
Decidable Synthesis of Programs
with Uninterpreted Functions

Paul Krogmeier(B) , Umang Mathur , Adithya Murali , P. Madhusudan,
and Mahesh Viswanathan

University of Illinois at Urbana-Champaign, Champaign, USA
{paulmk2,umathur3,adithya5,madhu,vmahesh}@illinois.edu

Abstract. We identify a decidable synthesis problem for a class of pro-
grams of unbounded size with conditionals and iteration that work over
infinite data domains. The programs in our class use uninterpreted func-
tions and relations, and abide by a restriction called coherence that was
recently identified to yield decidable verification. We formulate a pow-
erful grammar-restricted (syntax-guided) synthesis problem for coherent
uninterpreted programs, and we show the problem to be decidable, iden-
tify its precise complexity, and also study several variants of the problem.

1 Introduction

Program synthesis is a thriving area of research that addresses the problem
of automatically constructing a program that meets a user-given specifica-
tion [1,21,22]. Synthesis specifications can be expressed in various ways: as
input-output examples [19,20], temporal logic specifications for reactive pro-
grams [44], logical specifications [1,4], etc. Many targets for program synthesis
exist, ranging from transition systems [31,44], logical expressions [1], imperative
programs [51], distributed transition systems/programs [38,43,45], filling holes
in programs [51], or repairs of programs [49].

A classical stream of program synthesis research is one that emerged from a
problem proposed by Church [13] in 1960 for Boolean circuits. Seminal results
by Büchi and Landweber [9] and Rabin [48] led to a mature understanding of
the problem, including connections to infinite games played on finite graphs and
automata over infinite trees (see [18,32]). Tractable synthesis for temporal logics
like LTL, CTL, and their fragments was investigated and several applications
for synthesizing hardware circuits emerged [6,7].

In recent years, the field has taken a different turn, tackling synthesis of
programs that work over infinite domains such as strings [19,20], integers [1,51],
and heaps [47]. Typical solutions derived in this line of research involve (a)
bounding the class of programs to a finite set (perhaps iteratively increasing the
class) and (b) searching the space of programs using techniques like symmetry-
reduced enumeration, SAT solvers, or even random walks [1,4], typically guided

Paul Krogmeier and Mahesh Viswanathan are partially supported by NSF CCF
1901069. Umang Mathur is partially supported by a Google PhD Fellowship.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 634–657, 2020.
https://doi.org/10.1007/978-3-030-53291-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_32&domain=pdf
http://orcid.org/0000-0002-6710-9516
http://orcid.org/0000-0002-7610-0660
http://orcid.org/0000-0002-6311-1467
https://doi.org/10.1007/978-3-030-53291-8_32

Decidable Synthesis of Programs with Uninterpreted Functions 635

by counterexamples (CEGIS) [28,34,51]. Note that iteratively searching larger
classes of programs allows synthesis engines to find a program if one exists, but
it does not allow one to conclude that there is no program that satisfies the
specification. Consequently, in this stream of research, decidability results are
uncommon (see Sect. 7 for some exceptions in certain heavily restricted cases).

In this paper we present, to the best of our knowledge, the first decidability
results for program synthesis over a natural class of programs with iteration/re-
cursion, having arbitrary sizes, and which work on infinite data domains. In
particular, we show decidable synthesis of a subclass of programs that use unin-
terpreted functions and relations.

Our primary contribution is a decidability result for realizability and syn-
thesis of a restricted class of imperative uninterpreted programs. Uninterpreted
programs work over infinite data models that give arbitrary meanings to their
functions and relations. Such programs satisfy their assertions if they hold along
all executions for every model that interprets the functions and relations. The
theory of uninterpreted functions and relations is well studied—classically, in
1929, by Gödel, where completeness results were shown [5] and, more recently,
its decidable quantifier-free fragment has been exploited in SMT solvers in com-
bination with other theories [8]. In recent work [39], a subclass of uninterpreted
programs, called coherent programs, was identified and shown to have a decid-
able verification problem. Note that in this verification problem there are no
user-given loop invariants; the verification algorithm finds inductive invariants
and proves them automatically in order to prove program correctness.

In this paper, we consider the synthesis problem for coherent uninterpreted
programs. The user gives a grammar G that generates well-formed programs in
our programming language. The grammar can force programs to have assert
statements at various points which collectively act as the specification. The pro-
gram synthesis problem is then to construct a coherent program, if one exists,
conforming to the grammar G that satisfies all assertions in all executions when
running on any data model that gives meaning to function and relation symbols.

Our primary result is that the realizability problem (checking the existence of
a program conforming to the grammar and satisfying its assertions) is decidable
for coherent uninterpreted programs. We prove that the problem is 2EXPTIME-
complete. Further, whenever a correct coherent program that conforms to the
grammar exists, we can synthesize one. We also show that the realizability/syn-
thesis problem is undecidable if the coherence restriction is dropped. In fact
we show a stronger result that the problem is undecidable even for synthesis of
straight-line programs (without conditionals and iteration)!

Coherence of programs is a technical restriction that was introduced in [39]. It
consists of two properties, both of which were individually proven to be essential
for ensuring that program verification is decidable. Intuitively, the restriction
demands that functions are computed on any tuple of terms only once and that
assumptions of equality come early in the executions. In more recent work [41],
the authors extend this decidability result to handle map updates, and applied
it to memory safety verification for a class of heap-manipulating programs on

636 P. Krogmeier et al.

forest data-structures, demonstrating that the restriction of coherence is met in
practice by certain natural and useful classes of programs.

Note that automatic synthesis of correct programs over infinite domains
demands that we, at the very least, can automatically verify the synthesized
program to be correct. The class of coherent uninterpreted programs identified
in the work of [39] is the only natural class of programs we are aware of that has
recursion and conditionals, works over infinite domains, and admits decidable
verification. Consequently, this class is a natural target for proving a decidable
synthesis result.

The problem of synthesizing a program from a grammar with assertions is
a powerful formulation of program synthesis. In particular, the grammar can
be used to restrict the space of programs in various ways. For example, we can
restrict the space syntactically by disallowing while loops. Or, for a fixed n, by
using a set of Boolean variables linear in n and requiring a loop body to strictly
increment a counter encoded using these variables, we can demand that loops
terminate in a linear/polynomial/exponential number of iterations. We can also
implement loops that do not always terminate, but terminate only when the data
model satisfies a particular property, e.g., programs that terminate only on finite
list segments, by using a skeleton of the form: while (x �= y){ ... ; x := next(x)}.
Grammar-restricted program synthesis can express the synthesis of programs
with holes, used in systems like Sketch [50], where the problem is to fill holes
using programs/expressions conforming to a particular grammar so that the
assertions in the program hold. Synthesizing programs or expressions using
restricted grammars is also the cornerstone of the intensively studied SyGuS
(syntax-guided synthesis) format [1,52]1.

The proof of our decidability result relies on tree automata, a callback to clas-
sical theoretical approaches to synthesis. The key idea is to represent programs
as trees and build automata that accept trees corresponding to correct programs.
The central construction is to build a two-way alternating tree automaton that
accepts all program trees of coherent programs that satisfy their assertions. Given
a grammarG of programs (which has to satisfy certain natural conditions), we show
that there is a regular set of program trees for the language of allowed programs
L(G). Intersecting the automata for these two regular tree languages and check-
ing for emptiness establishes the upper bound. Our constructions crucially use the
automaton for verifying coherent uninterpreted programs in [39] and adapt ideas
from [35] for building two-way automata over program trees. Our final decision
procedure is doubly-exponential in the number of program variables and linear in
the size of the grammar. We also prove a matching lower bound by reduction from
the acceptance problem for alternating exponential-space Turing machines. The
reduction is non-trivial in that programs (which correspond to runs in the Turing
machine)must simulate sequences of configurations, each ofwhich is of exponential
size, by using only polynomially-many variables.

1 Note, however, that both Sketch and SyGuS problems are defined using functions
and relations that are interpreted using standard theories like arithmetic, etc., and
hence of course do not have decidable synthesis.

Decidable Synthesis of Programs with Uninterpreted Functions 637

Recursive Programs, Transition Systems, and Boolean Programs: We
study three related synthesis problems. First, we show that our results extend to
synthesis of call-by-value recursive uninterpreted programs (with a fixed number
of functions and fixed number of local/global variables). This problem is also
2EXPTIME-complete but is more complex, as even single executions simulated
on the program tree must be split into separate copies, with one copy executing
the summary of a function call and the other proceeding under the assumption
that the call has returned in a summarized state.

We next examine a synthesis problem for transition systems. Transition sys-
tems are similar to programs in that they execute similar kinds of atomic state-
ments. We allow the user to restrict the set of allowable executions (using regular
sets). Despite the fact that this problem seems very similar to program synthesis,
we show that it is an easier problem, and coherent transition system realizabil-
ity and synthesis can be solved in time exponential in the number of program
variables and polynomial in the size of the automata that restrict executions.
We prove a corresponding lower bound to establish EXPTIME-completeness of
this problem.

Finally, we note that our results also show, as a corollary, that the grammar-
restricted realizability/synthesis problem for Boolean programs (resp. execution-
restricted synthesis problem for Boolean transition systems) is decidable and is
2EXPTIME-complete (resp. EXPTIME-complete). These results for Boolean pro-
grams are themselves new. The lower bound results for these problems hence
show that coherent program/transition-system synthesis is not particularly
harder than Boolean program synthesis for uninterpreted programs. Grammar-
restricted Boolean program synthesis is an important problem which is addressed
by many practical synthesis systems like Sketch [50].

Due to space restrictions, we present only proof gists for main results in the
paper. All the complete proofs can be found in our technical report [30].

2 Examples

We will begin by looking at several examples to gain some intuition for uninter-
preted programs.

Example 1. Consider the program in Fig. 1 (left). This program has a hole
‘〈〈 ?? |Cannot . . . 〉〉’ that we intend to fill with a sub-program so that the entire
program (together with the contents of the hole) satisfies the assertion at the
end. The sub-program corresponding to the hole is allowed to use the variable
cipher as well as some additional variables y1, . . . , yn (for some fixed n), but is
not allowed to refer to key or secret in any way. Here we also restrict the hole
to exclude while loops. This example models the encryption of a secret message
secret with a key key. The assumption in the second line of the program models

638 P. Krogmeier et al.

cipher := enc(secret, key);
assume(secret = dec(cipher, key));
〈〈 ?? |Cannot refer to secret or key 〉〉;
assert(z = secret)

Decrypting a ciphertext

assume(T �= F);
if (x = T) then b := T else b := F;
〈〈 ?? |Cannot refer to x or b 〉〉;
assert(y = b)

Synthesis with incomplete information

Fig. 1. Examples of programs with holes

the fact that the secret message can be decrypted from cipher and key. Here,
the functions enc and dec are uninterpreted functions, and thus the program we
are looking for is an uninterpreted program. For such a program, the assertion
“assert(z = secret)” holds at the end if it holds for all models, i.e, for all
interpretations of enc and dec and for all initial values of the program variables
secret, key, cipher, and y1, . . . , yn. With this setup, we are essentially asking
whether a program that does not have access to key can recover secret. It is
not hard to see that there is no program which satisfies the above requirement.
The above modeling of keys, encryption, nonces, etc. is common in algebraic
approaches to modeling cryptographic protocols [15,16].

Example 2. The program in Fig. 1 (right) is another simple example of an unre-
alizable specification. The program variables here are x, b, and y. The hole in this
partial program is restricted so that it cannot refer to x or b. It is easy to phrase
the question for synthesis of the complete program in terms of a grammar. The
restriction on the hole ensures that the synthesized code fragment can neither
directly check if x = T, nor indirectly check via b. Consequently, it is easy to see
that there is no program for the hole that can ensure y is equal to b. We remark
that the code at the hole, apart from not being allowed to examine some vari-
ables, is also implicitly prohibited from looking at the control path taken to reach
the hole. If we could synthesize two different programs depending on the control
path taken to reach the hole, then we could set y := T when the then-branch is
taken and set y := F when the else-branch is taken. Program synthesis requires
a control-flow independent decision to be made about how to fill the hole. In this
sense, we can think of the hole as having only incomplete information about the
executions for which it must be correct. This can be used to encode specifica-
tions using complex ghost code, as we show in the next examples. In Sect. 6, we
explore a slightly different synthesis problem, called transition system synthesis,
where holes can be differently instantiated based on the history of an execution.

Example 3. In this example, we model the synthesis of a program that checks
whether a linked list pointed to by some node x has a key k. We model a next
pointer with a unary function next and we model locations using elements in
the underlying data domain.

Our formalism allows only for assert statements to specify desired pro-
gram properties. In order to state the correctness specification for our desired

Decidable Synthesis of Programs with Uninterpreted Functions 639

list-search program, we interleave ghost code into the program skeleton; we dis-
tinguish ghost code fragments by enclosing them in dashed boxes . The skele-
ton in Fig. 2 has a loop that advances the pointer variable x along the list until
NIL is reached. We model NIL with an immutable program variable. The first
hole ‘〈〈 ?? 1 〉〉’ before the while-loop and the second hole ‘〈〈 ?? 2 〉〉’ within the
while-loop need to be filled so that the assertion at the end is satisfied. We use
three ghost variables in the skeleton: gans, gwitness, and gfound. The ghost variable
gans evaluates to whether we expect to find k in the list or not, and hence at the
end the skeleton asserts that the Boolean variable b computed by the holes is
precisely gans. The holes are restricted to not look at the ghost variables.

assume(T �= F);
gfound := F;

〈〈 ?? 1 〉〉;
while(x �= NIL) {

if (gans �= T) then
assume(key(x) �= k);

else if (gwitness = x) then {
assume (key(x) = k);
gfound := T;

};
〈〈 ?? 2 〉〉;
x := next(x);

}
assume (gans = T ⇒ gfound = T);

assert b = T ⇐⇒ gans = T

Fig. 2. Skeleton with ghost code

Now, notice that the skeleton needs to
check that the answer gans is indeed correct.
If gans is not T, then we add the assumption
that key(x) �= k in each iteration of the loop,
hence ensuring the key is not present. For
ensuring correctness in the case gans = T,
we need two more ghost variables gwitness
and gfound. The variable gwitness witnesses the
precise location in the list that holds the key
k, and variable gfound indicates whether the
location at gwitness belongs to the list pointed
to by x. Observe that this specification can
be realized by filling ‘〈〈 ?? 1 〉〉’ with “b := F”
and ‘〈〈 ?? 2 〉〉’ with “if key(x) = k then b :=
T”, for instance. Furthermore, this program
is coherent [39] and hence our decision pro-
cedure will answer in the affirmative and syn-
thesize code for the holes.

In fact, our procedure will synthesize a representation for all possible ways
to fill the holes (thus including the solution above) and it is therefore possible
to enumerate and pick specific solutions. It is straightforward to formulate a
grammar which matches this setup. As noted, we must stipulate that the holes
do not use the ghost variables.

Example 4. Consider the same program skeleton as in Example 3, but let us add
an assertion at the end: “assert (b = T ⇒ z = gwitness)”, where z is another
program variable. We are now demanding that the synthesized code also find a
location z, whose key is k, that is equal to the ghost location gwitness, which is
guessed nondeterministically at the beginning of the program. This specification
is unrealizable: for a list with multiple locations having the key k, no matter
what the program picks we can always take gwitness to be the other location
with key k in the list, thus violating the assertion. Our decision procedure will
report in the negative for this specification.

Example 5 (Input/Output Examples). We can encode input/output examples by
adding a sequence of assignments and assumptions that define certain models at

640 P. Krogmeier et al.

the beginning of the program grammar. For instance, the sequence of statements
in Fig. 3 defines a linked list of two elements with different keys.

assume(x1 �= NIL);
x2 := next(x1);
assume(x2 �= NIL);
assume(next(x2) = NIL);
k1 := key(x1);
k2 := key(x2);
assume(k1 �= k2)

Fig. 3. An example model

We can similarly use special variables to define
the output that we expect in the case of each model.
And as we saw in the ghost code of Fig. 2, we
can use fresh variables to introduce nondetermin-
istic choices, which the grammar can use to pick
an example model nondeterministically. Thus when
the synthesized program is executed on the chosen
model it computes the expected answer. This has
the effect of requiring a solution that generalizes
across models. See [30] for a more detailed example.

3 Preliminaries

In this section we define the syntax and semantics of uninterpreted programs
and the (grammar-restricted) uninterpreted program synthesis problem.

Syntax. We fix a first order signature Σ = (F ,R), where F and R are sets
of function and relation symbols, respectively. Let V be a finite set of program
variables. The set of programs over V is inductively defined using the following
grammar, with f ∈ F , R ∈ R (with f and R of the appropriate arities), and
x, y, z1, . . . , zr ∈ V .

〈stmt〉V ::= skip | x := y | x := f(z1, . . . , zr) |
assume

(〈cond〉V

) | assert
(〈cond〉V

) | 〈stmt〉V ; 〈stmt〉V |
if

(〈cond〉V

)
then 〈stmt〉V else 〈stmt〉V | while

(〈cond〉V

) 〈stmt〉V

〈cond〉V ::= x = y | R(z1, . . . , zr) | 〈cond〉V ∨ 〈cond〉V | ¬〈cond〉V

Without loss of generality, we can assume that our programs do not use relations
(they can be modeled with functions) and that every condition is either an
equality or disequality between variables (arbitrary Boolean combinations can
be modeled with nested if−then−else). When the set of variables V is clear
from context, we will omit the subscript V from 〈stmt〉V and 〈cond〉V .

Program Executions. An execution over V is a finite word over the alphabet

ΠV = {“x := y”, “x := f(z)”,“assume(x = y)”, “assume(x �= y)”,

“assert(⊥)” | x, y ∈ V, z ∈ V r, f ∈ F}.
The set of complete executions for a program p over V , denoted Exec(p), is

a regular language. See [30] for a straightforward definition. The set PExec(p)
of partial executions is the set of prefixes of complete executions in Exec(p). We
refer to partial executions as simply executions, and clarify as needed when the
distinction is important.

Decidable Synthesis of Programs with Uninterpreted Functions 641

Semantics. The semantics of executions is given in terms of data models. A
data model M = (U, I) is a first order structure over Σ comprised of a universe
U and an interpretation function I for the program symbols. The semantics of an
execution π over a data model M is given by a configuration σ(π,M) : V → U
which maps each variable to its value in the universe U at the end of π. This
notion is straightforward and we skip the formal definition (see [39] for details).
For a fixed program p, any particular data model corresponds to at most one
complete execution π ∈ Exec(p).

An execution π is feasible in a data model M if for every prefix ρ = ρ′ ·
assume(x ∼ y) of π (where ∼ ∈ {=, �=}), we have σ(ρ′,M)(x) ∼ σ(ρ′,M)(y).
Execution π is said to be correct in a data model M if for every prefix of π of
the form ρ = ρ′ · assert(⊥), we have that ρ′ is not feasible, or infeasible in M.
Finally, a program p is said to be correct if for all data models M and executions
π ∈ PExec(p), π is correct in M.

3.1 The Program Synthesis Problem

We are now ready to define the program synthesis problem. Our approach will
be to allow users to specify a grammar and ask for the synthesis of a program
from the grammar. We allow the user to express specifications using assertions
in the program to be synthesized.

Grammar Schema and Input Grammar. In our problem formulation, we
allow users to define a grammar which conforms to a schema, given below.
The input grammars allow the usual context-free power required to describe
proper nesting/bracketing of program expressions, but disallow other uses of the
context-free power, such as counting statements.

S → if (x = y)

then u := v T u := v

T → else

T → ; u := v T u := v ;

Fig. 4. Grammar with counting

For example, we disallow the grammar in
Fig. 4. This grammar has two non-terminals S
(the start symbol) and T . It generates programs
with a conditional that has the same number
of assignments in the if and else branches. We
assume a countably infinite set PN of nontermi-
nals and a countably infinite set PV of program
variables. The grammar schema S over PN and
PV is an infinite collection of productions:

S =

⎧
⎪⎪⎨

⎪⎪⎩

“P → x := y”, “P → x := f(z)”,
“P → assume(x ∼ y)”, “P → assert(⊥)”,
“P → skip”, “P → while (x ∼ y) P1”,
“P → if (x ∼ y) thenP1 elseP2”, “P → P1;P2”

∣
∣
∣
∣
∣
∣
∣
∣

P, P1, P2 ∈ PN
x, y ∈ PV, z ∈ PV r

∼ ∈ {=, �=}

⎫
⎪⎪⎬

⎪⎪⎭

An input grammar G is any finite subset of the schema S, and it defines a
set of programs, denoted L(G). We can now define the main problem addressed
in this work.

642 P. Krogmeier et al.

Definition 1 (Uninterpreted Program Realizability and Synthesis).
Given an input grammar G, the realizability problem is to determine whether
there is an uninterpreted program p ∈ L(G) such that p is correct. The synthesis
problem is to determine the above, and further, if realizable, synthesize a correct
program p ∈ L(G).

Example 6. Consider the program with a hole from Example 1 (Fig. 1, left). We
can model that synthesis problem in our framework with the following grammar.

S → P1;P2;P〈〈 ?? 〉〉;P3 P〈〈 ?? 〉〉 → 〈stmt〉V〈〈 ?? 〉〉
P1 → “cipher := enc(secret, key)” P3 → “assert(z = secret)”
P2 → “assume(secret = dec(cipher, key))”

Here, V〈〈 ?? 〉〉 = {cipher, y1, . . . , yn} and the grammar 〈stmt〉V〈〈 ?? 〉〉 is that
of Sect. 3, restricted to loop-free programs. Any program generated from this
grammar indeed matches the template from Fig. 1 (left) and any such program
is correct if it satisfies the last assertion for all models, i.e., all interpretations
of the function symbols enc and dec and for all initial values of the variables in
V = V〈〈 ?? 〉〉 ∪ {key, secret}.

4 Undecidability of Uninterpreted Program Synthesis

Since verification of uninterpreted programs with loops is undecidable [39,42],
the following is immediate.

Theorem 1. The uninterpreted program synthesis problem is undecidable.

We next consider synthesizing loop-free uninterpreted programs (for which
verification reduces to satisfiability of quantifier-free EUF) from grammars con-
forming to the following schema:

Sloop-free = S\{“P → while (x ∼ y) P1” | P, P1 ∈ PN, x, y ∈ PV,∼ ∈ {=, �=}}

Theorem 2. The uninterpreted program synthesis problem is undecidable for
the schema Sloop-free.

This is a corollary of the following stronger result: synthesis of straight-line
uninterpreted programs (conforming to schema SSLP below) is undecidable.

SSLP = Sloop-free \ {“P → if(x ∼ y) thenP1 elseP2” | P, P1, P2 ∈ PN,

x, y ∈ PV, ∼ ∈ {=, �=}}
Theorem 3. The uninterpreted program synthesis problem is undecidable for
the schema SSLP.

In summary, program synthesis of even straight-line uninterpreted programs,
which have neither conditionals nor iteration, is already undecidable. The notion
of coherence for uninterpreted programs was shown to yield decidable verification
in [39]. As we’ll see in Sect. 5, restricting to coherent programs yields decidable
synthesis, even for programs with conditionals and iteration.

Decidable Synthesis of Programs with Uninterpreted Functions 643

5 Synthesis of Coherent Uninterpreted Programs

In this section, we present the main result of the paper: grammar-restricted pro-
gram synthesis for uninterpreted coherent programs [39] is decidable. Intuitively,
coherence allows us to maintain congruence closure in a streaming fashion when
reading a coherent execution. First we recall the definition of coherent execu-
tions and programs in Sect. 5.1 and also the algorithm for verification of such
programs. Then we introduce the synthesis procedure, which works by construct-
ing a two-way alternating tree automaton. We briefly discuss this class of tree
automata in Sect. 5.2 and recall some standard results. In Sects. 5.3, 5.4 and 5.5
we describe the details of the synthesis procedure, argue its correctness, and
discuss its complexity. In Sect. 5.6, we present a tight lower bound result.

5.1 Coherent Executions and Programs

The notion of coherence for an execution π is defined with respect to the terms
it computes. Intuitively, at the beginning of an execution, each variable x ∈ V
stores some constant term x̂ ∈ C. As the execution proceeds, new terms are
computed and stored in variables. Let TermsΣ be the set of all ground terms
defined using the constants and functions in Σ. Formally, the term corresponding
to a variable x ∈ V at the end of an execution π ∈ Π∗

V , denoted T(π, x) ∈
TermsΣ , is inductively defined as follows. We assume that the set of constants C
includes a designated set of initial constants V̂ = {x̂ | x ∈ V } ⊆ C.

T(ε, x) = x̂ x ∈ V
T(π·“x := y”, x) = T(π, y) x, y ∈ V

T(π·“x := f(z1, . . . , zr)”, x) = f(T(π, z1), . . . ,T(π, zr)) x, z1, . . . , zr ∈ V
T(π·a, x) = T(π, x) otherwise

We will use T(π) to denote the set {T(π′, x) | x ∈ V, π′ is a prefix of π}.
A related notion is the set of term equality assumptions that an execution

accumulates, which we formalize as α : π → P(TermsΣ × TermsΣ), and define
inductively as α(ε) = ∅, α(π·“assume(x = y)”) = α(π) ∪ {(T(π, x),T(π, y))},
and α(π·a) = α(π) otherwise.

For a set of term equalities A ⊆ TermsΣ × TermsΣ , and two ground terms
t1, t2 ∈ TermsΣ , we say t1 and t2 are equivalent modulo A, denoted t1 ∼=A t2, if
A |= t1 = t2. For a set of terms S ⊆ TermsΣ , and a term t ∈ TermsΣ we write
t ∈A S if there is a term t′ ∈ S such that t ∼=A t′. For terms t, s ∈ TermsΣ , we say
s is a superterm modulo A of t, denoted t �A s if there are terms t′, s′ ∈ TermsΣ
such that t ∼=A t′, s ∼=A s′ and s′ is a superterm of t′.

With the above notation in mind, we now review the notion of coherence.

Definition 2 (Coherent Executions and Programs [39]). An execution π ∈
Π∗

V is said to be coherent if it satisfies the following two conditions.

Memoizing. Let ρ = ρ′ ·“x := f(y)” be a prefix of π. If tx = T(ρ, x) ∈α(ρ′) T(ρ′),
then there is a variable z ∈ V such that tx ∼=α(ρ′) tz, where tz = T(ρ′, z).

644 P. Krogmeier et al.

Early Assumes. Let ρ = ρ′ · “assume(x = y)” be a prefix of π, tx = T(ρ′, x)
and ty = T(ρ′, y). If there is a term s ∈ T(ρ′) such that either tx �α(ρ′) s
or ty �α(ρ′) s, then there is a variable z ∈ V such that s ∼=α(ρ′) tz, where
tz = T(ρ′, z).

A program p is coherent if every complete execution π ∈ Exec(p) is coherent.

The following theorems due to [39] establish the decidability of verifying
coherent programs and also of checking if a program is coherent.

Theorem 4 ([39]). The verification problem for coherent programs, i.e. check-
ing if a given uninterpreted coherent program is correct, is decidable.

Theorem 5 ([39]). The problem of checking coherence, i.e. checking if a given
uninterpreted program is coherent, is decidable.

The techniques used in [39] are automata theoretic. They allow us to con-
struct an automaton Aexec

2, of size O(2poly(|V |)), which accepts all coherent
executions that are also correct.

To give some intuition for the notion of coherence, we illustrate simple exam-
ple programs that are not coherent. Consider program p0 below, which is not
coherent because it fails to be memoizing.

p0
Δ= x := f(y); x := f(x); z := f(y)

The first and third statements compute f(ŷ), storing it in variables x and z,
respectively, but the term is dropped after the second statement and hence is
not contained in any program variable when the third statement executes. Next
consider program p1, which is not coherent because it fails to have early assumes.

p1
Δ= x := f(w); x := f(x); y := f(z); y := f(y); assume(w = z)

Indeed, the assume statement is not early because superterms of w and z, namely
f(ŵ) and f(ẑ), were computed and subsequently dropped before the assume.

Intuitively, the coherence conditions are necessary to allow equality informa-
tion to be tracked with finite memory. We can make this stark by tweaking the
example for p1 above as follows.

p′
1

Δ= x := f(w); x := f(x) · · · x := f(x)︸ ︷︷ ︸
n times

;

y := f(z); y := f(y) · · · y := f(y)
︸ ︷︷ ︸

n times

; assume(w = z)

Observe that, for large n (e.g. n > 100), many terms are computed and dropped
by this program, like f42(x̂) and f99(ŷ) for instance. The difficulty with this

2 We use superscripts ‘ ’ and ‘ ’ for word and tree automata, respectively.

Decidable Synthesis of Programs with Uninterpreted Functions 645

program, from a verification perspective, is that the assume statement entails
equalities between many terms which have not been kept track of. Imagine trying
to verify the following program

p2
Δ= p′

1; assert(x = y)

Let πp′
1

∈ Exec(p′
1) be the unique complete execution of p′

1. If we examine the
details, we see that tx = T(πp′

1
, x) = f101(ŵ) and ty = T(πp′

1
, y) = f101(ẑ). The

assertion indeed holds because tx ∼={(ŵ,ẑ)} ty. However, to keep track of this fact
requires remembering an arbitrary number of terms that grows with the size
of the program. Finally, we note that the coherence restriction is met by many
single-pass algorithms, e.g. searching and manipulation of lists and trees.

5.2 Overview of the Synthesis Procedure

Our synthesis procedure uses tree automata. We consider tree representations
of programs, or program trees. The synthesis problem is thus to check if there is
a program tree whose corresponding program is coherent, correct, and belongs
to the input grammar G.

The synthesis procedure works as follows. We first construct a top-down tree
automaton AG that accepts the set of trees corresponding to the programs gen-
erated by G. We next construct another tree automaton Acc, which accepts all
trees corresponding to programs that are coherent and correct. Acc is a two-way
alternating tree automaton that simulates all executions of an input program tree
and checks that each is both correct and coherent. In order to simulate longer
and longer executions arising from constructs like while-loops, the automaton
traverses the input tree and performs multiple passes over subtrees, visiting the
internal nodes of the tree many times. We then translate the two-way alternat-
ing tree automaton to an equivalent (one-way) nondeterministic top-down tree
automaton by adapting results from [33,53] to our setting. Finally, we check
emptiness of the intersection between this top-down automaton and the gram-
mar automaton AG . The definitions for trees and the relevant automata are
standard, and we refer the reader to [14] and to our technical report [30].

5.3 Tree Automaton for Program Trees

Every program can be represented as a tree whose leaves are labeled with basic
statements like “x := y” and whose internal nodes are labeled with constructs
like while and seq (an alias for the sequencing construct ‘;’), which have sub-
programs as children. Essentially, we represent the set of programs generated
by an input grammar G as a regular set of program trees, accepted by a non-
deterministic top-down tree automaton AG . The construction of AG mimics the
standard construction for tree automata that accept parse trees of context free
grammars. The formalization of this intuition is straightforward, and we refer the
reader to [30] for details. We note the following fact regarding the construction
of the acceptor of program trees from a particular grammar G.

Lemma 1. AG has size O(|G|) and can be constructed in time O(|G|). �

646 P. Krogmeier et al.

5.4 Tree Automaton for Simulating Executions

We now discuss the construction of the two-way alternating tree automaton
Acc that underlies our synthesis procedure. A two-way alternating tree automa-
ton consists of a finite set of states and a transition function that maps tuples
(q,m, a) of state, incoming direction, and node labels to positive Boolean formu-
las over pairs (q′,m′) of next state and next direction. In the case of our binary
program trees, incoming directions come from {D,UL, UR}, corresponding to
coming down from a parent, and up from left and right children. Next directions
come from {U,L,R}, corresponding to going up to a parent, and down to left
and right children.

The automaton Acc is designed to accept the set of all program trees that
correspond to correct and coherent programs. This is achieved by ensuring that
a program tree is accepted precisely when all executions of the program it rep-
resents are accepted by the word automaton Aexec (Sect. 5.1). The basic idea
behind Acc is as follows. Given a program tree T as input, Acc traverses T and
explores all the executions of the associated program. For each execution σ, Acc

keeps track of the state that the word automaton Aexec would reach after read-
ing σ. Intuitively, an accepting run of Acc is one which never visits the unique
rejecting state of Aexec during simulation.

We now give the formal description of Acc = (Qcc, Icc, δcc0 , δcc1 , δcc2), which
works over the alphabet ΓV described in Sect. 5.3.

States. Both the full set of states and the initial set of states for Acc coincide
with those of the word automaton Aexec. That is, Qcc = Qexec and Icc = {qexec0 },
where qexec0 is the unique starting state of Aexec.

Transitions. For intuition, consider the case when the automaton’s control is in
state q reading an internal tree node n with one child and which is labeled by a =
“while(x = y)”. In the next step, the automaton simultaneously performs two
transitions corresponding to two possibilities: entering the loop after assuming
the guard “x = y” to be true and exiting the loop with the guard being false. In
the first of these simultaneous transitions, the automaton moves to the left child
n·L, and its state changes to q′

1, where q′
1 = δexec(q, “assume(x = y)”). In the

second simultaneous transition, the automaton moves to the parent node n·U
(searching for the next statement to execute, which follows the end of the loop)
and changes its state to q′

2, where q′
2 = δexec(q, “assume(x �= y)”). We encode

these two possibilities as a conjunctive transition of the two-way alternating
automaton. That is, δcc1 (q,m, a) =

(
(q′

1, L) ∧ (q′
2, U)

)
.

For every i,m, a, we have δi(qreject,m, a) = ⊥, where qreject is the unique,
absorbing rejecting state of Aexec. Below we describe the transitions from all
other states q �= qreject. All transitions δi(q,m, a) not described below are ⊥.

Transitions from the Root. At the root node, labeled by “root”, the automa-
ton transitions as follows:

δcc1 (q,m, root) =

{
(q, L) if m = D

true otherwise

Decidable Synthesis of Programs with Uninterpreted Functions 647

A two-way tree automaton starts in the configuration where m is set to D.
This means that in the very first step the automaton moves to the child node
(direction L). If the automaton visits the root node in a subsequent step (marking
the completion of an execution), then all transitions are enabled.

Transitions from Leaf Nodes. For a leaf node with label a ∈ Γ0 and state q,
the transition of the automaton is δcc0 (q,D, a) = (δexec(q, a), U). That is, when
the automaton visits a leaf node from the parent, it simulates reading a in Aexec

and moves to the resulting state in the parent node.

Transitions from “while” Nodes. As described earlier, when reading a node
labeled by “while(x ∼ y)”, where ∼ ∈ {=, �=}, the automaton simulates both
the possibility of entering the loop body as well as the possibility of exiting the
loop. This corresponds to a conjunctive transition:

δcc1 (q,m, “while(x ∼ y)”) = (q′, L
) ∧ (

q′′, U)
where q′ = δexec(q, “assume(x ∼ y)”)
and q′′ = δexec(q, “assume(x �∼ y)”)

Above, �∼ refers to “ = ” when ∼ is “ �= ”, and vice versa. The first conjunct
corresponds to the execution where the program enters the loop body (assuming
the guard is true), and thus control moves to the left child of the current node,
which corresponds to the loop body. The second conjunct corresponds to the
execution where the loop guard is false and the automaton moves to the parent
of the current tree node. Notice that, in both the conjuncts above, the direction
in which the tree automaton moves does not depend on the last move m of the
state. That is, no matter how the program arrives at a while statement, the
automaton simulates both the possibilities of entering or exiting the loop body.

Transitions from “ite” Nodes. At a node labeled “ite(x ∼ y)”, when coming
down the tree from the parent, the automaton simulates both branches of the
conditional:

δcc2 (q,D, “ite(x ∼ y)”) = (q′, L) ∧ (q′′, R)
where q′ = δexec(q, “assume(x ∼ y)”)
and q′′ = δexec(q, “assume(x �∼ y)”)

The first conjunct in the transition corresponds to simulating the word automa-
ton on the condition x ∼ y and moving to the left child, i.e. the body of the
then branch. Similarly, the second conjunct corresponds to simulating the word
automaton on the negation of the condition and moving to the right child, i.e.
the body of the else branch.

648 P. Krogmeier et al.

Now consider the case when the automaton moves up to an ite node from
a child node. In this case, the automaton moves up to the parent node (hav-
ing completed simulation of the then or else branch) and the state q remains
unchanged:

δcc2 (q,m, “ite(x ∼ y)”) = (q, U) m ∈ {UL, UR}

Transitions from “seq” Nodes. In this case, the automaton moves either to
the left child, the right child, or to the parent, depending on the last move. It
does not change the state component. Formally,

δcc2 (q,m, “seq”) =

⎧
⎪⎨

⎪⎩

(q, L) if m = D

(q,R) if m = UL

(q, U) if m = UR

The above transitions match the straightforward semantics of sequencing two
statements s1; s2. If the automaton visits from the parent node, it next moves
to the left child to simulate s1. When it finishes simulating s1, it comes up from
the left child and enters the right child to begin simulating s2. Finally, when
simulation of s2 is complete, the automaton moves to the parent node, exiting
the subtree.

The following lemma asserts the correctness of the automaton construction
and states its complexity.

Lemma 2. Acc accepts the set of all program trees corresponding to correct,
coherent programs. It has size |Acc| = O(2poly(|V |)), and can be constructed in
O(2poly(|V |)) time. �

5.5 Synthesis Procedure

The rest of the synthesis procedure goes as follows. We first construct a nondeter-
ministic top-down tree automaton Acc-td such that L(Acc-td) = L(Acc). An adap-
tation of results from [33,53] ensures that Acc-td has size |Acc-td| = O(22poly(|V |)

)
and can be constructed in time O(22poly(|V |)

). Next we construct a top-down
nondeterministic tree automaton A such that L(A) = L(Acc-td) ∩ L(AG) =
L(Acc)∩L(AG), with size |A | = O(22poly(|V |) ·|G|) and in time O(|Acc-td|·|AG |) =
O(22poly(|V |) · |G|). Finally, checking emptiness of A can be done in time
O(|A |) = O(22poly(|V |) · |G|). If non-empty, a program tree can be constructed.

This gives us the central upper bound result of the paper.

Theorem 6. The grammar-restricted synthesis problem for uninterpreted
coherent programs is decidable in 2EXPTIME, and in particular, in time doubly
exponential in the number of variables and linear in the size of the input gram-
mar. Furthermore, a tree automaton representing the set of all correct coherent
programs that conform to the grammar can be constructed in the same time. �

Decidable Synthesis of Programs with Uninterpreted Functions 649

5.6 Matching Lower Bound

Our synthesis procedure is optimal. We prove a 2EXPTIME lower bound for the
synthesis problem by reduction from the 2EXPTIME-hard acceptance problem
of alternating Turing machines (ATMs) with exponential space bound [12]. Full
details of the reduction can be found in [30].

Theorem 7. The grammar-restricted synthesis problem for coherent uninter-
preted programs is 2EXPTIME-hard.

6 Further Results

In this section, we give results for variants of uninterpreted program synthesis
in terms of transition systems, Boolean programs, and recursive programs.

6.1 Synthesizing Transition Systems

Here, rather than synthesizing programs from grammars, we consider instead the
synthesis of transition systems whose executions must belong to a regular set.
Our main result is that the synthesis problem in this case is EXPTIME-complete,
in contrast to grammar-restricted program synthesis which is 2EXPTIME-
complete.

Transition System Definition and Semantics. Let us fix a set of program
variables V as before. We consider the following finite alphabet

ΣV = {“x := y”, “x := f(z)”, “assert(⊥)”, “check(x = y)” | x, y,∈ V, z ∈ V r}

Let us define ΓV ⊆ ΣV to be the set of all elements of the form “check(x = y)”,
where x, y ∈ V . We refer to the elements of ΓV as check letters.

A (deterministic) transition system TS over V is a tuple (Q, q0,H, λ, δ),
where Q is a finite set of states, q0 ∈ Q is the initial state, H ⊆ Q is the set
of halting states, λ : Q → ΣV is a labeling function such that for any q ∈ Q, if
λ(q) = “assert(⊥)” then q ∈ H, and δ : (Q \ H) → Q ∪ (Q × Q) is a transition
function such that for any q ∈ Q \ H, δ(q) ∈ Q × Q iff λ(q) ∈ ΓV.

We define the semantics of a transition system using the set of executions that
it generates. A (partial) execution π of a transition system TS = (Q, q0,H, λ, δ)
over variables V is a finite word over the induced execution alphabet ΠV (from
Sect. 3) with the following property. If π = a0a1 . . . an with n ≥ 0, then there
exists a sequence of states qj0 , qj1 , . . . , qjn with qj0 = q0 such that (0 ≤ i ≤ n):

– If λ(qji) /∈ ΓV then ai = λ(qji), and if i < n then qji+1 = δ(qji).

– Otherwise

{
either ai = “assume(x = y)” and i < n ⇒ qji+1 = δ(qji) �1,
or ai = “assume(x �= y)” and i < n ⇒ qji+1 = δ(qji) �2

650 P. Krogmeier et al.

In the above, we denote pair projection with �, i.e., (t1, t2) �i= ti, where
i ∈ {1, 2}. A complete execution is an execution whose corresponding final state
(qn above) is in H. For any transition system TS, we denote the set of its
executions by Exec(TS) and the set of its complete executions by CompExec(TS).
The notions of correctness and coherence for transition systems are identical to
their counterparts for programs.

The Transition System Synthesis Problem. We consider transition system
specifications that place restrictions on executions (both partial and complete)
using two regular languages S and R. Executions must belong to the first lan-
guage S (which is prefix-closed) and all complete executions must belong to the
second language R. A specification is given as two deterministic automata AS

and AR over executions, where L(AS) = S and L(AR) = R. For a transition sys-
tem TS and specification automata AS and AR, whenever Exec(TS) ⊆ L(AS)
and CompExec(TS) ⊆ L(AR) we say that TS satisfies its (syntactic) specifica-
tion. Note that this need not entail correctness of TS. Splitting the specification
into partial executions S and complete executions R allows us, among other
things, to constrain the executions of non-halting transition systems.

Definition 3 (Transition System Realizability and Synthesis). Given a
finite set of program variables V and deterministic specification automata AS

(prefix-closed) and AR over the execution alphabet ΠV , decide if there is a cor-
rect, coherent transition system TS over V that satisfies the specification. Fur-
thermore, produce one if it exists.

Since programs are readily translated to transition systems (of similar size),
the transition system synthesis problem seems, at first glance, to be a prob-
lem that ought to have similar complexity. However, as we show, it is crucially
different in that it allows the synthesized transition system to have complete
information of past commands executed at any point. We will observe in this
section that the transition system synthesis problem is EXPTIME-complete.

To see the difference between program and transition system synthesis, con-
sider program skeleton P from Example 2 in Sect. 2. The problem is to fill the
hole in P with either y := T or y := F. Observe that when P executes, there are
two different executions that lead to the hole. In grammar-restricted program
synthesis, the hole must be filled by a sub-program that is executed no matter
how the hole is reached, and hence no such program exists. However, when we
model this problem in the setting of transition systems, the synthesizer is able
to produce transitions that depend on how the hole is reached. In other words, it
does not fill the hole in P with uniform code. In this sense, in grammar-restricted
program synthesis, programs have incomplete information of the past. We cru-
cially exploited this difference in the proof of 2EXPTIME-hardness for grammar-
restricted program synthesis (see [30]). No such incomplete information can be
enforced by regular execution specifications in transition system synthesis, and
indeed the problem turns out to be easier: transition system realizability and
synthesis are EXPTIME-complete.

Decidable Synthesis of Programs with Uninterpreted Functions 651

Theorem 8. Transition system realizability is decidable in time exponential in
the number of program variables and polynomial in the size of the automata
AS and AR. Furthermore, the problem is EXPTIME-complete. When realizable,
within the same time bounds we can construct a correct, coherent transition sys-
tem whose partial and complete executions are in L(AS) and L(AR), respectively.

6.2 Synthesizing Boolean Programs

Here we observe corollaries of our results when applied to the more restricted
problem of synthesizing Boolean programs.

In Boolean program synthesis we interpret variables in programs over the
Boolean domain {T, F}, and we disallow computations of uninterpreted func-
tions and the checking of uninterpreted relations. Standard Boolean functions
like ∧ and ¬ are instead allowed, but note that these can be modeled using
conditional statements. We allow for nondeterminism with a special assignment
“b := *”, which assigns b nondeterministically to T or F . As usual, a program
is correct when it satisfies all its assertions.

Synthesis of Boolean programs can be reduced to uninterpreted program
synthesis using two special constants T and F . Each nondeterministic assign-
ment is modeled by computing a next function on successive nodes of a linked
list, accessing a nondeterministic value by computing key on the current node,
and assuming the result is either T or F . Since uninterpreted programs must
satisfy assertions in all models, this indeed captures nondeterministic assign-
ment. Further, every term ever computed in such a program is equivalent to T
or F (by virtue of the interleaved assume statements), making the resulting
program coherent. The 2EXPTIME upper bound for Boolean program synthe-
sis now follows from Theorem 6. We further show that, perhaps surprisingly,
the 2EXPTIME lower bound from Sect. 5 can be adapted to prove 2EXPTIME-
hardness of Boolean program synthesis.

Theorem 9. The grammar-restricted synthesis problem for Boolean programs is
2EXPTIME-complete, and can be solved in time doubly-exponential in the number
of variables and linear in the size of the input grammar. �

Thus synthesis for coherent uninterpreted programs is no more complex
than Boolean program synthesis, establishing decidability and complexity of a
problem which has found wide use in practice—for instance, the synthesis tool
Sketch solves precisely this problem, as it models integers using a small number
of bits and allows grammars to restrict programs with holes.

6.3 Synthesizing Recursive Programs

We extend the positive result of Sect. 5 to synthesize coherent recursive pro-
grams. The setup for the problem is very similar. Given a grammar that identi-
fies a class of recursive programs, the goal is to determine if there is a program
in the grammar that is coherent and correct.

652 P. Krogmeier et al.

The syntax of recursive programs is similar to the non-recursive case, and
we refer the reader to [30] for details. In essence, programs are extended with a
new function call construct. Proofs are similar in structure to the non-recursive
case, with the added challenge of needing to account for recursive function calls
and the fact that Aexec becomes a (visibly) pushdown automaton rather than a
standard finite automaton. This gives a 2EXPTIME algorithm for synthesizing
recursive programs; a matching lower bound follows from the non-recursive case.

Theorem 10. The grammar-restricted synthesis problem for uninterpreted
coherent recursive programs is 2EXPTIME-complete. The algorithm is doubly
exponential in the number of program variables and linear in the size of the
input grammar. Furthermore, a tree automaton representing the set of all cor-
rect, coherent recursive programs that conform to the grammar can be constructed
in the same time.

7 Related Work

The automata and game-theoretic approaches to synthesis date back to a prob-
lem proposed by Church [13], after which a rich theory emerged [9,18,32,48].
The problems considered in this line of work typically deal with a system react-
ing to an environment interactively using a finite set of signals over an infinite
number of rounds. Tree automata over infinite trees, representing strategies, with
various infinitary acceptance conditions (Büchi, Rabin, Muller, parity) emerged
as a uniform technique to solve such synthesis problems against temporal logic
specifications with optimal complexity bounds [31,38,44,45]. In this paper, we
use an alternative approach from [35] that works on finite program trees, using
two-way traversals to simulate iteration. The work in [35], however, uses such
representations to solve synthesis problems for programs over a fixed finite set of
Boolean variables and against LTL specifications. In this work we use it to syn-
thesize coherent programs that have finitely many variables working over infinite
domains endowed with functions and relations.

While decidability results for program synthesis beyond finite data domains
are uncommon, we do know of some results of this kind. First, there are decid-
ability results known for synthesis of tranducers with registers [29]. Transducers
interactively read a stream of inputs and emit a stream of outputs. Finite-state
tranducers can be endowed with a set of registers for storing inputs and doing
only equality/disequality comparisons on future inputs. Synthesis of such trans-
ducers for temporal logic specifications is known to be decidable. Note that,
although the data domain is infinite, there are no functions or relations on data
(other than equality), making it a much more restricted class (and grammar-
based approaches for syntactically restricting transducers has not been stud-
ied). Indeed, with uninterpreted functions and relations, the synthesis problem
is undecidable (Theorem 1), with decidability only for coherent programs. In [11],
the authors study the problem of synthesizing uninterpreted terms from a gram-
mar that satisfy a first-order specification. They give various decidability and

Decidable Synthesis of Programs with Uninterpreted Functions 653

undecidability results. In contrast, our results are for programs with conditionals
and iteration (but restricted to coherent programs) and for specifications using
assertions in code.

Another setting with a decidable synthesis result over unbounded domains is
work on strategy synthesis for linear arithmetic satisfiability games [17]. There it
is shown that for a satisfiability game, in which two players (SAT and UNSAT)
play to prove a formula is satisfiable (where the formula is interpreted over the
theory of linear rational arithmetic), if the SAT player has a winning strategy
then a strategy can be synthesized. Though the data domain (rationals) is infi-
nite, the game consists of a finite set of interactions and hence has no need for
recursion. The authors also consider reachability games where the number of
rounds can be unbounded, but present only sound and incomplete results, as
checking who wins in such reachability games is undecidable.

Tree automata techniques for accepting finite parse trees of programs was
explored in [37] for synthesizing reactive programs with variables over finite
domains. In more recent work, automata on finite trees have been explored
for synthesizing data completion scripts from input-output examples [55], for
accepting programs that are verifiable using abstract interpretations [54], and
for relational program synthesis [56].

The work in [36] explores a decidable logic with ∃∗∀∗ prefixes that can be
used to encode synthesis problems with background theories like arithmetic.
However, encoding program synthesis in this logic only expresses programs of
finite size. Another recent paper [27] explores sound (but incomplete) techniques
for showing unrealizability of syntax-guided synthesis problems.

8 Conclusions

We presented foundational results on synthesizing coherent programs with unin-
terpreted functions and relations. To the best of our knowledge, this is the first
natural decidable program synthesis problem for programs of arbitrary size which
have iteration/recursion, and which work over infinite domains.

The field of program synthesis lacks theoretical results, and especially decid-
ability results. We believe our results to be the first of their kind to fill this
lacuna, and we find this paper exciting because it bridges the worlds of pro-
gram synthesis and the rich classical synthesis frameworks of systems over finite
domains using tree automata [9,18,32,48]. We believe this link could revitalize
both domains with new techniques and applications.

Turning to practical applications of our results, several questions require
exploration in future work. First, one might question the utility of programs
that verify only with respect to uninterpreted data domains. Recent work [10] has
shown that verifying programs using uninterpreted abstractions can be extremely
effective in practice for proving programs correct. Also, recent work by Mathur
et al. [40] explores ways to add axioms (such as commutativity of functions,
axioms regarding partial orders, etc.) and yet preserve decidability of verifi-
cation. The methods used therein are compatible with our technique, and we

654 P. Krogmeier et al.

believe our results can be extended smoothly to their decidable settings. A more
elaborate way to bring in complex theories (like arithmetic) would be to marry
our technique with the iterative automata-based software verification technique
pioneered by work behind the Ultimate tool [23–26]; this won’t yield decidable
synthesis, but still could result in complete synthesis procedures.

The second concern for practicality is the coherence restriction. There is
recent work by Mathur et al. [41] that shows single-pass heap-manipulating pro-
grams respect a (suitably adapted) notion of coherence. Adapting our technique
to this setting seems feasible, and this would give an interesting application of
our work. Finally, it is important to build an implementation of our procedure
in a tool that exploits pragmatic techniques for constructing tree automata, and
the techniques pursued in [54–56] hold promise.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series, D: Information and Com-
munication Security, vol. 40, pp. 1–25. IOS Press (2015)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp.
202–211. ACM, New York (2004). https://doi.org/10.1145/1007352.1007390

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009). https://doi.org/10.1145/1516512.1516518

4. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018). https://doi.org/10.1145/3208071

5. Bauer-Mengelberg, S.: über die vollständigkeit des logikkalküls. J. Symb. Log.
55(1), 341–342 (1990). https://doi.org/10.2307/2274974

6. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. Electr. Notes Theor. Comput. Sci.
190(4), 3–16 (2007). https://doi.org/10.1016/j.entcs.2007.09.004

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

8. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74113-8

9. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138, 295–311 (1969). https://doi.org/10.2307/1994916

10. Bueno, D., Sakallah, K.A.: euforia: complete software model checking with unin-
terpreted functions. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol.
11388, pp. 363–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11245-5 17

11. Caulfield, B., Rabe, M.N., Seshia, S.A., Tripakis, S.: What’s decidable about
syntax-guided synthesis? CoRR abs/1510.08393 (2015)

12. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981). https://doi.org/10.1145/322234.322243

13. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Summaries of talks presented at the Summer Institute for Symbolic Logic Cornell
University, 1957, 2nd edn., J. Symb. Log. 28(4), 30–50. 3a–45a. (1960)

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/3208071
https://doi.org/10.2307/2274974
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.2307/1994916
https://doi.org/10.1007/978-3-030-11245-5_17
https://doi.org/10.1007/978-3-030-11245-5_17
https://doi.org/10.1145/322234.322243

Decidable Synthesis of Programs with Uninterpreted Functions 655

14. Comon, H., et al.: Tree automata techniques and applications (2007). https://tata.
gforge.inria.fr. Accessed 29 Jun 2020

15. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983). https://doi.org/10.1109/TIT.1983.1056650

16. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004).
https://doi.org/10.3233/JCS-2004-12203

17. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. PACMPL
2(POPL), 61:1–61:30 (2018). https://doi.org/10.1145/3158149

18. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001].
Lecture Notes in Computer Science, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

19. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: POPL, pp. 317–330. ACM (2011). https://doi.org/10.1145/1925844.
1926423

20. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Commun. ACM 55(8), 97–105 (2012). https://doi.org/10.1145/2240236.
2240260

21. Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U.,
Zorn, B.G.: Inductive programming meets the real world. Commun. ACM 58(11),
90–99 (2015). https://doi.org/10.1145/2736282

22. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017)

23. Heizmann, M., et al.: Ultimate automizer with smtinterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641–643. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 53

24. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 7

25. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2010, pp. 471–482. ACM, New York (2010). https://doi.
org/10.1145/1706299.1706353

26. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

27. Hu, Q., Breck, J., Cyphert, J., D’Antoni, L., Reps, T.: Proving unrealizability for
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 335–352. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 18

28. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Inf.
54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

29. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register transduc-
ers. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 494–510.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 29

30. Krogmeier, P., Mathur, U., Murali, A., Madhusudan, P., Viswanathan, M.: Decid-
able synthesis of programs with uninterpreted functions. CoRR abs/1910.09744
(2019). http://arxiv.org/abs/1910.09744

https://tata.gforge.inria.fr
https://tata.gforge.inria.fr
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.3233/JCS-2004-12203
https://doi.org/10.1145/3158149
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2736282
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/978-3-030-01090-4_29
http://arxiv.org/abs/1910.09744

656 P. Krogmeier et al.

31. Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open systems in
reactive environments: control and synthesis. In: Palamidessi, C. (ed.) CONCUR
2000. LNCS, vol. 1877, pp. 92–107. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44618-4 9

32. Kupferman, O., Piterman, N., Vardi, M.Y.: An automata-theoretic approach to
infinite-state systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification.
LNCS, vol. 6200, pp. 202–259. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13754-9 11

33. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about
infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol.
1855, pp. 36–52. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 7

34. Löding, C., Madhusudan, P., Neider, D.: Abstract learning frameworks for syn-
thesis. In: Chechik, M., Raskin, J.F. (eds.) LTACAS 2016. LNCS, vol. 9636, pp.
167–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 10

35. Madhusudan, P.: Synthesizing reactive programs. In: CSL. LIPIcs, vol. 12, pp.
428–442. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011). https://doi.
org/10.4230/LIPIcs.CSL.2011.428

36. Madhusudan, P., Mathur, U., Saha, S., Viswanathan, M.: A decidable fragment
of second order logic with applications to synthesis. In: Ghica, D., Jung, A. (eds.)
27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 119, pp. 31:1–31:19. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018). https://doi.org/10.
4230/LIPIcs.CSL.2018.31

37. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, pp. 283–294. ACM, New York (2011). https://
doi.org/10.1145/1926385.1926419

38. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-48224-5 33

39. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable verification of unin-
terpreted programs. Proc. ACM Program. Lang. 3(POPL), 46:1–46:29 (2019).
https://doi.org/10.1145/3290359

40. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s decidable about program
verification modulo axioms? In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS,
vol. 12079, pp. 158–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45237-7 10

41. Mathur, U., Murali, A., Krogmeier, P., Madhusudan, P., Viswanathan, M.: Decid-
ing memory safety for single-pass heap-manipulating programs. Proc. ACM Pro-
gram. Lang. 4(POPL), 1–29 (2019). https://doi.org/10.1145/3371103

42. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking herbrand equalities and beyond.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 79–96. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 6

43. Muscholl, A., Walukiewicz, I.: Distributed synthesis for acyclic architectures. In:
FSTTCS. LIPIcs, vol. 29, pp. 639–651. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639

44. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989). https://doi.org/10.1145/75277.75293

https://doi.org/10.1007/3-540-44618-4_9
https://doi.org/10.1007/3-540-44618-4_9
https://doi.org/10.1007/978-3-642-13754-9_11
https://doi.org/10.1007/978-3-642-13754-9_11
https://doi.org/10.1007/10722167_7
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.4230/LIPIcs.CSL.2018.31
https://doi.org/10.4230/LIPIcs.CSL.2018.31
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1145/3290359
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1145/3371103
https://doi.org/10.1007/978-3-540-30579-8_6
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.1145/75277.75293

Decidable Synthesis of Programs with Uninterpreted Functions 657

45. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757. IEEE Computer Society (1990). https://doi.org/10.1109/
FSCS.1990.89597

46. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc.
52(4), 264–268 (1946). https://doi.org/10.1090/S0002-9904-1946-08555-9

47. Qiu, X., Solar-Lezama, A.: Natural synthesis of provably-correct data-structure
manipulations. PACMPL 1(OOPSLA), 65:1–65:28 (2017). https://doi.org/10.
1145/3133889

48. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Boston (1972)

49. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. SIGPLAN Not. 48(6), 15–26 (2013). https://
doi.org/10.1145/2499370.2462195

50. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15(5),
475–495 (2013). https://doi.org/10.1007/s10009-012-0249-7

51. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006). https://
doi.org/10.1145/1168857.1168907

52. SyGuS: Syntax guided synthesis. https://sygus.org/
53. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,

Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055090

54. Wang, X., Dillig, I., Singh, R.: Program synthesis using abstraction refinement.
Proc. ACM Program. Lang. 2(POPL), 63:1–63:30 (2017). https://doi.org/10.1145/
3158151

55. Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using exam-
ples. In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, pp. 195–213. ACM, New York (2016). https://doi.org/10.1145/2983990.
2984030

56. Wang, Y., Wang, X., Dillig, I.: Relational program synthesis. Proc. ACM Program.
Lang. 2(OOPSLA), 155:1–155:27 (2018). https://doi.org/10.1145/3276525

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1145/3133889
https://doi.org/10.1145/3133889
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://sygus.org/
https://doi.org/10.1007/BFb0055090
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
https://doi.org/10.1145/2983990.2984030
https://doi.org/10.1145/2983990.2984030
https://doi.org/10.1145/3276525
http://creativecommons.org/licenses/by/4.0/

	Decidable Synthesis of Programs with Uninterpreted Functions
	1 Introduction
	2 Examples
	3 Preliminaries
	3.1 The Program Synthesis Problem

	4 Undecidability of Uninterpreted Program Synthesis
	5 Synthesis of Coherent Uninterpreted Programs
	5.1 Coherent Executions and Programs
	5.2 Overview of the Synthesis Procedure
	5.3 Tree Automaton for Program Trees
	5.4 Tree Automaton for Simulating Executions
	5.5 Synthesis Procedure
	5.6 Matching Lower Bound

	6 Further Results
	6.1 Synthesizing Transition Systems
	6.2 Synthesizing Boolean Programs
	6.3 Synthesizing Recursive Programs

	7 Related Work
	8 Conclusions
	References

