1 Modal Logic

2 The Lambda Calculus
Modal Logic

Review of Modal Logic
Correspondence Theory
Some Modal Logics
Natural Deduction in Modal Logic
Knowledge in Multi-Agent Systems

The Lambda Calculus
Syntax of Basic Modal Logic

\[\phi ::= \top | \bot | p | (\neg \phi) | (\phi \land \phi) \\
| (\phi \lor \phi) | (\phi \rightarrow \phi) \\
| (\phi \leftrightarrow \phi) \\
| (\Box \phi) | (\Diamond \phi) \]
Kripke Models

Definition
A model \mathcal{M} of propositional modal logic over a set of propositional atoms A is specified by three things:

1. A W of worlds;
2. a relation R on W, meaning $R \subseteq W \times W$, called the accessibility relation;
3. a function $L : W \rightarrow A \rightarrow \{T, F\}$, called labeling function.
When is a formula true in a possible world?

Definition

Let $\mathcal{M} = (W, R, L)$, $x \in W$, and ϕ a formula in basic modal logic. We define $x \vDash \phi$ via structural induction:

- $x \vDash \top$
- $x \nvDash \bot$
- $x \vDash p$ iff $p \in L(x)(p) = T$
- $x \vDash \neg \phi$ iff $x \nvDash \phi$
- $x \vDash \phi \land \psi$ iff $x \vDash \phi$ and $x \vDash \psi$
- $x \vDash \phi \lor \psi$ iff $x \vDash \phi$ or $x \vDash \psi$
- ...

UIT2206: The Importance of Being Formal 10—Modal Logic IV; Lambda Calculus
When is a formula true in a possible world?

Definition (continued)

Let $\mathcal{M} = (W, R, L)$, $x \in W$, and ϕ a formula in basic modal logic. We define $x \Vdash \phi$ via structural induction:

- \ldots
- $x \Vdash \phi \rightarrow \psi$ iff $x \Vdash \psi$, whenever $x \Vdash \phi$
- $x \Vdash \phi \leftrightarrow \psi$ iff ($x \Vdash \phi$ iff $x \Vdash \psi$)
- $x \Vdash \Box \phi$ iff for each $y \in W$ with $R(x, y)$, we have $y \Vdash \phi$
- $x \Vdash \Diamond \phi$ iff there is a $y \in W$ such that $R(x, y)$ and $y \Vdash \phi$.
A Range of Modalities

In a particular context $\Box \phi$ could mean:

- It is necessarily true that ϕ
- It ought to be that ϕ
- Agent Q believes that ϕ
- Agent Q knows that ϕ

Since $\Diamond \phi \equiv \neg \Box \neg \phi$, we can infer the meaning of \Diamond in each context.
A Range of Modalities

From the meaning of $\Box \phi$, we can conclude the meaning of $\Diamond \phi$, since $\Diamond \phi \equiv \neg \Box \neg \phi$:

<table>
<thead>
<tr>
<th>$\Box \phi$</th>
<th>$\Diamond \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is necessarily true that ϕ</td>
<td>It is possibly true that ϕ</td>
</tr>
<tr>
<td>It ought to be that ϕ</td>
<td>It is permitted to be that ϕ</td>
</tr>
<tr>
<td>Agent Q believes that ϕ</td>
<td>ϕ is consistent with Q’s beliefs</td>
</tr>
<tr>
<td>Agent Q knows that ϕ</td>
<td>For all Q knows, ϕ</td>
</tr>
</tbody>
</table>
Reflexivity and Transitivity

Theorem
The following statements are equivalent:

- R is reflexive;
- \mathcal{F} satisfies $\Box \phi \rightarrow \phi$;
- \mathcal{F} satisfies $\Box p \rightarrow p$;

Theorem
The following statements are equivalent:

- R is transitive;
- \mathcal{F} satisfies $\Box \phi \rightarrow \Box \Box \phi$;
- \mathcal{F} satisfies $\Box p \rightarrow \Box \Box p$;
Formula Schemes and Properties of R

<table>
<thead>
<tr>
<th>name</th>
<th>formula scheme</th>
<th>property of R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>$\Box \phi \rightarrow \phi$</td>
<td>reflexive</td>
</tr>
<tr>
<td>B</td>
<td>$\phi \rightarrow \Box \Diamond \phi$</td>
<td>symmetric</td>
</tr>
<tr>
<td>D</td>
<td>$\Box \phi \rightarrow \Diamond \phi$</td>
<td>serial</td>
</tr>
<tr>
<td>4</td>
<td>$\Box \phi \rightarrow \Box \Box \phi$</td>
<td>transitive</td>
</tr>
<tr>
<td>5</td>
<td>$\Diamond \phi \rightarrow \Box \Diamond \phi$</td>
<td>Euclidean</td>
</tr>
<tr>
<td></td>
<td>$\Box \phi \leftrightarrow \Diamond \phi$</td>
<td>functional</td>
</tr>
<tr>
<td></td>
<td>$\Box (\phi \land \Box \phi \rightarrow \psi) \lor \Box (\psi \land \Box \psi \rightarrow \phi)$</td>
<td>linear</td>
</tr>
</tbody>
</table>
Modal Logic
- Review of Modal Logic
- Correspondence Theory
- Some Modal Logics
- Natural Deduction in Modal Logic
- Knowledge in Multi-Agent Systems

The Lambda Calculus
Which Formula Schemes to Choose?

Definition

Let \mathcal{L} be a set of formula schemes and $\Gamma \cup \{\psi\}$ a set of formulas of basic modal logic.

- A set of formula schemes is said to be \textit{closed} iff it contains all substitution instances of its elements.
- Let \mathcal{L}_c be the smallest closed superset of \mathcal{L}.
- Γ entails ψ in \mathcal{L} iff $\Gamma \cup \mathcal{L}_c$ semantically entails ψ. We say $\Gamma \models_{\mathcal{L}} \psi$.
Examples of Modal Logics: K

K is the weakest modal logic, $\mathcal{L} = \emptyset$.
Examples of Modal Logics: KT45

\[\mathcal{L} = \{ T, 4, 5 \} \]

Used for reasoning about knowledge.

<table>
<thead>
<tr>
<th>name</th>
<th>formula scheme</th>
<th>property of (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>(\square \phi \to \phi)</td>
<td>reflexive</td>
</tr>
<tr>
<td>4</td>
<td>(\square \phi \to \square \square \phi)</td>
<td>transitive</td>
</tr>
<tr>
<td>5</td>
<td>(\Diamond \phi \to \square \Diamond \phi)</td>
<td>Euclidean</td>
</tr>
</tbody>
</table>

- T: Truth: agent \(Q \) only knows true things.
- 4: Positive introspection: If \(Q \) knows something, he knows that he knows it.
- 5: Negative introspection: If \(Q \) doesn’t know something, he knows that he doesn’t know it.
Explanation of Negative Introspection

<table>
<thead>
<tr>
<th>name</th>
<th>formula scheme</th>
<th>property of R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$\Diamond \phi \rightarrow \Box \Diamond \phi$</td>
<td>Euclidean</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\Diamond \phi & \rightarrow \Box \Diamond \phi \\
\Diamond \neg \psi & \rightarrow \Box \Diamond \neg \psi \\
\neg \Box \neg \neg \psi & \rightarrow \Box \neg \Box \neg \neg \psi \\
\neg \Box \psi & \rightarrow \Box \neg \Box \psi
\end{align*}
\]

If Q doesn’t know ψ, he knows that he doesn’t know ψ.
Correspondence for KT45

Accessibility relations for KT45
KT45 hold if and only if R is reflexive (T), transitive (4) and Euclidean (5).

Fact on such relations
A relation is reflexive, transitive and Euclidean iff it is reflexive, transitive and symmetric, i.e. iff it is an equivalence relation.
Examples of Modal Logics: KD45

\[\mathcal{L} = \{D, 4, 5\} \]

<table>
<thead>
<tr>
<th>name</th>
<th>formula scheme</th>
<th>property of (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>(\square \phi \rightarrow \Diamond \phi)</td>
<td>serial</td>
</tr>
<tr>
<td>4</td>
<td>(\square \phi \rightarrow \square \square \phi)</td>
<td>transitive</td>
</tr>
<tr>
<td>5</td>
<td>(\Diamond \phi \rightarrow \square \Diamond \phi)</td>
<td>Euclidean</td>
</tr>
</tbody>
</table>

- D: agent \(Q \) only believes believable things.
- 4: positive introspection: If \(Q \) believes something, he believes that he believes it.
- 5: Negative introspection: If \(Q \) doesn’t believe something, he believes that he doesn’t believe it.
Correspondence for KD45

Accessibility relations for KT4
KT4 hold if and only if \(R \) is serial (D), transitive (4), and Euclidean (5).
1 Modal Logic
 - Review of Modal Logic
 - Correspondence Theory
 - Some Modal Logics
 - Natural Deduction in Modal Logic
 - Knowledge in Multi-Agent Systems

2 The Lambda Calculus
Dashed Boxes

Idea
In addition to proof boxes for assumptions, we introduce *blue boxes* that express knowledge about an *arbitrary accessible world*.

Rules about blue boxes
- Whenever $\Box \phi$ occurs in a proof, ϕ may be put into a subsequent blue box.
- Whenever ϕ occurs at the end of a blue box, $\Box \phi$ may be put after that blue box.
Rules for \Box

Introduction of \Box:

$\vdash \phi$

$\Box \phi \\
\Box i$

$\Box \Box i$
Rules for □

Elimination of □:

□φ

[□ e]

... φ...

...
Extra Rules for KT45

\[\Box \phi\]
\[\Box \phi\rightarrow \phi\] [T]
\[\Box \phi\rightarrow \Box \Box \phi\] [4]
\[\neg \Box \phi\rightarrow \Box \neg \Box \phi\] [5]
Example Proof

\[\Gamma_K \quad \Box p \land \Box q \rightarrow \Box (p \land q) \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\Box p \land \Box q</td>
<td>assumption</td>
</tr>
<tr>
<td>2</td>
<td>\Box p</td>
<td>\land e_1 1</td>
</tr>
<tr>
<td>3</td>
<td>\Box q</td>
<td>\land e_2 1</td>
</tr>
<tr>
<td>4</td>
<td>p</td>
<td>\Box e 2</td>
</tr>
<tr>
<td>5</td>
<td>q</td>
<td>\Box e 3</td>
</tr>
<tr>
<td>6</td>
<td>p \land q</td>
<td>\land i 4,5</td>
</tr>
<tr>
<td>7</td>
<td>\Box (p \land q)</td>
<td>\Box i 4–6</td>
</tr>
<tr>
<td>8</td>
<td>\Box p \land \Box q \rightarrow \Box (p \land q)</td>
<td>\rightarrow i 1–7</td>
</tr>
</tbody>
</table>
1 Modal Logic
 - Review of Modal Logic
 - Correspondence Theory
 - Some Modal Logics
 - Natural Deduction in Modal Logic
 - Knowledge in Multi-Agent Systems

2 The Lambda Calculus
Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and two available white hats.
- Each wise woman is wise, can see other hats but not her own.
- Queen asks first wise woman: Do you know the color of your hat.
 Answer: No
- Queen asks second wise woman: Do you know the color of your hat.
 Answer: No
- Queen asks third wise woman: Do you know the color of your hat?
 What is her answer?
Motivation

Reasoning about knowledge
We saw that KT45 can be used to reason about an agent’s knowledge.

Difficulty
We have three agents (queen does not count), not just one. We want them to be able to reason about each other’s knowledge.

Idea
Introduce a □ operator for each agent, and a □ operator for a group of agents.
Modal Logic KT45\(^n\)

Agents
Assume a set \(\mathcal{A} = \{1, 2, \ldots, n\} \) of agents.

Modal connectives
Replace □ by:
- \(K_i \) for each agent \(i \)
- \(E_G \) for any subset \(G \) of \(\mathcal{A} \)

Example
\(K_1 p \land K_1 \neg K_2 K_1 p \) means:
Agent 1 knows \(p \), and also that Agent 2 does not know that Agent 1 knows \(p \).
“Everyone knows that everyone knows”
In KT45^n, $E_G E_G \phi$ is stronger than $E_G \phi$.

“Everyone knows everyone knows everyone knows”
In KT45^n, $E_G E_G E_G E_G \phi$ is stronger than $E_G E_G \phi$.

Common knowledge
The infinite conjunction $E_G \phi \land E_G E_G \phi \land \ldots$ is called “common knowledge of ϕ”, denoted, $C_G \phi$.
Distributed Knowledge

Combine knowledge

If intelligent agents communicate with each other and use the knowledge each have, they can discover new knowledge.

Distributed knowledge

The operator $D_G \phi$ is called “distributed knowledge of ϕ”, denoted, $D_G \phi$.
Models of KT45^n

Definition
A model $\mathcal{M} = (W, (R_i)_{i \in A}, L)$ of the multi-modal logic KT45^n is specified by three things:

1. A set W, whose elements are called *worlds*;
2. For each $i \in A$ a relation R_i on W, meaning $R_i \subseteq W \times W$, called the accessibility relations;
3. A labeling function $L : W \rightarrow \mathcal{P}(\text{Atoms})$.
Definition
Take a model \(\mathcal{M} = (W, (R_i)_{i \in A}, L) \) and a world \(x \in W \). We define \(x \models \phi \) via structural induction:

- \(x \models p \) iff \(p \in L(x) \)
- \(x \models \neg \phi \) iff \(x \not\models \phi \)
- \(x \models \phi \land \psi \) iff \(x \models \phi \) and \(x \models \psi \)
- \(x \models \phi \lor \psi \) iff \(x \models \phi \) or \(x \models \psi \)
- \(x \models \phi \rightarrow \psi \) iff \(x \models \psi \), whenever \(x \models \phi \)
- ...

Semantics of KT45^n
Semantics of KT45^n (continued)

Definition

Take a model \(\mathcal{M} = (W, (R_i)_{i \in A}, L) \) and a world \(x \in W \). We define \(x \vdash \phi \) via structural induction:

- \(x \vdash K_i \phi \) iff for each \(y \in W \) with \(R_i(x, y) \), we have \(y \vdash \phi \).
- \(x \vdash E_G \phi \) iff for each \(i \in G \), \(x \vdash K_i \phi \).
- \(x \vdash C_G \phi \) iff for each \(k \geq 1 \), we have \(x \vdash E_G^k \phi \).
- \(x \vdash D_G \phi \) iff for each \(y \in W \), we have \(y \vdash \phi \), whenever \(R_i(x, y) \) for all \(i \in G \).
Formulation of Wise-Women Puzzle

Setup
- Wise woman i has red hat: p_i
- Wise woman i knows that wise woman j has a red hat: $K_i p_j$
Formulation of Wise-Women Puzzle

Initial situation

\[\Gamma = \{ C(p_1 \lor p_2 \lor p_3), \\
C(p_1 \rightarrow K_2 p_1), C(\neg p_1 \rightarrow K_2 \neg p_1), \\
C(p_1 \rightarrow K_3 p_1), C(\neg p_1 \rightarrow K_3 \neg p_1), \\
C(p_2 \rightarrow K_1 p_2), C(\neg p_2 \rightarrow K_1 \neg p_2), \\
C(p_2 \rightarrow K_3 p_2), C(\neg p_2 \rightarrow K_3 \neg p_2), \\
C(p_3 \rightarrow K_1 p_3), C(\neg p_2 \rightarrow K_1 \neg p_3), \\
C(p_3 \rightarrow K_2 p_3), C(\neg p_2 \rightarrow K_2 \neg p_3) \} \]
First wise woman says “No”

\[C(\neg K_1 p_1 \land \neg K_1 \neg p_1) \]

Second wise woman says “No”

\[C(\neg K_2 p_2 \land \neg K_2 \neg p_2) \]
First Attempt

\[\Gamma, C(\neg K_1 p_1 \land \neg K_1 \neg p_1), C(\neg K_2 p_2 \land \neg K_2 \neg p_2) \vdash K_3 p_3 \]

Problem
This does not take time into account. The second announcement can take the first announcement into account.
Solution

Prove separately:

Entailment 1:
\[\Gamma, C(\neg K_1 p_1 \land \neg K_1 \neg p_1) \vdash C(p_2 \lor p_3) \]

Entailment 2:
\[\Gamma, C(p_2 \lor p_3), C(\neg K_2 p_2 \land \neg K_2 \neg p_2) \vdash K_3 p_3 \]

Proof
Through natural deduction in KT45^n.
Design Process

Constraints

Any design process is characterized by the management of constraints.

- cost
- storage space
- production process
Programming Language Design

Programs
Programs are instructions for a computer to perform a computation or algorithm and/or control devices such as disk drives and robots.

Purpose of programming languages
A programming language is a notation for writing programs.

Programming language design
Programming languages are designed by humans in order to meet the needs of a class of programming tasks.
Example: Java

Design goals for Java

1. simple, object oriented, and familiar
2. robust and secure
3. architecture neutral and portable
4. high performance
5. interpreted, threaded, and dynamic

Implicit design goal: Expressivity

It should be easy to write a wide variety of algorithms
Different Uses, Different Design Goals

English spoken in Lectures
Clarity and expressivity across a variety of cultural backgrounds

English used in Twitter
Brevity, “coolness”

Examples:
- ROFL
- POS
Most programming languages are designed for humans to instruct computers

Some languages are designed for *computers* to instruct computers. Example: PostScript
Example of PostScript Program

TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 1 N/rwiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}@hscale{@scaleunit div/hsc X}@vscale{@scaleunit div/vsc X}@hsize{/hs X/CLIP 1 N}@vsize{/vs X/CLIP 1 N}@clip{/CLIP 2 N}@hoffset{/ho X}@voffset{/vo X}@angle{/ang X}@rwi{10 div/rwi X}@rhi{10 div/rhi X}@rhiSeen true N}@llx{/llx X}@lly{/lly X}@urx{/urx X}@ury{/ury X}@magscale true def end/@MacSetUp{userdict/md known{userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform lineto}}}{6 -2 roll transform 6 -2 roll transform{itransform lineto}}}
Student Projects Written in PostScript

Languages for Theory of Computation

Design Goals

- Expressivity
- Minimality
Example: Kepler’s Laws and Newton’s Laws

Kepler’s Laws

- Planets move in ellipses
- Planet-sun line sweeps equal area during equal intervals
- P^2 is proportional to a^3
Example: Kepler’s Laws and Newton’s Laws

But why?

Kepler had his own ideas about this...
Example: Kepler’s Laws and Newton’s Laws

Newton’s Laws of Motion

1. Bodies without force move at constant speed
2. Bodies with force experience acceleration: \(F = ma \)
3. To every action, there is an equal and opposite reaction

Newton’s Law of Universal Gravitation

\[F = G \frac{m_1 m_2}{r^2} \]
Example: Newton’s Laws and Kepler’s Laws

Reduction of Kepler’s Laws to Newton’s Laws
Newton showed how to derive Kepler’s Laws from his gravitation and motion laws.

Consequence
Kepler’s laws are subordinate to Newton’s laws. Physics will not change if we drop one of Kepler’s laws.
Another Example of Minimalism in Theory

Peano axioms for natural numbers (and their equality):

1. For every natural number x, we have $x = x$
2. For all natural numbers x and y, if $x = y$, then $y = x$.
3. ...

There are nine Peano axioms that describe natural numbers \textit{completely}.

Derived rule

$x > 1$ and $y > 1$ implies $x \cdot y > 1$

Status

Arithmetic will not change if we do not assume this derived rule.
Occam’s Razor

In Latin
Entia non sunt multiplicanda praeter necessitatem.

In English
Entities must not be multiplied beyond necessity.

Reasons
- Practicality: easier to remember, document, etc
- Empirical content: easier to reason about, to falsify
- Aesthetics: small theories are more beautiful
Programming: Theory vs Practice

For-loops vs while-loops
We can translate every for-loop into an equivalent while-loop.

```java
for (i = 0; i < 10; i++) {
    print(i);
}
```
becomes

```java
i = 0; while (i < 10) {
    print(i); i = i + 1;
}
```
So do we need for-loops?

Programmer’s answer
Yes, please!
Having for-loops makes my programming so much easier!

Theoretician’s answer
No!
If you add for-loops, I need to duplicate my proofs; many extra unnecessary pages!
Hours of work wasted!
Do we need...

- **Function definition?** granted!
- **Function application?** granted!
- **Functions with multiple parameters?** no!
- **Numbers?** no!
- **Conditionals?** no!
- **Loops?** no!
Some Examples

```javascript
function square(x) {
    return x * x;
}
square(13);
```
Do we need multiple arguments?

```javascript
function plus(x, y) {
    return x + y;
}
plus(5, 7);
```
Do we need multiple arguments?

```javascript
function plus(x, y) {
    return x + y;
}
plus(5, 7);

becomes

function plus(x) {
    function plusx(y) {
        return x + y;
    }
    return plusx;
}
var plusfive = plus(5);
plusfive(7);
```
Another Example

```javascript
function power(x, y) {
    if (y === 0) return 1;
    return x * power(x, y - 1);
}
power(2, 4);
```
Do we need multiple arguments?

```javascript
function power(x, y) {
    if (y === 0) return 1;
    return x * power(x, y - 1);
}
power(2, 4);
```

translates to:

```javascript
function power(x) {
    return function(y) {
        if (y === 0) return 1;
        return x * power(x)(y - 1);
    };
}
power(2)(4);
```
Do we need numbers?

Representing 0:

```javascript
function zero(f) {
    return function(x) {
        return x;
    }
}

zero("something")("somethingelse")
```
Do we need numbers?

Representing 1:

```javascript
function one(f) {
    return function(x) {
        return f(x);
    }
}

one(function(x) { return x*2; })(4)
```
Do we need numbers?

Representing 2:

```javascript
function two(f) {
    return function(x) {
        return f(f(x));
    }
}

two(function(x) { return x*2; })(4)
```
Getting the number back

```javascript
function two(f) {
    return function(x) {
        return f(f(x));
    }
}

function church2js(c) {
    return c(function(x) { return x+1; })(0);
}

church2js(two);
```
Multiplication

```javascript
function times(x) {
    return function(y) {
        return function(f) {
            return x(y(f));
        }
    }
}
```
Multiplication

function three(f) {
 return function(x) {
 return f(f(f(x)));
 }
}

church2js(times(two)(three));
Conditionals

Conditional statements

```c
if (20 < 10) { return 5; } else { return 7; }
```

Conditional expressions

```c
(20 < 10) ? 5 : 7
```
Do we need conditionals?

Idea

Represent booleans with functions

The function “true”

```plaintext
function true(x) {
    return function(y) {
        return x;
    }
}
```
Do we need conditionals?

Idea

Represent booleans with functions

The function “false”

```javascript
function false(x) {
    return function(y) {
        return y;
    }
}
```
Do we need conditionals?

Conditional in JavaScript

```
true ? 5 : 7;
```

Conditional using Encoding

```
true (5)(7);
```
Factorial in JavaScript

```javascript
function factorial(x) {
    if (x === 0) return 1;
    return x * factorial(x - 1);
}

factorial(5);
```
Function definition:

```javascript
function factorial(x) {
    return (x === 0) ? 1 : x * factorial(x - 1);
}

factorial(5);
```
Step 1: Eliminate Recursive Call

function F(f) {
 return function(x) {
 return (x === 0) ? 1 : x * f(x - 1);
 };
}
Step 2: Find a Fix-Point Function

We need a function Y with the following properties:

$$Y(F) \equiv F(Y(F))$$
Step 2: Fix-Point Function

```javascript
function Y(f) {
    return (function (x) {
        return f(function (y) {
            return x(x)(y);
        });
    })(function (x) {
        return f(function (y) {
            return x(x)(y);
        });
    });
}
```
Computing 5!

```javascript
(function (f) {
    return (function (x) {
        return f(function (y) {
            return x(x)(y);
        });
    });
})(function (x) {
    return function (y) {
        return x(x)(y);
    };
})(5);
```
The Pure (Untyped) Lambda Calculus

As a sublanguage of JavaScript, the Lambda Calculus looks like this:

\[
L ::= x \mid (L)(L); \mid function(x) \{ \text{return } L; \}
\]
Traditional Notation

As a sublanguage of JavaScript, the Lambda Calculus looks like this:

\[
\text{L ::= x} \mid (\text{L L}) \mid (\lambda x. L)
\]
So: Why don’t we program using the Lambda Calculus?

Answer
Other design goals are equally important!

Some design goals for full JavaScript
- Expressive
- Easy to learn
- Convenient to use

At the expense of...
simplicity!
Lambda Calculus: Some History

- Introduced by Alonzo Church in 1930s as a minimal formal system for recursion theory
- Later found to be equivalent to other computing frameworks (Church-Turing thesis)
- Used extensively in programming language theory and theoretical computer science
Summary

- Simplicity is an important and highly useful driving force behind science and engineering.
- Enables insights that would otherwise remain lost in a thicket of details.
- In practice, simplicity competes with other goals; keep it in mind when thinking about complex systems.