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Abstract9

Data races are among the most common bugs in concurrency. The standard approach to data-race10

detection is via dynamic analyses, which work over executions of concurrent programs, instead of11

the program source code. The rich literature on the topic has created various notions of dynamic12

data races, which are known to be detected efficiently when certain parameters (e.g., number of13

threads) are small. However, the fine-grained complexity of all these notions of races has remained14

elusive, making it impossible to characterize their trade-offs between precision and efficiency.15

In this work we establish several fine-grained separations between many popular notions of dynamic16

data races. The input is an execution trace σ with N events, T threads and L locks. Our main results17

are as follows. First, we show that happens-before (HB) races can be detected in O(N · min(T , L))18

time, improving over the standard O(N · T ) bound when L = o(T ). Moreover, we show that even19

reporting an HB race that involves a read access is hard for 2-orthogonal vectors (2-OV). This is the20

first rigorous proof of the conjectured quadratic lower-bound in detecting HB races. Second, we21

show that the recently introduced synchronization-preserving races are hard to detect for OV-3 and22

thus have a cubic lower bound, when T = Ω(N ). This establishes a complexity separation from23

HB races which are known to be less expressive. Third, we show that lock-cover races are hard for24

2-OV, and thus have a quadratic lower-bound, even when T = 2 and L = ω(log N ). The similar25

notion of lock-set races is known to be detectable in O(N · L) time, and thus we achieve a complexity26

separation between the two. Moreover, we show that lock-set races become hitting-set (HS)-hard27

when L = Θ(N ), and thus also have a quadratic lower bound, when the input is sufficiently complex.28

To our knowledge, this is the first work that characterizes the complexity of well-established dynamic29

race-detection techniques, allowing for a rigorous comparison between them.30
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1 Introduction35

Concurrent programs that communicate over shared memory are prone to data races. Two36

events are conflicting if they access the same memory location and one (at least) modifies that37

location. Data races occur when conflicting access happen concurrently between different38

threads, and form one of the most common bugs in concurrency. In particular, data races are39

often symptomatic of bugs in software like data corruption [5, 20, 26], and they have been40

deemed pure evil [6] due to the problems they have caused in the past [43]. Moreover, many41

compiler optimizations are unsound in the presence of data races [36, 40], while data-race42
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freeness is often a requirement for assigning well-defined semantics to programs [7].43

The importance of data races in concurrency has led to a multitude of techniques for detecting44

them efficiently [4, 39]. By far the most standard approach is via dynamic analyses. Instead45

of analyzing the full program, dynamic analyzers try to predict the existence of data races46

by observing and analyzing concurrent executions [37, 21, 28]. As full dynamic data race47

prediction is NP-hard in general [24], researchers have developed several approximate notions48

of dynamic races, accompanied by efficient techniques for detecting each notion.49

Happens-before races. The most common technique for detecting data races dynamically50

is based on Lamport’s happens-before (HB) partial order [22]. Two conflicting events form51

an HB race if they are unordered by HB, as the lack of ordering between them indicates52

the fact that they may execute concurrently, thereby forming a data race. The standard53

approach to HB race detection is via the use of vector clocks [19], and has seen wide success54

in commercial race detectors [35]. As vector clock computation is known to require Θ(N · T )55

time on traces of N events and T threads [10], HB race detection is often assumed to suffer56

the same bound, and has thus been a subject of further practical optimizations [29, 16].57

Synchronization preserving races. HB races were recently generalized to sync(hronization)-58

preserving races [25]. Intuitively, two conflicting events are in a sync-preserving race if the59

observed trace can be soundly reordered to a witness trace in which the two events are60

concurrent, but without reordering synchronization events (e.g., locking events). Similar to61

HB races, sync-preserving races can be detected in linear time when the number of threads62

is constant. However, the dependence on the number of threads is cubic for sync-preserving63

races, as opposed to the linear dependence for HB races. On the other hand, sync-preserving64

races are known to offer better precision in program analysis.65

Races based on the locking discipline. The locking discipline dictates that threads that access66

a common memory location must do so inside critical sections, using a common lock, when67

performing the access [39]. Although this discipline is typically not enforced, it is considered68

good practice, and hence instances that violate this principle are often considered indicators69

of erroneous behavior. For this reason, there have been two popular notions of data races70

based on the locking discipline, namely lock-cover races [14] and lock-set races [33]. Both71

notions are detectable in linear time when the number of locks is constant, however, lock-set72

race detection is typically faster in practice, which also comes at the cost of being less precise.73

Observe that, although techniques for all aforementioned notions of races are generally74

thought to operate in linear time, they only do so assuming certain parameters, such as the75

number of threads, are constant. However, as these techniques are deployed in runtime, often76

with extremely long execution traces, they have to be as efficient as absolutely possible, often77

in scenarios when these parameters are very large. When a data-race detection technique is78

too slow for a given application, the developers face a dilemma: do they look for a faster79

algorithm, or for a simpler abstraction (i.e., a different notion of dynamic races)? For these80

reasons, it is important to understand the fine-grained complexity of the problem at hand81

with respect to such parameters. Fine-grained lower bounds can rule out the possibility of82

faster algorithms, and thus help the developers focus on new abstractions that are more83

tractable for the given application. Motivated by such questions, in this work we settle the84

fine-grained complexity of dynamically detecting several popular notions of data races.85
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1.1 Our Contributions86

Here we give a full account of the main results of this work, while we refer to later sections87

for precise definitions and proofs. We also refer to Appendix A for relevant notions in88

fine-grained complexity and popular hypotheses. The input is always a concurrent trace σ of89

length N , consisting of T threads, L locks, and V variables.90

Happens-before races. We first study the fine-grained complexity of HB races, as they91

form the most popular class of dynamic data races. The task of most techniques is to report92

all events in σ that participate in an HB race, which is known to take O(N ·T ) time [19]. Note93

that the bound is quadratic when T = Θ(N ), and multiple heuristics have been developed94

to address it in practice (see e.g., [16]). Our first result shows that polynomial improvements95

below this quadratic bound are unlikely.96

▶ Theorem 1. For any ϵ > 0, there is no algorithm that detects even a single HB race that97

involves a read in time O(N 2−ϵ), unless the OV hypothesis fails.98

Orthogonal vectors (OV) is a well-studied problem with a long-standing quadratic worst-case99

upper bound. The associated hypothesis states that there is no sub-quadratic algorithm100

for the problem [42]. It is also known that the strong exponential time hypothesis (SETH)101

implies the Orthogonal Vectors hypothesis [41]. Thus, under the OV hypothesis, Theorem 1102

establishes a quadratic lower bound for HB race detection.103

Note that the hardness of Theorem 1 arises out of the requirement to detect HB races that104

involve a read. A natural follow-up question is whether detecting if the input contains any105

HB race (i.e., not necessarily involving a read) has a similar lower bound based on SETH.106

Our next theorem shows that under the non-deterministic SETH (NSETH) [9], there is no107

fine-grained reduction from SETH that proves any lower bound for this problem above N 3/2.108

▶ Theorem 2. For any ϵ > 0, there is no (2N ,N 3/2+ϵ)-fine-grained reduction from SAT to109

the problem of detecting any HB race with bound, unless NSETH fails.110

Given the impossibility of Theorem 2, it would be desirable to at least show a super-linear111

lower bound for detecting any HB data race. To tackle this question, we show that detecting112

any HB race is hard for the general problem of model checking first-order formulas quantified113

by ∀∃∃ on structures of size n with m relational tuples (denoted FO(∀∃∃)).114

▶ Theorem 3. For any ϵ > 0, if there is an algorithm for detecting any HB race in time115

O(N 1+ϵ), then there is an algorithm for FO(∀∃∃) formulas in time O(m1+ϵ).116

It is known that FO(∀∃∃) can be solved in O(m3/2) time [17], which yields a bound O(n3) for117

dense structures (i.e., when m = Θ(n2)). Theorem 3 implies that if m3/2 is the best possible118

bound for FO(∀∃∃), then detecting any HB race cannot take O(N 1+ϵ) time for any ϵ < 1/2.119

Although improvements for FO(∀∃∃) over the current O(m3/2) bound might be possible,120

we find that a truly linear bound O(m) would require major breakthroughs 1. Under this121

hypothesis, Theorem 3 implies a super-linear bound for HB races.122

Finally, we give an improved upper bound for this problem when L = o(T ).123

▶ Theorem 4. Deciding whether σ has an HB race can be done in time O(N ·min(T ,L)).124

In fact, similar to existing techniques [16], the algorithm behind Theorem 4 detects all125

variables that participate in an HB race (instead of just reporting σ as racy).126

Synchronization-preserving races. Next, we turn our attention to the recently introduced127

1 Even the well-studied problem of testing triangle freeness, which is a special case of the similarly flavored
FO(∃∃∃), has the super-linear bound O(nω).
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sync-preserving races [24]. It is known that detecting sync-preserving races takes O(N ·V ·T 3)128

time. As sync-preserving races are known to be more expressive than HB races, the natural129

question is whether sync-preserving races can be detected more efficiently, e.g., by an130

algorithm that achieves a bound similar to Theorem 4 for HB races. Our next theorem131

answers this question in negative.132

▶ Theorem 5. For any ϵ > 0, there is no algorithm that detects even a single sync-preserving133

race in time O(N 3−ϵ), unless the 3-OV hypothesis fails. Moreover, the statement holds even134

for traces over a single variable.135

As HB races take at most quadratic time, Theorem 5 shows that the increased expressiveness136

of sync-preserving races incurs a complexity overhead that is unavoidable in general.137

Races based on the locking discipline. We now turn our attention to data races based on138

the locking discipline, namely lock-cover races and lock-set races. It is known that lock-cover139

races are more expressive than lock-set races. On the other hand, existing algorithms run140

in O(N 2 · L) time for lock-cover races and in O(N · L) time for lock-set races, and thus141

hint that the former are computationally harder to detect. Our first theorem makes this142

separation formal, by showing that even with just two threads, having slightly more that143

logarithmically many locks implies a quadratic hardness for lock-cover races.144

▶ Theorem 6. For any ϵ > 0, any T ≥ 2 and any L = ω(logN ), there is no algorithm that145

detects even a single lock-cover race in time O(N 2−ϵ), unless the OV hypothesis fails.146

Observe that the O(N ·L) bound for lock-set races also becomes quadratic, when the number147

of locks is unbounded (i.e., L = Θ(N )). Is there a SETH-based quadratic lower bound similar148

to Theorem 6 for this case? Our next theorem rules out this possibility, again under NSETH.149

▶ Theorem 7. For any ϵ > 0, there is no (2N ,N 1+ϵ)-fine-grained reduction from SAT to150

the problem of detecting any lock-set race, unless NSETH fails.151

Hence, even though we desire a quadratic lower bound, Theorem 7 rules out any super-linear152

lower-bound based on SETH. Alas, our next theorem shows that a quadratic lower bound for153

lock-set races does exist, based on the hardness of the hitting set (HS) problem.154

▶ Theorem 8. For any ϵ > 0 and any T = ω(logn), there is no algorithm that detects even155

a single lock-cover race in time O(N 2−ϵ), unless the HS hypothesis fails.156

Hitting set is a problem similar to OV, but has different quantifier structure. Just like the157

OV hypothesis, the HS hypothesis states that there is no sub-quadratic algorithm for the158

problem [3]. Although HS implies OV, the opposite is not known, and thus Theorem 8159

does not contradict Theorem 7. In conclusion, we have that both lock-cover and lock-set160

races have (conditional) quadratic lower bounds, though the latter is based on a stronger161

hypothesis (HS), and requires more threads and locks for hardness to arise.162

Finally, on our way to Theorem 7, we obtain the following theorem.163

▶ Theorem 9. Deciding whether a trace σ has a lock-set race on a variable x can be164

performed in O(N ) time. Thus, deciding whether σ has a lock-set race can be performed in165

O(N ·min(L,V)) time.166

Hence, Theorem 9 strengthens the O(N · L) upper bound for lock-set races when V = o(L).167

1.2 Related Work168

Dynamic data-race detection. There exists a rich literature in dynamic techniques for169

data race detection. Methods based on vector clocks (Djit algorithm [19]) using Lamport’s170

Happens Before (HB) [22] and the lock-set principle in Eraser [33] were the first ones to171

popularize dynamic analysis for detecting data races. Later work attempted to increase the172
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performance of these notions using optimizations as in [29] and FastTrack [16], altogether173

different algorithms (e.g., the GoldiLocks algorithm [15]), and hybrid techniques [27]. HB174

and lock-set based race detection are respectively sound (but incomplete) and complete (but175

unsound) variants of the more general problem of data-race prediction [34]. While earlier176

work on data race prediction focused on explicit [34] or symbolic [31, 32] enumeration, recent177

efforts have focused on scalability [37, 23, 21, 28, 30, 38]. The more recent notion [25] of178

sync-preserving races generalizes the notion of HB. As the complexity of race prediction is179

prohibitive (NP-hard in general [24]), this work characterizes the fine-grained complexity of180

popular, more relaxed notions of dynamic races that take polynomial time.181

Fine-grained complexity. Traditional complexity theory usually shows a problem is182

intractable by proving it NP-hard, and tractable by showing it is in P. For algorithms with183

large input sizes, this distinction may be too coarse. It becomes important to understand,184

even for problems in P, whether algorithms with smaller degree polynomials than the known185

are possible, or if there are fine-grained lower bounds making this unlikely. Fine-grained186

complexity involves proving such lower bounds, by showing relationships between problems187

in P, with an emphasis on the degree of the complexity polynomial, and is nowadays a field188

of very active study. We refer to [8] for an introductory, and to [42] for a more extensive189

exposition on the topic. Fine-grained arguments have also been instrumental in characterizing190

the complexity of various problems in concurrency, such as bounded context-switching [11],191

safety verification [12], data-race prediction [24] and consistency checking [13].192

2 Preliminaries193

2.1 Concurrent Program Executions and Data Races194

Traces and Events. We consider execution traces (or simply traces) generated by concurrent195

programs, under the sequential consistency memory model. Under this memory model, a196

trace σ is a sequence of events. Each event e is labeled with a tuple lab(e) = ⟨t, op⟩, where t197

is the (unique) identifier of the thread that performs the event e, and op is the operation198

performed in e. We will often abuse notation and write e = ⟨t, op⟩ instead of lab(e) = ⟨t, op⟩.199

For the purpose of this presentation, an operation can be one of (a) read (r(x)) from, or200

write (w(x)) to, a shared memory variable x, (b) acq(ℓ) or rel(ℓ) of a lock ℓ.201

For an event e = ⟨t, op⟩, we use tid(e) and op(e) to denote respectively the thread identifier t202

and the operation op. For a trace σ, we use Eventsσ to denote the set of events that appear203

in σ. Similarly, we will use Threadsσ, Locksσ and Varsσ to denote respectively the set of204

threads, locks and shared variables that appear in trace σ. We denote by N = |Eventsσ|,205

T = |Threadsσ|, L = |Locksσ|, and V = |Varsσ|. The set of read events and write events206

on variable x ∈ Varsσ will be denoted by Readsσ(x) and Writesσ(x), and further we let207

Accessesσ(x) = Readsσ(x) ∪ Writesσ(x). Similarly, we let Acquiresσ(ℓ) and Releasesσ(ℓ)208

denote the set of lock-acquire and lock-release events, respectively, of σ on lock ℓ. The trace209

order of σ, denoted ≤σ
tr, is the total order on Eventsσ induced by the sequence σ. Finally,210

the thread-order of σ, denoted ≤σ
TO is the smallest partial order on Eventsσ such that for any211

two events e1, e2 ∈ Eventsσ, if e1 ≤σ
tr e2 and tid(e1) = tid(e2), then e1 ≤σ

TO e2.212

Traces are assumed to be well-formed in that critical sections on the same lock do not213

overlap. For a lock ℓ ∈ Locksσ, let σ|ℓ be the projection of the trace σ on the set of events214

{e | op(e) ∈ {acq(ℓ), rel(ℓ)}}. Also, let t1, . . . tk be the thread identifiers in Threadsσ. Well-215

formedness then entails that for each lock ℓ, the projection σ|ℓ is a prefix of some string216

in the language of the grammar with production rules S → ε|S · St1 |S · St2 | · · · |S · Stk
and217

CVIT 2016
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Sti
→ ⟨ti, acq(ℓ)⟩ · ⟨ti, rel(ℓ)⟩ and start symbol S. Thus, every release event e has a unique218

matching acquire event, which we denote by matchσ(e). Likewise for an acquire event e,219

matchσ(e) denotes the unique matching release event if one exists. For an acquire event e, the220

critical section of e is the set of events CSσ(e) = {f | e ≤σ
TO f ≤σ

TO matchσ(e)} if matchσ(e)221

exists, and CSσ(e) = {f | e ≤σ
TO f} otherwise.222

Data Races. Two events e1, e2 ∈ Eventsσ are said to be conflicting if they are performed by223

different threads, they are access events touching the same memory location, and at least one224

of them is a write access. Formally, we have (i) tid(e1) ̸= tid(e2), (ii) e1, e2 ∈ Accessesσ(x)225

for some x ∈ Varsσ, and (iii) {e1, e2} ∩Writesσ(x) ̸= ∅. An event e ∈ Eventsσ is said to be226

enabled in a prefix ρ of σ, if for every event e′ ̸= e with e′ ≤σ
TO e, we have e′ ∈ Eventsρ. A227

data race in σ is a pair of conflicting events (e1, e2) such that there is a prefix ρ in which228

both e1 and e2 are simultaneously enabled. Depending on the type of access of e1 and e2,229

we often distinguish between write-write races and write-read races.230

2.2 Notions of Dynamic Data Races231

As the problem of determining whether a concurrent program has an execution with a data232

race is undecidable, dynamic techniques observe program traces and report whether certain233

events indicate the presence of a race. Depending on the technique, such reports can be234

sound (i.e., they guarantee the presence of a race in the program), Here we describe in detail235

some popular approaches to dynamic race detection that are the subject of this work.236

Happens-Before Races. Given a trace σ, the happens before order ≤σ
HB is the smallest237

partial order on Eventsσ such that (a) ≤σ
TO⊆≤σ

HB, and (b) for any lock ℓ ∈ Locksσ and for238

events e ∈ Acquiresσ(ℓ) and f ∈ Releasesσ(ℓ), if e ≤σ
tr f then e ≤σ

HB f . A pair of conflicting239

events (e1, e2) is an HB-race in σ if they are unordered by HB, i.e., e1 ̸≤σ
HB e2 and e2 ̸≤σ

HB e1.240

The associated decision question is, given a trace σ, determine whether σ has an HB race.241

Typically HB race detectors are tasked to report all events that form HB race with an earlier242

event in the trace [35, 2, 1]). That is, they solve the following function problem:given a trace243

σ, determine all events e2 ∈ Eventsσ for which there exists an event e1 ∈ Eventsσ such that244

e1 ≤σ
tr e2, and (e1, e2) is an HB race of σ. The standard algorithm for solving both versions245

of the problem is a vector-clock algorithm that runs in O(N · T ) time [19].246

Synchronization Preserving Races. Next, we present the notion of sync(hronization)-247

preserving races [24]. For a trace σ and a read event e, we use lwσ(e) to denote the write event248

observed by e. That is, e′ = lwσ(e) is the last (according to the trace order ≤σ
tr) write event e′

249

of σ such that e and e′ access the same variable and e′ ≤σ
tr e; if no such e′ exists, then we write250

lwσ(e) = ⊥. A trace ρ is said to be a correct reordering of trace σ, if (a) Eventsρ ⊆ Eventsσ251

(b) Eventsρ is downward closed with respect to ≤σ
TO, and further ≤ρ

TO⊆≤σ
TO, and (c) for every252

read event e ∈ Eventsρ, lwρ(e) = lwσ(e). We say that ρ is sync-preserving with respect to σ253

if for every lock ℓ and for any two acquire events e1, e2 ∈ Acquiresρ(ℓ), we have e1 ≤ρ
tr e2 iff254

e1 ≤σ
tr e2. That is, the order of two critical sections on the same lock is the same in σ and ρ.255

A pair of conflicting events (e1, e2) is a sync-preserving race in σ if σ has a sync-preserving256

correct reordering ρ such that (e1, e2) is a data race of ρ. The associated decision question257

is, given a trace σ, determine whether σ has a sync-preserving race. As with HB races, we258

are typically interested in reporting all events e2 ∈ Eventsσ for which there exists an event259

e1 ∈ Eventsσ such that e1 ≤σ
tr e2, and (e1, e2) is an HB race of σ. It is known one can report260

all such events e2 in time O(N · V · T 3).261

Lock-Cover and Lock-Set Races. Lock-cover and lock-set races indicate violations262



R. Kulkarni and U. Mathur and A. Pavlogiannis 23:7

t1 t2

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 w(x)
5 acq(ℓ)
6 rel(ℓ)

t1 t2

1 w(x)
2 acq(ℓ)
3 rel(ℓ)
4 acq(ℓ)
5 rel(ℓ)
6 w(x)

t1 t2

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 acq(ℓ)
5 r(x)
6 rel(ℓ)
7 w(x)

t1 t2

1 acq(ℓ1)
2 acq(ℓ2)
3 w(x)
4 rel(ℓ2)
5 rel(ℓ1)
6 acq(ℓ2)
7 acq(ℓ3)
8 w(x)
9 rel(ℓ3)

10 rel(ℓ2)
11 acq(ℓ1)
12 acq(ℓ3)
13 w(x)
14 rel(ℓ3)
15 rel(ℓ1)

(a) HB-race (b) Sync-preserving race (c) Lock-cover race (d) Lockset race

Figure 1 Types of data races.

of the locking discipline. For an event e in a trace σ, let locksHeldσ(e) = {ℓ | ∃f ∈263

Acquiresσ(ℓ), such that e ∈ CSσ(f)}, i.e., locksHeldσ(e) is the set of locks held by thread264

tid(e) when e is executed. A pair of conflicting events might indicate a data race if265

locksHeldσ(e1)∩ locksHeldσ(e2) = ∅. Although this condition does not guarantee the presence266

of a race, it constitutes a violation of the locking discipline and can be further investigated.267

A pair of conflicting events (e1, e2) is a lock-cover race if locksHeldσ(e1)∩ locksHeldσ(e2) = ∅.268

The decision question is, given a trace σ, determine if σ has a lock-cover race. The problem269

is solvable in O(N 2 · L) time, by checking the above condition over all conflicting event pairs.270

As the algorithm for lock-cover races takes quadratic time, developers often look for less271

expensive indications of violations of locking discipline, called lock-set races (as proposed by272

Eraser race detector [33]). A trace σ has a lock-set race on variable x ∈ Varsσ if273

(a) there exists a pair of conflicting events (e1, e2) ∈Writesσ(x)× Accessesσ(x), and274

(b)
⋂

e∈Accessesσ(x) locksHeldσ(e) = ∅.275

The associated decision question is, given a trace σ, determine if σ has a lock-set race. Note276

that a lock-cover race implies a lock-set race, but not the other way around. On the other277

hand, determining whether σ has a lock-set race is easily performed in O(N · L) time.278

Example. We illustrate the different notions of races in Figure 1. We use ei to denote the279

ith event of the trace in consideration. First consider the trace σa in Figure 1a. The events e2280

and e4 are conflicting and unordered by ≤σa

HB, thus (e2, e4) is an HB-race. Second, in trace σb281

of Figure 1b, the pair (e1, e6) is not an HB-race as e1 ≤σb

HB e6. But this is a sync-preserving282

race witnessed by the correct reordering e4, e5, as both e1 and e6 are enabled. Third, in trace283

σc of Figure 1c, the pair (e2, e7) is neither a sync-preserving race nor an HB race, but is a284

lock-cover race as locksHeldσc
(e2) ∩ locksHeldσc

(e7) = ∅. Finally, the trace σd in Figure 1d285

has no HB, sync-preserving or lock-cover race, as all w(x) are protected by a common lock.286

But there is a lock-set race on x as there is no single lock that protects all w(x).287

3 Happens-Before Races288

In this section we prove the results for detecting HB races, i.e., Theorem 1 to Theorem 4.289

CVIT 2016
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3.1 Algorithm for HB Races290

In this section, we outline our O(N ·L)-time algorithm for checking if a trace σ has an HB-race,291

thereby proving Theorem 4. As with the standard vector clock algorithm [19], our algorithm292

is based on computing timestamps for each event. However, unlike the standard algorithm293

that assigns thread-indexed timestamps, we use lock-indexed timestamps, or lockstamps,294

which we formalize next. We fix the input trace σ in the rest of the discussion.295

Lockstamps A lockstamp is a mapping from locks to natural numbers (including infinity)296

L : Locksσ → N ∪ {∞}. Given lockstamps L,L1, L2 and lock ℓ, we use the notation297

(i) L[ℓ 7→ c] to denote the the lockstamp λm· if m = ℓ then c else L(m), (ii) L1 ⊔ L2 to298

denote the pointwise maximum, i.e., (L1⊔L2)(ℓ) = max(L1(ℓ), L2(ℓ)) for every ℓ, (iii) L1⊓L2299

to denote the pointwise minimum, and (iv) L1 ⊑ L2 to denote the predicate ∀ℓ·L1(ℓ) ≤ L2(ℓ).300

Our algorithm computes acquire and release lockstamps AcqLSσ
e and RelLSσ

e for every event301

e ∈ Eventsσ. Let us formalize these next. For a lock ℓ and acquire event f ∈ Acquiresσ(ℓ)302

(resp. release event g ∈ Releasesσ(ℓ)), let posσ(f) = |{f ′ ∈ Acquiresσ(ℓ) | f ′ ≤σ
tr f}| (resp.303

posσ(g) = |{f ′ ∈ Releasesσ(ℓ) | f ′ ≤σ
tr f}|) denote the relative position of f (resp. g) among304

all acquire events (resp. release events) of ℓ. Then, for an event e ∈ Eventsσ the lockstamps305

AcqLSσ
e and RelLSσ

e are defined as follows (we assume that max∅ = 0 and min∅ =∞.)306

AcqLSσ
e (ℓ) = λℓ ·max{posσ(f) | f ∈ Acquiresσ(ℓ), f ≤σ

HB e}

RelLSσ
e (ℓ) = λℓ ·min{posσ(f) | f ∈ Releasesσ(ℓ), e ≤σ

HB f}
(1)307

Our O(N · L) algorithm now relies on the following observations. First, the HB partial order308

can be inferred using by comparing lockstamps of events (Lemma 10). Second, there is an309

O(N · L) time algorithm that computes the acquire and release lockstamps for each event310

in the input trace. Third, the existence of an HB race can be determined by examining311

only O(N ) pairs of conflicting events (using their lockstamps), instead of all possible O(N 2)312

pairs (Lemma 11). Finally, we can also examine all the O(N ) pairs in time O(N · L) (using313

O(N ) lockstamp comparisons) and thus determine the existence of an HB race in the same314

asymptotic running time. Let us first state how we use lockstamps to infer the HB relation.315

▶ Lemma 10. Let e1 ≤σ
tr e2 be events in σ such that tid(e1) ̸= tid(e2). We have, e1 ≤σ

HB316

e2 ⇐⇒ ¬(AcqLSσ
e2
⊑ RelLSσ

e1
)317

Computing Lockstamps. We now illustrate how to compute the acquire lockstamps for318

all events, by processing the trace σ in a forward pass. For each thread t and lock ℓ, we319

maintain lockstamp variables Ct and Lℓ. We also maintain an integer variable pℓ for each320

lock ℓ that stores the index of the latest acq(ℓ) event in σ. Initially, we set each Ct and Lm321

to the bottom map λℓ · 0, and pm to 0, for each thread t and lock m. We traverse σ left to322

right, and perform updates to the data structures as described in Algorithm 1, by invoking323

the appropriate handler based on the thread and operation of the current event e = ⟨t, op⟩.324

At the end of each handler, we assign the lockstamp AcqLSσ
e to e. The computation of release325

lockstamps is similar, albeit in a reverse pass, and presented in Appendix B.1. Observe that326

each step takes O(L) time giving us a total running time of O(N · L) to assign lockstamps.327

We say that a pair of conflicting access events (e1, e2) (with e1 ≤σ
tr e2) to a variable x is a328

consecutive conflicting pair if there is no event f ∈Writesσ(x) such that e1 <
σ
tr f <

σ
tr e2. We329

make the following observation.330

▶ Lemma 11. A trace σ has an HB-race iff there is pair of consecutive conflicting events in331

σ that is an HB-race. Moreover, σ has O(N ) many consecutive conflicting pairs of events.332

Checking for an HB race. We now describe the algorithm for checking for an HB race in333
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Algorithm 1 Assigning acquire lockstamps to events in the trace

1 acquire(t, ℓ):
2 pℓ ← pℓ + 1
3 Ct ← Ct[ℓ 7→ pℓ] ⊔ Lℓ

4 AcqLSσ
e ← Ct

5 release(t, ℓ):
6 Lℓ ← Ct

7 AcqLSσ
e ← Ct

8 read(t, x):
9 AcqLSσ

e ← Ct

10 write(t, x):
11 AcqLSσ

e ← Ct

A1

101
100
010

A2

111
011
110

OV instance

t(1,0)

1 w(z)
2 cs(ℓx)

t(1,1)

4 cs(ℓx)
6 cs(ℓ1)

t(1,2)

8 cs(ℓx)

t(1,3)

10 cs(ℓx)
12 cs(ℓ3)
14 cs(ℓ(y1,3))
16 cs(ℓ(y2,3))
18 cs(ℓ(y3,3))

Figure 2 Reducing OV to detecting a write-read HB-races. Illustration of the threads t(x, i),
where x is the first vector of A1. cs(ℓ) denotes the sequence acq(ℓ), rel(ℓ). Event numbers indicate
the relative order in which these threads execute in σ.

σ. We perform a forward pass on σ while storing the release lockstamps of some of the earlier334

events. When processing an access event e, we check if it is in race with an earlier eventby335

comparing the acquire lockstamp of e with a previously stored release lockstamp. More336

precisely, we maintain a variable Wx to store the release lockstamp of the last write event on337

x, a variable twx to store the thread that performed this write and set Sx to store pairs (t, L)338

of threads and release lockstamps of all the read events performed since the last write on x339

was observed. Initially, twx = NIL, Wx = λℓ · ∞ and Sx = ∅. The update performed at each340

event e = ⟨t, op⟩ are presented in the corresponding handler in Algorithm 2.341

Algorithm 2 Determining the existence of an HB-race using lockstamps

1 read(t, x):
2 if twx ̸∈ {NIL, t} ∧ AcqLSσ

e ⊑Wx then
3 declare ‘race’ and exit
4 Sx ← Sx ∪ {(t,RelLSσ

e )}

5 write(t, x):
6 if twx ̸∈ {NIL, t} ∧ AcqLSσ

e ⊑Wx then
7 declare ‘race’ and exit
8 if ∃(u, L) ∈ Sx, t ̸= u ∧ AcqLSσ

e ⊑ L then
9 declare ‘race’ and exit

10 twx = t; Sx ← ∅; Wx ← RelLSσ
e

We refer to Appendix B.1 for the correctness, which concludes the proof of Theorem 4.342

3.2 Hardness Results for HB343

We now turn our attention to the hardness results for HB race detection. To this end, we344

prove Theorem 1, Theorem 2, and Theorem 3. We start with defining the graph G(≤σ
HB),345

which can be thought of as a form of transitive reduction of the HB relation.346

The graph G(≤σ
HB). Given a trace σ, the graph G(≤σ

HB) is a graph with node set Eventsσ,347

and we have an edge (e1, e2) in G(≤σ
HB) iff (i) e2 is the immediate successor of e1 wrt the348

thread order ≤σ
TO, or (ii) e1 is a rel(ℓ) event, e2 is a acq(ℓ) event, e1 ≤σ

tr e2, and there is no349

intermediate event in σ that accesses lock ℓ. It follows easily that for any two distinct events350

e1, e2, we have e1 ≤σ
HB e2 iff e2 is reachable from e1 in G(≤σ

HB). Moreover, every node has351

out-degree ≤ 2 and thus G(≤σ
HB) is sparse, while it can be easily constructed in O(N ) time.352

OV hardness of write-read HB races. Given a OV instance OV(n,d) on two vector sets353

A1, A2, we create a trace σ as follows. For the part A1 of OV, we introduce n · (d+ 1) threads354

denoted by t(x, i), for x ∈ [n], i ∈ {0} ∪ [d], and d locks, each denoted by li, for i ∈ [d]. For355
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w(z) w(z) w(z)

cs(lx1) cs(lx2) cs(lx3)

cs(l1)

cs(l3)

cs(l1,3)

cs(l2,3)

cs(l3,3)

cs(l1)

cs(l1,1)

cs(l2,1)

cs(l3,1)

cs(l1)

cs(l1,2)

cs(l2,2)

cs(l3,2)

cs(l1,1)

cs(l1,2)

cs(l1,3)

cs(l2,2)

cs(l2,3)

cs(l3,1)

cs(l3,2)

r(z)

r(z) r(z)

For vectors in Y, n threads with
n × d locks, where thread i has crit-
ical section of lock (i, k) if yi[k] = 1.

We end each thread with r(z).

Figure 3 Reducing OV to finding HB races using the instance of Figure 2. For simplicity, we
show the graph G(≤σ

HB) instead of the trace σ. The HB race is marked in red, corresponding to the
orthogonal pair (x2, y2).

the second part A2 we introduce n · d locks denoted by l(y, i), for y ∈ [n], i ∈ [d], and n356

threads, denoted by ty, for y ∈ [n]. Finally, we have a single variable z.357

We first describe the threads t(x, i). We order the vectors in A1 arbitrarily. For each vector358

x, for each i ∈ [d], we introduce a critical section on the lock li. If x is the last vector of359

A1 with x[i] = 1, we also insert the critical sections l(y,i) for all y ∈ [n], to t(x, i) after the360

critical section of lx. Finally, we construct a thread tx,0 which starts with a write event w(z),361

followed by a critical section on lock lx. We also insert a critical section on lock lx to all362

threads t(x, i), for i ∈ [d]. Hence the w(z) event is ordered by HB before all other events of363

t(x, i). See Figure 2 for an illustration.364

Now we describe the threads ty. For each i ∈ [d], if y[i] = 1, we add a critical section of the365

lock l(y, i) in ty. We end the thread with a read event r(z).366

Finally, we construct σ by first executing each thread t(x, i) in the pre-determined order of367

x ∈ A1, followed by executing the traces ty in any order. See Figure 3 for an illustration.368

We refer to Appendix B for the correctness, which concludes the proof of Theorem 1.369

We now turn our attention to the problem of detecting a single HB race (i.e., not necessarily370

involving a read event). We define a useful multi-connectivity problem on graphs.371

▶ Problem 1. [MCONN] Given a directed graph G with n nodes and m edges, and k pairs372

of nodes (si, ti), i ∈ [k], decide if there is a path in G from every si to the corresponding ti.373

Due to Lemma 11, detecting whether there is an HB race in σ reduces to testing MCONN374

between all O(N ) pairs of consecutive conflicting events in σ.375

Short witnesses for HB races. We now prove Theorem 2. Following [9, Corollary 2], it376

suffices to show that deciding MCONN can be done in NTIME[N 3/2] ∩ coNTIME[N 3/2]. At377

a first glance, the bound NTIME[N 3/2] may seem too optimistic, as there are Θ(N ) paths378

Pi : si ⇝ ti, and each of them can have size Θ(N ). Hence even just guessing these paths379

appears to take quadratic time. Our proof shows that more succinct witnesses exist.380

Proof of Theorem 2. First consider the simpler case where σ has an HB-race. Phrased as a381

MCONN problem on G(≤σ
HB), it suffices to show that there is a pair (si, ti) such that si does382

not reach ti. We construct a non-deterministic algorithm for this task that simply guesses383

the pair (si, ti), and verifies that there is no si ⇝ ti path. Since G(≤σ
HB) is sparse, this can384

be easily verified in O(N ) time.385

Now consider the case when there is no HB-race. Phrased as a MCONN problem on G(≤σ
HB),386

it suffices to verify that for every pair (si, ti), we have that si reaches ti. We construct a387

non-deterministic algorithm for this task, as follows. The algorithm operates in two phases,388
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using a set A, initialized as A = {(si, ti)}i∈k.389

1. In the first phase, the algorithm repeatedly guesses a node u that lies on at least N 1/2
390

paths si ⇝ ti, for (si, ti) ∈ A. It verifies this guess via a backward and a forward traversal391

from u. The algorithm then removes all such (si, ti) from A, and repeats.392

2. In the second phase, the algorithm guesses for every remaining (si, ti) ∈ A a path393

Pi : si ⇝ ti, and verifies that Pi is a valid path.394

Phase 1 can be execute at most N 1/2 iterations, while each iteration takes O(N ) time since395

G(≤σ
HB) is sparse. Hence the total time for phase 1 is O(N 3/2). Phase 2 takes O(N 3/2) time,396

as every node of G(≤σ
HB) appears in at most N 1/2 paths Pi. The desired result follows. ◀397

A super-linear lower bound for general HB races. Finally, we turn our attention to398

Theorem 3. The problem FO(∀∃∃) takes as input a first-order formula ϕ with quantifier399

structure ∀∃∃ and whose atoms are tuples, and the task is to verify whether ϕ has a model400

on a structure of n elements and m relational tuples. For simplicity, we can think of the401

structure as a graph G of n nodes and m edges, and ϕ a formula that characterizes the402

presence/absence of edges (e.g., ϕ = ∀x∃y∃z e(x, y) ∧ ¬e(y, z)).403

The crux of the proof of Theorem 3 is showing the following lemma.404

▶ Lemma 12. FO(∀∃∃) reduces to MCONN on a graph G with O(n) nodes in O(n2) time.405

Finally, we arrive at Theorem 3 by constructing in O(n2) time a trace σ with N = Θ(n2)406

such that G(≤σ
HB) is similar in structure to the graph G of Lemma 12. In the end, detecting407

an HB race in σ in O(N 1+ϵ) time yields an algorithm for FO(∀∃∃) in N = Θ(n2+ϵ) time.408

We refer to Appendix B for the details, which conclude the proof of Theorem 3.409

4 Synchronization-Preserving Races410

In this section we discuss the dynamic detection of sync-preserving races, and prove Theorem 5.411

For notational convenience, we will frequently use the composite sync events. A sync(ℓ)412

event represents the sequence acq(ℓ), r(xℓ), w(xℓ), rel(ℓ). The key idea behind sync events is413

as follows. Assume that in a trace σ we have two sync(ℓ) events e1 and e2 with e1 <
σ
tr e2.414

Then any correct reordering ρ of σ with e2 ∈ Eventsρ satisfies the following.415

(a) We have e1 ∈ Eventsρ, as the read event of e2 must read from the write event of e1.416

(b) For every e′
1, e

′
2 ∈ Eventsρ such that e′

1 ≤σ
TO e1 and e2 ≤σ

TO e′
2, we have e1 <

ρ
tr e2.417

We hence use sync events to ensure certain orderings in any sync-preserving correct reordering418

of σ that exposes a sync-preserving data race.419

Intuition. Before we proceed with the detailed reduction, we provide a high-level description.420

The input to 3-OV is three sets of vectors A1 = {xi}i∈[n], A2 = {yi}i∈[n], and A3 =421

{zi}i∈[n]. Every vector x ∈ A1 is represented by a thread tx, ending with the critical section422

acq(X), w(z), rel(X). Similarly, every vector y ∈ A1 is represented by a thread ty, ending423

with the critical section acq(Y ), r(z), rel(Y ). Notice that we can only have a race between424

the write event of a thread tx and the read event of a thread ty. The search for such a race425

corresponds to the search of the corresponding vectors x ∈ A1 and y ∈ A2 such that there is426

a vector z ∈ A3 which makes the triplet x, y, z orthogonal.427

To establish this correspondence, we insert in tx empty critical sections on locks lk, for k ∈ [d]428

that represent the coordinates k for which x[k] = 1. We use a similar encoding with locks l′k429

for the threads ty, capturing that y[k] = 1. To encode the vectors in A3, we use k threads tk,430

for k ∈ [d], such that the ith segment of tk encodes zi[k]: we have two interleaved critical431
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A1

11
11

A2

11
01

A3

11
10

3-OV instance

tx

34 acq(l1)
35 rel(l1)
36 acq(l2)
37 rel(l2)
50 acq(X)
51 w(z)
52 rel(X)

ty1

42 sync(s1)
43 acq(l′1)
44 rel(l′1)
45 acq(l′2)
46 rel(l′2)
59 acq(Y )
60 r(z)
61 rel(Y )

ty2

47 sync(s2)
48 acq(l′2)
49 rel(l′2)
62 acq(Y )
63 r(z)
64 rel(Y )

t1

1 acq(l1)
2 sync(ℓ1)
3 acq(l′1)
4 rel(l1)

13 sync(ℓ1)
14 rel(l′1)

-z1 ends-
20 acq(l1)
21 sync(ℓ1)
22 acq(l′1)
23 rel(l1)
28 sync(ℓ1)
29 rel(l′1)

t2

5 acq(l2)
6 sync(ℓ2)
7 acq(l′2)
8 rel(l2)

15 sync(ℓ2)
16 rel(l′2)

-z1 ends-
24 sync(ℓ2)
30 sync(ℓ2)

tAux

9 sync(ℓ1)
10 sync(ℓ2)
11 sync(s1)
12 sync(s2)
17 acq(Y )
18 sync(ℓ1)
19 sync(ℓ2)
25 sync(ℓ1)
26 sync(ℓ2)
27 rel(Y )
31 acq(Y )
32 sync(ℓ1)
33 sync(ℓ2)
56 acq(X)
57 rel(X)
58 rel(Y )

Figure 4 Example reduction from 3-OV to sync race detection. The trace orders events as shown
by their numbering. We only show one thread tx, as the two x vectors are identical.

sections on locks lk and l′k iff zi[k] = 1.432

Finally, we use some sync events to force all threads tk be partially executed whenever we433

want to execute the write event of any thread tx. Hence, any correct reordering of σ that434

exposes a data race in σ, must execute all tk at least partially. We make all threads tk435

execute before all tx and ty in σ. The notion of sync-preservation ensures that if we have436

a correct reordering that exposes a race between two threads tx and ty, then the following437

holds. For every coordinate k ∈ [d] in which x[k] = y[k] = 1, since the corresponding threads438

tx and ty have critical sections on locks lk and l′k, the thread tk must execute up to a point439

where it does not have critical sections on these locks. This means that we have found a440

vector z with z[k] = 0, and thus the triplet x, y, z is orthogonal on that coordinate.441

Reduction. Given an 3-OV instance OV(n, d, 3) on vector sets A1 = {xi}i∈[n], A2 =442

{yi}i∈[n], and A3 = {zi}i∈[n], we create a trace σ as follows (see Figure 4). We have443

T = 2 · n+ d+ 1 threads, while all access events (not counting the sync events) are of the444

form w(z)/r(z) in a single variable z. We first describe the threads, and then how they445

interleave in σ.446

Threads. We introduce a thread tx for every vector x ∈ A1 and a lock lk for every k ∈ [d].447

Each thread tx consists of two segments t1x and t2x. We create t1x as follows. For every k ∈ [d]448

where x[k] = 1, we add an empty critical section acq(lk), rel(lk) in t1x. We create t2x as the449

sequence acq(X), w(z), rel(X), where X is a new lock, common for all t2x.450

For the vectors in A2, we introduce threads similar to those of part A1, as follows. We have451

a thread ty for every vector y ∈ A2 and a lock l′k for every k ∈ [d]. Each thread ty consists452

of two segments t1y and t2y. For every k ∈ [d] where y[k] = 1, we add an empty critical453

section acq(l′k), rel(l′k) in t1y. In contrast to the t1x, every t1y also has an event sync(sy) at454

the very beginning. We create t2y as the sequence acq(Y ), r(z), rel(Y ), where Y is a new455

lock, common for all t2y.456

The construction of the threads corresponding to the vectors in A3 is more involved. We have457

one thread tk for every k ∈ [d]. Each thread has some fixed sync events, as well as critical458

sections corresponding to one coordinate of all n vectors in A3. In particular, we construct459

each tk as follows. We iterate over all zi, and if zi[k] = 0, we simply append two events460

sync(ℓk), sync(ℓk) to tk. On the other hand, if zi[k], we interleave these sync events with two461

critical sections, by appending the sequence acq(lk), sync(ℓk), acq(l′k), rel(lk), sync(ℓk), rel(l′k).462
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Lastly, we have a single auxiliary trace t that consists of three parts t1, t2 and t3, where463

t1 = sync(ℓ1), . . . , sync(ℓk), sync(sy1), . . . sync(syn)464

t2 = (acq(Y ), sync(ℓ1), . . . , sync(ℓk), sync(ℓ1), . . . , sync(ℓk), rel(Y ))n−1
465

t3 = acq(Y ), sync(ℓ1), . . . , sync(ℓk), acq(X), rel(X), rel(Y )466
467

Concurrent trace. We are now ready to describe the interleaving of the above threads in468

order to obtain the concurrent trace σ.469

1. We execute the auxiliary trace t and all traces tk, for k ∈ [d] (i.e., the threads corresponding470

to the vectors of A3) arbitrarily, as long as for every k ∈ [d], every sequence of sync(ℓk)471

events (a) starts with the sync(ℓk) event of tk and proceeds with the sync(ℓk) event of t,472

(b) strictly alternates in every two sync(ℓk) events between t and tk, and (c) ends with473

the last sync(ℓk) event of tk.474

2. We execute all t1x and t1y (i.e., the first parts of all threads that correspond to the vectors475

in A1 and A2) arbitrarily, but after all traces tk, for k ∈ [d].476

3. We execute all t2x (i.e., the second parts of all traces that correspond to the vectors in477

A1) arbitrarily, but before the segment acq(X), rel(X), rel(Y ) of t.478

4. We execute all t2y (i.e., the second parts of all traces that correspond to the vectors in479

A2) arbitrarily, but after the segment acq(X), rel(X), rel(Y ) of t.480

We refer to Appendix C for the correctness of the reduction and thus the proof of Theorem 5.481

5 Violations of the Locking Discipline482

5.1 Lock-Cover Races483

We start with a simple reduction from OV to detecting lock-cover races. Given a OV instance484

OV(n,d) on two vector sets A1, A2, we create a trace σ as follows. We have a single variable485

x and two threads t1, t2. We associate with each vector of the set Ai a write access event486

e = ⟨ti, w(x)⟩. Moreover, each such event holds up to d locks, so that e holds the kth lock487

iff kth coordinate of the vector corresponding to the event is 1. The trace σ is formed by488

ordering the sequence of events corresponding to vectors of A1 of OV first, in a fixed arbitrary489

order, followed by the sequence of events corresponding to A2, again in arbitrary order. We490

refer to Appendix D for the correctness, which concludes the proof of Theorem 6.491

5.2 Lock-Set Races492

We now turn our attention to lock-set races. We first prove Theorem 9, i.e., that determining493

whether a trace σ has a lock-set race on a specific variable x can be performed in linear time.494

A linear-time algorithm per variable. Verifying that there are two conflicting events on495

x is straightforward by a single pass of σ. The more involved part is in computing the lock-set496

of x, i.e., the set
⋂

e∈Accessesσ(x) locksHeldσ(e), in linear time. Indeed, each intersection alone497

requires Θ(L) time, resulting to Θ(N · L) time overall.498

Here we show that a somewhat more involved algorithm achieves the task. The algorithm499

performs a single pass of σ, while maintaining three simple sets A, B, and C. While processing500

an event e, the sets are updated to maintain the invariant501

A = locksHeldσ(e) B = Locksσ ∩
⋂

e′∈Accessesσ(x),e′≤σ
tr e

locksHeldσ(e′) C = A ∩B (2)502

503
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X

1 001
2 100
3 101
4 011

Y

001
010
111
110

HS instance: n = 4, d = 3

t1

1 acq(ℓ1)
2 acq(ℓ2)
3 w(z2)
4 w(z3)
5 rel(ℓ2)
6 rel(ℓ1)

t2

7 acq(ℓ1)
8 w(z4)
9 rel(ℓ1)

t3

10 acq(ℓ2)
11 acq(ℓ4)
12 w(z1)
13 w(z3)
14 w(z4)
15 rel(ℓ4)
16 rel(ℓ2)

t0

17 acq(ℓ1)
18 ...
19 acq(ℓ4)
20 w(z1)
21 ...
22 w(z4)
23 rel(ℓ4)
24 ...
25 rel(ℓ1)

Figure 5 Reducing HS to detecting a lock-set race on trace σ with d threads. Thread tk uses lock
li if yi[k] = 0, and w(zj) if xj [k] = 1. Vector x4 hits all vectors in Y , implying a lock-set race on z4.

The sets are initialized as A = ∅, B = C = Locksσ. Then the algorithm performs a pass504

over σ and processes each event e according to the description of Algorithm 3.505

Algorithm 3 Computing lock-set of variable x

1 acquire(t, ℓ):
2 A← A ∪ {ℓ}
3 if ℓ ∈ B then
4 C ← C \ {ℓ}

5 release(t, ℓ):
6 A← A \ {ℓ}
7 if ℓ ∈ B then
8 C ← C ∪ {ℓ}

9 read(t, y):
10 if x = y then
11 B ← B \ C
12 C ← ∅

13 write(t, y):
14 if x = y then
15 B ← B \ C
16 C ← ∅

The correctness of Algorithm 3 follows by proving the invariant in Equation (2). We refer to506

Appendix D for the details, which concludes the proof of Theorem 9.507

Short witnesses for lock-set races. Besides the advantage of a faster algorithm, The-508

orem 9 implies that lock-set races have short witnesses that can be verified in linear time.509

This allows us to prove that detecting a lock-set race is in NTIME[N ] ∩ coNTIME[N ], and510

we can thus use [9, Corollary 2] to prove Theorem 7.511

Proof of Theorem 7. First we argue that the problem is in NTIME[n]. Indeed, the certificate512

for the existence of a lock-set race is simply the variable x on which there is a lock-set race.513

By Theorem 9, verifying that we indeed have a lock-set race on x takes O(N ) time.514

Now we argue that the problem is in coNTIME[n], by giving a certificate to verify in linear515

time that σ does not have a race of the required form. The certificate has size O(|Varsσ|),516

and specifies for every variable, either the lock that is held by all access events of the variable,517

or a claim that there exist no two conflicting events on that variable. The certificate can be518

easily verified by one pass over σ. ◀519

Lock-set races are Hitting-Set hard. Finally we prove Theorem 8, i.e., that determining520

a single lock-set race is HS-hard, and thus also carries a conditional quadratic lower bound.521

We establish a fine-grained reduction from HS. Given a HS instance HS(n,d) on two vector sets522

X,Y , we create a trace σ using d+ 1 threads {tj}j∈{0}∪[d], n locks {ℓi}i∈[n], and n variables523

{zi}k∈[n]. Thread t0 that executes acq(ℓ1), . . . , acq(ℓn), w(z1), . . . w(zn), rel(ℓn), . . . rel(ℓ1).524

Each of the threads tj , for j ∈ [d], has a single nested critical section consisting of the locks525

ℓi ∈ [n] such that the ith vector of Y has its jth coordinate 0, i.e, yi[j] = 0. The events in526

the critical section are all write events of all variables zk ∈ [n] with xk[j] = 1. The trace527

orders all events of each thread td consecutively, and all the events overall in increasing order528

of d. See Figure 5 for an illustration. We refer to Appendix D for the correctness, which529

concludes the proof of Theorem 8.530
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6 Conclusion531

In this work we have taken a fine-grained view of the complexity of popular notions of532

dynamic data races. We have established a range of lower bounds on the complexity of533

detecting HB races, sync-preserving races, as well as races based on the locking discipline534

(lock-cover/lock-set races). Moreover, we have characterized cases where lower bounds based535

on SETH are not possible under NSETH. Finally, we have proven new upper bounds for536

detecting HB and lock-set races. To our knowledge, this is the first work that characterizes537

the complexity of well-established dynamic race-detection techniques, allowing for a rigorous538

characterization of their trade-offs between expressiveness and running time.539
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A Fine-Grained Complexity and Popular Hypotheses699

In this section we present notions of fine-grained complexity theory that are relevant to our700

work. We refer to the survey [42] for a detailed exposition on the topic.701

This theory relates the computational complexity of problems under the following, more702

refined, notion of reduction than the standard ones used in traditional complexity theory.703

Informally, the definition says that if there is an algorithm for some problem B faster than its704

assumed lower bound, then such a reduction from some problem A to B gives an algorithm705

for A thatis faster than its conjectured lower bound.706

Fine-grained Reductions. Assume that A and B are computational problems and a(n)
and b(n) are their conjectured running time lower bounds, respectively. Then we say A
(a, b)-reduces to B, denoted by A (a)⪯(b) B, if for every ϵ > 0, there exists δ > 0, and an
algorithm R for A that runs in time a(n)(1−δ) on inputs of length n, making q calls to an
oracle for B with query lengths n1, . . . , nq, where,

q∑
1

(b(n))(1−ϵ) ≤ (a(n))(1−δ).

Problems that can be reduced to each other such that the lower bounds for each problem are707

the same in both reductions, i.e., A(a)⪯(b)B and B(b)⪯(a)A, are intuitively thought to have708

the same underlying ‘reason’ for hardness, and are said to be fine-grained equivalent.709

A reduction A(a)⪯(b)B would be interesting for B if a(n) was a proven or well-believed710

conjectured lower bound on A, thus implying a believable lower bound on B. One such711

well-believed conjecture in complexity theory is SETH [18] for the classic CNF-SAT problem,712

originally defined for deterministic algorithms, but now widely believed for randomized713

algorithms as well.714

▶ Hypothesis 1 (Strong Exponential Time Hypothesis (SETH)). For every ϵ > 0 there exists715

an integer k ≥ 3 such that CNF-SAT on formulas with clause size at most k and n variables716

cannot be solved in O(2(1−ϵ)n) time even by a randomized algorithm.717

SETH implies a lower bound conjecture, denoted by OVH, on the Orthogonal Vectors problem718

OV, as shown by a reduction from CNF-SAT to k-OV [41]. Thus, a conditional lower bound719

under OVH implies one under SETH as well, leading to numerous conditional lower bound720

results under OVH [See [42] for a detailed literature review]. This paper will also prove such721

results on several data race detection problems, hence we now state k-OV and OVH formally.722

An instance of k-OV is an integer d = ω(logn) and k sets Ai ⊆ {0, 1}d, i ∈ [n] such that723

|Ai| = n, and denoted by OV(n, d).724

▶ Problem 2 (Orthogonal Vectors (k-OV)). Given an instance OV(n, d, k), the k-OV problem725

is to decide if there are k vectors ai ∈ Ai for all i ∈ [n] such that the sum of their point wise726

product is zero, i.e.,
∑d

j=1
∏k

i=1 ai[j] = 0.727

For ease of exposition, we denote OV(n, d, 2) and 2-OV by OV(n,d) and OV respectively.728

▶ Hypothesis 2 (Orthogonal Vectors Hypothesis (OVH)). No randomized algorithm can solve729

k-OV for an instance OV(n, d, k) in time O(n(k−ϵ) · poly(d)) for any constant ϵ > 0.730

There is an impossibility result from [9] that proves that a reduction under SETH, and hence731

under OVH, is not possible unless the following NSETH conjecture is false.732

▶ Hypothesis 3 (Non-deterministic SETH (NSETH)). For every ϵ > 0, there exists a k so733

that k-TAUT is not in NTIME[2n(1−ϵ)], where k-TAUT is the language of all k-DNF formulas734

which are tautologies.735
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The impossibility result [9, Corollary 2] is as follows.736

▶ Theorem 13. If NSETH holds and a problem C ∈ NTIME[TC] ∩ coNTIME[TC], then for737

any problem B that is SETH-hard under deterministic reductions with time TB , and γ > 0,738

we cannot have a fine-grained reduction B (TB)⪯(c) C where c = T
(1+γ)
C .739

We show some of our problems satisfy the conditions of Theorem 13, and hence show lower740

bounds for these conditioned on one of two other hypotheses called HSH and FOPH(∀∃∃),741

described below.742

An instance of the hitting set problem, denoted by HS, is an integer d = ω(logn) and sets743

X,Y ⊆ {0, 1}d, i ∈ [n] such that |X| = |Y | = n, and denoted by HS(n,d).744

▶ Problem 3 (Hitting Sets (HS)). Given an instance HS(n,d), the HS problem is to decide if745

there is a vector x ∈ X such that for all y ∈ Y we have x · y ̸= 0, or informally, some vector746

in X hits all vectors in Y.747

▶ Hypothesis 4 (Hitting Sets Hypothesis (HSH)). No randomized algorithm can solve HS for748

an instance HS(n,d) in time O(n(2−ϵ) · poly(d)) for any constant ϵ > 0.749

HSH implies OVH, but the reverse direction is not known.750

Finally we consider a subclass of first order formula over structures of size n and with m751

relational tuples [17].752

▶ Problem 4 (FO(∀∃∃)). Decide if a given a first-order formula quantified by ∀∃∃ is has a753

model on a structure of size n with m relational tuples.754

It is known that FO(∀∃∃) can be solved in O(m3/2) time using ideas from triangle detection755

algorithms [17]. For dense structures (m = Θ(n2)), this yields the bound O(n3). Although756

sub-cubic algorithms might be possible, achieving a truly quadratic bound seems unlikely or757

at least highly non-trivial.758

B Proofs of Section 3759

B.1 Proofs from Section 3.1760

▶ Lemma 10. Let e1 ≤σ
tr e2 be events in σ such that tid(e1) ̸= tid(e2). We have, e1 ≤σ

HB761

e2 ⇐⇒ ¬(AcqLSσ
e2
⊑ RelLSσ

e1
)762

Proof. (⇒) Let e1 ≤σ
HB e2. Using the definition of ≤σ

HB, there must be a sequence of events763

f1, f2 . . . fk with k > 1, f1 = e1, fk = e2, and for every 1 ≤ i < k, fi ≤σ
tr fi+1 and either764

fi ≤σ
TO fi+1 or there is a lock ℓ, such that fi ∈ Releasesσ(ℓ) and fi+1 ∈ Acquiresσ(ℓ). Let j765

be the smallest index i such that tid(fi) ̸= tid(fi+1); such an index exists as tid(e1) ̸= tid(e2).766

Observe that there must be a lock ℓ for which op(fj) = rel(ℓ) and op(fj+1) = acq(ℓ).767

Observe that posσ(fj) < posσ(fj+1), RelLSσ
e1

(ℓ) ≤ posσ(fj) and posσ(fj+1) ≤ AcqLSσ
e2

,768

giving us RelLSσ
e1

(ℓ) < AcqLSσ
e2

(ℓ).769

(⇐) Let ℓ be a lock such that RelLSσ
e1

(ℓ) < AcqLSσ
e2

(ℓ). Then, there is a release event f770

and an acquire event g on lock ℓ such that posσ(f) < posσ(g),e1 ≤σ
HB f and g ≤σ

HB e2. This771

means f ≤σ
HB g and thus e1 ≤σ

HB e2. ◀772

For the sake of completeness, we present the computation of release lockstamps. As with773

Algorithm 1, we maintain the following variables. For each thread t and lock ℓ, we will774

maintain variables Ct and Lℓ that take values from the space of all lockstamps. We also775

additionally maintain an integer variable pℓ for each lock ℓ that stores the index (or relative776

position) of the earliest (according to the trace order ≤σ
tr) release event of lock ℓ in the trace.777
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Initially, we set each Ct and Lm to λℓ · ∞, for each thread t and lock m. Further, for each778

lock m, we set pm to nm + 1, where nm is the number of release events of m in the trace;779

this can be obtained in a linear scan (or by reading the value of pm at the end of a run of780

Algorithm 1). We traverse the events according to the total trace order and perform updates781

to the data structures as described in Algorithm 4, by invoking the appropriate handler782

based on the thread and operation of the event e = ⟨t, op⟩ being visited. At the end of each783

handler, we assign the lockstamp RelLSσ
e to the event e.784

Algorithm 4 Assigning release lockstamps to events in the trace

1 acquire(t, ℓ):
2 Lℓ ← Ct

3 RelLSσ
e ← Ct

4 release(t, ℓ):
5 pℓ ← pℓ − 1
6 Ct ← Ct[ℓ 7→ pℓ] ⊓ Lℓ

7 RelLSσ
e ← Ct

8 read(t, x):
9 RelLSσ

e ← Ct

10 write(t, x):
11 RelLSσ

e ← Ct

Let us now state the correctness of Algorithm 1 and Algorithm 4.785

▶ Lemma 14. On input trace σ, Algorithm 1 and Algorithm 4 correctly compute the lock-786

stamps AcqLSσ
e and RelLSσ

e respectively for each event e ∈ Eventsσ.787

Proof Sketch. We focus on the correctness proof of Algorithm 1; the proof for Algorithm 4788

is similar. The proof relies on the invariant maintained by Algorithm 1 the variables Ct, Lℓ789

and pℓ for each thread t and lock ℓ, which we state next. Let π be the prefix of the trace790

processed at any point in the algorithm. Let Cπ
t , Lπ

ℓ and pπ
ℓ be the values of the variables791

Ct, Lℓ and pℓ after processing the prefix π. Then, the following invariants are true:792

Cπ
t = AcqLSπ

eπ
t

= AcqLSσ
eπ

t
, where eπ

t is the last event in π performed by thread t793

Lπ
ℓ = AcqLSπ

eπ
ℓ

= AcqLSσ
eπ

ℓ
, where eπ

ℓ is the last acquire event on lock ℓ in π.794

pπ
ℓ = posπ

ℓ (eπ
ℓ ), where eπ

ℓ is the last acquire event on lock ℓ in π.795

These invariants can be proved using a straightforward induction, each time noting the796

definition of ≤σ
HB. ◀797

▶ Lemma 15. For a trace with N events and L locks, Algorithm 1 and Algorithm 4 both798

take O(T · L) time.799

Proof. We focus on Algorithm 1; the analysis for Algorithm 4 is similar. At each acquire800

event, the algorithm spends O(1) time for updating pℓ, O(L) time for doing the ⊔ operation,801

and O(L) time for the copy operation (‘AcqLSσ
e ← Ct’). For a release event, we spend O(L)802

for the two copy operations. At read and write events, we spend O(L) for copy operations.803

This gives a total time of O(N · L). ◀804

▶ Lemma 11. A trace σ has an HB-race iff there is pair of consecutive conflicting events in805

σ that is an HB-race. Moreover, σ has O(N ) many consecutive conflicting pairs of events.806

Proof. We first prove that if there is a an HB-race in σ, then there is a pair of consecutive807

conflicting events that is in HB-race. Consider the first HB-race, i.e., an HB-race (e1, e2)808

such that for every other HB-race (e′
1, e

′
2), either e2 ≤σ

tr e
′
2 or e2 = e′

2 and e′
1 ≤σ

tr e1. We809

remark that such a race (e1, e2) exists if σ has any HB-race. We now show that (e1, e2)810

are a consecutive conflicting pair (on variable x). Assume on the contrary that there is an811

event f ∈Writesσ(x) such that e1 <
σ
tr f <

σ
tr e2. If either (e1, f) or (f, e2) is an HB-race, then812

this contradicts our assumption that (e1, e2) is the first HB-race in σ. Thus, e1 ≤σ
HB f and813

f ≤σ
HB e2, which gives e1 ≤σ

HB e2, another contradiction.814
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We now turn our attention to the number of consecutive conflicting events in σ. For every815

read or write event e2, there is at most one write event e1 such that (e1, e2) is a consecutive816

conflicting pair (namely the latest conflicting write event before e2) Further, for every read817

event e1, there is at most one write event e2 such that (e1, e2) is a consecutive conflicting818

pair (namely the earliest conflicting write event after e1). This gives at most 2N consecutive819

conflicting pairs of events. ◀820

Let us now state the correctness of Algorithm 2.821

▶ Lemma 16. For a trace σ, Algorithm 2 reports a race iff σ has an HB-race.822

Proof Sketch. The proof relies on the following straightforward invariants; we skip their823

proofs as they are straightforward. In the following, eπ
x is the last event with op(eπ

x) = w(x)824

in a trace π.825

After processing the prefix π of σ, twx = tid(eπ
x) and Wx = eπ

x .826

After processing the prefix π of σ, the set Sx is {(t, L) | ∃e ∈ Readsπ(x), eπ
x ≤π

tr e, tid(e) =827

t,RelLSσ
e = L}.828

The rest of the proof follows from Lemma 15 and Lemma 14. ◀829

Let us now characterize the time complexity of Algorithm 2.830

▶ Lemma 17. On an input trace with N events and L locks, Algorithm 2 runs in time831

O(N · L).832

Proof Sketch. Each pair (t, L) of thread identifier and lockstamp is added atmost once in833

some set Sx (for some x). Also, each such pair is also compared against another timestamp834

atmost once. Each comparison of timestamps take O(L) time. This gives a total time of835

O(N · L). ◀836

▶ Theorem 4. Deciding whether σ has an HB race can be done in time O(N ·min(T ,L)).837

Proof. We focus on proving that there is an O(N ·L) time algorithm, as the standard vector-838

clock algorithm [19] for checking for an HB-race runs in O(N · T ) time. Our algorithm’s839

correctness is stated in Lemma 16 and its total running time is O(N · L) (Lemma 17 and840

Lemma 15). ◀841

B.2 Proofs from Section 3.2842

▶ Theorem 1. For any ϵ > 0, there is no algorithm that detects even a single HB race that843

involves a read in time O(N 2−ϵ), unless the OV hypothesis fails.844

Proof. Consider a pair of events w(z) from the d threads t(x, i), i ∈ [d], and r(z) ∈ ty for845

some x, i, y. We have w(z) ≤σ
HB r(z) iff there is some path from w(z) to r(z) in G(≤σ

HB). As846

w(z) and r(z) are in different threads, such a path can only be through lock events in a847

sequence of threads such that the first and last threads are t(x, i) for some i ∈ [d] and ty, and848

every consecutive pair of threads in the sequence holds a common lock. Now all the locks in849

ty are l(y, i) for all i where y[i] = 1. Consider the lock corresponding to any i ∈ [d]. The850

only thread t(x′, i) that also holds this lock corresponds to the last x′ such that x′[i] = 1.851

The only other lock held by t(x′, i) is li. If w(z) is in t(x′, i), we are done. Otherwise the852

only common lock between these threads t(x′, i) and those of w(z) can be one of the li. The853

threads of w(z) contain all li where x[i] = 1. Hence, for there to be a common lock between854
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these threads, there must be at least one i such that x′[i] = 1 and x[i] = 1. As this thread855

also has the lock l(y, i), y[i] is also 1.856

Thus, there is a path from w(z) to r(z) if and only if there is at least one i ∈ [d] such that857

x[i] = y[i] = 1, hence x and y are not orthogonal. A pair of orthogonal vectors of OV thus858

corresponds to a write-read HB-race in the reduced trace.859

Finally we turn our attention to the complexity. In time O(n · d), we have reduced an OV860

instance to determining whether there is a write-read HB race in a trace of N = O(nd) events.861

If there was a sub-quadratic i.e. O((n · d)(2−ϵ)) = n(2−ϵ) · poly(d) algorithm for detecting a862

write-read HB race, then this would also solve OV in n(2−ϵ) · poly(d) time, refuting the OV863

hypothesis. ◀864

▶ Lemma 12. FO(∀∃∃) reduces to MCONN on a graph G with O(n) nodes in O(n2) time.865

Proof. For intuition, assume the first order property is on an undirected graph with n866

variables and m edges. Let the property be specified in quantified 3-DNF form with a867

constant number of predicates, i.e., ϕ = ∀x∃y∃z (ψ1 ∨ ψ2 ∨ . . . ψk), where x, y, z represent868

nodes of the graph, and each ψi is a conjunction of 3 variables representing edges of the869

graph, for example e(x, y) ∧ ¬e(y, z) ∧ e(x, z). The property is then true if and only if some870

predicate is satisfied, which is true if all of its variables are satisfied (e(x, y) is satisfied when871

edge (x, y) is in the graph). Denote the graph on which ϕ is defined by H(I, J), where I and872

J are respectively the sets of nodes and edges of H.873

The instance of MCONN is constructed given H and ϕ as follows. Construct a (2k+2)-partite874

graph G(V,E) by first creating 2k+ 2 copies of I. Denote these copies by S, Yi, Zi, T, i ∈ [k],875

and the copy of each node x ∈ I in any part, say S, by x(S). ψi = (e1 ∧ e2 ∧ e3) is encoded by876

connecting the sets (S, Yi) to represent e1, (Yi, Zi) for e2 and (Zi, T ) for e3 as follows. If ei is of877

the form e(x, y) (and not its negation), then draw a copy of H between its corresponding sets,878

say S and Yi without loss of generality. That is, for every x, y, (x, y) ∈ J ⇔ (x(S), y(Yi)) ∈ E.879

If on the other hand ei is of the form ¬e(x, y) then connect a copy of the complement of H,880

i.e., (x, y) /∈ J ⇔ (x(S), y(Yi)) ∈ E.881

Finally define |I| pairs (x(S), x(T )) as the (s, t) pairs for MCONN.882

We now prove this reduction is correct. First, assume ϕ is true. Then for every node x, there883

exist nodes y, z such that some predicate is true. If ψi is the predicate that is satisfied for884

some node u, then there is a path between u(S) and u(T ) through the parts S, Yi, Zi and885

T as follows. As the first variable is satisfied, then if it is e(x, y), then (x, y) ∈ J, and x(S)886

is connected to y(Yi), and if it is ¬e(x, y), then (x, y) /∈ J and again x(S) is connected to887

y(Yi). Similarly, y(Yi) is connected to z(Zi), and z(Zi) to x(T ). These edges form a 3 length888

path between x(S) and x(T ).889

Now consider the reverse case, and assume the MCONN problem is true, that is , there is890

a path between every (x(S), x(T )) pair. Note that the construction of edges in G is such891

that any path from x(S) to x(T ) has to be a 3 length path, connecting the copy of x in S892

to its copy in some Yi, from this Yi to its corresponding Zi, and from Zi to T. Also, this893

path exists only if all variables of the corresponding ψi are true. Hence, as there is a path894

between every pair (x(S), x(T )), and one pair is defined for every variable x, some predicate895

is satisfied for every x. Thus ϕ is also true.896

Finally, the time of the reduction is equal to the size of G. This is 2k+ 2 = O(1) graphs, each897

of which is either H or its complement. Hence |G| = O(m+ n+ (n2 −m) + n) = O(n2). ◀898
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z from all threads,
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Figure 6 Intuition for the reduction from 3-OV to sync-preserving race detection. Thread Aux
allows forming a trace such that 3-OV has a solution iff there is a sync-preserving race.

▶ Theorem 3. For any ϵ > 0, if there is an algorithm for detecting any HB race in time899

O(N 1+ϵ), then there is an algorithm for FO(∀∃∃) formulas in time O(m1+ϵ).900

Proof. We first reduce the instance of FO(∀∃∃) to MCONN as in the proof of Lemma 12.901

Let G(V,E) be the multi-partite graph for MCONN and S, T the first and last parts of nodes902

of G. We add a sufficient number of nodes, referred as dummy nodes, to make G sparse. Let903

every node x of V \T correspond to a distinct thread tx and form one write access event to a904

distinct variable vx in the thread. Let each node t in T also correspond to a write access905

event of the variable corresponding to the copy of t in S, and be in a new thread. Define906

|E| locks, and for every edge (a, b) ∈ E, let the events corresponding to va and vb hold the907

lock l(a,b) corresponding to (a, b). The trace σ for first lists all threads corresponding to the908

dummy nodes in some fixed arbitrary order, then the threads corresponding to nodes in S,909

followed by those in each Yi, followed by those in each Zi, in a fixed arbitrary order, and910

finally those in T .911

This reduction is seen to be correct by observing that G was modified to be the transitive912

reduction graph of σ, and the only HB-race events can be the pairs of write events corres-913

ponding to the pairs of nodes given as input to MCONN. Thus, each pair of events does not914

form an HB-race if and only if G has a path between its corresponding pair of nodes.915

To analyze the time of the reduction, first we see that the size of σ is the size of G, with916

dummy nodes added to have n = O(n2), and hence O(n2). There are O(n2) variables,917

locks and threads in σ. If deciding if the given trace has an HB-race has an O((n2)1+ϵ)918

time algorithm, then FO(∀∃∃) can be solved in O(n2+ϵ′) time, which is O(m1+ϵ′) time for919

properties on dense structures. ◀920

C Proofs of Section 4921

▶ Theorem 5. For any ϵ > 0, there is no algorithm that detects even a single sync-preserving922

race in time O(N 3−ϵ), unless the 3-OV hypothesis fails. Moreover, the statement holds even923

for traces over a single variable.924

Proof. Consider any sync-preserving correct reordering ρ of σ that exposes a data race925

(w(z), r(z)) on the local traces tx and ty. The following statements are straightforward to926

verify based on the definition of sync-preserving correct reorderings.927

1. For every k ∈ [d], the first sync(ℓk) event the trace tk is also in ρ.928
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2. The auxiliary trace t cannot have an open critical section in ρ. This implies that for every929

trace tk with k ∈ [d], the last event of tk in ρ cannot be its ith sync(ℓk) event, where i is930

even. Moreover, the number of sync(ℓk) events in ρ is the same for every trace tk with931

k ∈ [d].932

First, consider that the 3-OV instance has a solution, i.e., there exist x ∈ A1, y ∈ A2 and933

z ∈ A3 such that x, y, z are orthogonal, and we argue that σ has a data race that is also934

sync-preserving. We construct a sync-preserving correct reordering ρ of σ that exposes935

the data race. We only specify the local traces that exist in ρ, as their interleaving that936

constructs ρ will be identical to the one in σ (in other words, we only specify the prefix up937

to which every local trace of σ is executed in ρ). We execute the traces tx and ty all the938

way before the corresponding w(z) and r(z) events (hence we are exposing a race between939

these two events). For every k ∈ [d] if z[k] = 0 or x[k] = 0, we execute tk up to the (2 · i)th
940

sync(ℓk) event, where i is such that z is the ith vector of A3. On the other hand, if y[k] = 0,941

we execute tk up to the first rel(ℓk) event that appears after the (2 · i)th sync(ℓk) event in942

tk. Finally, we execute tk until its (i− 1)th rel(X) event.943

It is easy to verify that ρ is a valid correct reordering. Indeed, we have two open critical944

sections in the threads tx and ty, on the locks X and Y respectively. Moreover, for every945

k ∈ [d], we have the following.946

1. If z[k] = 0, there are no other open critical sections.947

2. If z[k] = 1 and x[k] = 0, there is one open critical section in the thread z[k] on lock lk.948

3. If z[k] = x[k] = 1 and y[k] = 0, there is one open critical section in the thread z[k] on949

lock l′k.950

We now consider the opposite direction, i.e., assume that there is a sync-preserving race in σ,951

and we argue that there exist x ∈ A1, y ∈ A2 and z ∈ A3 such that x, y, z are orthogonal.952

Consider any sync-preserving correct reordering ρ that exposes a race on the access events953

of two local traces tx and ty. Because of Item 1 above, every trace tk is at least partially954

present in ρ. Because of Item 1 above, every such trace executes the same number of sync(ℓk)955

events in ρ, and this number is odd. We argue that the triplet x, y, z is orthogonal, where z956

is the ith vector of A3 such that each tk executes 2 · (i− 1) + 1 sync(ℓk) events in ρ. Indeed,957

consider any k ∈ [d] and assume that x[k] = y[k] = 1. If z[k] = 1, then we have a acq(ℓ)958

event in tk that immediately precedes its last sync(ℓk) event. Since x[k] = 1, the trace tx959

also has an acq(lk) event. Since the acq(lk) event of tx is after the acq(lk) event of tk in960

σ, the matching rel(lk) of tk must also be in ρ. This implies that the acq(l′k) event of tk961

that immediately succeeds its last rel(lk) event is also in ρ. Since y[k] = 1, the trace ty962

also has an acq(l′k) event. Since the acq(l′k) event of ty is after the acq(l′k) event of tk in963

σ, the matching rel(l′k) of tk must also be in ρ. However, we now have another sync(ℓk)964

event of tk in ρ, in particular, the sync(ℓk) event that immediately precedes its last rel(l′k)965

event. But this results in an even number of sync(ℓk) events of tx being present in ρ, which966

contradicts our observation in Item 2. Thus, if x[k] = y[k] = 1, we necessarily have that967

z[k] = 0, and the triplet x, y, z is orthogonal.968

The desired result follows. ◀969

D Proofs of Section 5970

▶ Theorem 6. For any ϵ > 0, any T ≥ 2 and any L = ω(logN ), there is no algorithm that971

detects even a single lock-cover race in time O(N 2−ϵ), unless the OV hypothesis fails.972
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Proof of Theorem 6. To see why the reduction is correct, observe that if there a solution973

to OV, that is, a pair of vectors x, y such that for all k ∈ [d], x[k] = 0 or y[k] = 0, implies974

that the corresponding events in σ, say ex and ey, have for each lock k ∈ [d] either ex does975

not hold the lock or ey does not. As they have distinct thread ids too, ex and ey form976

two conflicting events with locksHeldσ(e1) ∩ locksHeldσ(e2) = ∅. Similarly, a lock-cover race977

implies that for every lock, one of the events in race do not hold the lock, hence have their978

corresponding coordinate in OV 0. The events are thus orthogonal to each other.979

Regarding the complexity, we have used O(n ·d) time to construct a trace σ with N = O(n ·d)980

events. If we can detect a lock-cover race in σ in O(N (2−ϵ)) time, then OV can be solved in981

O(n(2−ϵ) · poly(d)) time, contradicting the OV hypothesis. ◀982

▶ Theorem 9. Deciding whether a trace σ has a lock-set race on a variable x can be983

performed in O(N ) time. Thus, deciding whether σ has a lock-set race can be performed in984

O(N ·min(L,V)) time.985

Proof. We first argue that the algorithm maintains the invariant stated in Equation (2).986

The invariant for A is trivial to verify. Moreover, it is easy to see that, assuming that the987

invariant holds before processing an acq(ℓ) or rel(ℓ) event, it also holds after processing that988

event. Indeed, for an event acq(ℓ), we have ℓ ∈ A, and to maintain C = A ∩B, we remove ℓ989

from C if ℓ ∈ B. Similarly for an event rel(ℓ). To see that the invariant is maintained after990

processing an access event w(x)/r(x), note that we have991

B \ C = B ∩ C = B ∩
(
B ∩A

)
= B ∩

(
B ∪A

)
= B ∩A992

and thus updating B ← B \ C yields993

Locksσ∩
⋂

e′∈Accessesσ(x)
e′<σ

tr e

locksHeldσ(e′)∩ locksHeldtr(e) = Locksσ∩
⋂

e′∈Accessesσ(x)
e′≤σ

tr e

locksHeldσ(e′)994

Finally, at this point we have A ∩B = A ∩B ∩A = ∅, thus the invariant also holds for C.995

We now turn our attention to complexity. Using a bit-set representation of the sets A, B996

and C, it is clear that each of the operations except w(x)/r(x) take constant time per event.997

Each w(x)/r(x) operation takes O(|C|) time. Note, however, that because of the previous998

invariant, every lock is removed from B at most once, hence the total time for performing all999

set differences B ← B \ C is O(N + L) = O(N ). Thus the total time is O(N ). The desired1000

result follows. ◀1001

▶ Theorem 8. For any ϵ > 0 and any T = ω(logn), there is no algorithm that detects even1002

a single lock-cover race in time O(N 2−ϵ), unless the HS hypothesis fails.1003

Proof. First, assume there is a solution to HS, i.e., ∃xk ∈ X ∀yi ∈ Y ∃j ∈ [d] xk[j] = yi[j] = 1.1004

Then for the variable zk, for every lock ℓi, there is a thread tj that contains w(zk) (as xk[j] = 1)1005

but does not contain lock ℓi (as yi[j] = 1). Thus
⋂

e∈Accessesσ(zk) locksHeldσ(e) = ∅, and we1006

have a lock-set race on variable zk as there are at least two w(zk) conflicting events, one in1007

the thread tj and the other in thread t0. For the opposite direction, assume that HS does1008

not have a solution, i.e., ∀xk ∈ X ∃yi ∈ Y ∀j ∈ [d] (xk[j] = 0 or yi[j] = 0). Then for each1009

variable zk, there is some lock ℓi such that every thread that contains a write event w(zk)1010

(thus xk[j] = 1) also contains the lock ℓi (as necessarily yi[j] = 0). Hence, for every variable1011

zk, some lock ℓi is held by all its access events. Thus σ does not have a lock-set race.1012
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Regarding the complexity, we have created a trace σ with N = O(n ·d) events in O(n ·d) time.1013

Thus, any O(N (2−ϵ)) time algorithm for HS implies an O(n(2−ϵ) · poly(d)) time algorithm1014

for HS, contradicting the HS hypothesis. ◀1015
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