
What’s Decidable About Program Verification
Modulo Axioms??

Umang Mathur , P. Madhusudan, and Mahesh Viswanathan

University of Illinois, Urbana Champaign, USA

Abstract. We consider the decidability of the verification problem of
programs modulo axioms — automatically verifying whether programs
satisfy their assertions, when the function and relation symbols are inter-
preted as arbitrary functions and relations that satisfy a set of first-order
axioms. Though verification of uninterpreted programs (with no axioms)
is already undecidable, a recent work introduced a subclass of coherent
uninterpreted programs, and showed that they admit decidable verifica-
tion [26]. We undertake a systematic study of various natural axioms for
relations and functions, and study the decidability of the coherent ver-
ification problem. Axioms include relations being reflexive, symmetric,
transitive, or total order relations, functions restricted to being associa-
tive, idempotent or commutative, and combinations of such axioms as
well. Our comprehensive results unearth a rich landscape that shows that
though several axiom classes admit decidability for coherent programs,
coherence is not a panacea as several others continue to be undecidable.

1 Introduction

Programs are proved correct against safety specifications typically by induction—
the induction hypothesis is specified using inductive invariants of the program,
and one proves that the reachable states of the program stays within the re-
gion defined by the invariants, inductively. Though there has been tremendous
progress in the field of decidable logics for proving that invariants are inductive,
finding inductive invariants is almost never fully automatic. And completely au-
tomated verification of programs is almost always undecidable.

Programs can be viewed as working over a data-domain, with variables stor-
ing values over this domain and being updated using constants, functions and
relations defined over that domain. Apart from the notable exception of finite
data domains, program verification is typically undecidable when the data do-
main is infinite. In a recent paper, Mathur et. al. [26] establish new decidability
results when the data domain is infinite. Two crucial restrictions are imposed —
data domain functions and relations are assumed to be uninterpreted and pro-
grams are assumed to be coherent (the meaning of coherence is discussed later

? Umang Mathur is partially supported by a Google PhD Fellowship. P. Madhusu-
dan is partially supported by NSF CCF 1527395. Mahesh Viswanathan is partially
supported by NSF CCF 1901069

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 158–177, 2020.
https://doi.org/10.1007/978-3-030-45237-7_10

http://orcid.org/0000-0002-7610-0660

in this introduction). The theory of uninterpreted functions is an important the-
ory in SMT solvers that is often used (in conjunction with other theories) to
solve feasibility of loop-free program snippets, in bounded model-checking, and
to validate verification conditions. The salient aspect of [26] is to show that entire
program verification is decidable for the class of coherent programs, without any
user-provided inductive invariants (like loop invariants). While the results of [26]
were mainly theoretical, there has been recent work on applying this theory to
verifying memory-safety of heap-manipulating programs [28].

Data domain functions and relations used in a program usually satisfy special
properties and are not, of course, entirely uninterpreted. The results of [26] can
be seen as an approximate/abstraction-based verification method in practice —
if the program verifies assuming functions and relations to be uninterpreted,
then the program is correct for any data domain. However, properties of the
data domain are often critical in establishing correctness. For example, in order
to prove that a sorting program results in sorted arrays, it is important that the
binary relation < used to compare elements of the array is a total ordering on
the underlying data sort. Consequently, constraining the data domain to satisfy
certain axioms results in more accurate modeling for verification.

In this paper, we undertake a systematic study of the verification of unin-
terpreted programs when the data-domains are constrained using theories speci-
fied by (universally quantified) axioms. The choice of the axioms we study are
guided by two principles. First, we study natural mathematical properties of
functions and relations. Second, we choose to study axioms that have a decid-
able quantifier-free fragment of first order logic. The reason is that even single
program executions (as defined in Section 3.2) can easily encode quantifier-free
formulae (by computing the terms in variables, and assert Boolean combinations
of atomic relations and equality on them). Since we are seeking decidable verifi-
cation for programs with loops/iteration, it makes little sense to examine axioms
where even verification of single executions is undecidable.

Coherence modulo theories: Mathur et. al. [26] define a subclass of pro-
grams, called coherent programs, for which program verification on uninterpreted
domains is decidable; without the restriction of coherence, program verification
on uninterpreted domains is undecidable. Since our framework is strictly more
powerful, we adapt the notion of coherence to incorporate theories. A coherent
program [26] is one where all executions satisfy two properties — memoizing and
early-assumes. The memoizing property demands that the program computes
any term, modulo congruence induced by the equality assumes in the execution,
only once. More precisely, if an execution recomputes a term, the term should be
stored in a current variable. The early-assumes restriction demands, intuitively,
that whenever the program assumes two terms to be equal, it should do so early,
before computing superterms of them.

What’s Decidable About Program Verification Modulo Axioms? 159

We adapt the above notion to coherence modulo theories1. The memoizing
and early-assumes property are now required modulo the equalities that are
entailed by the axioms. More precisely, if the theory is characterized by a set of
axioms A, the memoizing property demands that if a program computes a term
t and there was another term t′ that it had computed earlier which is equivalent
to t modulo the assumptions made thus far and the axioms A, then t′ must be
currently stored in a variable. Similarly, the early-assumes condition is also with
respect to the axioms — if the program execution observes a new assumption of
equality or a relation holding between terms, then we require that any equality
entailed newly by it, the previous assumptions and the axioms A do not involve
a dropped term. This is a smooth extension of the notion of coherence from [26];
when A = ∅, we essentially retrieve the notion from [26].

Main Contributions

Our first contribution is an extension of the notion of coherence in [26] to handle
the presence of axioms, as described above; this is technically nontrivial and we
provide a natural extension.

Under the new notion of coherence, we first study axioms on relations. The
EPR (effectively propositional reasoning) [37] fragment of first order logic is
one of the few fragments of first order logic that is decidable, and has been
exploited for bounded model-checking and verification condition validation in the
literature [34,33,32]. We study axioms written in EPR (i.e., universally quantified
formulas involving only relations) and show that verification for even coherent
programs, modulo EPR axioms, is undecidable.

Given the negative result on EPR, we look at particular natural axioms for
relations, which are nevertheless expressible in EPR. In particular, we look at
reflexivity, irreflexivity, and symmetry axioms, and show that verification of co-
herent programs is decidable when the interpretation of some relational symbols
is constrained to satisfy these axioms. Our proof proceeds by instrumenting the
program with auxiliary assume statements that preserve coherence and subtle
arguments that show that verification can be reduced to the case without axioms;
decidability then follows from results established in [26].

We then show a much more nontrivial result that verification of coherent
programs remains decidable when some relational symbols are constrained to
be transitive. The proof relies on new automata constructions that compute
streaming congruence closures while interpreting the relations to be transitive.

Furthermore, we show that combinations of reflexivity, irreflexivity, symme-
try, and transitivity, admit a decidable verification problem for coherent pro-
gram. Using this observation, we conclude decidability of verification when cer-
tain relations are required to be strict partial orders (irreflexive and transitive)
or equivalence relations.

1 We adapt the definition in a way that preserves the spirit of the definition of coher-
ence. Moreover, if we do not adapt the definition, essentially all axioms classes we
study in this paper would be undecidable.

160 U. Mathur et al.

We then consider axioms that capture total orders and show that they too
admit a decidable coherent verification problem. Total orders are also expressible
in EPR and their formulation in EPR has been used in program verification,
as they can be used in lieu of the ordering on integers when only ordering is
important. For example, they can be used to model data in sorting algorithms,
array indices in modeling distributed systems to model process ids and the states
of processes, etc. [34,33].

Our next set of results consider axioms on functions. Associativity and com-
mutativity are natural and fundamental properties of functions (like + and ∗)
and are hence natural ways to capture/abstract using these axioms. (See [14]
where such abstractions are used in program analysis.) We first show that verifi-
cation of coherent programs is decidable when some functions are assumed to be
commutative or idempotent. Our proof, similar to the case of reflexive and sym-
metric relations, relies on reducing verification to the case without axioms using
program instrumentation that capture the commutativity and idempotence ax-
ioms. However, when a function is required to be associative, the verification
problem for coherent programs becomes undecidable. This undecidability result
was surprising to us.

The decidability results established for properties of individual relation or
function symbols discussed above can be combined to yield decidable verifica-
tion modulo a set of axioms. That is, the verification of coherent programs with
respect to models where relational symbols satisfy some subset of reflexivity/ir-
reflexivity/symmetery/transitivity axioms or none, and function symbols are
either uninterpreted, commutative, or idempotent, is decidable.

Decidability results outlined above, apply to programs that are coherent mod-
ulo the axioms/theories. However, given a program, in order to verify it using our
techniques, we would also like to decide whether the program is coherent mod-
ulo axioms. We prove that for all the decidable axioms above, checking whether
programs are coherent modulo the axioms is a decidable problem. Consequently,
under these axioms, we can both check whether programs are coherent modulo
the axioms and if they are, verify them.

There are several other results that we mention only in passing. For instance,
we show that even for single executions, verifying them modulo equational ax-
ioms is undecidable as it is closely related to the word problem for groups. And
our positive results for program verification under axioms for functions (com-
mutativity, idempotence), also shows that bounded model-checking under such
axioms is decidable, which can have its own applications.

Due to the large number of results and technically involved proofs, we give
only the main theorems and proof gists for some of these in the paper; details
can be found in [27].

2 Illustrative Example

Consider the problem of searching for an element k in a sorted list. There are
two simple algorithms for this problem. Algorithm 1 walks through the list from

What’s Decidable About Program Verification Modulo Axioms? 161

assume (T 6= F);
found := F;

stop := F;

exists := F;

sorted := T;

while(x 6= NIL) {
if(stop = F) then {
if(k = key(x)) then found := T;

if(k ≤ key(x)) then stop := T;

}
if(k = key(x)) then exists := T;

y := next(x);
if(y 6= NIL) then {
if(k(x) 6≤ k(y)) then sorted := F;

}
x := y;

}
@post: sorted = T =⇒ found = exists

e1

e2

e3

e4

e5

e6

e7

x, y

NIL

k

T

sorted
e8

F, stop,

found, exists

e9

next

next

next

key

key

key

< is {(e5, e6), (e6, e7), (e7, e5)}

Fig. 1. Left: Uninterpreted program for finding a key k in a list starting at x with <
interpreted as a strict total order. The condition a ≤ b is shorthand for a < b ∨ a = b.
Right: A model in which < is not interpreted as a strict total order. The elements
in the universe of the model are denoted using circles. Some elements are labeled
with variables denoting the initial values of these variables. The edges represent
subterm relation. Not all functions are shown in the figure. The model does not satisfy
the post-condition on the program on left.

beginning to end, and if it finds k, it sets a Boolean variable exists to T. Notice
this algorithm does not exploit the sortedness property of the list. Algorithm 2
also walks through the list, but it stops as soon as it either finds k or reaches an
element that is larger than k. If it finds the element it sets a Boolean variable
found to T. If both algorithms are run on the same sorted list, then their answers
(namely, exists and found) must be the same.

Fig. 1 (on the left) shows a program that weaves the above two algorithms
together (treating Algorithm 1 as the specification for Algorithm 2). The variable
x walks down the list using the next pointer. The variable stop is set to T when
Algorithm 2 stops searching in the list. The precondition, namely that the input
list is sorted, is captured by tracking another variable sorted whose value is T

if consecutive elements are ordered as the list is traversed. The post condition
demands that whenever the list is sorted, found and exists be equal when the
list has been fully traversed. Note that the program’s correctness is specified
using only quantifier-free assertions using the same vocabulary as the program.

The program works on a data domain that provides interpretations for the
functions key, next, the initial values of the variables, and the relation <. When
< is interpreted to be a strict total order, the program is correct. However,
if < is not interpreted as a total order, then the program may be incorrectly
deemed as buggy. To see this, consider the data model shown on the right in
Fig. 1. The data domain has 9 elements in its universe, with the functions next
and key interpreted as shown. Initially, x, y have value e1, NIL is e4, k is e7, T
and sorted are e8, and F, found, exists, and stop are e9. The interpretation
of < is as follows — e5 < e6, e6 < e7, and e7 < e5. Clearly < is not an order,

162 U. Mathur et al.

but the program’s sortedness check “sorted = T” will pass. After the entire
list is processed, exists will be set to T when x = e3. On the other hand,
stop will be set to T when x = e1 because k = e7 < key(x). Therefore, at the
end found = F 6= exists. The work presented in [26], where all functions and
relations are uninterpreted, would therefore declare this program to be incorrect.

The goal of this paper is to explore several natural restrictions on data models
and study the problem of verifying coherent programs for them. When < is
constrained to be a total order, the program in Fig. 1 is correct and coherent. Our
results (see Section 5.5) show that verification of such programs when relations
are constrained to be strict total orders is decidable, and hence we can build
automatic decision procedures that will correctly verify such programs.

3 Preliminaries

We briefly recall the syntax and semantics of uninterpreted programs and the
verification problem modulo axioms. Our presentation closely follows [26] and
for lack of space, some details have been postponed to [27].

3.1 Program Syntax

We consider imperative programs with loops over a fixed finite set of variables
V and use constant (C), function (F), and predicate (R) symbols belonging to
some first order signature Σ = (C,F ,R). Programs are then given by the syntax
below (f ∈ F , R ∈ R, x, y ∈ V , z is a tuple of variables in V):

〈stmt〉 ::= | x := y | x := f(z) | assume (〈cond〉) | skip | 〈stmt〉 ; 〈stmt〉
| while (〈cond〉) 〈stmt〉 | if (〈cond〉) then 〈stmt〉 else 〈stmt〉

〈cond〉 ::=x = y | R(z) | ¬〈cond〉

3.2 Executions and Semantics of Uninterpreted Programs

Executions of programs over 〈stmt〉 are words over the following alphabet

Π = {“x := y”, “x := f(z)”, “assume(x = y)”, “assume(x 6= y)”,

“assume(R(z))”, “assume(¬R(z))” | x, y ∈ V, z is in tuples(V)}

For a program s ∈ 〈stmt〉, the set of executions of s, denoted Exec(s) is a regular
language over the alphabet Π and is given as follows (similar to [26]).

Exec(skip) = ε Exec(x := y) = “x := y”
Exec(x := f(z)) = “x := f(z)” Exec(assume(c)) = “assume(c)”

Exec(if c then s1 else s2) = “assume(c)” · Exec(s1) + “assume(¬c)” · Exec(s2)
Exec(s1; s2) = Exec(s1) · Exec(s2)
Exec(while c {s}) = [“assume(c)” · Exec(s1)]∗ · “assume(¬c)”

What’s Decidable About Program Verification Modulo Axioms? 163

The set of partial executions of s is the set of prefixes of words in Exec(s) and
is also regular.

A data model M = (UM, JKM) for signature Σ is a first order structure
where UM is a universe of elements and JKM maps every symbol in Σ to their
interpretations. Given a data model M over Σ, and an execution ρ ∈ Π∗, the
semantics of ρ on M is given by evalM : Π∗ × V → UM that gives the the
valuation of variables in V at the end of an execution; the precise definition is
standard and is defered to [27].

3.3 Feasibility of Executions Modulo Axioms

An execution is said to be feasible in a data model, if every assumption made in
the execution, holds on the model. More precisely, an execution ρ is feasible in
M if for every prefix σ′ = σ · “assume c” of ρ, we have

(a) evalM(σ, x) = evalM(σ, y) if c is ‘(x = y)’,

(b) evalM(σ, x) 6= evalM(σ, y) if c is ‘(x 6= y)’,

(c) (evalM(σ, z1), . . . , evalM(σ, zr)) ∈ JRKM if c is ‘R(z1, . . . , zr)’, and

(d) (evalM(σ, z1), . . . , evalM(σ, zr)) 6∈ JRKM if c is ‘¬R(z1, . . . , zr)’.

Let A be a set of first order sentences, including possible ground atomic
predicates 2. We say that a data model M is an A-model, denoted M |= A, if
for every ϕ ∈ A, we have M |= ϕ. A formula ϕ is A-valid, denoted A |= ϕ, if φ
holds in every model M that satisfies A. An execution ρ is said to be feasible
modulo A if there is an A-model M such that ρ is feasible in M.

3.4 Program Verification Modulo Axioms

We consider programs annotated with post-conditions that are over the following
syntax below. Here, x, y and z belong to the set of program variables V and
R ∈ R is a relation symbol in Σ.

L : ϕ ::= x=y | R(z) | ϕ ∨ ϕ | ¬ϕ

Definition 1 (Program Verification Modulo Axioms). For a program s
and a set of axioms A, we say that s satisfies a postcondition ϕ over the syntax
L modulo A if for every A-model M and for execution ρ ∈ Exec(s) that is
feasible in M, M satisfies ϕ[evalM(ρ, V)/V] (i.e., where each variable x ∈ V is
replaced by evalM(ρ, V)).

We remark that one can alternatively phrase the verification problem stated
above in terms of feasibility. That is, a program s satisfies a postcondition ϕ
modulo A iff every execution ρ of s′ is infeasible modulo A (i.e., there is no
A-model M such that ρ is feasible in M), where s′ = s; assume(¬ϕ).

2 A ground atomic predicate is of the form t1 ∼ t2, or R(t1, . . . tk) or ¬R(t1, . . . tk),
where ∼∈ {=, 6=}, R is a relation symbol, and tis are ground terms.

164 U. Mathur et al.

4 Coherence Modulo Axioms

In this section we extend the notion of coherence from [26], adapting it to our
current setting where we restrict data models using axioms A. We will first recall
the notion of terms computed by an execution, which will be used to define the
notion of coherence.

4.1 Terms Computed and Assumptions Accumulated by Executions

We will associate a syntactic term TEval(ρ, x) with each variable x ∈ V after a
partial execution ρ. Intuitively, every variable x ∈ V stores a constant term x̂ in
the beginning of an execution. New terms are computed on function computa-
tions, i.e., TEval(ρ · “x := f(z1, . . . , zr)”) = f(TEval(ρ, z1), . . . , TEval(ρ, zr)).
The precise definition is simple and is defered to [27]. The set of terms computed
by an execution ρ is Terms(ρ) = { TEval(ρ′, x) | ρ′ is a prefix of ρ, x ∈ V }.

As an execution proceeds, it accumulates assumptions over the terms it com-
putes, and we will use κ(ρ) to denote the assumptions made by the execution ρ
(see [27] for precise definition). For example, after an equality assume statement
“assume(x = y)”, we accumulate the atomic equality predicate ψ = tx = ty,
where tx and ty are terms associated with x and y when the assume statement is
encountered. Similarly, for the execution ρ = ρ′ · “assume(¬R(z1, z2, . . . , zk))”,
we have κ(ρ) = κ(ρ′) ∪ {¬R(TEval(ρ′, z1), . . . , TEval(ρ′, zk))}.

4.2 Coherence

Our definition of coherence modulo axioms is a smooth generalization of the def-
inition of coherence in [26]. The notion of coherence consists of two properties —
memoizing and early equality assumes. The memoizing property says, intuitively,
when a term t is computed after executing some prefix σ of an execution, if t is
equivalent to some other term modulo the assumptions made in the execution so
far, then t must not have been dropped at the end of σ, i.e., a program variable
must already hold this term. We replace the notion of equivalence of terms in
this definition by equivalence modulo the axioms as well.

The notion of early assumes in [26] intuitively says that assumptions of equal-
ity (on terms t1 and t2) should be encountered early — earlier than dropping any
superterm of t1 or t2. This notion of early assumes allows for effectively comput-
ing congruence closure on the set of terms computed by the execution, which in
turn, is necessary to accurately maintain which terms are equivalent. However,
we observe that the notion in [26] is too restrictive and not entirely necessary. In
our paper, we generalize this notion in several ways, to a more semantic one as
follows. Whenever an execution encounters an assumption of equality between
two term, we instead demand that only the equivalences that are additionally
implied by this new assumption, can be infered locally using the already known
congruence between terms in the window, i.e., the set of terms pointed to by the
program variables when the equality assumption is encountered. Next, we incor-
porate axioms into this definition, by requiring that the notion of equivalence is

What’s Decidable About Program Verification Modulo Axioms? 165

also modulo the axioms, and further require that all assumptions (equality, dis-
equality, relational) are required to be early (as against only restricting equality
assumptions to be early like in [26]). We will elaborate on these differences using
an example after presenting the formal definition next.

Given a set of first order sentences Γ and ground terms t1 and t2, we say
that t1 ∼=Γ t2 if Γ |= t1 = t2.

Definition 2 (Coherence modulo axioms). Let A be a set of axioms and
let ρ be a complete or partial execution over variables V . Then, ρ is said to be
coherent modulo A if it satisfies the following two properties.

Memoizing. Let π = σ · “x :=f(z)” be a prefix of ρ and let t = TEval(π, x). If
there is a term t′ ∈ Terms(σ) such that t′ ∼=A∪κ(σ) t, then there must exist
some variable y ∈ V such that TEval(σ, y) ∼=A∪κ(σ) t.

Early Assumes. Let π = σ · “assume(c)” be a prefix of ρ, where c is any of
x=y, x 6=y, R(z), or ¬R(z). Let t ∈ Terms(σ) be a term computed in σ such
that t has been dropped, i.e., for every x ∈ V , we have TEval(σ, x)�A∪κ(σ)t.
For any term t′ ∈ Terms(σ), if t ∼=A∪κ(π) t′, then t ∼=A∪κ(σ) t′.

Remark. We remark that every execution that is coherent as per the defi-
nition in [26], is also coherent modulo A = ∅ as in Definition 2. However, the
converse is not true and we illustrate this difference below.

Example 1. Let us now illustrate the notion of coherence in the presence of
axioms using the execution ρ below.

ρ = z1 := f(x, y) · z2 := f(y, x) · z3 := g(z1) · z4 := g(z2) · z3 := z5 · z6 := g(z1)

Let ρi denote the prefix of ρ of length i. Here, TEval(ρ3, z3) = g(f(x̂, ŷ)),
TEval(ρ5, z3) = ẑ5 6= g(f(x̂, ŷ)) and TEval(ρ6, z6) = g(f(x̂, ŷ)). When the set

of axioms is A = ∅, this execution is not coherent modulo A as it violates the
memoizing requirement at the last statement z6 := g(z1) (no variable stores the
term g(f(x̂, ŷ)) after ρ5).

Now, consider the axiom set denoting commutativity of f, i.e., Acomm =
{∀u, v.f(u, v) = f(u, v)}. In this case, we observe that f(x̂, ŷ) ∼=Acomm f(ŷ, x̂)
and thus g(f(x̂, ŷ)) ∼=Acomm g(f(ŷ, x̂)). Also, TEval(ρ5, z4) = g(f(ŷ, x̂)) ∼=Acomm

g(f(x̂, ŷ)). This ensures that ρ is indeed coherent modulo Acomm.

Let CoherentExecs(Σ,V,A) denote the set of executions over the signature Σ
and variables V that are coherent modulo the set of axioms A.

Definition 3. A program s over signature Σ and variables V is said to be co-
herent modulo A if Exec(s) ⊆ CoherentExecs(Σ,V,A).

In this paper, we explore several classes of axioms, studying when the verifi-
cation problem for coherent programs modulo the axioms is decidable.

166 U. Mathur et al.

5 Axioms over Relations

In this section, we investigate the decidability of the verification problem for
coherent programs modulo relational axioms, i.e., axioms which only involve
relation symbols R in the signature Σ.

5.1 Verification modulo EPR axioms

A first-order formula is said to be an EPR formula [37] if it is of the form

∃x1 . . . xk∀y1, . . . ym ϕ

where ϕ is quantifier-free and purely relational (uses no function symbols).
It is well known that satisfiability of EPR formulas is decidable, in fact by

a reduction to Boolean satisfiability [24]. Consequently, the problem of checking
whether a single execution is feasible under axioms written in EPR can be shown
to be decidable, and has been exploited in bounded model-checking.

Consequently, we could reasonably ask whether verification of coherent pro-
grams under EPR axioms is decidable. Surprisingly, we show that they are not
(proof details can be found in [27]).

Theorem 1. Verification of uninterpreted coherent programs modulo EPR ax-
ioms is undecidable.

Given the above result, we turn to several classes of quantified axioms, which
are all expressible in EPR (and hence have a decidable bounded model checking
problem) and examine their decidability for coherent program verification.

5.2 Reflexivity, Irreflexivity, and Symmetry

We consider program verification under the following axioms (individually):

ϕRrefl , ∀x ·R(x, x) (reflexivity)

ϕRirref , ∀x · ¬R(x, x) (irreflexivity)

ϕRsymm , ∀x, y ·R(x, y) =⇒ R(y, x) (symmetry)

(1)

We show that verification is decidable modulo these axioms using a technique
that we call program instrumentation. Let us fix a relation R and an axiom ϕRp ,
where p ∈ {refl, irref, symm}. The idea is to find a function (in fact, a string
homomorphism) hRp such that for any program P , P is correct/coherent modulo

{ϕRp } iff hRp (Exec(P)) is correct/coherent modulo the empty axiom set. Decid-

ability then follows by exploiting the results of [26]. The function hRp will capture
the properties of the axiom it is trying to eliminate, and so it will be different
for different axioms. We first outline these function hRp , then state their property
and prove the decidability result.

What’s Decidable About Program Verification Modulo Axioms? 167

x

y

z
¬R

R ¬R

x

y

z
¬R

¬R R

Fig. 2. Implied negative relational assumes for a transitive relation R. The dashed
edges () represent the inferred relationship implied from the relations marked by
bold edges ().

For reflexivity, we transform an execution ρ of P to ρ′ where ρ′ is essentially
ρ, except that whenever we see the computation of a term, using an assignment
of the form “x := f(z)”, we immediately insert an assume statement that states
that R(x, x) holds. More precisely, the homomorphism is defined as,

hRrefl(a) =

{
a · “assume(R(x, x))” if a = “x := f(z)”

a otherwise

The homomorphisms used for irreflexivity and symmetry follow similar lines and
are outlined in [27].

Theorem 2. For any relation symbol R and p ∈ {refl, irref, symm}, the problems
of coherent verification modulo {ϕRp } and checking coherence modulo {ϕRp } are
PSPACE-complete.

5.3 Transitivity

We now consider the transitivity axiom for a relation R which says

ϕRtrans = ∀x, y, z ·R(x, y) ∧R(y, z) =⇒ R(x, z) (transitivity) (2)

The proof for decidability modulo this axiom is different and more complex
that the proofs for reflexivity, irreflexivity, and symmetry. Intuitively, the pro-
gram instrumentation approach does not seem to work for transitivity. This is be-
cause transitivity effects can be global. For example, we may have that the execu-
tion asserts the sequence of relational assumes R(t1, t2), R(t2, t3), . . . R(tn−1, tn)
(here, t1, . . . tn are terms computed by the execution), where some of the in-
termediate terms may have been dropped by the program (i.e., the variables
holding these terms were reassigned). Consequently, relating t1 and (the possi-
bly newly constructed term) tn requires a principally new machinery. We modify
the automaton construction from [26] so that it maintains the transitive closure
of the assumptions the program makes. Our main observation is the following:

Theorem 3. Let Σ be a first order signature and V a finite set of program
variables. Let A = {ϕRtrans | R ∈ Rtrans} for some set of relation symbol Rtrans in
Σ. The following observation hold.

168 U. Mathur et al.

1. There is a finite automaton Ftrans (effectively constructable) of size O(2poly(|V |))
such that for any coherent execution ρ that is coherent modulo A, Ftrans ac-
cepts ρ iff ρ is feasible.

2. There is a finite automaton Ctrans (effectively constructible) of size O(2poly(|V |))
such that L(Ctrans) = CoherentExecs(Σ,V,A).

Proof Sketch. These are in some sense a generalization of the automata con-
structions used to establish decidability in [26].The automata Ftrans and Ctrans

rely on tracking equivalence between values stored in variables, and functional
and relational correspondences between these values. However, now since some
relations maybe transitive, additional relational correspondences (or their ab-
sence) maybe implied for R ∈ Rtrans. The basic idea is to maintain for tran-
sitive relations R (a) the transitive closure of the positive relation assumes
assume(R(·, ·)), and (b) the negative relational assumes implied by the rela-
tional assumes seen in an execution. More precisely, if the execution sees assumes
assume(R(x, y)) and assume(R(y, z)), then we also add the constraint R(x, z)
in the automaton’s state. Further, if the execution observes assume(R(x, y)) and
assume(¬R(x, z)), then one can infer the constraint ¬R(y, z), and in this case,
we accumulate this additional constraint in the state of the automaton. Sim-
ilarly, if the execution observes assume(R(y, z)) and assume(¬R(x, z)), then
one can infer the constraint ¬R(x, y), which is added in the automaton’s state.
Both these scenarios are illustrated in Fig. 2. A detailed proof is in [27].

As a consequence we have the following result.

Theorem 4. For A = {ϕRtrans | R ∈ Rtrans}, the problems of coherent verification
modulo A and checking coherence modulo A are PSPACE-complete.

5.4 Strict Partial Orders

We now turn our attention to axioms that dictate that certain relations be
partial or total orders. The anti-symmetry axiom that holds for non-strict orders
introduces subtle complications. Recall that R is anti-symmetric if ∀x, y.R(x, y)∧
R(y, x) ⇒ x = y; this axiom can imply equality between terms if R holds
between a pair of terms. Concretely, if R is anti-symmetric, and the program
makes assumptions in an execution that R(t1, t2) and R(t2, t1) hold, then any
model in which such an execution is feasible must also ensure that t1 = t2.
This implicit equality assumption interferes with the notions of coherence and
the automata constructions (proofs of the results in [26] and Theorem 4) that
compute a congruence closure on terms in a streaming fashion.

Hence, we only consider strict partial orders in this section. Recall that a
relation R is a strict partial order if it satisfies the irreflexivity axiom and the
transitivity axiom, together denoted ARSPO. We can prove decidability for prob-
lems modulo ARSPO by using our algorithm for irreflexivity and transitivity.

Theorem 5. The following problems are PSPACE-complete.
1. Given a program P that is coherent modulo ARSPO, determine if P is correct.
2. Given a program P , determine if P is coherent modulo ARSPO

What’s Decidable About Program Verification Modulo Axioms? 169

5.5 Strict Total Orders

A relation R is a strict total order if it is a strict partial order and satisfies:

∀x, y · x 6= y =⇒ R(x, y) ∨R(y, x) (totality) (3)

Strict total orders are again tricky to handle as the axiom for totality can
result in implicit equality between terms. For example, if ¬R(x, y) and ¬R(y, x)
then it must be the case that x = y. However, if we restrict ourselves to execu-
tions that only have assumes of the form assume(R(x, y)) and do not have any
assumes on ¬R, i.e., of the form assume(¬R(x, y)) then there are no implicit
equalities that are entailed.

Unfortunately, in general, program executions can contain negative assumes
on R (i.e., assumes of the form assume(¬R(x, y))). In order to ensure that
executions contain only positive assumptions on R, we must be careful when
identifying executions of programs with conditionals — branches where the as-
sumption ¬R(x, y) holds must be translated to a branch that assumes R(y, x)
and a branch that assumes x = y. We present a detailed translation in [27].

After such a translation, executions can now have additional equality as-
sumes even if they did not appear in the program. When we refer to coherent
programs, we mean that they are coherent according to the above modified no-
tion of executions. This means for such programs to be coherent, all executions
must ensure that the additional equality assumes are early. And when we talk
about coherent verification of programs with total orders, we mean verification
for programs that are coherent after this transformation.

We observe that in the absence of any assumes of the form ¬R(x, y) the ver-
ification problem modulo strict total orders reduces that modulo strict partial
orders, giving us the following (ARSTO denote the axioms of irreflexivity, transi-
tivty and totality for the relation R).

Theorem 6. The problems of coherent verification, and checking coherence mod-
ulo ARSTO are PSPACE-complete.

6 Axioms Over Functions

We now discuss computational problems modulo axioms that involve function
symbols. The treatment of axioms involving functions in the verification of co-
herent programs is inherently hard. This is because, like in the case of (nonstrict)
partial orders and strict total orders, the axioms along with the assume-steps
in the execution, can imply equalities between terms beyond those entailed
by just the assume steps in the execution. For example, consider the axiom
∀x, y · f(x, y) = f(y, x) constraining f to be a commutative function. Then
terms like f(f(x, y), z) are equal to terms like f(z, f(x, y)), and hence when
building models we must make sure that functions/relations on such terms are
defined in the same way. Terms made equivalent by the functional axioms can be
syntactically very different, and keeping track of the equivalence on unbounded

170 U. Mathur et al.

executions is hard using finite memory. We consider many natural classes of
axioms, and proving both positive and negative results that help delineate the
decidability/undecidability boundary.

6.1 Associativity

We now consider the associativity axiom for a function f .

ϕfassoc ,∀x, y, z · f(x, f(y, z)) = f(f(x, y), z) (associativity) (4)

We show, surprisingly to us, that coherent verification is undecidable modulo
{ϕfassoc}, i.e., even when we have only one axiom that requires only one function
to be associative. In fact, the situation is a lot worse — checking the feasibility
of even a single (even coherent) execution is undecidable, in the presence of a
single associative function. The proof of the following result uses a reduction
from the word problem for finitely generated semigroups [36].

Theorem 7. Given a a trace ρ that is coherent modulo {ϕfassoc}, it is undecidable
to determine if ρ is feasible. Therefore, the problem checking if a program P that
is coherent modulo {ϕfassoc} is undecidable.

6.2 Commutativity

We now consider the commutativity axiom, which is the following

ϕfcomm ,∀x, y · f(x, y) = f(y, x) (commutativity) (5)

We augment executions with an auxiliary variable v∗ 6∈ V and transform execu-
tions using the following homomorphism that uses the auxiliary variable v∗

hfcomm(a) =

{
a · “v∗ := f(y, x)” · “assume(z = v∗)” if a = “z := f(x, y)”

a otherwise

We show that the above transformation preserves feasibility and coherence,
giving us the following result.

Theorem 8. Verification of coherent programs and checking coherence modulo
commutativity axioms is decidable and is PSPACE−complete.

6.3 Idempotence

Next we consider the idempotence axiom for a unary function f :

ϕfidem ,∀x · f(x) = f(f(x)) (idempotence) (6)

Again, we show that there is a simple homomorphism hfidem that preserves co-
herence and feasibility (see [27]) and reduces verification to one without axioms.

Theorem 9. Verification of coherent programs and checking coherence modulo
idempotence axioms is PSPACE-complete.

What’s Decidable About Program Verification Modulo Axioms? 171

7 Combining Axioms

We have thus far proved decidability results when a relation or functions satisfies
certain properties like reflexivity/irreflexivity/symmetry/transitivity or commu-
tativity/idempotence. We now show that all of these results can be combined.
That is, we can consider a signature where relations and functions are assumed
to satisfy some subset of these properties, and with some being uninterpreted,
and the verification problem will remain decidable for coherent programs.

Theorem 10. Let A be a set of axioms where each relation symbol R is ei-
ther a total order or satisfies some (possibly empty) subset of properties out of
reflexivity, irreflexivity, symmetry, transitivity, and each function symbol f sat-
isfies some (possibly empty) subset out of commutativity and idempotence. The
verification problem for coherent programs modulo A is PSPACE-complete.

The proof of the above result proceeds by eliminating axioms one at a time.
We first eliminate the relational axioms (reflexivity, irreflexivity, symmetry) in A
using program instrumentation. We then eliminate the functional axioms in A,
again using program instrumentation. Our proof relies on this order of elimina-
tion of axioms. At this point, the only axioms remaining are those corresponding
to transitivity of a subset of relational symbols, which is handled using the au-
tomata construction discussed in the proof of Theorem 3.

8 Related Work

The theory of equality with uninterpreted functions (EUF) is a widely used the-
ory in many verification applications as it has decidable quantifier free fragment.
EUF has been central to advances in verification of microprocessor control [6,4]
and hardware verification [1,19] and property directed model checking [18]. EUF
has been used as a popular abstraction in software verification [2,3]. Uninter-
preted functions have also been studied for equivalence checking and translation
validation [35]. Bueno et al [5] demonstrated the effectiveness of uninterpreted
programs for verifying SVCOMP benchmarks against control flow properties.

Mathur et al [26] introduced the class of coherent uninterpreted programs
and showed that verification of coherent programs, with or without recursive
function calls, is a decidable problem. This is one of the few subclasses of pro-
gram verification over infinite domains that is known to be decidable. Previous
works [13,14,31] have established decidability of verification of classes of uninter-
preted programs with heavy syntactic restrictions such as disallowing condition-
als inside loops or nested loops, etc. As noted in [26], the notion of coherence is
close to the notion of a bounded pathwidth decomposition [38]. A term that is
created in a coherent execution stays within some program variable (modulo con-
gruence) until the first time all variables containing that term are over-written,
and after this point, the execution never computes it again, and thus, the set of
windows that contain a term form a contiguous segment of the program execu-
tion. Path decomposition and the related notion of tree decomposition have been
exploited many times in the literature to give decidability in verification [25,7,8].

172 U. Mathur et al.

The work in [28] extends the work of [26] to updatable maps and identifies
extensions of coherence that make verification decidable. It utilizes this to pro-
vide implementation of verification algorithms for memory safety for a class of
heap manipulating programs, including traversal algorithms on data structures
such as singly linked list, sorted lists, binary search trees etc. Combining the
results of this paper with these results is an interesting future direction.

The class of EPR formulas that consist of universally quantified formulas
over relational signatures is a well-known decidable class of first-order logic [37].
EPR-based reasoning has been proved powerful for verification of large-scale sys-
tems [33,29,39] and the Ivy [34,30] system is one of the most notable framework
that exploits EPR based reasoning for verifying program snippets without recur-
sion. EPR encoding of order axioms such as reflexivity, symmetry, transitivity
and total orders has been used in proving programs working over heaps [20].

The work in Kleene Algebra with Tests (KAT) [22] considers problems in-
volving unbounded recursion and choice with abstractions of data, similar to our
work. However, while we treat congruence axioms for equality faithfully in our
work, it is unclear to us how to express these in KAT or its extensions [21,23,9].
Furthermore, the restrictions of coherence studied in [26] and the work here that
are based on bounded path-width notions seem very different from studies of
decidable problems in KAT. A study of whether our results can be adapted to
yield decidable fragments for KAT is an interesting future direction.

A notable verification technique with an automata-theoretic foundation and
that has been very effective in practice is that of trace abstraction due to Heiz-
mann et al [15,16,17,10,11,12]. In this technique, one constructs iteratively regu-
lar sets that (incompletely) capture the set of all infeasible executions, eventually
striving to cover all failing executions of a program, but handling complex the-
ories such as arithmetic. In contrast, our work builds complete automata in one
stroke that accept all infeasible traces over a vocabulary, but handles only simple
theories with restricted sets of axioms, but yielding decidability. Combining these
lines of work for efficient software verification is an interesting future direction.

9 Conclusions

By incorporating axioms on functions and relations, decidability results in this
paper, enable a more faithfully automatic verification of programs. It is worth
noting that the upper bound for all our decidability results is PSPACE, which
is the same as that for Boolean programs. Thus, though we consider programs
over infinite domains with additional structure, our verification results have the
same complexity as that for programs over Boolean domains.

One future direction is to adapt this technique for practical program veri-
fication. In this context, adapting our technique within the automata-theoretic
technique of [15,17,16,12,10] seems most promising. Second, there are several
program verification techniques that use EPR, and in several of these, EPR
is used mainly to establish a linear order on the universe [20]. Automatically
verifying such programs using our technique is worth exploring.

What’s Decidable About Program Verification Modulo Axioms? 173

References

1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: A formal verification tool
for verilog designs. In: Proceedings of the 15th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning. pp. 343–352. LPAR ’08,
Springer-Verlag, Berlin, Heidelberg (2008)

2. Babić, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions.
In: Proceedings of the 19th Int. Conf. on Computer Aided Verification (CAV’07),
Berlin, Germany. Lecture Notes in Computer Science, Springer (July 2007)

3. Babic, D., Hu, A.J.: Calysto: Scalable and precise extended static checking. In: Pro-
ceedings of the 30th International Conference on Software Engineering. p. 211–220.
ICSE ’08, Association for Computing Machinery, New York, NY, USA (2008).
https://doi.org/10.1145/1368088.1368118

4. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Proceedings of the 14th International Conference on Computer Aided Verifica-
tion. pp. 78–92. CAV ’02, Springer-Verlag, London, UK, UK (2002)

5. Bueno, D., Sakallah, K.A.: euforia: Complete software model checking with unin-
terpreted functions. In: Enea, C., Piskac, R. (eds.) Verification, Model Checking,
and Abstract Interpretation. pp. 363–385. Springer International Publishing, Cham
(2019)

6. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Proceedings of the 6th International Conference on Computer Aided Verifica-
tion. pp. 68–80. CAV ’94, Springer-Verlag, London, UK, UK (1994)

7. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Pavlogiannis, A.: Algorithms
for algebraic path properties in concurrent systems of constant treewidth compo-
nents. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 733–747. POPL ’16, ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2837614.2837624

8. Chatterjee, K., Ibsen-Jensen, R., Pavlogiannis, A., Goyal, P.: Faster algorithms
for algebraic path properties in recursive state machines with constant treewidth.
In: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 97–109. POPL ’15, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2676726.2676979

9. Doumane, A., Kuperberg, D., Pous, D., Pradic, P.: Kleene algebra with hypothe-
ses. In: Bojańczyk, M., Simpson, A. (eds.) Foundations of Software Science and
Computation Structures. pp. 207–223. Springer International Publishing, Cham
(2019)

10. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 129–142. POPL ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2429069.2429086

11. Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 151–164. POPL ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2535838.2535885

12. Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded parallelism.
In: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 407–420. POPL ’15, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2676726.2677012

174 U. Mathur et al.

https://doi.org/10.1145/1368088.1368118
https://doi.org/10.1145/2837614.2837624
https://doi.org/10.1145/2676726.2676979
https://doi.org/10.1145/2429069.2429086
https://doi.org/10.1145/2535838.2535885
https://doi.org/10.1145/2676726.2677012

13. Godoy, G., Tiwari, A.: Invariant checking for programs with procedure calls. In:
Proceedings of the 16th International Symposium on Static Analysis. pp. 326–342.
SAS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

14. Gulwani, S., Tiwari, A.: Assertion checking unified. In: Proceedings of the 8th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation. pp. 363–377. VMCAI’07, Springer-Verlag, Berlin, Heidelberg (2007)

15. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Proceedings of the 16th International Symposium on Static Analysis. pp. 69–85.
SAS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

16. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Proceedings
of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 471–482. POPL ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1706299.1706353

17. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification.
pp. 36–52. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

18. Ho, Y.S., Mishchenko, A., Brayton, R.: Property directed reachability with word-
level abstraction. In: Proceedings of the 17th Conference on Formal Methods in
Computer-Aided Design. pp. 132–139. FMCAD ’17, FMCAD Inc, Austin, TX
(2017). https://doi.org/10.23919/FMCAD.2017.8102251

19. Hojati, R., Isles, A., Kirkpatrick, D., Brayton, R.K.: Verification using uninter-
preted functions and finite instantiations. In: Srivas, M., Camilleri, A. (eds.) For-
mal Methods in Computer-Aided Design. pp. 218–232. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996)

20. Itzhaky, S., Banerjee, A., Immerman, N., Lahav, O., Nanevski, A., Sagiv, M.:
Modular reasoning about heap paths via effectively propositional formulas. In:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 385–396. POPL ’14, ACM, New York, NY, USA
(2014). https://doi.org/10.1145/2535838.2535854

21. Kozen, D.: Kleene algebra with tests and commutativity conditions. In: Margaria,
T., Steffen, B. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 14–33. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

22. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (May 1997). https://doi.org/10.1145/256167.256195

23. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: Esparza, J., Fraigni-
aud, P., Husfeldt, T., Koutsoupias, E. (eds.) Automata, Languages, and Program-
ming. pp. 280–292. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

24. Lewis, H.: Complexity results for classes of quantificational formulas. Journal of
Computer and System Sciences 21(3), 317–353 (1980)

25. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 283–294. POPL ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1926385.1926419

26. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable verification of uninter-
preted programs. Proc. ACM Program. Lang. 3(POPL), 46:1–46:29 (Jan 2019).
https://doi.org/10.1145/3290359

27. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s decidable about program
verification modulo axioms? CoRR abs/1910.10889 (2019), http://arxiv.org/
abs/1910.10889

What’s Decidable About Program Verification Modulo Axioms? 175

https://doi.org/10.1145/1706299.1706353
https://doi.org/10.23919/FMCAD.2017.8102251
https://doi.org/10.1145/2535838.2535854
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1145/3290359
http://arxiv.org/abs/1910.10889
http://arxiv.org/abs/1910.10889

28. Mathur, U., Murali, A., Krogmeier, P., Madhusudan, P., Viswanathan, M.: Decid-
ing memory safety for single-pass heap-manipulating programs. Proc. ACM Pro-
gram. Lang. 4(POPL) (Dec 2019). https://doi.org/10.1145/3371103

29. McMillan, K.: Modular specification and verification of a cache-coherent interface.
In: Proceedings of the 16th Conference on Formal Methods in Computer-Aided
Design. pp. 109–116. FMCAD ’16, FMCAD Inc, Austin, TX (2016)

30. McMillan, K.L., Padon, O.: Deductive verification in decidable fragments with ivy.
In: Podelski, A. (ed.) Static Analysis. pp. 43–55. Springer International Publishing,
Cham (2018)

31. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking herbrand equalities and beyond.
In: Proceedings of the 6th International Conference on Verification, Model Check-
ing, and Abstract Interpretation. pp. 79–96. VMCAI’05, Springer-Verlag, Berlin,
Heidelberg (2005)

32. Padon, O., Immerman, N., Shoham, S., Karbyshev, A., Sagiv, M.: Decid-
ability of inferring inductive invariants. In: Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 217–231. POPL ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2837614.2837640

33. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made epr: Decidable reason-
ing about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1–
108:31 (Oct 2017). https://doi.org/10.1145/3140568

34. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verifica-
tion by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 614–630. PLDI
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2908080.2908118

35. Pnueli, A., Strichman, O.: Reduced functional consistency of uninterpreted
functions. Electron. Notes Theor. Comput. Sci. 144(2), 53–65 (Jan 2006).
https://doi.org/10.1016/j.entcs.2005.12.006

36. Post, E.L.: Recursive unsolvability of a problem of thue. J. Symbolic Logic 12(1),
1–11 (03 1947)

37. Ramsey, F.P.: On a Problem of Formal Logic, pp. 1–24. Birkhäuser Boston, Boston,
MA (1987)

38. Robertson, N., Seymour, P.D.: Graph minors. i. excluding a forest. Journal of
Combinatorial Theory, Series B 35(1), 39–61 (1983)

39. Taube, M., Losa, G., McMillan, K.L., Padon, O., Sagiv, M., Shoham, S.,
Wilcox, J.R., Woos, D.: Modularity for decidability of deductive verifica-
tion with applications to distributed systems. In: Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. pp. 662–677. PLDI 2018, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3192366.3192414

176 U. Mathur et al.

https://doi.org/10.1145/3371103
https://doi.org/10.1145/2837614.2837640
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1016/j.entcs.2005.12.006
https://doi.org/10.1145/3192366.3192414
http://creativecommons.org/licenses/by/4.0/

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

What’s Decidable About Program Verification Modulo Axioms? 177

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

	10 What's Decidable About Program Verification Modulo Axioms?*
	1 Introduction
	2 Illustrative Example
	3 Preliminaries
	3.1 Program Syntax
	3.2 Executions and Semantics of Uninterpreted Programs
	3.3 Feasibility of Executions Modulo Axioms
	3.4 Program Verification Modulo Axioms

	4 Coherence Modulo Axioms
	4.1 Terms Computed and Assumptions Accumulated by Executions
	4.2 Coherence

	5 Axioms over Relations
	5.1 Verification modulo EPR axioms
	5.2 Reflexivity, Irreflexivity, and Symmetry
	5.3 Transitivity
	5.4 Strict Partial Orders

	6 Axioms Over Functions
	6.1 Associativity
	6.2 Commutativity
	6.3 Idempotence

	7 Combining Axioms
	8 Related Work
	9 Conclusions
	References

