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ABSTRACT
The problem of checking if a program execution meets a formal

specification arises in many software engineering tasks includ-

ing runtime verification and designing test oracles. When online

analysis is not possible, execution trace logs are stored for offline

postmortem analysis, often in a compressed format to reduce disk

space and warehousing requirements. A straightforward method

for checking if a compressed execution satisfies a property is to

first decompress it and then analyze the resulting uncompressed

execution.

In this paper, we consider the problem of checking if an execution

trace, compressed using a grammar-based lossless compression

scheme, satisfies a specification expressed in linear temporal logic,

without explicitly decompressing it. In general, this problem is

known to be intractable (PSPACE-hard in the size of the compressed

trace and the LTL formula). We show that the problem can be solved

in polynomial time for the fragment LTL[F,G,X], which comprises

of all Boolean and modal operators of LTL except the until operator.
Our algorithm for analyzing SLPs (a grammar-based compression

scheme) is effective in practice — for a suite of large execution

traces obtained from open source projects, our algorithm shows

significant speed ups when compared with the performance of

checking LTL properties over corresponding uncompressed traces.
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1 INTRODUCTION
Consider the membership problem that can be abstractly defined

as follows: Given a program execution τ , determine if τ is a “good”

behavior. This computational problem plays a key role in several

approaches whose goal is the engineering of reliable and secure

software. The first sub-area where it arises is runtime verifica-
tion [10, 27] where one dynamically monitors the behavior of a

system with to determine if the it conforms to system requirements.

This approach can be used to augment testing by observing sys-

tem behavior along paths that were inadequately exercised during

testing, thereby resulting in increased code coverage. The key com-

putational task in runtime verification is to solve the membership
problem — check whether the monitored execution needs satisfies

a system requirement. A second sub-area of interest is the design

test oracles [9]. Given executions of a system exercised by a test

suite, a test oracle is a program that distinguishes between cor-

rect and incorrect behaviors of the system. Thus, a test oracle can

be seen as solving the membership problem for the specific sys-

tem being tested. The membership problem also plays a key role

in intrusion detection [43]. Log files that record the interaction

between a network of elements need to be examined to detect pat-

terns of “intrusive behavior” so that corrective measures can be

taken to avoid security compromises. Since these log files are large,

and there are multiple patterns of intrusive behavior, intrusion

is typically detected automatically by a program that solves the

membership problem to determine if the log files do not contain an

intrusive pattern. Finally, the membership problem also needs to be

solved when statistically model checking a system. Statistical model

checking [5, 44] is an approach to verify quantitative properties of

stochastic systems. In this approach, the model checker executes

the stochastic system a few times to draw a statistical sample of

system behaviors, and then use hypothesis testing to determine the

likelihood of a property being true of a system. A crucial step in this

process is building an oracle that determines for each execution,

whether it satisfies a desired logical property.

One practical challenge in each of these application areas that

rely on solving the membership problem is the size of the program

execution that needs to be analyzed. Program traces that arise in

runtime verification, testing or statistical model checking are often

huge, containing millions of events. Long traces are often necessary

to exercise large parts of the code base to ensure good code coverage.

Log files analyzed for intrusions often record interactions that take

place over longwindows of time, sometimes over multiple days. The

challenge therefore is two-fold: how to store such long traces/logs,

and how to effectively analyze them. The common solution to

address the warehousing needs for such traces is to compress them

and then store them in a compressed format.
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Given that program executions need to be compressed to ad-

dress storage costs, an important question in the context of the

membership problem is, to find effective solutions to the prob-

lem when the input trace is compressed. This question is not

new, and has a rich history, especially in theoretical computer sci-

ence [7, 8, 12, 15, 16, 31, 38, 46]. The short summary of results in this

space is as follows. There is always a naïve algorithm to solve the

membership problem on compressed traces — uncompress the trace

and check membership. In many situations this is often (provably)

the best algorithm possible [7, 16, 38]. However, there are excep-

tions where the membership problem can be solved in time that

is polynomial in the size of the compressed trace [30]; one notable
example is dynamic race detection on compressed strings [23].

The main question we investigate in this paper is the following:

Given a program trace τ in compressed form and a formula φ in

linear temporal logic (LTL) [39], determine if τ satisfies φ. LTL is

widely used in testing and verification. It’s popularity relies on the

fact that, on the one hand it is rich enough to express many require-

ments that typically arise in software engineering, and on the other

hand, the absence of explicit quantification, makes it simple enough

for a practitioner to easily write properties. Compression schemes

we consider are those where a program trace is represented using

a straight line program (SLP). SLPs are special context-free gram-

mars where the language of the grammar contains exactly one

string, namely, the trace it represents. Several lossless compression

schemes. like run-length encoding and Lempel-Ziv encodes [50],

can be efficiently converted into SLPs with similar size. There are

efficient implementations of compression algorithms that produce

an SLP representation of a given execution [3, 21, 22, 25, 37, 48–50].

The problem of determining if a finite trace compressed using an

SLP satisfies an LTL property, has been studied before. The problem

is known to be intractable — it is PSPACE -hard [33]. Therefore, we

ask if there is a rich fragment of LTL for which the problem can be

efficiently solved. We consider the fragment LTL[F, G, X] which is

the collection of all LTL formulas that are built from propositions

using boolean operators, and only the temporal operators X (next),

F (eventually or finally), and G (always or globally); in particular, U
(until) cannot be used in the formulas of LTL[F,G, X]. The fragment

LTL[F, G, X] is expressively very rich. Over infinite traces, LTL[F,
G, X] can express properties in each class of the safety-progress
classification of temporal properties introduced by Manna and

Pnueli [32]
1
. Our main result is that the problem of checking if a

finite trace represented by an SLP satisfies an LTL[F, G, X] formula

can be decided in time that is polynomial in the size of the SLP

(compressed trace) and the formula.

We now outline the technical challenges and our theoretical

contributions in obtaining this result. The principal idea used in

verification, runtime verification, and automatic test oracle genera-

tion for temporal properties is to exploit the connection between

LTL formulas and automata — translate the formula into an au-

tomata, and then “run” the automaton with the program or trace

to verify or test. For runtime verification or test oracles, the au-

tomaton constructed from the formula needs to be deterministic.
This idea can also be used when checking compressed traces where

1
Or in every Borel class that has ω-regular properties.

you effectively “run” the deterministic automaton on the grammar

representing the trace.

However, even for LTL [F, G] formulas
2
, the smallest nondeter-

ministic automaton is exponential and the smallest deterministic

automaton is doubly exponential in the size of the formula [6].

Theoretical lower bounds establish that this cannot be improved.

Our first observation is that if the finite (uncompressed) trace is

processed right-to-left instead of left-to-right, then there is an expo-
nential sized, deterministic automaton for each LTL[F,G, X] formula,

that can solve the membership question. “Running” an automaton

left-to-right or right-to-left on an SLP is very similar and so this

change does not fundamentally change the algorithm for com-

pressed traces. However, the fact that the automaton is exponential

sized would affect the complexity; for compressed traces, the run-

ning time of an algorithm using this automaton would be exponen-

tial in the formula. To combat this, we observe that the automaton

we design for LTL[F, G, X] has special “monotonicity” properties

and has a small “diameter”. These two observations can be com-

bined to observe that there are “essentially” O (m) state changes
(m here refers to the size of the LTL[F, G, X] formula) when the

automaton is run on any (uncompressed) trace, no matter what the

length of the trace is. Finally, we exploit the special structure of the

states of this automaton, to design an algorithm for compressed

traces. To prove that this algorithm indeed runs in time that is

polynomial in the formula size and the grammar, requires carefully

counting the number of substrings that arise in a string represented

by an SLP.

We evaluate the performance of our algorithm for checking com-

pressed traces over open source Java projects obtained from GitHub

(largely derived from prior study [28]). We also use 10 LTL[F,G,X]
properties describing specifications for the use of iterators, collec-

tions, file objects, etc., Our evaluation suggests that, large traces

from open source projects can be effectively compressed (with an

average compression ratio of more than 600×) and that compressed

traces can be effectively checked against these specifications, lead-

ing to significant speed ups (averaging at 34×).

The rest of the paper is organized as follows. Section 2 dis-

cusses background relevant for the exposition. Section 3 presents

an overview of our algorithm for checking LTL[F,G,X] formulae

on compressed traces, and Sections 4 and 5 discuss the technical

details of the algorithm. We present our evaluation in Section 6,

related work in Section 7 and concluding remarks in Section 8.

2 PRELIMINARIES
In this section we present preliminary notations about execution

traces, LTL monitoring and the SLP compression format.

2.1 Execution Traces
In many approaches whose goal is to either prove the correctness

of a software or find errors, a key computational problem that

needs to be solved is the membership problem, where one needs to

determine if a given program execution is correct with respect to a

system specification. In this setting, an execution trace (or simply an

execution) can be abstractly modeled as a finite sequence of “events”

belonging to a set (say) Σ. The set of events Σ is determined by what

2
These are LTL formulas that only have F and G (and no X or U) as temporal operators.
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class SetTraversal {
HashSet<Integer> s = new HashSet<Integer> ();
public void insert(int max) {

for(int i = 0; i < max; i++) s.add(i);
}
public int sumAllExcept(int val) {

Iterator<Integer> itr = s.iterator();
int sum = 0;
if(!itr.hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext()) return sum;
while(true){

int i = itr.nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext();
if(i == val) continue;
sum = sum + i;
if(!itr.hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext()) break;

}
return sum;

}
}

class SetTraversalTest {
@Test
void testInsertAndSum() {

SetTraversal st = new SetTraversal();
st.insert(128);
int actual = st.sumAllExcept(64);
int expected = (127 * (127 + 1))/2 - 64;
assertEquals(expected, actual);

}
}

Figure 1: Java class SetTraversal with methods insert and
sumAllExcept. The unit test testInsertAndSum tests these
two methods at once.

is visible or has been made visible through instrumentation when

the program is executed. Thus, an execution is τ = e0e1 · · · ek−1
where each ei ∈ Σ; the empty trace/sequence will be denoted by

ϵ . Let us fix an execution τ = e0e1 · · · ek−1. The ith event in the

execution will be denoted by τ [i] = ei . We will denote the substring

eiei+1 · · · ej−1 by τ [i : j], the suffix eiei+1 · · · ek−1 by τ [i : ] and

the prefix e0 · · · ei−1 by τ [ : i]. The length of execution τ , denoted
|τ |, is the number of events in it which is k . By definition |ϵ | = 0.

Example 1. Consider the Java class SetTraversal in Figure 1. Ev-

ery instance of this class has a member variable s, which is a set of

integer elements. The method insert inserts all non-negative inte-

gers less than max in s, while the method sumAllExcept returns the
sum of those elements of the set s which are different from the in-

teger val. We remark that the implementation of sumAllExcept is
functionally correct whenever val is not the last valuewhen travers-
ing s using the iterator itr. If val is the last value in swhen travers-
ing using itr, the loop body can execute nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext() (after traversing
the node with itr), even though there are no remaining elements,

which may raise a Java exception (NoSuchElementException).
The figure also shows a test class SetTraversalTest that im-

plements a unit test testInsertAndSum that first calls insert on
an instance st of SetTraversal with the argument 128 and then

checks if the sum of elements thus inserted (except the element

64) is as expected. The given unit test passes and, in fact, does not

expose the bug outlined above. The execution trace generated due

to this test, can nevertheless be used to infer the possibility of an

exception. If we instrument calls to the methods hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext() and

nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext(), then we will observe a trace over the alphabet Σ = {hhhhhhhhhhhhhhhhh, nnnnnnnnnnnnnnnnn},
where hhhhhhhhhhhhhhhhh represents a call to hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext() and nnnnnnnnnnnnnnnnn represents a call to
nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext(). For the unit test testInsertAndSum, we will observe the
execution trace τ = (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)65nnnnnnnnnnnnnnnnn(hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh. This is because, in this case,

the iterator traverses the set s in the order of insertion, and for

the first 65 elements (values 0 through 64), the method insert cor-

rectly calls hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext() before nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext(). However, in the next step,

it enters the loop and calls nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext without checking hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext(). All
the subsequent loop executions generate the sequence (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh. In
subsequent sections, we will discuss how analyzing τ , in fact, can

hint at the possibility of an exception. Observe that |τ | = 256,

τ [ : 130] = (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)65, τ [130 : ] = nnnnnnnnnnnnnnnnn(hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh and τ [2 : 130] = (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)64.

2.2 Linear Temporal Logic
Linear temporal logic (LTL) is a popular logic for specifying tempo-

ral properties of systems, and is widely used to specify correctness

properties. In this section, we introduce the syntax and semantics

of LTL and some fragments that are relevant in this paper. Since

program executions encountered while testing and runtime ver-

ification are assumed to be finite, our semantics for LTL will be

defined for finite execution traces. While this is not the classical

semantics for LTL, it is standard [13]. We will also be using a “letter

semantics” for the logic — models are sequences of letters as op-

posed to sequences of sets of propositions, and formulas are built

using letters as opposed to propositions.

Syntax of LTL. Let us fix a finite alphabet Σ. Then, a formula φ in

LTL over Σ is given by the following grammar.

φ ::= a | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φUφ

Here, a is a symbol in Σ, ¬, ∧ and ∨ are Boolean connectives and X
(‘next’), F (‘eventually’), G (‘always’) and U (‘until’) are temporal

modal operators. We will use φ1 =⇒ φ2 as a shorthand for

¬φ1 ∨ φ2.

Semantics of LTL. The semantics of LTL is given by how an LTL

formula φ evaluates over a finite non-empty trace τ ∈ Σ+. We

formally describe this evaluation relation |=f below; the subscript

‘f ’ in |=f stands for evaluation over finite traces.

τ |=f a iff τ [0] = a

τ |=f ¬φ iff τ ̸ |= φ

τ |=f φ1 ∧ φ2 iff τ |=f φ1 and τ |=f φ2
τ |=f φ1 ∨ φ2 iff τ |=f φ1 or τ |=f φ2
τ |=f Xφ iff |τ | > 1 and τ [1 : ] |=f φ

τ |=f Fφ iff

there is an i such that 0 ≤ i < |τ |
and τ [i : ] |=f φ

τ |=f Gφ iff

for every i such that 0 ≤ i < |τ |,
τ [i : ] |=f φ

τ |=f φ1Uφ2 iff

there is an i such that 0 ≤ i < |τ |
and τ [i : ] |=f φ2 and for every j

such that 0 ≤ j < i,τ [j : ] |=f φ1

Remark. LTL, as presented here, only has future time operators.

Some presentations include past time operators as well: Y (for ‘yes-

terday’), the dual of X; O (for ‘once’), the dual of F; H (for ‘his-

torically’), the dual of G; and S (for ‘since’), the dual of U. Over
finite traces, the following property holds. Let φ̂ be the formula

obtained by replacing every past time (future time) operator by

the corresponding dual future time (past time) operator in φ. Then
τ |=f φ if and only if τ r |=f φ̂; here τ

r
denotes the reverse of τ . This

means that over finite traces, LTL with only past time operators is
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“equivalent” to LTL with only future time operators. Our results,

though presented only for LTL with future time operators, also

apply to LTL with purely past time operators.

Example 2. Consider the program shown in Figure 1 and the

execution τ producedwhen calls tomethods hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext() and nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext()
are tracked. As shown in Example 1, τ = (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)65nnnnnnnnnnnnnnnnn(hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh, where hhhhhhhhhhhhhhhhh
represents a call to hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext() and nnnnnnnnnnnnnnnnn represents a call to nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext().
Intuitively, in a correct implementation, the program should check

the existence of a next element (i.e., event hhhhhhhhhhhhhhhhh) before accessing the
next element (i.e., event nnnnnnnnnnnnnnnnn). The program in Figure 1 does not satisfy

this intuitive correctness requirement since an event hhhhhhhhhhhhhhhhh does not

precede the event nnnnnnnnnnnnnnnnnwhen the value 65 is accessed. We can formalize

our informal intuition by requiring that ‘there are no successive

calls to nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext()’. However, this by itself is not enough because the

execution nnnnnnnnnnnnnnnnnhhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn does not have successive nnnnnnnnnnnnnnnnn events, but the first nnnnnnnnnnnnnnnnn event
is not preceded by hhhhhhhhhhhhhhhhh. So we must also require that the execution

does not begin with nnnnnnnnnnnnnnnnn. We could write this as φ = (¬nnnnnnnnnnnnnnnnn) ∧ G(nnnnnnnnnnnnnnnnn =⇒
¬X(nnnnnnnnnnnnnnnnn)). One can see that τ does not satisfy this property (as desired)
because τ [129 : ] = nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn(hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh does not satisfy nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn.

Fragments of LTL. We will consider a couple of fragments of

LTL obtained by restricting the modal operators that appear in

formulas. The first fragment is LTL[X] which consists of formulas

built from events and Boolean operators using only X operator. The

next fragment is LTL[F,G,X] which uses the modal operators X, F,
and G, but does not use U. We skip the formal BNF grammar for

these fragments.

Formulas in LTL[F,G,X] can be expressed in a normal form that

is obtained by pushing X as far in as possible. Since X(φ1 ∨ φ2) ≡
(Xφ1) ∨ (Xφ2), X(φ1 ∧φ2) ≡ (Xφ1) ∧ (Xφ2) and XFφ ≡ FXφ, we can
push X inside conjunctions, disjunctions and F operators. However,

over finite executions X cannot be pushed inside ‘¬’ or ‘G’ operators.
To see this, consider the execution σ = hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn. Observe that σ satisfies

XGnnnnnnnnnnnnnnnnn, but not GXnnnnnnnnnnnnnnnnn as |σ [1 :]| = 1 and thus σ [1 :] ̸ |=f Xnnnnnnnnnnnnnnnnn. Similarly,

τ = nnnnnnnnnnnnnnnnn satisfies ¬Xhhhhhhhhhhhhhhhhh but not X¬hhhhhhhhhhhhhhhhh. The normal form can be described

by the following BNF grammar.

φ ::= ψ | η | φ ∧ φ | φ ∨ φ | Fφ
η ::= Xψ | Xη
ψ ::= a | ¬φ | Gφ

(1)

Formulas in LTL[F,G,X] (φ) are one of X-formulas (η), G-formulas

(ψ ), conjunctions/disjunctions of LTL[F,G,X] formulas, or an F
operator applied to an LTL[F,G,X] formula in the normal form.

X-formulas are those where the top level operator is X. A X operator

can only be applied to either a G-formula or an X-formula. Finally,

G-formulas are letters, or negations of LTL[F,G,X] formulas (φ),
or have G as the topmost operator. Every LTL[F,G,X] formula can

be converted into this normal form, with at most quadratic blowup.

Example 3. Consider the LTL[F,G,X] formula φ = X(Gnnnnnnnnnnnnnnnnn ∨ Fhhhhhhhhhhhhhhhhh).
The normal form for this can be obtained by pushing X as far inside

as possible. Thus, φ ′ = (XGnnnnnnnnnnnnnnnnn) ∨ (FXhhhhhhhhhhhhhhhhh) is the equivalent formula in

normal form.

Remark. The fragment LTL[F, G, X] is expressively rich. For ex-

ample, it can express properties in each class of the safety-progess

classification of temporal properties introduced by Manna and

Pnueli [32]. Among the pattern-based specifications introduced

in [14], most patterns, except precedence, chain precedence, and

scopes can be expressed in LTL[F, G, X]. In fact, among the 555

commonly occurring specifications collected and surveyed in [14],

approximately 80% of them can be expressed in LTL[F, G, X].

Automata for LTL and its fragments. For LTL properties, algo-

rithms for verification, runtime verification, and test oracle gen-

eration, all rely on the translation of logic formulas to automata.

For a specification φ, the crucial step therefore, is the construction

of an automaton Aφ such that an execution τ is accepted by Aφ
if and only if τ satisfies φ. The size of Aφ has big influence on

the complexity of the verification/testing algorithm. For runtime

verification and test oracle generation, the automaton Aφ needs

to be deterministic. Because of the critical role translations from

LTL to automata play in algorithms, these have been well studied.

Unfortunately, the translation from formulas to deterministic au-

tomata can result in at least a double exponential blowup. It is worth

emphasizing that the result below holds whether we interpret LTL

over finite or infinite executions.

Theorem 2.1 (Alur-LaTorre [6]). There is a family {φn }n∈N of

LTL[F,G,X] formulas such that the size of φn is n and any deter-

ministic acceptor for φn is of size Ω(22
n
).

2.3 Compressed Executions
In this paper, we will present algorithms to solve the membership

problem when the program execution is compressed. The com-

pressed execution we consider will be encoded by a straight line
program (SLP), which is a special context-free grammar whose lan-

guage has exactly one string, namely, the execution it represents.

Several lossless compression schemes, like run-length encoding and

Lempel-Ziv encoding [50] can be efficiently converted into SLPs

of similar size. Several efficient algorithms that compress strings

using SLPs are known [3, 21, 22, 25, 37, 48–50].

Straight Line Programs (SLP). Recall that a context-free gram-

mar is a tuple G = (T ,N , S,R), where T is the set of terminals, N is

the set of non-terminals, S ∈ N is the starting non-terminal, and R is

the set of rules of the form A→ α , where A ∈ N and α ∈ (N ∪T )∗.
A straight line program (SLP) is special context-free grammar, with

restrictions that ensure that the language associated with G has

exactly one string. In particular, we require that in an SLP, each

non-terminal A has exactly one rule where A appears on the left,

and that there is a total ordering ‘<’ on non-terminals such that if

a non-terminal B appears on the right-hand side of the rule for A
then A < B. These restrictions ensure that the language associated
with each non-terminal has exactly one string, and we denote this

string as JAK.
The size of a rule (A → α ) ∈ R is defined to be the size |α |

and the size of a grammar G, denoted by |G |, is defined to the be

sum of the sizes of all rules. The compression ratio of a grammar

G = (T ,N , S,R) is defined to be
|JSK |
|G | , i.e., the ratio between the

length of the string that G represents, and the size of G.

Example 4. The grammar shown in Figure 2 is an SLP that encodes

the execution τ = (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)65nnnnnnnnnnnnnnnnn(hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh of program in Figure 1 from

Example 1. The grammar has start symbol S . The rules are designed
to ensure that JAi K = (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)i , JBK = nnnnnnnnnnnnnnnnn(hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh and therefore JSK = τ .
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S → A65B B → nnnnnnnnnnnnnnnnnC C → A62hhhhhhhhhhhhhhhhh
A1 → hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn A2 → A1A1 A4 → A2A2

A6 → A2A4 A8 → A4A4 A16 → A8A8

A24 → A8A16 A30 → A6A24 A32 → A16A16

A33 → A32A1 A62 → A30A32 A65 → A32A33

Figure 2: A straight line program encoding of the execution
τ = (hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)65nnnnnnnnnnnnnnnnn(hhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn)62hhhhhhhhhhhhhhhhh from Example 1.

The SLP has 15 rules. All rules have size 2. Thus the size of the

SLP is 2 × 15 = 30. The compression ratio is therefore
256

30
≃ 8.53.

Every SLP can be transformed in linear time into Chomsky nor-

mal form where the size of each rule is bounded by 2. From now on

we will assume that all the SLP grammars are written in Chomsky

normal form.

We remark that an SLP can be exponentially more succinct than

the uncompressed string it represents. For instance, a stringσ = hhhhhhhhhhhhhhhhh2
n

of size 2
n
can be represented by a grammar of size O (n) with rules

S → HnHn , Hn → Hn−1Hn−1, . . . , H2 → H1H1 and H1 → hhhhhhhhhhhhhhhhh.
The problem of checking if an execution represented by an SLP

G satisfies an LTL formula φ has been studied before. A naïve

algorithm for this problem involves decompressing the SLP G and

checking if the uncompressed execution satisfies φ. However, this
can be expensive because of the possible exponential succinctness

of the SLP, as outlined in the previous paragraph. Is there a better

algorithm that doesn’t involve uncompressing?

Automata for checking SLPs against LTL. One possible ap-

proach, that works without decompressing the SLP, leverages the

automata-theoretic connections of LTL. Given an LTL formula

φ, we can first construct a deterministic finite automaton Aφ =

(Q, Σ,q0,δ , F ) as outlined in Section 2.2. For every non-terminal A
in the SLP grammarG and for every state q ∈ Q , we can then induc-

tively compute the state δ (q, JAK) reached after running the string

generated by A starting from the state q. In the base case, the rule

corresponding toA isA→ a (a ∈ Σ), and δ (q, JAK) = δ (q,a). In the

inductive case of A → BC , we have δ (q, JSK) = δ (δ (q, JBK), JCK).
Finally checking if JAK |=f φ amounts to checking δ (q0, JSK) ∈ F .
This approach would work in time O ( |G | · |A| · D), where D is the

time taken to compute the transition function on an input symbol

and state. Note that D, in general, is at least log |A| because the

bits encoding the state have to be read and the encoding of the next

state needs to be produced. Based on Theorem 2.1, this is double

exponential in |φ | and thus intractable. Indeed, the following theo-

retical lower bound establishes that there is no algorithm that has

a tractable asymptotic complexity for the case of full LTL.

Theorem 2.2 (Markey and Schnoebelen [33]). Given an SLPG =
(T ,N , S,R) and an LTL formulaφ, the problem of checking if JSK |=f
φ is PSPACE-hard.

The main result of this paper shows that this problem can be

solved efficiently (in polynomial time) when the formula is from

the LTL fragment LTL[F,G,X].

3 TECHNICAL OVERVIEW
Recall (from Section 2.3) that there is a simple automata-theoretic al-

gorithm for checking if a compressed trace (SLPG) satisfies a given

LTL formula φ (i.e., JGK |=f φ). This simple algorithm constructs

a DFA Aφ corresponding to the given LTL formula φ (in time

O ( |Aφ |)), and then inductively computes, for every non-terminal

A of G and for every state q of Aφ , the next state q
′ = δ (q, JAK)

obtained after running the trace fragment JAK onAφ . As we previ-

ously observed the total running time of this simple algorithm is

O ( |Aφ |+ |G | |Aφ |D) (whereD is the time to compute the transition

function) which, based on the size of the smallest deterministic au-

tomaton, isO ( |G |22
|φ |
2
|φ | ). The algorithm we propose for formulas

in LTL[F,G,X] works on the same automata-theoretic paradigm

but with modifications that lead to a polynomial running time. In

this section we outline some of the ideas that help us achieve this

polynomial time.

Backwards automaton. The first observation that our algorithm

relies on is that for the fragment LTL[F,G,X], there is a deter-

ministic automaton that works backwards and only suffers an ex-

ponential blow-up (instead of double exponential in the forward

automaton). That is, for the input formula φ ∈ LTL[F,G,X], we
construct an automaton Ar

φ such that for any trace τ , τ |=f φ

iff τ r is accepted by Ar
φ ; for an execution τ = e0e1 · · · ek−1 its

reverse is τ r = ek−1ek−2 · · · e0. The algorithm for analyzing the

SLP G with this automaton is also straightforward, and proceeds

as if the grammar G is reversed (every rule of the form A → BC
becomes A→ CB). But, this by itself is not enough if we are using

the exhaustive paradigm ‘compute δ (q, JAK) for all q and A’ because
|Ar

φ | = O (2 |φ | ). Thankfully, the backwards automaton Ar
φ enjoys

a special structure that we exploit, in conjunction with the next

observation, to get our efficient algorithm.

Bounding running time with visited states. We next observe

that, instead of computing δ (q, JAK) for all pairs of state q and non-

terminal A in the automata-theoretic algorithm, we can afford to

only compute δ (q, ·) for states that are actually visited (instead of

all states). Consider the production rule S → UV , where S is the

starting non-terminal of the input SLP grammar G. Our final goal
is to compute the state q = δ (q0, JSK). We remark that this can be

computed as the compositionq = δ (q′, JV K), whereq′ = δ (q0, JU K).
If this is the only rule that V occurs in, we only need to compute

δ (q′, JV K) (instead of computing δ (p, JV K) for every state p). Notice
that this intermediate state q′ would also be visited when running

A on the uncompressed trace JSK; this is precisely the state reached
after running the prefix JU K of JSK. In fact, this observation can

be generalized so that we only compute δ (q,A) for those states

q that are ever visited when analyzing the uncompressed trace.

We formalize this as follows. For a trace τ and an automaton A

with initial state q0, let v(A,τ ) = {δ (q0,τ [: i]) | 0 ≤ i < |τ |} be
the states of A that are visited when running τ on A. Then, we

can compute δ (q0, S ) by only computing δ (q,A) for every non-

terminal A and state q ∈ v(A, JGK). This gives us an upper bound

of O ( |G | · |v(A, JGK) | · D), an improvement over O ( |G | · |A| · D)
(D denotes the time to evaluate the transition function).

Bounding number of states visited. Our third important obser-

vation is that any run of automaton Ar
φ (for φ ∈ LTL[F,G,X])

satisfies a “monotonicity” property. This property allows us to

bound the number of states visited |v(A, JGK) | on any input to

|φ | |Σ|k (independent of | |G | |). Here, k is what we call the nesting
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depth of X in φ; a precise definition will be presented in Section 4.

This combined with some other observations gives us a running

time of O ( |G | |φ |2 |Σ|k ).

Further improvements. Our algorithm for analyzing compressed

executions runs in strictly polynomial time (and thus does not have

the exponential dependence due to the factor |Σ|k ). We achieve this

by performing an involved fine grained analysis of the running time

of the algorithm. Further, we also make use of the monotonicity

property outlined in the previous paragraph to optimize the space

usage of the algorithm.

In Section 4, we describe the automaton construction, and the

other observations about monotonicity and the number of visited

states in greater detail. We finally present the algorithm for analyz-

ing compressed executions and improvements thereof in Section 5.

4 AUTOMATON FOR LTL[F,G,X]
In this section, we present the construction of a backwards deter-
ministic automatonAr

φ such thatAr
φ accepts a trace τ r if and only

if τ |=f φ; recall that τ r is the reverse of execution τ . The main

advantage of this construction is that the size of Ar
φ is only expo-

nential in φ (as opposed to doubly exponential). In addition, Ar
φ

has a special structure that ensures that the number of states visited

by Ar
φ on any input τ r is polynomial in |φ |.

Before presenting the construction, we will introduce some con-

ventions and notations that wewill use in the rest of this paper. First,

as outlined in Section 2, we can assume that LTL[F,G,X] formulas

are in normal form given by Equation (1), i.e., X operators have been

pushed as far inside as possible. For any formula φ ∈ LTL[F,G,X],
we will use sub(φ) to denote the set of sub-formulas of φ. When

defining our automata, we will consider a special subset of sub-

formulas, called FGX-subformulae, denoted by subFGX (φ). These
are sub-formulasψ of φ whose topmost operator is either F, G, or
X, and if the top operator ofψ is X, thenψ has a sub-formula with

topmost operator G. We formally define this set next.

Definition 1 (FGX-sub-formulas). For a formula φ ∈ LTL[F,G,X],
subFGX (φ) is the set of sub-formulas defined inductively as follows.

subFGX (a) = ∅
subFGX (¬φ) = subFGX (φ)

subFGX (φ1 ⊕ φ2) = subFGX (φ1) ∪ subFGX (φ2), ⊕ ∈ {∧,∨}
subFGX (Mφ) = {Mφ} ∪ subFGX (φ), M ∈ {F,G}
subFGX (Xφ) = subFGX (φ), φ ∈ LTL[X]
subFGX (Xφ) = {Xφ} ∪ subFGX (φ), φ < LTL[X]

Let us look at examples to illustrate these definitions.

Example 5. Consider the formula φ = ¬nnnnnnnnnnnnnnnnn ∧ G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn) from
Example 2. The set of its sub-formulas is sub(φ) = {φ,¬nnnnnnnnnnnnnnnnn, nnnnnnnnnnnnnnnnn,G

(
(¬nnnnnnnnnnnnnnnnn)∨

¬(Xnnnnnnnnnnnnnnnnn)
)
, (¬nnnnnnnnnnnnnnnnn) ∨¬(Xnnnnnnnnnnnnnnnnn),¬Xnnnnnnnnnnnnnnnnn,Xnnnnnnnnnnnnnnnnn}. Similarly, subFGX (φ) = {G((¬nnnnnnnnnnnnnnnnn) ∨

¬(Xnnnnnnnnnnnnnnnnn))}. Notice that Xnnnnnnnnnnnnnnnnn < subFGX (φ) (even though its topmost

operator is X) as it does not have a G-sub-formula in its scope.

As is standard in automata constructions for LTL, our automaton

Ar
φ for φ will track the truth of sub-formulas of φ as it processes

the input. Instead of tracking the truth of all sub-formulas, our

automaton will only track the truth of sub-formulas in subFGX (φ).
Since subFGX (φ) is smaller than sub(φ) (as illustrated by Example 5),

this results in smaller automata and better performance in practice.

But this is not our only reason for tracking fewer sub-formulas. As

we will show towards the end of this section, tracking the truth

of fewer sub-formulas reveals that every run of the automaton is

“monotonic”, which can then be exploited to argue that the number

of states visited in the run of Ar
φ on any string is small.

Let us fix φ ∈ LTL[F,G,X]. The states of our automatonAr
φ will

keep track of which sub-formulas in subFGX (φ) are true and which

ones are not, on the input seen so far. Thus a state is essentially a

valuation h : subFGX (φ) → {⊤,⊥} over φ. We use Valφ to denote

the set of all valuations over φ.
While keeping track of the truth of sub-formulae is necessary, it

is not sufficient. In order to determine truth of formulas in LTL[X]
like XXa, the automaton will additionally also keep track of the

last few events seen, in its control state. How many events need

to be tracked depends on the number of X operators that appear

in LTL[X] sub-formulas of φ. Recall that we are assuming that Xs
have been pushed as far in as possible in φ.

For ψ ∈ LTL[X], define Xdepth(ψ ) to be the nesting depth of

X operators in ψ . And more generally, for φ ∈ LTL[F,G,X], we
define Xdepth(φ) = max{Xdepth(ψ ) |ψ ∈ sub(φ) ∩ LTL[X]}. For
example, LTL[X] sub-formulas of XG(hhhhhhhhhhhhhhhhh =⇒ (XXXnnnnnnnnnnnnnnnnn)) are hhhhhhhhhhhhhhhhh and the
sub-formulas of XXXnnnnnnnnnnnnnnnnn. Thus, Xdepth(XG(hhhhhhhhhhhhhhhhh =⇒ XXXnnnnnnnnnnnnnnnnn)) = 3. On

the other hand, since the only LTL[X] sub-formulas of hhhhhhhhhhhhhhhhh ∧ (XGnnnnnnnnnnnnnnnnn)
are hhhhhhhhhhhhhhhhh and nnnnnnnnnnnnnnnnn, Xdepth(hhhhhhhhhhhhhhhhh ∧ (XGnnnnnnnnnnnnnnnnn)) = 0.

To compute the next state h′ obtained after reading a symbol e in
state h, the automaton needs to update the truth of all sub-formulas

in subFGX (φ). It turns out that we can, in fact, compute the truth

of all sub-formulas in sub(φ) (and thus the valuation h′) solely by

looking at h, e, the formula φ and the last k events seen in the trace,

where k = Xdepth(φ). This definition (of how truth of sub(φ) is
updated) is critical not only in defining the automaton but also

in stating its correctness. We present this definition before giving

the formal definition of Ar
φ . In this definition, we will use Σ≤k to

denote the set of all sequences over Σ of length at most k .

Definition 2. Let φ ∈ LTL[F,G,X], h ∈ Valφ and buf ∈ Σ≤k .
For any event e ∈ Σ, post(h, buf, e) : sub(φ) → {⊤,⊥} is defined
inductively as follows.

post(h, buf, e) (a) = (a = e)
post(h, buf, e) (¬ϕ) = ¬

(
post(h, buf, e) (ϕ)

)
post(h, buf, e) (ϕ1 ⊕ ϕ2) = ⊕

post(h, buf, e) (ϕ1)
post(h, buf, e) (ϕ2)

if ⊕ ∈{∧,∨}

post(h, buf, e) (Gϕ) = h(Gϕ) ∧ post(h, buf, e) (ϕ)
post(h, buf, e) (Fϕ) = h(Fϕ) ∨ post(h, buf, e) (ϕ)

post(h, buf, e) (Xϕ) =



(
buf |=f ϕ

)
Xϕ ∈ LTL[X]

h(ϕ)3 otherwise

Having outlined the basic intuition behind the construction of

Ar
φ , we are ready to present its formal definition. In the following,

for a function f : A → B and set C ⊆ A, we denote by f ↾C the

restriction of f to the domain C .

3
This definition assumes e is at least the second event read. post(h, buf, e) (Xϕ ) = ⊥
if e is the first event.
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(⊤, ϵ ) (⊤, hhhhhhhhhhhhhhhhh) (⊤, nnnnnnnnnnnnnnnnn) (⊥, nnnnnnnnnnnnnnnnn) (⊥, hhhhhhhhhhhhhhhhh)

q0 q2q1 q3 q4

nnnnnnnnnnnnnnnnn

hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

hhhhhhhhhhhhhhhhh nnnnnnnnnnnnnnnnn hhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhh

nnnnnnnnnnnnnnnnn

Figure 3: Automaton for the formulaφ = ¬nnnnnnnnnnnnnnnnn∧G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn).

Definition 3 (Automaton for LTL[F,G,X]). For φ ∈ LTL[F,G,X]
with Xdepth(φ) = k and event set Σ, the DFAAr

φ = (Q, Σ,q0,δ , F )
is defined as follows.

• The states in Q are triples of the form (h,b, buf) where h ∈
Valφ , b ∈ {⊤,⊥} and buf ∈ Σ≤k . Intuitively, h tracks the

truth of FGX-sub-formulas of φ while b tracks whether φ is

true on the input read so far. Additionally, buf stores the last
k symbols read by the automaton thus far.

• The initial state q0 is (h0,⊥, ϵ ) where for every Gψ , Fψ ∈
subFGX (φ), h0 (Fψ ) = ⊥ and h0 (Gψ ) = ⊤.
• The transition functionδ is given as follows:δ ((h,b, buf), e) =
(post(h, buf, e)↾subFGX (φ ) , post(h, buf, e) (φ), buf

′), where buf′

is the prefix of length k of the concatenated sequence e · buf.
• The final states F = {(h,⊤, buf) | h ∈ Valφ and buf ∈ Σ≤k }.

Let us illustrate the automaton construction with an example.

Example 6. Consider the formula φ = ¬nnnnnnnnnnnnnnnnn ∧ G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn) from
Example 2. The backwards automatonAr

φ forφ is shown in Figure 3;

the alphabet is assumed to be Σ = {hhhhhhhhhhhhhhhhh, nnnnnnnnnnnnnnnnn}. The set of sub-formulas

subFGX (φ) = {G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn)} is singleton, and thus there are 2

valuations in Valφ . Further, Xdepth(φ) = 1 and thus the buffer size

is at most 1. The states ofAr
are triples (h,b, buf), where h ∈ Valφ ,

b ∈ {⊤,⊥} and buf ∈ {hhhhhhhhhhhhhhhhh, nnnnnnnnnnnnnnnnn, ϵ }. In the figure, we only show the first

component (valuation h) and the third component (the buffer) of

the state. Since there is only one formula in subFGX (φ), we write
the valuation h as the truth value it maps the sub-formula to. The

component b can be inferred from the figure — b = ⊤ in a state iff

the state is an accepting state (state q1).
Now consider the traces τ1 = hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn and τ2 = hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhnnnnnnnnnnnnnnnnn. Observe that

the automaton rejects the trace τ r
1
= nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh but accepts τ r

2
= nnnnnnnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh as

τ1 ̸ |=f φ but τ2 |=f φ.

The correctness proof of the automaton construction in Defini-

tion 3 relies on the following technical lemma which says that the

automaton correctly computes the truth of every sub-formula. It can

be proved using an easy induction on |τ | and structural induction

on the formula.

Lemma 4.1. For φ ∈ LTL[F,G,X], let Ar
φ = (Q, Σ,q0,δ , F ) be the

DFA as given in Definition 3. For any execution τ = eσ where e ∈ Σ,
for anyψ ∈ sub(φ), τ |=f ψ if and only if post(δ (q0,σ r), e) (ψ ) = ⊤.

We can now state the correctness of our automaton construction.

Theorem 4.1. Let φ ∈ LTL[F,G,X] and Ar
φ be the DFA given in

Definition 3. For any execution τ , τ |=f φ if and only if τ r ∈ L(Ar
φ ).

Proof. Let τ = eσ . Observe that τ r ∈ L(Ar
φ ) iff δ (q0,τ

r) =

(h,⊤) for some h. From the definition of the transition function δ ,
this is equivalent to post(δ (q0,σ r), e) (φ) = ⊤. From Lemma 4.1, this

is the same as τ |=f φ and thereby establishing the theorem. □

Size of Ar
φ . Observe that the number of states of the automaton

Ar
φ is 2

|subFGX (φ ) |+1 |Σ|k , where k = Xdepth(φ). Since subFGX (φ) ⊆

sub(φ) and |sub(φ) | ≤ |φ |, the number of states is O (2 |φ | |Σ|k ).

We next argue that though Ar
φ has O (2 |φ | |Σ|k ) states, in any

run, it goes through at most O ( |φ | |Σ|k ) states. This is based on the

observation that state changes in Ar
φ are monotonic.

Consider two valuations д,h : subFGX (φ) → {⊤,⊥}. We will

say that д ⪯ h if for every Fψ ∈ subFGX (φ), if д(Fψ ) = ⊤ then

h(Fψ ) = ⊤, and for everyMψ ∈ subFGX (φ) whereM ∈ {X,G}, if
д(Mψ ) = ⊥ then h(Mψ ) = ⊥.

Lemma 4.2. For φ ∈ LTL[F,G,X], let Ar
φ = (Q, Σ,q0,δ , F ) be the

DFA defined in Definition 3. Let u ∈ Σ∗ and let states (h1,b1, buf1)
and (h2,b2, buf2) be such that δ ((h1,b1, buf1),u) = (h2,b2, buf2).
Then, h1 ⪯ h2.

The proof of Lemma 4.2 follows from the definition of the tran-

sition function δ and induction on the length of u.
Lemma 4.2 establishes that once the valuation component of

the state changes, you never revisit the same valuation. Since the

assignment to any ψ ∈ subFGX (φ) can change at most once, the

number of valuations visited in any run is bounded by |subFGX (φ) |,
thereby giving a bound on the number of states visited in any run:

Corollary 4.1. Let φ ∈ LTL[F,G,X] be a formula over Σ. The DFA

Ar
φ visits O ( |φ | |Σ|k ) distinct states on any input trace τ ∈ Σ∗

5 MONITORING COMPRESSED TRACES
AGAINST LTL[F,G,X]

We will now present our main result — an efficient algorithm to

check, given an SLPG = (T ,N , S,R) andφ ∈ LTL[F,G,X], if JSK |=f
φ. Our algorithm follows the template algorithm for SLPs outlined in

Section 2.3. That is, we will “run” the automaton Ar
φ (Definition 3)

on the uncompressed trace JSK, without explicitly uncompressing
the SLP. This can be accomplished by computing, for every state

q and non-terminal A ∈ N , the state δ (q, JAKr) 4, and then finally

checking δ (q0, JSKr) ∈ F , where q0 is the initial state and F is the

set of final states of Ar
φ . As pointed out in Section 2.3, this runs in

O ( |G | |Ar
φ |D) time (where D is the time to compute the transition

function), which given the description of Ar
φ , is O ( |G | |φ |2 |φ | |Σ|k ),

where k = Xdepth(φ). Now, we can observe that it is not necessary

to compute δ (q, JAKr) for every state q, but only for the states

visited during a run of Ar
φ on JSKr. This can be accomplished if

we used a “on-the-fly” algorithm for the δ (q, JAKr) computations.

For such an algorithm, given the monotonicity properties of Ar
φ

(Lemma 4.2) and the resulting bound on the number of visited states

(Corollary 4.1), we can improve the running time toO ( |G | |φ |2 |Σ|k ).
The main observation in this section is that this “on-the-fly”

algorithm in fact has a running time that is polynomial in the size

of G and φ. This requires us examine this algorithm in some detail,

and analyze its running time carefully.

Recall that a state ofAr
φ is of the form (h,b, buf) whereh ∈ Valφ ,

b ∈ {⊤,⊥} is a Boolean recording the truth ofφ, and buf is the buffer
tracking the last k symbols read. Now, consider a non-terminal A,

4
Recall that Ar

φ runs the execution in reverse.
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and state (h,b, buf). Let (h′,b ′, buf′) = δ ((h,b, buf), JAKr). Based
on theDefinition 2, we know that the value of the Booleanb does not
influence the values ofh′,b ′, and buf′. This Booleanb is only needed
to determine if the last state (i.e., δ (q0, JSKr)) is a final state, This
can alternatively be determined from the valuation h′ at the end
and buffer buf′ using a function analogous to post (Definition 2);

we skip giving this definition. Next buf′ is nothing but the prefix of
lengthk of the concatenated string JAK·buf, which can be computed

in an inductive manner based on the rules in the grammar. In the

interests of space, we don’t give how buf′ can be computed but we

assume we have a function updateBuffer(A, buf) which returns

the prefix of length k of JAK · buf.

Algorithm 1: Compute state of automaton Ar
φ after reading

the string JAKr

1 function postState(A, h, buf)
2 visited← visited ∪{(A, buf)}
3 if A→ e then
4 if (e, buf) ∈ visited then return h

5 else /* (e, buf) < visited */

6 visited← visited ∪ {(e, buf)}
7 h′ ← δ ((h,⊥, buf), e)
8 if h′ , h then visited← ∅
9 return h′

10 else /* A→ BC */

11 if (C, buf) ∈ visited then h′ ← h

12 else /* (C, buf) < visited */

13 h′ ← postState(C,h, buf)

14 buf ← updateBuffer(C, buf)
15 if (B, buf) ∈ visited then return h′

16 else /* (B, buf) < visited */

17 h′′ ← postState(B,h′, buf′)
18 return h′′

The critical function is really the computation of h′ given non-

terminal A, valuation h and buffer buf. A pseudocode for this func-

tion postState is given in Algorithm 1. We will call postState
with argumentsA,h, buf only once. After the first call we will mem-

oize this result, and if in subsequent computations, there is a need

to compute postState(A, h, buf) we will use the stored result. The

data structure storing these previously computed postState re-

sults is called visited in Algorithm 1. Observe that monotonicity

properties of Ar
φ (Lemma 4.2) mean that if the valuation h in the

state changes during an execution, the automaton never returns to

the same valuation again. Hence, visited just stores the previous

calls for the current valuation h; as soon as the valuation changes,

we reset the data structure visited because the previous calls to

postState will never be repeated as h has changed. Moreover,

this means that visited only stores pairs (A, buf) when a call to

postState (A, h, buf) returns the valuation h.
In line 2, we record the fact that we havemade a call postState(A,

h, buf) by adding (A, buf) to visited. The computation then pro-

ceeds based on the rule for the non-terminal A. If A → e (e ∈ Σ)

h0: [(S, ϵ ), (B, ϵ ), (C, ϵ ), (hhhhhhhhhhhhhhhhh, ϵ ), (A62, hhhhhhhhhhhhhhhhh), (A32, hhhhhhhhhhhhhhhhh), (A16, hhhhhhhhhhhhhhhhh), (A8, hhhhhhhhhhhhhhhhh),
(A4, hhhhhhhhhhhhhhhhh), (A2, hhhhhhhhhhhhhhhhh), (A1, hhhhhhhhhhhhhhhhh), (nnnnnnnnnnnnnnnnn, hhhhhhhhhhhhhhhhh), (hhhhhhhhhhhhhhhhh, nnnnnnnnnnnnnnnnn), (A30, hhhhhhhhhhhhhhhhh), (A24, hhhhhhhhhhhhhhhhh),
(A6, hhhhhhhhhhhhhhhhh), (A65, nnnnnnnnnnnnnnnnn), (A33, nnnnnnnnnnnnnnnnn), (A1, nnnnnnnnnnnnnnnnn), (nnnnnnnnnnnnnnnnn, nnnnnnnnnnnnnnnnn)]

h1: [(hhhhhhhhhhhhhhhhh, nnnnnnnnnnnnnnnnn), (A32, hhhhhhhhhhhhhhhhh), (A16, hhhhhhhhhhhhhhhhh), (A8, hhhhhhhhhhhhhhhhh), (A4, hhhhhhhhhhhhhhhhh), (A2, hhhhhhhhhhhhhhhhh), (A1, hhhhhhhhhhhhhhhhh)
(nnnnnnnnnnnnnnnnn, hhhhhhhhhhhhhhhhh), (hhhhhhhhhhhhhhhhh, nnnnnnnnnnnnnnnnn)]

Figure 4: Executing Algorithm 1 on SLP in Figure 2 with property
φ = ¬nnnnnnnnnnnnnnnnn ∧ G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn). The valuation h0 corresponds to [G(nnnnnnnnnnnnnnnnn =⇒
¬Xnnnnnnnnnnnnnnnnn) 7→ ⊤] and h1 is [G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn) 7→ ⊥]. The figure shows the
set visited for each valuation. Elements are added to visited from
left to right as recursive calls are made. Initially the valuation is h0,
which changes to h1 when δ ((h0, ⊥, nnnnnnnnnnnnnnnnn), nnnnnnnnnnnnnnnnn) is computed.

is the rule, then we return h if we have computed it before (line 4)

or find the new valuation by computing the transition function δ .
Note that visited is set to ∅ if the valuation changes (line 8). On

the other hand, if the rule is A→ BC (lines 10 through 17), then we

compute the result by “running” C and then B.

Example 7. Consider the trace τ from Example 1 of the program

in Figure 1. Its compression as an SLP is given in Figure 2. Let us

fix the property to be checked to be φ = ¬nnnnnnnnnnnnnnnnn∧G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn) from
Example 2. Let us see how Algorithm 1 evaluates φ on this SLP.

Recall that subFGX (φ) = {G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn)}. Thus there are two
valuations h0 = [G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn) 7→ ⊤] and h1 = [G(nnnnnnnnnnnnnnnnn =⇒

¬Xnnnnnnnnnnnnnnnnn) 7→ ⊥], with h0 being the initial valuation. Next, recall that

since Xdepth(φ) = 1, the buffer is of size at most 1.

The algorithm starts with a call postState (S,h0, ϵ ) (i.e., buffer
is empty) which initiates a sequence of recursive calls to postState
with different arguments. Initially visited is empty. Line 2 of Al-

gorithm 1 adds (S, ϵ ) to visited, and given the rule for S , makes a

recursive call postState (B,h0, ϵ ) (lines 11 to 13). The set visited
memoizes the result of a call to postState to avoid re-computing an

answer — if (A, buf) ∈ visited after returning from a call postState
(A,h, buf) then it means that the valuation after running JAK from
valuation h with buffer buf is h. Figure 4 shows the set visited. The
first row shows the set visited while the current valuation is h0,
and the second row shows visited after the valuation changes to h1.
Recursive calls to postState add elements to visited in the order

shown from left to right.

The call postState (B,h0, ϵ ) leads to a call postState (C,h0, ϵ )
which then results in a check of δ ((h0,⊥, ϵ ), hhhhhhhhhhhhhhhhh) (lines 6 through 9).

Since δ ((h0,⊥, ϵ ), hhhhhhhhhhhhhhhhh) = h0 (see automaton in Figure 3), visited is

not reset. The buffer changes to hhhhhhhhhhhhhhhhh (line 14), and a call is made

to postState (A62,h0, hhhhhhhhhhhhhhhhh) (line 17). This results in a sequence of

recursive calls with non-terminals Ai for values i < 62. To see how

storing results in visited helps, let us see what happens during the

call postState (A2,h0, hhhhhhhhhhhhhhhhh). A recursive call postState (A1,h0, hhhhhhhhhhhhhhhhh) is
made (line 13) which returns h0; running the automaton in Figure 3

on JA1K from h0 leaves the valuation unchanged. The updated

buffer (line 14) remains hhhhhhhhhhhhhhhhh, and since (A1, hhhhhhhhhhhhhhhhh) ∈ visited (because of

the previous call), we do not make additional recursive calls to

postState (line 17). Such savings in calls to postState happen in

many of the calls involving the non-terminals Ai .
After the recursive call postState (B,h0, ϵ ) returnsh0 (no change

to valuation), the algorithmwill make a call to postState (A65,h0, nnnnnnnnnnnnnnnnn),
since the buffer after reading JBK is nnnnnnnnnnnnnnnnn. This leads to calls postState
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(A33,h0, nnnnnnnnnnnnnnnnn) and postState (A1,h0, nnnnnnnnnnnnnnnnn) as well as a computation of

δ ((h0,⊥, nnnnnnnnnnnnnnnnn), nnnnnnnnnnnnnnnnn). The valuation returned by δ is now h1, which leads

to visited being reset to ∅ (line 8). The evolution of the set visited
after the change of valuation is shown in the second row of Figure 4.

After the call postState (A65,h0, nnnnnnnnnnnnnnnnn) returns with valuation h1,
we need to evaluate whether φ holds. It turns out that given a

valuation of each formula in subFGX (φ) (namely h1) and the buffer

after A65 (namely hhhhhhhhhhhhhhhhh), we can compute the truth valuation for all
subformulas of φ, including φ itself. Details of this process are

omitted in the interests of space. Carrying this computation out,

we discover that φ is not true and hence the execution encoded by

the SLP in Figure 2 does not satisfy φ.

Running time. The running time for each call to postState is

dominated by either the time taken for line 7 or for line 14. This is be-

cause if we make recursive calls to postState (lines 13 and 17) that
time can be ascribed to those recursive calls. Line 7 takes at most

time O ( |φ |) while line 14 takes O (k ) time (recall k = Xdepth(φ)).
Thus, each call to postState takesO ( |φ |) time. The number of pos-

sible calls to postState is at most the number of triples (A,h, buf)
which is |G | |φ | |Σ|k . Thus, the total running time can be bounded

by O ( |G | |φ |2 |Σ|k ). This bound has an exponential dependence on

k = O ( |φ |) and we will show that this can be improved.

The key to improving the bound is to do a more careful count of

the number of postState calls. Monotonicity (Lemma 4.2) ensures

that there are at most |φ | different valuations h. Therefore, for any
fixed valuation h, we will try to bound the number of pairs (A, buf)
that can arise as arguments in a call to postState with h as the val-

uation. Our observation is that this is much less than |G | |Σ|k . This
is because if (A,h, buf) is an argument to postState, then JAKbuf
must be a substring of JSK. Let us fix the uncompressed string, i.e.,

JSK, to be τ . As a first step towards counting such pairs (A, buf),
we define the notion of when a non-terminal C is responsible for
generating the pair (A, buf).

Definition 4. A non-terminal C is said to be responsible for a

substring τ [i : j] of τ if C is the label of the lowest internal node

of the parse tree for τ that has τ [i : j] as a substring.
Similarly,C is responsible for pair (A, buf) ifC is responsible for

some occurrence of the string JAK · buf (which is a substring of τ ).

Observe that all nodes labeled C are responsible for the same

set of pairs (A, buf). This is because such pairs are completely

determined by the parse tree with root labeledC . Moreover, there is

some non-terminal that is responsible for each pair (A, buf). Thus,
we can upper bound the number of pairs (A, buf) by counting the

number of pairs each non-terminal C is responsible for. Lemma 5.1

presents one such bound, and its proof is presented in the Appendix.

Lemma 5.1. A non-terminalC is responsible for at mostO (H(C )+
k ) pairs; here H(C ) is the height of the parse tree whose root is
labeled C .

Taking H(G ) to denote the height of the grammar (or H(S )), we
can use Lemma 5.1 to get the following bound on the running time.

Theorem 5.1. Given an SLP G with start symbol S and formula

φ ∈ LTL[F,G,X], the problem of determining if JSK |=f φ can be

solved in time O ( |G |(H(G ) + k ) |φ |2).

Theorem 5.1 follows from observing that Lemma 5.1 shows that

the number of calls to postState is bounded byO ( |G |(H(G )+k ) |φ |)
and the running time of each call to postState is at most O ( |φ |).

6 EXPERIMENTAL EVALUATION
We gauge the feasibility of our proposed approach of monitoring

compressed execution traces by comparing the performance of

our algorithm against that of the standard approach of monitoring

traces without compressing them. The goals of our evaluation are:

(1) Compression ratios. The asymptotic runtime of our algo-

rithm varies quadratically with the size of the compressed

trace (Theorem 5.1). As a result, any speed up (over analysis

of uncompressed traces) will evidently only be because of

good compression ratios. We, therefore, want to evaluate

whether execution traces from real world software projects

can be compressed efficiently.

(2) Performance of algorithm.Our next goal is to understand
how the running time varies with the size of the compressed

trace (SLP) in practice. Further, in order to evaluate the prac-

tical feasibility of our approach, we want to evaluate whether

our algorithm for analyzing compressed traces performs bet-

ter than the standard approach of analyzing (uncompressed)

traces directly, by a good margin. Finally, we want to under-

stand how the speed up varies with factors such as compres-

sion ratio.

We next describe our implementation and experimental setup

(Section 6.1) and then discuss our evaluation results (Section 6.2).

6.1 Implementation and Setup
The broad outline of our experimental setup is as follows. For our

set of benchmark programs, we extract execution traces using an

off-the-shelf logging tool. We then compress these traces as straight

line programs (SLPs) and analyze the SLPs thus generated using

our algorithm detailed in Section 5. We also compare the running

time of our algorithm with the time it takes to analyze the original

uncompressed traces using the standard approach (i.e., running

against finite state automata corresponding to our LTL specs).

Implementation. We implemented our algorithm in our tool Zip-

MOP [4], primarily written in Java (in about 500 LoC). We use

JavaMOP [1, 11, 34] for extracting execution traces. JavaMOP in-

struments a Java program under test and adds monitoring code

at each event of interest for checking if the program’s executions

meet some formal specification. For our experimental evaluation,

we obtained execution traces by modifying JavaMOP so that it logs

events to a file. To analyze uncompressed traces against LTL[F,G,X]
properties, we use Rabinizer-4.0 [24] publicly available at [2]. Ra-
binizer-4.0 is a state-of-the art tool for translating LTL formulae into

automata. For each of the LTL properties we consider, we obtain

deterministic finite automata using Rabinizer-4.0 and check if this

automata accepts the trace in consideration.

Benchmarks and Traces. Our subjects are open source GitHub

repositories derived from a prior empirical study [28] on GitHub

projects, as well as independently obtained from GitHub based on

their popularity score (measured by GitHub stars).We use JavaMOP
to instrument these repositories so that all events of interest (those
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Figure 5: Sizes of (uncompressed and compressed) traces and compression ratios.

that occur in any of the LTL specs) are logged. We then generated

traces by running all test classes of these repositories. We chose the

top 100 traces based on the trace lengths. The minimum, maximum

and average trace lengths in this set are 52.6M, 1.03B and 209M.

The overall distribution is given in Figure 5a.

LTL Specifications.Our LTL properties are also obtained from [28].

Most of these properties specify the expected usage of different

data structures and APIs used in these software projects, and are

expressed in many different formalisms (regular expressions, ERE,

LTL, FSM, etc.,). An example property is ¬nnnnnnnnnnnnnnnnn∧G(nnnnnnnnnnnnnnnnn =⇒ ¬Xnnnnnnnnnnnnnnnnn) from
Example 2 (in Section 2.2), that specifies how an iterator of the

Set collection must be used — every call to nextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnextnext() (denoted by

‘nnnnnnnnnnnnnnnnn’) must be immediately preceded by a call to hasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNexthasNext() (denoted

by ‘hhhhhhhhhhhhhhhhh’). Another such property is φ = G(cr =⇒ F(cl)) which
states that a resource (such as a buffered stream) must eventually

be closed (‘cl’) every time it is created (‘cr’). We identified that

10 properties were expressible in the fragment LTL[F, G, X], and
selected all of them for our study.

Setup. We compare the running times of our algorithm over com-

pressed traces to the time for analyzing the corresponding uncom-

pressed traces against our LTL[F,G,X] specifications. After ob-
taining traces from our benchmark projects (using JavaMOP), we
compress these traces using the Sequitur algorithm [37], available

publicly [3], which runs in linear time in the size of the uncom-

pressed trace. For the uncompressed traces, we use Rabinizer-4.0
to generate a deterministic finite state automaton for each prop-

erty. For every property, Rabinizer-4.0 generates a Rabin automata,

which is essentially a finite state machine, together with an ac-

ceptance condition for deciding membership of infinite words. We

manually transformed these automata so that they are suitable for

analyzing finite traces. Our experiments were conducted over a

2.6GHz 64-bit Linux machine.

6.2 Evaluation Results

Size of Compressed Traces and Compression Ratios. While

the uncompressed traces have lengths varying from 50M to 1.03B,

the sizes of the compressed traces (SLPs) all lie between 54k and

1.8M. The average size of the SLPs is approximately 329k and the

overall distribution is presented in Figure 5b. The compression ra-

tios of each trace was observed to be at least 277. The maximum and

average compression ratios are 1016 and 641, and the distribution

is shown in Figure 5c. The significant compression ratios hint that

most open source projects generate execution traces that have a lot

of repetition and thus can be effectively compressed. A plausible

explanation of large amount of repetitions is that many unit tests

in our subject repositories repeatedly manipulate collection objects

(such as lists or sets) in a loop.

Running times. In Figure 6a, we plot the running time (in seconds)

for every compressed trace. These times are averaged over the

running time of ZipMOP across all the 10 LTL[F,G,X] properties
we consider. Further, in order to ensure fair comparison with the

analysis over uncompressed traces, we exclude the time to read

(uncompressed or compressed) trace files in memory — including

I/O times would penalize the uncompressed analysis more heavily

as they work over larger files. Observe that all the times are within

0.5 second (excluding I/O time). Also observe that, as expected, the

times increase with the size of the compressed trace (SLP). In fact,

we can see that the time increases linearly with the size of the SLP,

despite the worst case dependence of |G |2 as in Theorem 5.1 (H (G )
can be O (G ) in worst case).

Speed-up over analysis of uncompressed traces.We now com-

pare how the running time over compressed traces compare with

the running time of analyzing uncompressed trace logs. Figure 6b

shows the speed up

Time to analyze uncompressed trace

Time to analyze SLP

, where,

as before, both the numerator and denominator are average times

over all LTL specs. Further, both the times exclude I/O time. The

maximum, minimum and average speed ups are 90×, 15× and 34×.

The high speed up shows the power of compression in analyzing

trace logs as compared to uncompressed versions.

In Figure 7a we show how the speed up varies with the compres-

sion ratio. As expected, our algorithm performs better (as against

the uncompressed analysis) when the compression ratio is high.

This is because the time to analyze an uncompressed trace τ is

O ( |τ |) (time to check membership in a finite automaton) and the

time to analyze a compressed trace G using our algorithm (Sec-

tion 5) is proportional to O ( |G |) and the speed-up thus increases

with the quantity O ( |τ |/|G |), which is the compression ratio.

In Figure 7b, we analyze the efficiency of the algorithm, defined

asη =
Speed up

Compression ratio

. The efficiency factor intuitively captures

how well can the speed up over uncompressed traces be explained

using the compression ratio. We observe that the efficiency val-

ues are in the range 0.04 to 0.11, and this is likely because of the

constant multiplicative factors involved in the running time of our
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Figure 7: Speed up, compression ratio and efficiency

algorithm for checking compressed traces. Further, the efficiency

factor increases (almost) monotonically with the size of the com-

pressed format, implying that higher compression ratios are more

effective when the compressed traces are themselves large.

7 RELATEDWORK
From a theoretical standpoint, the work that is closest to ours is that

of Markey and Schnoebelen [33] which established the PSPACE-
hardness for the general problem of checking if a string, represented

as an SLP, satisfies a formula written in full LTL; our result shows

polynomial time tractability for the LTL[F,G,X] sub-fragment. No-

tably, the hardness in [33] arises from the use of arbitrarily nested

until operators in LTL formulae. Lohrey [30] comprehensively sur-

veys algorithmic and complexity-theoretic aspects of language the-

oretic questions involving SLPs. Galperin and Wigderson [16], and

subsequently others[7, 8, 12, 15, 16, 31, 38, 46] showed that graph

problems that are tractable on the uncompressed input become

intractable when posed over compressed (succinct) representations.
Analysis of execution traces or event sequences has been cen-

tral to the engineering of reliable and efficient software. While

in our work, we propose the use of compression in runtime ver-

ification [18–20, 27, 35], prior works have focused on the use of

compression in race detection [23], profiling [17, 26, 29, 42], or

program comprehension using dynamic slicing [45, 47]. More re-

cent works on large scale debugging [41], bug localization [40] and

triaging [36] using trace data obtained from stack traces obtained at

the time of crashes, while implicitly rely on compression provided

by databases that store large columes of trace data, they do not

leverage compression in the actual analysis tasks (such as pattern

mining or clustering). An interesting avenue for future work would

be to develop techniques to speed up such techniques by leveraging

compression.

8 CONCLUSIONS
We propose the use of compression as an algorithmic paradigm to

improve the efficiency of checking if execution traces conform

to specifications written in LTL (linear temporal logic). While

this problem is intractable (PSPACE-hard) in general, we estab-

lish a polynomial time algorithm for the rich fragment LTL[F,G,X]
whose formulae do not include the U operator of full LTL. Our

polynomial time algorithm leverages a monotonicity property in

the automata theoretic representation of formulae in LTL[F,G,X].
On a comprehensive benchmark suite of open source Java projects,

our evaluation confirms that execution traces can be effectively

compressed and that the membership problem of traces can be effi-

ciently decided over compressed formats (straight line programs),

without decompressing them, resulting into significant speed ups

when compared to analysis over uncompressed traces.
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