4 Existential Quantification

Introduction of Existential Quantification For existential quantification,
the easy direction is introduction.

[x⇒ t]φ

∃xφ
[∃x i]

In order to prove ∃xφ, it suffices to find a term t as “witness”, provided—as
usual—that t is free for x in φ.

Example 17. Assume that the set F contains a nullary function symbol c, and
that the set P contains a unary predicate symbol P . We should be able to prove:

∀xP (x) ` ∃xP (x)

since at least the constant c should have the property P , once we know that all
elements of the universe has the property P . The corresponding proof follows:

1 ∀xP (x) premise
2 [x⇒ c]P (x) ∀x e 1
3 ∃xP (x) ∃x i 2

Elimination of Existential Quantification Finally, for elimination of ex-
istential quantification, we combine the two kinds of boxes; we simultaneously
introduce a fresh variable and an assumption.

∃xφ

�

�

�

�
[x⇒ x0]φ

...
χ

x0

[x⇒x0]φ

χ

[∃e]

If we know ∃xφ, we know that there exist at least one object x for which φ
holds. We call that element x0, and assume [x ⇒ x0]φ within a box in which
we introdue x0. Without assumptions on x0, we prove a formula χ, in which
x0 does not appear. Since we have not made any assumptions on x0, we can
conclude from ∃xφ that χ holds.

Example 18. We prove the following sequent:

∀x(P (x)→ Q(x)),∃xP (x) ` ∃xQ(x)

13

1 ∀x(P (x)→ Q(x)) premise
2 ∃xP (x) premise

3 P (x0) assumption x0
4 P (x0)→ Q(x0) ∀x e 1
5 Q(x0) → e 4,3
6 ∃xQ(x) ∃x i 5

7 ∃xQ(x) ∃x e 2,3–6
Note that ∃xQ(x) within the box does not contain x0, and therefore can be
“exported” from the box.

Example 19. We prove the following sequent:

∀x(Q(x)→ R(x)),∃x(P (x) ∧Q(x)) ` ∃x(P (x) ∧R(x))

1 ∀x(Q(x)→ R(x)) premise
2 ∃x(P (x) ∧Q(x)) premise

3 P (x0) ∧Q(x0) assumption x0
4 Q(x0)→ R(x0) ∀x e 1
5 Q(x0) ∧e2 3
6 R(x0) → e 4,5
7 P (x0) ∧e1 3
8 P (x0) ∧R(x0) ∧i 7, 6
9 ∃x(P (x) ∧R(x) ∃x i 8

10 ∃x(P (x) ∧R(x)) ∃x e 2,3–9

Note that variables introduced by a box must be fresh! The following is not a
proof, since the variable x0 is introduced in nested boxes.

1 ∃xP (x) premise
2 ∀x(P (x)→ Q(x)) premise

3 x0

4 P (x0) assumption x0
5 P (x0)→ Q(x0) ∀x e 2
6 Q(x0) → e 5,4

7 Q(x0) ∃x e 1, 4–6

8 ∀yQ(y) ∀y i 3–7

4.5 Equivalences

We write φ a` ψ iff φ ` ψ and also ψ ` φ.

14

Lemma 1.

¬∀xφ a` ∃x¬φ
¬∃xφ a` ∀x¬φ
∀x∀yφ a` ∀y∀xφ
∃x∃yφ a` ∃y∃xφ

∀xφ ∧ ∀xψ a` ∀x(φ ∧ ψ)

∃xφ ∨ ∃xψ a` ∃x(φ ∨ ψ)

Proof. We shall prove the left-to-right directions of the first and fourth state-
ment, and leave the remaining proofs to the reader. The proves are actually
schemas; actual sequents and proofs are obtained by replacing φ and ψ with
arbitrary formulas in a particular predicate logic.

• ¬∀xφ ` ∃x¬φ
1 ¬∀xφ premise

2 ¬∃x¬φ assumption

3 x0

4 ¬[x⇒ x0]φ assumption
5 ∃x¬φ ∃x i 4
6 ⊥ ¬e 5, 2

7 [x⇒ x0]φ PBC 4–6

8 ∀xφ ∀x i 3–7
9 ⊥ ¬e 8, 1

10 ∃x¬φ PBC 2–9

• ∃x∃yφ ` ∃y∃xφ
If x and y are the same variable, the left and write hand side are the
same formula, and thus the sequent holds through a simple argument (for
example conjunction introduction followed by elimination).

Assume now that x and y are different variables.

1 ∃x∃yφ premise

2 [x⇒ x0](∃yφ) assumption x0
3 ∃y([x⇒ x0]φ) def of subst (x, y different)

4 [y ⇒ y0][x⇒ x0]φ assumption y0
5 [x⇒ x0][y ⇒ y0]φ def of subst (x, y, x0, y0 different)
6 ∃x[y → y0]φ ∃x i 5
7 ∃y∃xφ ∃y i 6

8 ∃y∃xφ ∃y e 3, 4–7

9 ∃y∃xφ ∃x e 1, 2–8

15

Exercise 1. Prove the remaining directions of the statements in Lemma 1.

Lemma 2. Assuming that x is not free in ψ, the following sequents hold:

∀xφ ∧ ψ a` ∀x(φ ∧ ψ)

∀xφ ∨ ψ a` ∀x(φ ∨ ψ)

∃xφ ∧ ψ a` ∃x(φ ∧ ψ)

∃xφ ∨ ψ a` ∃x(φ ∨ ψ)

Exercise 2. Prove the statements of Lemma 2.

5 Soundness, Completeness, Undecidability

The following result justifies the use of natureal deduction in predicate logic.

Theorem 1 (Soundness and Completeness of Predicate Logic).

φ1, . . . , φn |= ψ

iff

φ1, . . . , φn ` ψ

The theorem states that every valid sequent can be proven, and every sequent
that can be proven is valid. This theorem was proven by Kurt Gödel in 1929 in
his doctoral dissertation. A description of his proof, as well as the proofs of the
following theorems, is beyond the scope of this chapter.

Theorem 2. The decision problem of validity in predicate logic is undecidable:
no program exists which, given any language in predicate logic and any formula
φ in that language, decides whether |= φ.

Proof. (sketch)

• Establish that the Post Correspondence Problem (PCP) is undecidable

• Translate an arbitrary PCP, say C, to a formula φ.

• Establish that |= φ holds if and only if C has a solution.

• Conclude that validity of predicate logic formulas is undecidable.

16

	Need for Richer Language
	Predicate Logic as a Formal Language
	Equality
	Free and Bound Variables

	Semantics
	Models
	Equality Revisited
	Free Variables and the Satisfaction Relation

	Proof Theory
	Inheriting Natural Deduction of Propositional Logic
	Equality
	Universal Quantification
	Existential Quantification
	Equivalences

	Soundness, Completeness, Undecidability

