The Importance of Being Formal

Martin Henz

February 5, 2014
1 Atoms and Propositions

2 Semantics of Propositional Logic

3 Outlook: Natural Deduction for Propositional Logic
Atoms and Propositions

1. Motivation
2. Propositional Atoms
3. Constructing Propositions
4. Syntax of Propositional Logic

Semantics of Propositional Logic

Outlook: Natural Deduction for Propositional Logic
Beyond Traditional Logic

Not just sets

How to express this using traditional logic?

- “1 + 1 = 3”
- “The sun is shining today.”
- “Earth has more mass than Mars.”
Beyond Traditional Logic

Not just sets

How to express this using traditional logic?

- “1 + 1 = 3”
- “The sun is shining today.”
- “Earth has more mass than Mars.”

Arguments as Propositions

How to formalize a proposition of the form

\[\text{If } p_1 \text{ then } p_2 \]
Atoms

Anything goes

We allow any kind of proposition, for example “The sun is shining today”.
Atoms

Anything goes
We allow any kind of proposition, for example “The sun is shining today”.

Convention
We usually use p, q, p_1, etc, instead of sentences like “The sun is shining today”.

Atoms and Propositions
Semantics of Propositional Logic
Outlook: Natural Deduction for Propositional Logic

Motivation
Propositional Atoms
Constructing Propositions
Syntax of Propositional Logic

The Importance of Being Formal
Atoms

Anything goes

We allow any kind of proposition, for example “The sun is shining today”.

Convention

We usually use p, q, p_1, etc, instead of sentences like “The sun is shining today”.

Atoms

More formally, we fix a set A of propositional atoms.
Meaning of Atoms

Models assign truth values

A *model* assigns truth values (*F* or *T*) to each atom.
Models assign truth values

A *model* assigns truth values (*F* or *T*) to each atom.

More formally

A model for a propositional logic for the set A of atoms is a mapping from A to $\{T, F\}$.
Meaning of Atoms

Models assign truth values

A *model* assigns truth values (F or T) to each atom.

More formally

A model for a propositional logic for the set A of atoms is a mapping from A to $\{T, F\}$.

How do you call them?

Models for propositional logic are called *valuations*.
Example

Some valuation Let $A = \{p, q, r\}$. Then a valuation v_1 might assign p to T, q to F and r to T.
Example

Some valuation Let $A = \{p, q, r\}$. Then a valuation v_1 might assign p to T, q to F and r to T.

More formally

$p^{v_1} = T$, $q^{v_1} = F$, $r^{v_1} = T$.
Examples

Example

Some valuation Let \(A = \{p, q, r\} \). Then a valuation \(v_1 \) might assign \(p \) to \(T \), \(q \) to \(F \) and \(r \) to \(T \).

More formally

\[p^{v_1} = T, \quad q^{v_1} = F, \quad r^{v_1} = T. \]
write \(v_1(p) \) instead of \(p^{v_1} \)
We would like to build larger propositions, such as arguments, out of smaller ones, such as propositional atoms. We do this using *operators* that can be applied to propositions, and yield propositions.
Let p be an atom.

All possibilities

The following options exist:

1. $p^\gamma = F$: $(op(p))^\gamma = F$.

The fourth operator negates its argument, T becomes F and F becomes T. We call this operator negation, and write $\neg p$ (pronounced "not $p").
Let \(p \) be an atom.

All possibilities

The following options exist:

1. \(p^v = F: (op(p))^v = F \). \(p^v = T: (op(p))^v = F. \)
Let p be an atom.

All possibilities

The following options exist:

2. $p^v = F$: $(\text{op}(p))^v = T$. $p^v = T$: $(\text{op}(p))^v = T$.

The fourth operator negates its argument, T becomes F and F becomes T. We call this operator negation, and write $\neg p$ (pronounced "not p.")
Atoms and Propositions
Semantics of Propositional Logic
Outlook: Natural Deduction for Propositional Logic

Unary Operators

Let p be an atom.

All possibilities

The following options exist:

2. $p^v = F$: $(\text{op}(p))^v = T$. $p^v = T$: $(\text{op}(p))^v = T$.

The fourth operator negates its argument, T becomes F and F becomes T. We call this operator negation, and write $\neg p$ (pronounced "not $p".

The Importance of Being Formal

03—Propositional Logic I
Let p be an atom.

All possibilities

The following options exist:

2. $p^v = F$: $(\text{op}(p))^v = T$. $p^v = T$: $(\text{op}(p))^v = T$.

The fourth operator negates its argument, T becomes F and F becomes T. We call this operator negation, and write $\neg p$ (pronounced "not p").
Let p be an atom.

All possibilities

The following options exist:

2. $p^v = F$: $(\text{op}(p))^v = T$. $p^v = T$: $(\text{op}(p))^v = T$.

The fourth operator negates its argument, T becomes F and F becomes T. We call this operator negation, and write $\neg p$ (pronounced “not p”).
Unary Operators

Let p be an atom.

All possibilities

The following options exist:

1. $p^v = F$: $(\text{op}(p))^v = F. \quad p^v = T$: $(\text{op}(p))^v = F.$
2. $p^v = F$: $(\text{op}(p))^v = T. \quad p^v = T$: $(\text{op}(p))^v = T.$
3. $p^v = F$: $(\text{op}(p))^v = F. \quad p^v = T$: $(\text{op}(p))^v = T.$
4. $p^v = F$: $(\text{op}(p))^v = T. \quad p^v = T$: $(\text{op}(p))^v = F.$

The fourth operator *negates* its argument, T becomes F and F becomes T. We call this operator *negation*, and write $\neg p$ (pronounced “not p”).
Nullary Operators are Constants

The constant \(\top \)

The constant \(\top \) always evaluates to \(T \), regardless of the valuation.

The constant \(\bot \)

The constant \(\bot \) always evaluates to \(F \), regardless of the valuation.
Nullary Operators are Constants

The constant \(\top \)

The constant \(\top \) always evaluates to \(T \), regardless of the valuation.

The constant \(\bot \)

The constant \(\bot \) always evaluates to \(F \), regardless of the valuation.
Binary Operators: 16 choices

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$op_1(p, q)$</th>
<th>$op_2(p, q)$</th>
<th>$op_3(p, q)$</th>
<th>$op_4(p, q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Binary Operators: 16 choices (continued)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$op_5(p, q)$</th>
<th>$op_6(p, q)$</th>
<th>$op_7(p, q)$</th>
<th>$op_8(p, q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Binary Operators: 16 choices (continued)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(op_9(p, q))</th>
<th>(op_{10}(p, q))</th>
<th>(op_{11}(p, q))</th>
<th>(op_{12}(p, q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
</tbody>
</table>
Binary Operators: 16 choices (continued)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$op_{13}(p, q)$</th>
<th>$op_{14}(p, q)$</th>
<th>$op_{15}(p, q)$</th>
<th>$op_{16}(p, q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Three Famous Ones

\[\text{op}_2 : \text{op}_2(p, q) \text{ is } T \text{ when } p \text{ is } T \text{ and } q \text{ is } T, \text{ and } F \text{ otherwise.} \]
Three Famous Ones

\(\text{op}_2 \): \(\text{op}_2(p, q) \) is \(T \) when \(p \) is \(T \) and \(q \) is \(T \), and \(F \) otherwise. Called *conjunction*, denoted \(p \wedge q \).
Three Famous Ones

$op_2 : op_2(p, q)$ is T when p is T and q is T, and F otherwise. Called conjunction, denoted $p \land q$.

$op_8 : op_8(p, q)$ is T when p is T or q is T, and F otherwise.
Three Famous Ones

\(\text{op}_2 \) : \(\text{op}_2(p, q) \) is \(T \) when \(p \) is \(T \) and \(q \) is \(T \), and \(F \) otherwise. Called \textit{conjunction}, denoted \(p \land q \).

\(\text{op}_8 \) : \(\text{op}_8(p, q) \) is \(T \) when \(p \) is \(T \) or \(q \) is \(T \), and \(F \) otherwise. Called \textit{disjunction}, denoted \(p \lor q \).
Three Famous Ones

\(\text{op}_2 \) : \(\text{op}_2(p, q) \) is \(T \) when \(p \) is \(T \) and \(q \) is \(T \), and \(F \) otherwise. Called \textit{conjunction}, denoted \(p \land q \).

\(\text{op}_8 \) : \(\text{op}_8(p, q) \) is \(T \) when \(p \) is \(T \) or \(q \) is \(T \), and \(F \) otherwise. Called \textit{disjunction}, denoted \(p \lor q \).

\(\text{op}_{14} \) : \(\text{op}_{14}(p, q) \) is \(T \) when \(p \) is \(F \) or \(q \) is \(T \), and \(F \) otherwise.
Three Famous Ones

\(op_2 \) : \(op_2(p, q) \) is \(T \) when \(p \) is \(T \) and \(q \) is \(T \), and \(F \) otherwise. Called \textit{conjunction}, denoted \(p \land q \).

\(op_8 \) : \(op_8(p, q) \) is \(T \) when \(p \) is \(T \) or \(q \) is \(T \), and \(F \) otherwise. Called \textit{disjunction}, denoted \(p \lor q \).

\(op_{14} \) : \(op_{14}(p, q) \) is \(T \) when \(p \) is \(F \) or \(q \) is \(T \), and \(F \) otherwise. Called \textit{implication}, denoted \(p \rightarrow q \).
Definition

For a given set A of propositional atoms, the set of *well-formed formulas in propositional logic* is the smallest set F that fulfills the following rules:

- The constant symbols \bot and \top are in F.
- Every element of A is in F.
- If ϕ is in F, then $(\neg \phi)$ is also in F.
- If ϕ and ψ are in F, then $(\phi \land \psi)$ is also in F.
- If ϕ and ψ are in F, then $(\phi \lor \psi)$ is also in F.
- If ϕ and ψ are in F, then $(\phi \rightarrow \psi)$ is also in F.
Notes on Defining Sets

Are there more sets that fulfill these rules?

The set of all formula defined in this module fulfills these rules. The clause "the smallest set" eliminates those elements that are not forced in through any of the given rules. Observe some rules are simple (they do not have any condition), whereas others assume one or two formulas in the set as given, and then require that another formula is also in the set. Inductively defined sets are the smallest. A set defined in this way is called an inductively defined set.
Notes on Defining Sets

Are there more sets that fulfill these rules?

The set of *all formula defined in this module* fulfills these rules.
Notes on Defining Sets

Are there more sets that fulfill these rules?

The set of *all formula defined in this module* fulfills these rules. The clause “the smallest set” eliminates those elements that are not *forced in* through any of the given rules.
Notes on Defining Sets

Are there more sets that fulfill these rules?

The set of *all formula defined in this module* fulfills these rules. The clause “the smallest set” eliminates those elements that are not *forced in* through any of the given rules.

Observe

Some rules are simple (they do not have any condition), whereas others assume one or two formulas in the set as given, and then require that another formula is also in the set.
Notes on Defining Sets

Are there more sets that fulfill these rules?

The set of *all formula defined in this module* fulfills these rules. The clause “the smallest set” eliminates those elements that are not *forced in* through any of the given rules.

Observe

Some rules are simple (they do not have any condition), whereas others assume one or two formulas in the set as given, and then require that another formula is also in the set.

Inductively defined sets

A set defined in this way is called an *inductively defined set*.
Example

\[((\neg p) \land q) \to (\top \land (q \lor (\neg r))))\]

is a well-formed formula in propositional logic.
Atoms and Propositions
Semantics of Propositional Logic
Outlook: Natural Deduction for Propositional Logic

Motivation
Propositional Atoms
Constructing Propositions
Syntax of Propositional Logic

More Compact in Backus-Naur-Form (BNF)

\[
\phi ::= \ p \mid \bot \mid \top \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)
\]
The negation symbol \neg binds more tightly than \land and \lor, and \land and \lor bind more tightly than \rightarrow. Moreover, \rightarrow is right-associative: The formula $p \rightarrow q \rightarrow r$ is read as $p \rightarrow (q \rightarrow r)$.
The negation symbol \(\neg\) binds more tightly than \(\land\) and \(\lor\), and \(\land\) and \(\lor\) bind more tightly than \(\rightarrow\). Moreover, \(\rightarrow\) is right-associative: The formula \(p \rightarrow q \rightarrow r\) is read as \(p \rightarrow (q \rightarrow r)\).

Example

\[(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))\]

can be written as

\[
\neg p \land q \rightarrow p \land (q \lor \neg r)
\]
1. Atoms and Propositions

2. Semantics of Propositional Logic
 - Operations on Truth Values
 - Evaluation of Formulas
 - Validity and Satisfiability

3. Outlook: Natural Deduction for Propositional Logic
Negating Truth Values

Definition

Function \(\neg : \{ F, T \} \rightarrow \{ F, T \} \) given in truth table:

<table>
<thead>
<tr>
<th>(B)</th>
<th>(\neg B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>
Conjunction of Truth Values

Definition

Function & : \{ F, T \} \times \{ F, T \} \rightarrow \{ F, T \} given in truth table:

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_2</th>
<th>B_1 & B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Disjunction of Truth Values

Definition

Function $\mid : \{ F, T \} \times \{ F, T \} \rightarrow \{ F, T \}$ given in truth table:

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_2</th>
<th>B_1</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Implication of Truth Values

Definition

Function \(\Rightarrow : \{ F, T \} \times \{ F, T \} \rightarrow \{ F, T \} \) given in truth table:

<table>
<thead>
<tr>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_1 \Rightarrow B_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>
Definition

The result of *evaluating* a well-formed propositional formula ϕ with respect to a valuation v, denoted $v(\phi)$ is defined as follows:

- If ϕ is the constant \bot, then $v(\phi) = F$.
- If ϕ is the constant \top, then $v(\phi) = T$.
- If ϕ is an propositional atom p, then $v(\phi) = p^v$.
- If ϕ has the form $(\neg \psi)$, then $v(\phi) = \neg v(\psi)$.
- If ϕ has the form $(\psi \land \tau)$, then $v(\phi) = v(\psi) \land v(\tau)$.
- If ϕ has the form $(\psi \lor \tau)$, then $v(\phi) = v(\psi) \lor v(\tau)$.
- If ϕ has the form $(\psi \rightarrow \tau)$, then $v(\phi) = v(\psi) \Rightarrow v(\tau)$.
Valid Formulas

Definition

A formula is called *valid* if it evaluates to T with respect to every possible valuation.
Example

Is

$$(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$$

valid?
Examples

Example

Is

$$(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$$

valid?

Example

Find a valid formula that contains the propositional atoms p, q, r and w.
Meaning of propositional formula

Meaning as mathematical object

We define the meaning of formulas as a function that maps formulas and valuations to truth values.
Meaning of propositional formula

Meaning as mathematical object

We define the meaning of formulas as a function that maps formulas and valuations to truth values.

Approach

We define this mapping based on the structure of the formula, using the meaning of their logical connectives.
Definition

The set of truth values contains two elements \(T \) and \(F \), where \(T \) represents “true” and \(F \) represents “false”.
Definition

The set of truth values contains two elements T and F, where T represents “true” and F represents “false”.

Definition

A *valuation* or *model* of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.
Meaning of logical connectives

The meaning of a connective is defined as a truth table that gives the truth value of a formula, whose root symbol is the connective, based on the truth values of its components.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \land \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth tables use placeholders of formulas such as ϕ:

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \land \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Build the truth table for given formula:

$(p \land q) \land r$
Truth tables use placeholders of formulas such as ϕ:

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \land \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Build the truth table for given formula:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$(p \land q)$</th>
<th>$((p \land q) \land r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

The Importance of Being Formal 03—Propositional Logic I
Truth tables of other connectives

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \lor \psi$</th>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \rightarrow \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\neg \phi$</th>
<th>\top</th>
<th>\bot</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Constructing the truth table of a formula

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(¬p)</th>
<th>¬q</th>
<th>p → ¬q</th>
<th>q ∨ ¬p</th>
<th>(p → ¬q) → (q ∨ ¬p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Validity

A formula is *valid* if it computes \top for all its valuations.
Validity

A formula is *valid* if it computes \top for all its valuations.

Satisfiability

A formula is *satisfiable* if it computes \top for at least one of its valuations.
1. Atoms and Propositions

2. Semantics of Propositional Logic

3. Outlook: Natural Deduction for Propositional Logic
 - Sequents
Objective

We would like to develop a calculus for reasoning about propositions, so that we can establish the validity of statements such as “If the train arrives late...”.
Objective

We would like to develop a calculus for reasoning about propositions, so that we can establish the validity of statements such as “If the train arrives late...”.

Idea

We introduce proof rules that allow us to derive a formula ψ from a number of other formulas $\phi_1, \phi_2, \ldots \phi_n$.
Objective
We would like to develop a calculus for reasoning about propositions, so that we can establish the validity of statements such as “If the train arrives late...”.

Idea
We introduce proof rules that allow us to derive a formula \(\psi \) from a number of other formulas \(\phi_1, \phi_2, \ldots, \phi_n \).

Notation
We write a sequent \(\phi_1, \phi_2, \ldots, \phi_n \vdash \psi \) to denote that we can derive \(\psi \) from \(\phi_1, \phi_2, \ldots, \phi_n \).
Example—Revisited

English

If the train arrives late and there are no taxis at the station, then John is late for his meeting.

John is not late for his meeting. The train did arrive late.

Therefore, there were taxis at the station.
Example—Revisited

English

If the train arrives late and there are no taxis at the station, then John is late for his meeting.

John is not late for his meeting. The train did arrive late.

Therefore, there were taxis at the station.

Sequent

\[p \land \neg q \rightarrow r, \neg r, p \vdash q \]
Example—Revisited

English

If *the train arrives late* and *there are no taxis at the station*, then *John is late for his meeting*.

John is not late for his meeting. The train did arrive late.

Therefore, *there were taxis at the station.*

Sequent

\[p \land \neg q \rightarrow r, \neg r, p \vdash q \]

Remaining task

Find proof rules that allow us to establish such sequents.