
Predictive Monitoring against Pa�ern Regular Languages

ZHENDONG ANG, National University of Singapore, Singapore

UMANG MATHUR, National University of Singapore, Singapore

While current bug detection techniques for concurrent software focus on unearthing low-level issues such

as data races or deadlocks, they often fall short of discovering more intricate temporal behaviours that can

arise even in the absence of such low-level issues. In this paper, we focus on the problem of dynamically

analysing concurrent software against high-level temporal specifications such as LTL. Existing techniques for

runtime monitoring against such specifications are primarily designed for sequential software and remain

inadequate in the presence of concurrency — violations may be observed only in intricate thread interleavings,

requiring many re-runs of the underlying software in conjunction with the analysis. Towards this, we study the

problem of predictive runtime monitoring, inspired by the analogous problem of predictive data race detection

studied extensively recently. The predictive runtime monitoring question asks, given an execution f , if it

can be soundly reordered to expose violations of a specification. In general, this problem may become easily

intractable when either the specifications or the notion of reorderings used is complex.

In this paper, we focus on specifications that are given in regular languages. Our notion of reorderings

is trace equivalence, where an execution is considered a reordering of another if it can be obtained from the

latter by successively commuting adjacent independent actions. We first show that, even in this simplistic

setting, the problem of predictive monitoring admits a super-linear lower bound of $(=U), where = is the

number of events in the execution, and U is a parameter describing the degree of commutativity, and typically

corresponds to the number of threads in the execution. As a result, predictive runtime monitoring even in this

setting is unlikely to be efficiently solvable, unlike in the non-predictive setting where the problem can be

checked using a deterministic finite automaton (and thus, a constant-space streaming linear-time algorithm).

Towards this, we identify a sub-class of regular languages, called pattern languages (and their extension

generalized pattern languages). Pattern languages can naturally express specific ordering of some number of

(labelled) events, and have been inspired by popular empirical hypotheses underlying many concurrency bug

detection approaches such as the “small bug depth” hypothesis. More importantly, we show that for pattern

(and generalized pattern) languages, the predictive monitoring problem can be solved using a constant-space

streaming linear-time algorithm. We implement and evaluate our algorithm PatternTrack on benchmarks

from the literature and show that it is effective in monitoring large-scale applications.

CCS Concepts: • Software and its engineering→ Software verification and validation; • Theory of

computation→ Theory and algorithms for application domains; Program analysis.

Additional Key Words and Phrases: concurrency, dynamic analysis, predictive monitoring, complexity

ACM Reference Format:

Zhendong Ang and Umang Mathur. 2024. Predictive Monitoring against Pattern Regular Languages. Proc.

ACM Program. Lang. 8, POPL, Article 73 (January 2024), 35 pages. https://doi.org/10.1145/3632915

1 INTRODUCTION

Writing reliable concurrent programs remains a challenge to date. Subtle bugs, arising due to
intricate choreography of threads, often evade rigorous testing but appear in deployment under

Authors’ addresses: Zhendong Ang, National University of Singapore, Singapore, Singapore, zhendong.ang@u.nus.edu;

Umang Mathur, National University of Singapore, Singapore, Singapore, umathur@comp.nus.edu.sg.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART73

https://doi.org/10.1145/3632915

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0002-0214-3462
HTTPS://ORCID.ORG/0000-0002-7610-0660
https://doi.org/10.1145/3632915
https://orcid.org/0009-0002-0214-3462
https://orcid.org/0000-0002-7610-0660
https://doi.org/10.1145/3632915

73:2 Zhendong Ang and Umang Mathur

intense workloads. The first line of defence against such bugs is tools that enable developers to find
concurrency errors automatically. Towards this, both static and dynamic analysis approaches have
been proposed. Static approaches [Blackshear et al. 2018; Engler and Ashcraft 2003; Naik et al. 2006]
are typically geared towards certifying program correctness and can overwhelm developers with
excessive false positive reports [Sadowski et al. 2018]. Dynamic analysis techniques, on the other
hand, remain the preferred approach for the task of automated bug detection. Here one executes
the underlying program, observes its behaviour, and infers the presence or absence of bugs based
on this observed behaviour. Even though such techniques are implicitly incomplete, they remain
popular in practice, thanks to the inherent desirable properties such as low overhead and soundness
of bug reports. Unsurprisingly, such techniques enjoy more widespread adoption [Serebryany and
Iskhodzhanov 2009].

Traditional dynamic analysis approaches for detecting concurrency bugs often cater to implicit
specifications such as data race freedom, deadlock freedom or atomicity of code blocks. However,
such techniques do not attempt to expose undesirable behaviours due to faulty order of interactions
of threads, that are nevertheless symptomatic of serious failures. In practice, developers often rely
on specific properties such as class invariants or temporal behaviours such as “file f cannot be
closed in between the creation of f and access to f” to reason about the overall safety of their
software. Nevertheless, the validity of such invariants often relies on complex synchronizations to
be put in place, a task that even the most expert developers struggle to get right. Tools such as data
race detectors are not helpful either; they fail to expose such high-level problems.

Consider, for example, the simplistic Java program % in Figure 1a. This is a code snippet inspired
from the GitHub project antlrworks [ant 2023]. The class DBPlayer contains two fields, count
and inputs, and two methods, play and reset, both of which write to both fields. In order to
keep count and inputs in a consistent state, executions of method play and reset should behave
atomically. Observe that this is a high-level data race, instead of a classical data race property [Artho
et al. 2003], which are prevented because of the use of thread-safe data structure and atomic integer.
This type of violation is also studied in [Vaziri et al. 2006].

The problematic behaviour in the above example can, in fact, be expressed, in a temporal
specification formalism like LTL, or as a regular language !fail, that expresses the order in which
the events addCall, clearCall, on the inputs field, and the two set operations on the count field
are made. Such specification languages have been extensively studied in the context of runtime
verification and efficient algorithms and tools have been developed to monitor such specifications.
Such techniques, however, are not well-suited for monitoring concurrent programs. Thanks to non-
determinism due to thread scheduling, even the most well-engineered LTL-monitoring technique
may require many re-executions of the program under test to eventually observe a violation of
a desirable property. Consider again the program % be from Figure 1a, and the execution fsafe
generated when monitoring % (Figure 1b). As such, fsafe ̸∈ !fail fails to expose the violation encoded
as !fail, even though the very similar execution ffail (Figure 1c) of the same program % can very well
expose the problematic behaviour. This highlights the lack of robustness in traditional monitoring
approaches that simply check whether an execution observed during dynamic analysis witnesses a
specification.
To tackle this challenge, we borrow wisdom from predictive approaches [Huang et al. 2015,

2014; Kalhauge and Palsberg 2018; Kini et al. 2017; Mathur et al. 2021; Pavlogiannis 2019; Said
et al. 2011; Smaragdakis et al. 2012], that are capable of exposing low-level bugs such as data
races even starting from executions that do not explicitly observe the concurrency bug under
question. Towards this, we consider the analogous predictive runtime monitoring question — given
a specification, encoded as a language ! and given an execution f of some concurrent program % ,
can f be reordered, in a sound manner, to execution f ′ so that f ′ ∈ !? Observe that an efficient

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:3

1 public class DBPlayer {

2 AtomicInteger count = new AtomicInteger(0);

3 ConcurrentHashMap.KeySetView<Integer, Boolean> inputs = ConcurrentHashMap.newKeySet();

4

5 public void play(int event, int lastPos) {

6 inputs.add(event);

7 count.set(lastPos);

8 }

9

10 public void reset() {

11 inputs.clear();

12 count.set(0);

13 }

14

15 public static void main(String[] args)

16 throws InterruptedException{

17 final DBPlayer player = new DBPlayer();

18

19 Thread t1 = new Thread(new Runnable() {

20 public void run() {

21 player.reset();

22 }});

23

24 Thread t2 = new Thread(new Runnable() {

25 public void run() {

26 player.play(365, 5);

27 }});

28

29 t1.start();

30 t2.start();

31 }

32 }

33

34

(a) Example Java program %

41 : [Cmain, fork(C1)]

42 : [Cmain, fork(C2)]

43 : [C1, resetCall]

44 : [C1, clearCall(inputs)]

45 : [C1, write(inputs)]

46 : [C1, clearReturn]

47 : [C1, set(count)]

48 : [C1, resetReturn]

49 : [C2, playCall]

410 : [C2, addCall(inputs)]

411 : [C2, write(inputs)]

412 : [C2, addReturn]

413 : [C2, set(count)]

414 : [C2, playReturn]

(b) Execution fsafe of %

41 : [Cmain, fork(C1)]

42 : [Cmain, fork(C2)]

49 : [C2, playCall]

410 : [C2, addCall(inputs)]

43 : [C1, resetCall]

44 : [C1, clearCall(inputs)]

45 : [C1, write(inputs)]

46 : [C1, clearReturn]

47 : [C1, set(count)]

48 : [C1, resetReturn]

411 : [C2, write(inputs)]

412 : [C2, addReturn]

413 : [C2, set(count)]

414 : [C2, playReturn]

(c) Execution ffail of %

Fig. 1. Example Java program P and its executions. Interleaving play() and reset() results in the values of

count and inputs to be in an inconsistent state.

solution to the predictive runtime monitoring problem has the potential to enhance coverage of
traditional runtime verification approaches that only focus on the observed execution, when used
for concurrent software.
Even in the context of the simplest specification — data races — the predictive question is

intractable, in general [Mathur et al. 2020]. Nevertheless, tractable and linear-time algorithms
for predictive data race detection have been proposed recently [Kini et al. 2017; Mathur et al.
2021]. GPredict [Huang et al. 2015] also uses predictive analysis to detect high-level concurrency
properties. However, it is SMT-based and not scalable in practice. In this work, we aim to develop
efficient algorithms for predictive monitoring against richer specifications. In the context of data
races, the key insight underlying efficient algorithms is to restrict the search space of reorderings,
and is also central to our work presented here.

We consider reorderings described byMazurkiewicz trace equivalence [Mazurkiewicz 1987]. Here,
one fixes an independence relation, consisting of pairs of actions that can be commuted when
present next to each other in any context. With such a commutativity specification, two executions
are deemed equivalent if they can be reached from each other by successive commutations of
independent actions. Indeed, the most popular approaches for race detection — those based on the
happens-before partial order [Flanagan and Freund 2009; Itzkovitz et al. 1999] — essentially employ
this reasoning principle and, as a result, can be implemented using a fast linear-time algorithm.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:4 Zhendong Ang and Umang Mathur

In this paper, we study the problem of predictive trace monitoring against a regular language
! — given an execution f , is f Mazurkiewicz trace equivalent to an execution that belongs to
!? The problem has previously been studied in a theoretical setting [Bertoni et al. 1989], where
the authors proposed an algorithm that runs in time $(=U) for executions with = events; U is a
parameter given by the independence relation, and is typically equal to the number of threads in
the execution. Such an algorithm is unlikely to be practical for large-scale software applications
where executions typically contain millions of events. Unfortunately, as we show in our paper, in
general, this problem cannot be solved using a faster algorithm — we show a matching conditional
lower bound of Ω(=U) using techniques from fine-grained complexity [Williams 2018].

To this end, we identify a class of specifications that we call pattern regular languages for which
predictive monitoring can be performed efficiently. This class of pattern languages has been inspired
by systematic concurrency bug detection approaches that often rely on empirical hypotheses such
as the small bug depth hypothesis — “Empirically, though, many bugs in programs depend on the

precise ordering of a small number of events . . . there is some constant 3 and a subset . . . of events

such that some ordering of these 3 events already exposes the bug no matter how all other events are

ordered.” [Chistikov et al. 2016]. Pattern languages are the natural class of specifications under such
a hypothesis — a language ! is a pattern language if it is of the form Patt01,...,03 = Σ∗01Σ

∗ . . . Σ∗03Σ
∗,

where Σ is the alphabet labelling events, and 01, . . . , 03 ∈ Σ are 3 symbols (not necessarily distinct
from each other). We also propose an extension, the class of generalized pattern languages which
are unions of pattern languages. We expect that this class of specifications, previously deployed in
domains such as pattern mining [Agrawal and Srikant 1995] or root cause analysis [Murali et al.
2021], will be useful in advancing the state of the art in concurrency testing, given the success of
past approaches based on similar empirical hypotheses including context bounding [Burckhardt
et al. 2010; Emmi et al. 2011; Musuvathi and Qadeer 2006], small bug depth [Burckhardt et al. 2010;
Chistikov et al. 2016], delay bounding [Emmi et al. 2011], coarse interleaving hypothesis [Kasikci
et al. 2017] for testing Java-like multi-threaded software programs, event-driven and asynchronous
programs, distributed systems, and more recently for testing and model checking of weak memory
behaviours [Abdulla et al. 2019; Gao et al. 2023].

The main result of this work is that the class of (generalized) pattern languages admits a constant-
space linear-time algorithm for the predictive monitoring problem under trace equivalence. This
algorithm relies on several interesting insights specific to pattern languages that enable our efficient
monitoring algorithm, and is of independent interest.
We show that, in fact, we can use vector clocks to further develop a fast and scalable predictive

monitoring algorithm PatternTrack. We implement PatternTrack in Java and evaluate its
performance over a set of benchmark Java applications derived from prior works. Our comparison
of PatternTrack against the classical algorithm due to [Bertoni et al. 1989] reveals the effectiveness
of both a specialized class of specifications and a linear-time algorithm for predictive monitoring.

The rest of the paper is organized as follows. In Section 2, we discuss background on modelling
events, executions, and questions in runtime monitoring. In Section 3, we recall trace equivalence
and present our hardness result for predictive trace monitoring against regular languages (Theo-
rem 3.2). In Section 4, we formally define the class of pattern and generalized pattern languages, and
provide language-theoretic characterizations of these languages. In Section 5, we present our main
result — a constant-space streaming algorithm for predictive trace monitoring against generalized
pattern regular languages, and a more practical algorithm PatternTrack that uses vector clocks
(Section 5) for the same task. We present our experimental evaluation in Section 6, discuss related
work in Section 7 and conclude in Section 8.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:5

2 PRELIMINARIES

In this section, we present relevant background and notations useful for the rest of the paper.

Events and Executions.Our primary subject of study is concurrent programs and their executions
with a focus on developing monitoring algorithms for them. In this regard, executions can be
modelled as sequences of events. For this, we will consider an event alphabet, or simply, alphabet Σ,
which will intuitively represent a set of relevant events observed during program execution. As an
example, Σ can include information about instructions corresponding tomethod invocations/returns,
or even loads or stores of memory locations. For the purpose of modelling concurrent programs, the
symbols in our alphabet Σ also contain information about thread identifiers, belonging to a fixed
set T . An event is a unique occurrence of a symbol from Σ. Formally, an event is a tuple 4 = ⟨83, 0⟩,
where 83 is the unique identifier of 4 , while 0 ∈ Σ is the label of 4; we will denote the identifiers
and labels of 4 using the notation lab(4) = 0 and id(4) = 83 . In the context of concurrent executions,
the labels of events will be of the form 0 = [C, >?] ∈ Σ to denote information about the thread
C ∈ T that performs the corresponding event and the operation >? performed in that event. We
will often omit the identifier 83 of events when it is clear from the context. An execution can then
be modelled as a sequence of events with labels from Σ. We use Eventsf to denote the set of events
occurring in an execution f . We will use <f to denote the total order induced by f , i.e., 41 <

f 42 iff
the event 41 appears before 42 in the sequence f . The word constructed by concatenating the labels
of f will be denoted by lab(f) ∈ Σ∗, and will often confuse f with lab(f) when the identifiers of
events are not important. We will use |f | to denote the number of events in f .

Runtime Monitoring. Runtime verification has emerged as a powerful technique for enhancing
reliability of software and hardware systems by augmenting traditional software testing meth-
ods with more expressive specifications that can be checked or monitored during the execution.
One of the primary components in a traditional runtime monitoring workflow is the choice of
specifications to be monitored at runtime. In general, many different classes of specifications have
been considered in the literature and practice, including temporal logics like LTL [Pnueli 1977]
and its variants [Giacomo and Vardi 2013] with quantitative [Maler and Nickovic 2004] and timing
aspects [Koymans 1990]. More expressive variants such as extensions with calls and returns [Alur
et al. 2004], extended regular expressions or vanilla regular languages have also been considered. A
large class of these specifications can be described by a language (or a set of executions) over a
chosen alphabet Σ of interest. Examples include LTL, FOLTL, extended-regular expressions [Rosu
and Viswanathan 2003], etc, and the more general class of regular languages. For a language ! over
the alphabet Σ, the runtime monitoring problem then asks — given an execution f ∈ Σ∗ coming
from a program % , does f satisfy the specification !, i.e., f ∈ !? When ! represents an undesired
(resp. desired) behaviour, a positive (resp. negative) answer to the membership question f ∈ ! can
then be flagged to developers or system engineers who can fix the erroneous behaviour (or in some
cases, refine the specification). In this paper, we study the monitoring problem in the context of
concurrent programs, with a focus on developing more robust solutions to the monitoring problem.
Next, we motivate the predictive monitoring problem and formally describe it subsequently.

Example 2.1. Consider again the Java program % , shown in Figure 1a, that implements class
DBPlayer with fields, count and inputs, and member methods, play (for adding event indices
to inputs and log position into count) and reset (for clearing inputs and set count as 0). The
function main creates a DBPlayer object, and then calls play and reset concurrently in different
threads. Suppose, we are interested in observing the behaviours of the program that lead to the
inconsistent state of fields count and inputs. The events thus generated belong to the alphabet
ΣEx = {[C, >?] | C ∈ T , >? ∈ O}, where T = {Cmain, C1, C2} is the set of threads corresponding

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:6 Zhendong Ang and Umang Mathur

to the main function and two forked threads, while O = {fork(C) | C ∈ T } ∪ {write(inputs)} ∪

{addCall(inputs), addReturn, clearCall(inputs), clearReturn, set(count)}. Observe that an execution
f of this programmight leave the fields in an inconsistent state if it belongs to the following language
!fail that constrains the order of calls to add, clear, and two sets to count:

Σ∗Ex·[C2, addCall(inputs)]·Σ
∗
Ex·[C1, clearCall(inputs)]·Σ

∗
Ex·[C1, set(count)]·Σ

∗
Ex·[C2, set(count)]·Σ

∗
Ex

In Figure 1b, we show an execution fsafe of % , which is a sequence of 14 events 41, . . . , 414, labelled
with ΣEx. Observe that fsafe ̸∈ !fail fails to witness the buggy behaviour of % , and would deem the
task of runtime monitoring against !fail unsuccessful. On the other hand, the bug would be exposed
successfully if the execution ffail (Figure 1c) was observed when monitoring % . More importantly,
observe that, ffail can, in fact, be obtained by reordering the events of fsafe, hinting at the possibility
of enhancing the effectiveness of runtime monitoring via prediction! Notice that an execution
belonging to !fail may not immediately leave the data in an inconsistent state. Indeed, ffail here is
actually benign, but it hints towards another execution that orders 411 before 45, which is invalid.

Example 2.1 illustrates the challenge of naively adapting the traditional runtime monitoring
workflow for the case when the software under test exhibits concurrency — even though the
underlying software may violate a specification, exposing the precise execution that witnesses
such a violation is like finding a needle in a haystack. This is because, even under the same input,
not all thread interleavings may witness a violation of a temporal specification of interest, and the
precise interleaving that indeed witnesses the violation may require careful orchestration from the
thread scheduler. As a result, the bug may remain unexposed even after several attempts to execute
the program. The emerging class of predictive analysis techniques [Kini et al. 2017; Mathur et al.
2021; Pavlogiannis 2019; Smaragdakis et al. 2012] attempts to address this problem in the context
of concurrency bugs such as data races and deadlocks. Here, one observes a single execution of
a program, and infers additional executions (from the observed one) that are guaranteed to be
generated by the same underlying program, and also witness a violation of a property of interest.
Such techniques thus partially resolve the dependence on the often demonic non-determinism due
to thread scheduler, and proactively increase coverage when testing concurrent programs.

Correct Reorderings. In order to formalize the predictive analysis framework, we require a notion
of the set of feasible or correct reorderings of a given execution [Serbanuta et al. 2012]. For a
given execution f over Σ, the set CReorderings(f) of correct reorderings of f represents the set of
executions that will be generated by any program % that generates f . The formal notion of correct
reorderings can often be obtained by formally modelling the programming language, together with
the semantics of concurrent objects [Herlihy and Wing 1990] such as threads, shared memory
and synchronization objects such as locks [Serbanuta et al. 2012]. In the case of multi-threaded
programs, it is customary to include symbols corresponding to reads and writes to all shared objects
and lock acquisition and release events in the alphabet Σ. Prior works have developed several
different (yet related) definitions to precisely capture this notion; the most prominent notion is due
to [Smaragdakis et al. 2012], which we describe next.
Given a well-formed1 execution f ∈ Σ∗, we have that an execution d ∈ CReorderings(f) iff the

following conditions hold — (1) The set of events in d is a subset of those in f , (2) d is well-formed;
this means, for example, critical sections on the same lock do not overlap in d . (3) d preserves the
program-order of f , i.e., for every thread C , the sequence of events d |C obtained by projecting d

to events of thread C is a prefix of the sequence f |C obtained by projecting f to C . (4) d preserves

1An execution is well-formed if it can be generated by a program. This means it obeys the semantics of the underlying

programming language. As an example, when executions contain events corresponding to acquire and release operations of

locks, well-formedness asks that critical sections on the same lock do not overlap.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:7

control flow of f , i.e., every read event 4 in d observes the same write event 4′ as in f . Observe that,
for programming languages such as Java or C/C++, d ∈ CReorderings(f) implies that indeed any
control flow undertaken by f can also be undertaken by d , and thus, any program that generates f
can also generate d , possibly under a different thread interleaving. In general, the more permissive
the set CReorderings(f), the higher the computational complexity involved in reasoning with it.
For example, for the precise definition due to [Smaragdakis et al. 2012], the race prediction question
— given an execution f , check if there is a d ∈ CReorderings(f) that exhibits a data race — is an
NP-hard problem [Mathur et al. 2020]. On the other hand, for simpler (and less permissive) notions
such as trace equivalence, which we recall in Section 3, the corresponding race prediction question
becomes linear-time (and also constant-space) checkable!

Predictive Monitoring. We are now ready to formalize the predictive monitoring framework,
by generalizing related notions such as predictive data race detection [Kini et al. 2017; Kulkarni
et al. 2021; Mathur et al. 2021; Said et al. 2011; Smaragdakis et al. 2012] or predictive deadlock
detection [Tunç et al. 2023]. For a specification language !, the predictive monitoring question
asks, given an execution f ∈ Σ∗, is there an execution d such that d ∈ CReorderings(f) ∩ !, i.e., d
is a correct reordering of f that also witnesses the specification !. In the context of Example 2.1,
while the execution fsafe (Figure 1b) is a negative instance of the monitoring problem against the
language !fail, it is indeed a positive instance of predictive monitoring problem against the same
language, because the witnessing execution ffail ∈ !fail is a correct reordering of fsafe. In fact, notions
such as predictive data race detection can be easily formulated in this framework as follows. Let us
fix the set of threads to be T , and also a set of memory locations/objects X. Consider the alphabet
of read and write events: ΣRW = {[C, w(G)], [C, r(G)] | C ∈ T , G ∈ X}. The following language over
ΣRW then represents the set of all executions with a data race.

!race =
⋃

C ̸=C ′∈T
G∈X

Σ∗RW

(

[C, w(G)][C ′, w(G)] + [C, w(G)][C ′, r(G)] + [C, r(G)][C ′, w(G)]

)

Σ∗RW

The race prediction question then asks to check — given an execution f , is there an execution
d ∈ CReorderings(f) ∩ !race? Observe that, !race is a regular language over ΣRW. Likewise, the
deadlock prediction question can also be formulated analogously using a regular language !deadlock
over an alphabet that also contains information about lock acquire and release events:

ΣRWL = ΣRW ∪ {[C, acq(ℓ)], [C, rel(ℓ)] | C ∈ T , ℓ ∈ L}, (1)

where L is a fixed set of lock identifiers. We skip the precise definition of !deadlock here.

3 TRACE LANGUAGES AND PREDICTIVE MONITORING

In this section, we will recall trace2 languages [Mazurkiewicz 1987], and discuss their membership
question, its connections to predictive monitoring and prior complexity-theoretic results. We will
finally present our hardness result, which is the first main contribution of this work.

Mazurkiewicz Trace Equivalence. Trace theory, introduced by A. Mazurkiewicz [Mazurkiewicz
1987] is a simple yet systematic framework for reasoning about the computation of concurrent
programs. The broad idea of trace theory is to characterize when two executions of a concurrent
programs must be deemed equivalent, based on the notion of commutativity of independent actions
(or labels). Formally an independence (or concurrency) relation over an alphabet of actions Σ is

2Readers must note that the use of the term trace in this paper is specifically distinguished from its more contemporary use

(to denote a specific log or sequence of events that happen during an execution). The usage of trace in this paper is derived

from the more traditional language theoretic notion of Mazurkiewicz traces which denote (equivalence) classes of strings

over some alphabet, instead of a single string modelling a single execution.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:8 Zhendong Ang and Umang Mathur

an irreflexive and symmetric relation I ⊆ Σ × Σ denoting all pairs of actions that can intuitively
be deemed pairwise independent. For simplicity, we will introduce the dependence relation D =

Σ × Σ \ I, induced from a fixed independence relation I, to denote all pairs of dependent (i.e., not
independent) actions. Together, the pair (Σ,I) constitutes a concurrent alphabet. Then, the trace
equivalence induced by I, denoted by ≡I , is the smallest equivalence class over Σ∗ such that for
every (0, 1) ∈ I and for every two wordsF1,F2 ∈ Σ

∗, we have

F1 · 0 · 1 ·F2 ≡I F1 · 1 · 0 ·F2 .

For a stringF ∈ Σ∗, the trace equivalence class ofF is [F]I = {F ′ |F ≡I F
′}.

Trace Partial Order. An alternative characterization of trace equivalence is often given in terms
of the partial order induced due to the concurrent alphabet. Formally, given a concurrent alphabet
(Σ,I), with the dependence relationD = Σ×Σ\I, and a sequence of events f labelled with symbols
from Σ, the partial order induced due to f , denoted by ≤f

D
, is the smallest partial order over Eventsf

such that for any two events 41, 42 ∈ Eventsf , if 41 appears before 42 (i.e., 41 <
f 42) in the sequence f

and (lab(41), lab(42)) ∈ D, then 41 ≤
f
D
42. One can then show that, the set of linearizations Lin(≤f

D
)

of this partial order precisely captures the set of words that are trace equivalent to the label of f :

Proposition 3.1. Let f be an execution over Σ. We have, [lab(f)]I = {lab(f ′) | f ′ ∈ Lin(≤f
D
)}.

As a consequence of Proposition 3.1, we lift the notion of trace equivalence from words over Σ
to executions over Σ as follows. Given two executions f and f ′ over the same set of events (i.e.,
Eventsf = Eventsf ′), we say that f ≡I f ′ if f ′ ∈ Lin(≤f

D
). Likewise, we use [f]I to denote the set

of executions f ′ for which f ≡I f ′.
The partial order view of trace equivalence has, in fact, been routinely exploited in program

analysis for concurrency. Dynamic analysis techniques such as those designed for data race de-
tection [Flanagan and Freund 2009; Itzkovitz et al. 1999] construct a partial order, namely the
happens-before partial order, computed using timestamps [Fidge 1991; Mathur et al. 2022; Mattern
1989], which essentially characterizes the Mazurkiewicz trace equivalence of an appropriately
defined concurrency alphabet. Likewise, optimization techniques employed in bounded model
checking such as dynamic partial order reduction [Flanagan and Godefroid 2005] are rooted in
Mazurkiewicz trace theory in a similar precise sense.

Mazurkiewicz Equivalence v/s Correct Reorderings. Mazurkiewicz trace equivalence provides
a sound (but incomplete) characterization of the space of correct reorderings in the following
sense. We first fix an independence relation over the alphabet Σ that soundly characterizes the
commutativity induced by the underlying programming languages. Consider, for example, the
alphabet ΣRWL described previously in Equation (1) over some set of threads T , memory locations
X and locks L. Let CRW = {(01(G), 02(G)) | 01 = w or 02 = w, and G ∈ X} be the set of conflicting
memory operations, and let CL = {(01(ℓ), 02(ℓ)) | 01, 02 ∈ {acq, rel} and ℓ ∈ L} be the set of
conflicting lock operations. Now consider the independence relation defined as follows:

IRWL ={([C1, >1], [C2, >2]) | C1 ̸= C2 and (>1, >2) ̸∈ CRW ∪ CL}

The above definition of independence relation has been carefully crafted to ensure that the resulting
trace equivalence satisfies two properties. First, the relative order between a read event 4r and a
conflicting write event 4w (i.e., (lab(4r), lab(4w)) ∈ CRW) does not get flipped, ensuring that for any
two Mazurkiewicz equivalent executions f and f ′, the control flow taken by f will also be taken
by f ′. Furthermore, the relative order of conflicting lock operations does not change, ensuring that
if f was well-formed (i.e., critical sections on the same lock do not overlap in f), then so is f ′. This
gives us the following; as before, we use DRWL = ΣRWL × ΣRWL \ IRWL.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:9

Proposition 3.2. Let f be an execution over ΣRWL. We have Lin(≤f
DRWL

) ⊆ CReorderings(f),

We remark that data race detection techniques like FastTrack [Flanagan and Freund 2009] are
thus implicitly predictive and sound because they reason about trace equivalence induced by the
concurrent alphabet (ΣRWL,IRWL), at least until the first data race they report [Mathur et al. 2018].

Example 3.1. Consider again the program % (Figure 1a) from Example 2.1. LetDepEx be the set of de-
pendent instructions, namely those pairs (>?1, >?2) such that there is an object o ∈ {count, inputs}
such that (>?1, >?2) ∈ {(write(o), write(o))}. Using this, we can define the independence relation
as IEx = {([C1, >?1], [C2, >?2]) | C1 ̸= C2 and (>?1, >?2) ̸∈ DepEx}. Observe that any two consecutive
instructions which are independent according to IEx can be commuted without affecting the con-
trol flow of the program. Thus, equivalence induced by IEx soundly captures correct reorderings.
Finally, observe that the two executions from Figure 1 are also deemed equivalent according to the
independence relation defined here: fsafe ≡IEx ffail.

3.1 Predictive Monitoring for Trace Equivalence

The framework of Mazurkiewicz traces is well-equipped to study the predictive monitoring problem
defined henceforth in the context of trace equivalence.

Definition 1 (Predictive Trace Monitoring). Fix a concurrent alphabet (Σ,I) and a language ! ⊆ Σ∗.
Given an execution f over Σ as input, the predictive monitoring problem asks to check if there is
an execution f ′ such that f ′ ≡I f and lab(f ′) ∈ !.

We remark that the above problem can be equivalently formulated in terms of words (instead
of executions) — given an execution f specified as the corresponding word F = lab(f), check if
[F]I ∩ ! ̸= ∅. As an example, for the alphabet ΣEx from Example 2.1 and the independence relation
IEx defined in Example 3.1, the predictive monitoring question would return YES for the input fsafe
because ffail ∈ [fsafe]IEx ∩ !fail.

Predictive Trace Monitoring against Regular Languages. Bertoni, Mauri and Sabadini [Bertoni
et al. 1989] studied the problem of predictive trace monitoring against the class of regular (and
context-free) languages and proposed an algorithm whose time complexity is given in terms of a
parameter of the concurrency alphabet, which is defined as follows. The width width(Σ,I) of the
concurrency alphabet (Σ,I) is the size of the largest clique of the undirected graph whose vertices
are elements of Σ and edges are elements of I. We next recall the result of Bertoni et al. relevant to
this exposition, and provide a high-level overview of their algorithm subsequently.

Theorem 3.1 (Theorem 6.2 in [Bertoni et al. 1989]). The predictive monitoring problem against
regular languages can be solved using an algorithm that uses $(=U) time and space for the input
execution of size =, where U = width(Σ,I) is the width of the concurrency alphabet.

Ideals. The algorithm due to Bertoni et al. relies on the observation that the set of prefixes of an
equivalence class of a given execution can be defined using an ideal. An ideal X of f is a subset
X ⊆ Eventsf such that for every 4, 4′ ∈ Eventsf such that 4 ≤f

D
4′, if 4′ ∈ X, we also have 4 ∈ X.

An event 4 ∈ - is said to be maximal in - if for every 5 ∈ Eventsf different from 4 such that
4 ≤f

D
5 , we have 5 ̸∈ - . We use max(X) to denote the (unique) set of maximal events of X. We

will use Lin(≤f
D
,X) to denote the set of linearizations of the set X consistent with ≤f

D
i.e., each

d ∈ Lin(≤f
D
, X) is such that Eventsd = X and for every 41 ≤

f
D
42, if 41, 42 ∈ X, then 41 <

d 42. Given
two ideals X and Y of f , we say that X is an immediate predecessor of Y if there is an event 4 ∈ Y
such that Y = X ⊎ {4} (i.e., 4 ̸∈ X, and 4 ∈ max(Y)). We use pre(X) to denote the set of all immediate
predecessors of X. The principal ideal generated by an event 4 ∈ Eventsf , denoted PIdeal(4), is
the smallest ideal of f that contains 4 . There is a one-to-one correspondence between an ideal

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:10 Zhendong Ang and Umang Mathur

X and the set of its maximal elements. In particular, an ideal X can be uniquely represented as
X =

⋃

4∈max(X)
PIdeal(4). The number of maximal elements of an ideal of f is bounded by U . As a result,

the number of ideals of f is bounded by $(|f |U).
We now recall the algorithm due to Bertoni et al. Let U = width(Σ,I) be the width of the con-

currency alphabet. Let A! = (&,&0, X, �) be the non-deterministic finite automaton corresponding
to the regular language ! against which we perform predictive trace monitoring; the size of A!

is assumed to be $(1). Let us also fix the input execution f ∈ Σ∗. The algorithm computes, for
every ideal X of f , the set of states (X = {X∗(@0,F) | ∃d ∈ Lin(≤f

D
, X) such that lab(d) = F} that can

be reached by the automaton A! on some linearization of X. Observe that, (X ⊆ & has constant
size for any ideal X. This information can be defined inductively using immediate predecessor
ideals — (X = &0 if X = ∅, and otherwise, (X = {@′ | ∃X′, @, 5 such that X′ ∈ pre(X), @ ∈ (X′ , {5 } =
X \ X′ and (@, lab(5), @′) ∈ X}. The computation of the sets (X can be performed incrementally in
order of the size of the ideals, starting from ideals of the smallest size. The final check for determin-
ing if [lab(f)]I ∩ ! ̸= ∅ simply corresponds to checking if � ∩ Xf ̸= ∅, where Xf = Eventsf is the
largest ideal that includes all events. The time spent for each ideal X is $(1), and the total number
of ideals is $(|f |U), giving us the desired bound of Theorem 3.1.

3.2 Hardness of Predictive Trace Monitoring

The algorithm in [Bertoni et al. 1989] runs in time (and space) $(=U) for executions of size = and
where U is the width of the concurrent alphabet, in the case when the target language is regular.
Even though this is polynomial time (assuming U is constant), it can become prohibitive when
deployed for predictive monitoring for executions coming from large-scale concurrent software
systems, which routinely generate executions with millions of events. In sharp contrast to this
is the case of non-predictive monitoring, which boils down to checking membership in a regular
language. The non-predictive monitoring problem for regular languages thus admits a linear-time,
one-pass constant space streaming algorithm, the holy grail of runtime verification. The question
we ask here is — in the case of predictive trace monitoring, is there a more efficient algorithm than
the $(=U) algorithm proposed by Bertoni et al. [Bertoni et al. 1989]? Is the exponential dependence
on U necessary?

At first glance, predictive trace monitoring, in general, does not admit a constant-space (automata-
theoretic) algorithm. Consider, for example, the alphabet Σ = {a1, a2, a3} and the independence
relation I = {(a8 , a9) | 8 ̸= 9 ∈ Σ}, i.e., all pairs of distinct letters are deemed independent by I.
Now consider the language ! = (a1a2a3)

∗. Checking if [F]I ∩ ! ̸= ∅, amounts to checking if
F ∈ !′ = {D | the number of occurrences of a1, a2 and a3 is equal in D}. Since !

′ is not a regular
language (not even context-free), the predictive trace monitoring problem does not admit a constant-
space linear-time algorithm for !. In this work, we establish an even tighter (conditional) lower
bound (Theorem 3.2). Our hardness result is, in fact, stronger in that it applies even for the case
of star-free regular languages [McNaughton and Papert 1971; Schützenberger 1965]. Further, our
result also establishes that the $(=U) algorithm due to Bertoni et al. is in fact optimal.

Complexity Theoretic Conjectures. One of the most widely believed complexity-theoretic
conjectures is the Strong Exponential Time Hypothesis (SETH) [Calabro et al. 2009], which states
that for every n > 0, no (deterministic or randomized) algorithm determines the satisfiability of
a 3SAT formula over = propositions in time $(2(1−n)=). In the proof of our result Theorem 3.2,
we will show a reduction from the orthogonal vectors problem :-OV. An instance of :-OV is :
sets {�1, . . . , �: }, each of which is a set of = Boolean vectors over 3 dimensions, i.e., �8 ⊆ {0, 1}

3

and |�8 |= =. The :-OV problem asks to check if there are : orthogonal vectors, i.e., if there are
vectors 01 ∈ �1, 02 ∈ �2, . . . , 0: ∈ �: such that the norm of their pointwise product vector is 0, i.e.,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:11

�1

101
110
010

�2

111
011
110

�3

011
101

111

(a) 3-OV instance with = = 3, 3 = 3

1 2 3

1 a1,2

2 #1
3 a1,3

4 #1
5 a1,1

6 a1,3

7 #1
8 #2
9 a2,1

10 #2
11 a2,3

12 #2
13 a3,1

14 #3
15 a3,2

16 #3
17 #3

(b) Input execution f

1 2 3

1 a1,2

2 #1
3 a1,3

4 #1
5 #2
6 a2,1

7 #2
8 a3,1

9 #3
10 a1,1

11 a3,2

12 a1,3

13 a2,3

14 #1
15 #2
16 #3
17 #3

(c) Execution f′ with f′ ∈ [f]I ∩!

Fig. 2. Reduction from 3-OV. Symbol a8, 9 appears in the 8th column in (b) and (c). Symbols appearing in

different columns are independent. ! = Σ∗{a1,1, a2,1, a3,1}
+{a1,2, a2,2, a3,2}

+{a1,3, a2,3, a3,3}
+Σ∗.

∑3
9=1

∏:
8=1 08[9] = 0. Under SETH, there is no$(=:−n · poly(3)) algorithm for :-OV (no matter what

n > 0 we pick) [Williams 2018].

Theorem 3.2. Assume SETH holds. For each n > 0, there is no algorithm that solves the predictive
trace monitoring problem against star-free regular languages (over a concurrent alphabet with
width U) in time $(=U−n) for input words of length =.

Proof. We show a fine-grained reduction from :-OV to the problem of predictive trace monitor-
ing against star-free language. We fix :,3 ∈ N. Then we construct the concurrent alphabet (Σ,I),
and the star-free language ! against which we check predictive trace monitoring, as follows. First,
the alphabet Σ is partitioned into : disjoint alphabets, i.e., Σ =

⊎:
8=1 Σ8 , where

Σ8 = {a8, 9 | 1 ≤ 9 ≤ 3} ∪ {#8 }

That is, the alphabet consists of one symbol a8, 9 for every pair (8, 9) where 1 ≤ 8 ≤ : and 1 ≤ 9 ≤ 3

and additionally one symbol #8 for each 1 ≤ 8 ≤ : . The independence relation is such that all
symbols across partitions are deemed independent, while those within the same partition are
deemed dependent, That is,

I =
⋃

8 ̸=9

Σ8 × Σ9

Thus the width of the concurrency alphabet is the number of partitions, i.e., U = : . The language !
is given by the following regular expression:

A = Σ∗ · {a1,1, a2,1, . . . , a:,1}
+ · · · {a1,3 , a2,3 , . . . , a:,3 }

+ · Σ∗

Observe that |Σ|= :(3 + 1), I = :(: − 1)(3 + 1)2/2 and |A |= $(:3). Also, observe that ! is a
star-free language because Σ∗ = ∅2 and for a subset ∆ ⊊ Σ, we have ∆+ = ∆ · ∆∗ and further
∆∗ = (

⋃

0∈Σ\∆ Σ
∗0Σ∗)2 .

Reduction. Given an instance A = {�1, �2, . . . , �: } of :-OV with |�8 |= = and �8 ⊆ {0, 1}
3 for

every 8 , we construct an execution f such thatA is a positive instance of :-OV iff [lab(f)]I ∩! ̸= ∅.
Our construction ensures that |f |≤ :(3 + 1)=. For each 8 , let us denote the vectors of �8 using

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:12 Zhendong Ang and Umang Mathur

{E
(8)
1 , E

(8)
2 , . . . , E

(8)
= }. The execution f is then a concatenation, obtained by successively appending

smaller sub-executions, one for each set �8 :

f = f1 ◦ f2 ◦ . . . ◦ f: .

Further, for 1 ≤ 8 ≤ : , the sub-execution f8 is a concatenation of smaller sub-executions corre-
sponding to each vector in �8 :

f8 = f8,1 ◦ #8 ◦ f8,2 ◦ #8 · · · #8 ◦ f8,= ◦ #8

Further, for each 1 ≤ 8 ≤ : and 1 ≤ ; ≤ =, the trace f8,; encodes the vector E
(8)

;
:

f8,; = 18,1,; ◦ 18,2,; ◦ · · · ◦ 18,3,;

where

18, 9,; =

{

a8, 9 if E
(8)

;
[9] = 0

Y otherwise

Figure 2 illustrates our construction. The string f ′ (Figure 2c) is equivalent to f (Figure 2b) and
also belongs to !; symbols marked red highlight membership in ! and correspond to the vectors
whose dot product is 0 (also marked in red in Figure 2a).

Correctness. We now argue for the correctness of our reduction.

(⇒) Consider E
(1)
C1
∈ �1, E

(2)
C2
∈ �2, . . . , E

(:)
C:
∈ �: such that E

(1)
C1
· E

(2)
C2
· . . . · E

(:)
C:

= 0. This means, for

every 9 ∈ {1, . . . , 3}, there is at least one 8 ∈ {1, . . . , :} such that E
(8)
C8
[9] = 0. f ′ can now be described

as follows:

f ′ = f ′pre ◦ f
′
mid ◦ f

′
post.

The prefix f ′pre (resp. f
′
post) is obtained by successively concatenating the first C8 − 1 (resp. last = − C8)

sub-executions of f8 :

f ′pre = f1[1 . . . C1 − 1] ◦ . . . ◦ f: [1 . . . C: − 1]

f ′post = f1[C1 + 1 . . . =] ◦ . . . ◦ f: [C: + 1 . . . =]

where f8[? . . . @] = f8,? ◦ f8,?+1 · · · ◦ f8,@ . The sub-execution f ′
mid

is obtained by successive concate-

nation of sub-executions corresponding to the 9 th components of each vector E
(8)
C8
:

f ′mid = f ′mid,1 ◦ f
′
mid,2 ◦ . . . ◦ f

′
mid,3 ◦ #1 ◦ #2 · · · #:

where for each 1 ≤ 9 ≤ 3 ,

f ′mid, 9 = 11, 9,C1 ◦ 12, 9,C2 ◦ . . . ◦ 1:,9,C:

First, observe that f ′ does not flip the order of any two events that are dependent. Thus, f ′ ≡I f .
Second, f ′

mid
has a prefix (namely the one that does not include the residual #8 symbols) that matches

the regular expression {a1,1, . . . , a:,1}
+ . . . {a1,3 , . . . , a:,3 }

+. This is because or every 9 ∈ {1, . . . , 3},

there is at least one 8 ∈ {1, . . . , :} such that E
(8)
C8
[9] = 0. Thus, f ′ ∈ !.

(⇐) Consider an equivalent execution f ′ ≡I f such that f ′ ∈ !. Clearly, f ′ must contain a
substring f ′

mid
which belongs to the language {a1,1, . . . , a:,1}

+ . . . {a1,3 , . . . , a:,3 }
+. Let f ′

mid,8
be the

subsequence of f ′
mid

obtained by projecting it to Σ8 . We remark that for each such 8 , there must be
a common sub-execution f8,C8 of f such that the events of f ′

mid,8
belong to f8,C8 (recall that f8,; corre-

sponds to the vector E
(8)

;
∈ �8). This is because any two subexecutions f8,V and f8,V ′ , are separated by

the separator #8 which is dependent with each symbol in f8,V and f8,V ′ . We can thus choose indices
C1, C2, . . . , C: such that events of f ′

mid,8
belong to the unique subtrace f8,C8 ; If for some 8 , f ′

mid
contains

no symbol in Σ8 , C8 is chosen arbitrarily. We will now argue that the vectors E1C1 ∈ �1, . . . , E
:
C:
∈ �:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:13

are orthogonal. This follows easily since For each dimension 9 ∈ {1, . . . , 3}, f ′
mid

contains at least

one symbol a8, 9 for some 8 ∈ {1, . . . , :}, which implies that E
(8)
C8
[9] = 0.

Time Complexity. Recall that Σ = |:(3 + 1)|, |I |= :(: − 1)(3 + 1)2/2, U = : , |A |= poly(3), and
|f |≤ :=(3 + 1). The time taken to construct f is also $(= · : · (3 + 1)). If predictive trace monitoring
against ! can be decided in time |f |U−npoly((|Σ|·|A |)) ≤ (:=(3 + 1)):−npoly(3) = =:−npoly(3), then
:-OV with set size = can also be solved in time =:−npoly(3), which refutes SETH (since SETH

implies the absence of such an algorithm). □

4 PATTERN AND GENERALIZED PATTERN LANGAUGES

In this section, we describe the class of generalized pattern languages, which is the central object of
our study. Later, in Section 5 we show that for this class of languages, the predictive trace monitoring
problem becomes highly tractable, in that, it admits a constant-space streaming algorithm that
works in linear time.

Definition 2 (Pattern Languages). Let Σ be an alphabet. A language ! is said to be a pattern
language of dimension 3 ∈ N over Σ, if it is of the form

! = Σ∗01Σ
∗ . . . Σ∗03Σ

∗,

where 01, 02, . . . , 03 ∈ Σ; we use Patt01,...,03 to denote the above pattern language. The class of all
pattern languages will be denoted by PATT.

The above definition of pattern languages has been inspired from their potential target application
in dynamic analysis for detecting bugs in concurrent and distributed applications. Over the years, a
large class of concurrency bug-detection techniques has been proposed that enhance the effective-
ness of otherwise exhaustive enumeration-style testing, by leveraging the hypothesis that “many

bugs in programs depend on the precise ordering of a small number of events . . . ” [Chistikov et al.
2016]. The additional knowledge of “small bug depth” can then be leveraged to simplify testing, in
that, only a small number of behaviours need to be analysed. This has been the key to tackling the
interleaving explosion problem encountered during testing for concurrent software [Burckhardt
et al. 2010; Musuvathi and Qadeer 2006]. In our setting, where the events are labelled from an
alphabet (denoting, say instructions, function entry and exit points, synchronization operations, or
even load and store operations), the natural analogue of this hypothesis asks to determine if there
is some small 3 and labels 01, . . . , 03 so that some 3 events 41, 42, . . . , 43 (not necessarily observed
in this order) with these labels lab(41) = 01, . . . , lab(43) = 03 , can be organized in the precise order
where 48 is followed by 48+1 for each 8 ≤ 3 . This is precisely the predictive monitoring question
against the pattern language Patt01,...,03 = Σ∗01Σ

∗ . . . Σ∗03Σ
∗ and highlights our motivation behind

the class of specifications we introduce in Definition 2. As a final remark, observe that the language
!fail from Example 2.1 is indeed a pattern language (of dimension 3 = 4).
In the following, we define a more general class of languages, thereby enhancing the class of

specifications we consider.

Definition 3 (Generalized Pattern Languages). Let Σ be an alphabet. A language ! ⊆ Σ∗ is said
to be a generalized pattern language if it is a finite union ! = !1 ∪ !2 · · · ∪ !< , where for each !8
(1 ≤ 8 ≤ <), we have (a) !8 = ∅, or (b) !8 = {Y}, or (c) !8 ∈ PATT is a pattern language.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:14 Zhendong Ang and Umang Mathur

4.1 Properties of Pa�ern and Generalized Pa�ern Languages

In this section, we study language theoretic properties of our proposed class of languages.

Topological Characterization. Pattern languages and generalized pattern languages are clearly
regular languages. Here, we provide a finer characterization — they are also star-free languages.
Recall that star-free languages over Σ are those that can be constructed by using ∅, {Y}, {0} (where
0 ∈ Σ is some symbol), and inductively composing them using concatenation, union, intersection,
and complementation. We remark that Theorem 3.2 shows that the complete class of star-free
regular languages are not amenable to efficient predictive trace monitoring.

Proposition 4.1. Every generalized pattern language is a star-free regular language.

Let us now examine the closure properties of our proposed class of languages.

Closure Under Union. Let us first consider closure under union for PATT. Consider the two
patterns Patt0 and Patt1 , where 0 ̸= 1 ∈ Σ. We can show using contradiction that there is no
pattern Patt21,...,2: such that Patt21,...,2: = Patt0 ∪ Patt1 . Suppose on the contrary that this holds.
Then, 0, 1 ∈ 21, . . . , 2: as otherwise (Σ \ {0, 1}) ∩ Patt21,...,2: ̸= ∅. This means that 0 ̸∈ Patt21,...,2:
since every string in Patt21,...,2: must contain 1, thereby giving us a contradiction. On the other
hand, the class of generalized pattern languages is clearly closed under finite union.

ClosureUnder Intersection.Consider two pattern languages!1 = Patt01,...,03 and!2 = Patt11,...,1; .
Then, a wordF ∈ !1 ∩ !2 must have a subsequence 01, . . . , 03 as well as a sub-sequence 11, . . . , 1; .
Let us use the notation D ⊙ E to denote the shortest words that contain D and E as subsequences. Let
us use the notation ⊑ (⊏) to denote subsequence (strict subsequence) relation between two words.

D ⊙ E = {F ∈ Σ∗ |D ⊑ F, E ⊑ F, ∀F ′ ⊏ F,D ̸⊑ F ′ or E ̸⊑ F ′}

Then, we remark that !1 ∩!2 =
⋃

D∈01,...,03⊙11,...,1; PattD . The class of generalized pattern languages
is closed under intersection, since intersection distributes over union.

Closure under Complementation. The class of pattern languages is not closed under comple-
mentation. Consider the pattern language ! = Patt0 . Observe that !

2 = (Σ \ {0})∗ which cannot be
a pattern language. Assume on the contrary that there was a pattern language Patt11,...,1; = !2 ;
observe that 0 · 11 · . . . · 1; ∈ Patt11,...,1; giving us a contradiction right away. In fact, the language
!2 here is different from {Y}, and ∅, and is also not a finite union of multiple pattern languages
(each of which will otherwise contain a string containing 0). Thus, even the class of generalized
pattern languages is not closed under complementation.

Closure Under Concatenation. Consider two pattern languages !1 = Patt01,...,03 and !2 =

Patt11,...,1; . Observe that the language ! = Patt01,...,03◦11,...,1; is indeed the concatenation of !1 and
!2, i.e., ! = !1 ◦ !2. As a result, the class PATT is closed under concatenation. It is easy to see that
the class of generalized pattern languages is also closed under concatenation.

Closure Under Kleene Star. Pattern languages are certainly not closed under Kleene star because
Y ̸∈ Patt0 , but Y ∈ (Patt0)

∗. However, the class of generalized pattern languages is closed under
the Kleene star operation, because of the observation that for a pattern language ! ∈ PATT, we
have !∗ = ! ∪ {Y} which can be proved inductively.
To summarize, we have the following closure properties. The formal proof is presented in the

extended version of our paper [Ang and Mathur 2023a].

Theorem 4.1 (Closure properties of Pattern Languages). The class of pattern languages is closed
under finite concatenation, but not under union, intersection, complementation, and Kleene star.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:15

Theorem 4.2 (Closure properties of generalized Pattern Languages). The class of generalized
pattern languages is closed under finite union, finite intersection, finite concatenation, and Kleene
star but not under complementation.

5 PREDICTIVE MONITORING AGAINST GENERALIZED PATTERN LANGUAGES

In Section 3.2, we have established that the problem of predictive trace monitoring against regular
languages does not admit an algorithm that runs faster than $(=U), assuming SETH holds. In this
section, we show that, the case of pattern languages and generalized pattern languages (defined in
Section 4) admit a more efficient — constant-space linear-time streaming — algorithm.

5.1 Overview of the Algorithm

Recall that a generalized pattern language is a union of pattern languages, {Y} or ∅, and predictive
monitoring against the latter two can trivially be performed in constant space. We instead show
a constant-space algorithm for predictive monitoring against pattern languages, which would
essentially imply a constant-space algorithm for the larger class of generalized pattern languages.
Our algorithm (for pattern languages) is based on several crucial insights: here we briefly discuss
them and give details in subsequent sections. In order to give intuitions behind these insights, we
will define some subproblems (Problem 5.1, Problem 5.2). We fix the concurrent alphabet (Σ,I). The
corresponding dependence relation is D = Σ × Σ \ I. We also fix the pattern language Patt01,...,03
of dimension 3 and the input execution f over (Σ,I). Let us now define some useful notations.
Let g = ⟨41, . . . , 4<⟩ be a tuple of events of f such that 41 <f . . . <f 4< . Let 11, . . . , 1< be

a sequence of < labels from Σ. g is said to be a shuffle of 11, . . . , 1< if ⟨lab(41), . . . , lab(4<)⟩ is a
permutation of ⟨11, . . . , 1<⟩. g is said to be a partial candidate tuple with respect to our pattern
Patt01,...,03 , if it is a shuffle of some subsequence of 01, . . . , 03 . g is said to be a (complete) candidate

tuple with respect to our pattern Patt01,...,03 , if it is a shuffle of 01, . . . , 03 .

Definition 4 (Partial and Complete Admissible Tuples). Let g be a tuple of< events such that
g is a partial candidate tuple. g is said to be admissible with respect to Patt01,...,03 if there is an
execution f ′ ≡I f and a permutation g ′ = ⟨481 , . . . , 48< ⟩ of g , such that ⟨lab(481), . . . , lab(48<)⟩ is a
subsequence of ⟨01, . . . , 03⟩ and g

′ is subsequence of f ′. As a special case, g is a complete admissible
tuple if it is a complete candidate and also, admissible.

We remark that the admissibility of a tuple g , if true, must be witnessed as a special permu-
tation of g . Assume that g is a partial candidate tuple, which is a shuffle of 0 91 , . . . , 0 9< , a sub-

sequence of 01, . . . , 03 . Then, there is a special permutation g† = ⟨4
8†1
, . . . , 4

8†<
⟩ of g , such that

⟨lab(4
8†1
), . . . , lab(4

8†<
)⟩ = ⟨0 91 , . . . , 0 9< ⟩; more importantly, if g is admissible, then for every f ′ ≡I f

that witnesses the admissibility of g , g† is a subsequence of f ′. Observe that this special permutation
can be obtained by sorting g according to ⟨01, . . . , 03⟩ while additionally ensuring that events with
the same label do not get flipped. Henceforth, we will use the notation sort(g, ⟨0 91 , . . . , 0 9< ⟩).

The first subproblem we consider pertains to checking if a given sequence of events is admissible.

Problem 5.1. Given an execution f and a candidate tuple g of events from f , check whether g is
admissible with respect to Patt01,...,03 .

A naive approach to solving this problem would enumerate all $(|f |!) linearizations and check
membership in Patt01,...,03 for each of them in total time$(|f |·|f |!), which is prohibitive. A different
and better approach instead relies on the partial order view of Mazurkiewicz traces. Here, one
considers the graph �f = (+f , �f) corresponding to the partial order ≤f

D
, where +f = Eventsf

and �f captures immediate edges of ≤f
D
. One can get a graph � ′f by adding additional edges

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:16 Zhendong Ang and Umang Mathur

{(4
8†1
, 4

8†2
), . . . , (4

8†
3−1

, 4
8†
3

)} derived from the special permutation ⟨4
8†1
, . . . , 4

8†
3

⟩ = sort(g, ⟨01, . . . , 03⟩).

This reduces the admissibility of g to the acyclicity of � ′f , which can be checked in time $(|f |)
since the degree of each vertex is constant. However, the space utilization of this graph-theoretic
algorithm is also linear. In Section 5.2, we will show that Problem 5.1 can be solved using a streaming
constant-space algorithm, that uses after sets (Definition 6). After sets succinctly capture causality
induced by the corresponding partial order and can be used to check the admissibility of a candidate
tuple in a streaming fashion.
The second subproblem asks whether there exists an admissible tuple in the given execution.

Problem 5.2. Given an execution f , check whether there is a candidate tuple g of events from f ,
such that g is admissible with respect to Patt01,...,03 .

In other words, Problem 5.2 asks there is a f ′ ≡I f such that lab(f ′) ∈ Patt01,...,03 . How do we

solve Problem 5.2? Again, a naive approach would enumerate all$(|f |3) candidate tuples and check
their admissibility by repeatedly invoking our algorithm for Problem 5.1. This is again prohibitive,
in terms of both its time and space usage. On the other hand, in Section 5.3, we design a linear-time
streaming algorithm for Problem 5.2 whose overall space usage is constant. The high-level insights
behind this algorithm are as follows. First, our algorithm runs in a streaming fashion, and tracks
not just complete candidate tuples, but also partial tuples which can potentially be extended to
complete candidate tuples. Second, our algorithm is eager, in that, it determines whether a partial
tuple is admissible, i.e., if it can be extended to a complete admissible tuple, and proactively discards
all other partial tuples. The problem of checking if a partial tuple is admissible can, in fact, be solved
in constant space using an algorithm similar to Algorithm 1 that solves Problem 5.1. Nevertheless,
even the number of partial admissible tuples is still large ($(|f |3)). Our third and most important
insight, formalized in Lemma 5.3, tackles this problem — we only need to track constantly many
partial admissible tuples, those that are maximum in some precise sense.
Equipped with the above insights, the high-level description of our algorithm for predictive

monitoring against pattern languages is the following. The algorithm processes one event at a time
and tracks the maximum partial admissible tuple of each kind. When processing a new event of the
given execution, it checks whether any existing partial tuple can be extended to another (partial
or complete) admissible tuple. If at any point, a complete admissible tuple can be constructed, the
algorithm terminates and declares success. Otherwise, there is no complete admissible tuple in the
entire execution.

In Section 5.2, we discuss the details of how we solve Problem 5.1 in constant space. In Section 5.3,
we present the details of our overall algorithm for predictive trace monitoring against pattern
regular languages (Problem 5.2).

5.2 Checking Admissibility of Candidate Tuples

Our first observation towards solving Problem 5.1 is that in order to check the admissibility of a
candidate tuple g , it suffices to examine only pairs of events that appear in g , which, thankfully, is a
local property of g . We formalize this using the notion of locally admissible tuple. Intuitively, g is
locally admissible when for every pair of events (4, 4′) in g , if the order in which 4 and 4′ appear in
g is different from their order in the target g† = sort(g, ⟨01, . . . , 03⟩), then they are incomparable
according to ≤f

D
. This observation can be generalized to partial candidate tuples as well:

Definition 5 (Locally Admissible Tuple). Let g = ⟨41, . . . , 4<⟩ be a partial candidate tuple of an
execution f with respect to Patt01,...,03 , so that it is a shuffle of 0 91 , . . . , 0 9< , a subsequence of
01, . . . , 03 . Let ⟨48†1

, . . . , 4
8†<
⟩ = sort(g, ⟨0 91 , . . . , 0 9< ⟩). We say that g is partially locally admissible

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:17

with respect to Patt01,...,03 if for all 8†A ̸= 8†B , we have B < A ⇒ 4
8†A
̸≤fD 4

8†B
. As a special case, g is

completely locally admissible if it is additionally a complete candidate.

A simple intuitive implication of Definition 5 is the following. Consider again the directed acyclic
graph �f of induced partial order ≤f

D
. The local admissibility of a tuple g = ⟨41, . . . , 43⟩ essentially

means that for every two vertices 4
8†A
, 4

8†B
that need to be flipped, the addition of the edge (4

8†A
, 4

8†B
)

alone does not introduce any cycle in this graph.
In the following, we establish a clear connection between admissibility and local admissibility.

The proof of Lemma 5.1 can be found in [Ang and Mathur 2023a].

Lemma 5.1. Let g = ⟨41, . . . , 4<⟩ be a partial candidate tuple of an execution f with respect to
Patt01,...,03 , which is a shuffle of 0 91 , . . . , 0 9< , a subsequence of 01, . . . , 03 . We have,

g is admissible ⇐⇒ g is locally admissible

The above result is interesting, yet subtle. The intuitive implication of this lemma is that if each
flipped edge (4

8†A
, 4

8†B
) individually does not introduce any cycle in�f , then, in fact, the simultaneous

addition of all such edges also does not introduce a cycle.
While the criterion of local admissibility and its equivalence with the admissibility are important

ingredients towards our solution for Problem 5.1, it is not immediately amenable to a space-efficient
algorithm. In particular, we cannot afford to construct a linear-sized graph and check the reachability
in order to decide local admissibility. Fortunately, our next ingredient (Definition 6) effectively
tackles this challenge.

Definition 6. For an execution f and an event 4 ∈ Eventsf , the after set of 4 in a prefix d of f is
defined as A�erd (4) = {lab(5) | 5 ∈ Eventsd and 4 ≤f

D
5 }.

Observe that, for any event 4 and prefix d , A�erd (4) ⊆ Σ, thus this set is of constant size. A direct
consequence of Definition 6 is that after sets are sufficient to check causality between two events.

Proposition 5.1. Let f be an execution and d be a prefix of f that ends at an event 5 . Let 4 be an
event such that 4 <d 5 . We have, lab(5) ∈ A�erd (4) ⇐⇒ 4 ≤f

D
5 .

Our algorithm maintains after sets of the events participating in the candidate tuple. Observe
that the after set of an event 4 is parameterized on a prefix d of a prefix of f . The next crucial
observation, formally stated in Lemma 5.2, is that this set can be updated incrementally (see [Ang
and Mathur 2023a] for the proof).

Lemma 5.2. Let f be an execution and d, d ◦ 5 be prefixes of f for some event 5 . Let 4 be an event
in d . We have

A�erd◦5 (4) =

{

A�erd (4) ∪ {lab(5)} if ∃0 ∈ A�erd (4) s.t. (0, lab(5)) ∈ D,

A�erd (4) otherwise.

Equipped with Lemma 5.1, Proposition 5.1, and Lemma 5.2, we can now design the constant-space
streaming algorithm for Problem 5.1 in Algorithm 1. The algorithm first constructs the target tuple
g† which is uniquely determined from g . It then scans the execution by processing one event at a
time in the order of the given execution. At each event, it updates the after sets of all the events
occurring in g (line 4). Then, when we see an event from g , we also check the violations of local
admissibility proactively (line 8).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:18 Zhendong Ang and Umang Mathur

Algorithm 1: Constant-Space Algorithm for Checking Admissibility

Input: f ∈ Σ∗, candidate tuple g = ⟨41, . . . , 43⟩

Output: YES if g is admissible; NO otherwise
1 Let g† = sort(g, ⟨01, . . . , 03⟩);

2 foreach 4 ∈ g do A4 ← ∅;

3 for 5 ∈ f do

4 foreach 4 ∈ g do // Update after sets

5 if ∃0 ∈ A4 s.t. (0, lab(5)) ∈ D then A4 ← A4 ∪ {lab(5)} ;

6 if 5 ∈ g then

7 A5 ← {lab(5)}

8 foreach 4 ∈ g do // Check local admissibility

9 if 5 occurs before 4 in g† and lab(5) ∈ A4 then return NO ;

10 return YES;

5.3 Checking Existence of Admissible Tuples

Recall that the naive algorithm which enumerates all $(=3) 3-tuples consumes $(=3) time and
space, even though we have a constant-space algorithm to check their admissibility. Our algorithm
for solving Problem 5.2 instead runs in a streaming fashion and uses constant space. To do so, the
algorithm tracks not only complete candidates but also partial ones. It incrementally extends those
partial candidates as it processes new events. A distinct and crucial feature of our algorithm is that
it eagerly discards those partial candidates that cannot be extended to a complete admissible tuple.
In other words, it tracks only partially admissible tuples. Observe that Algorithm 1 can be easily
adjusted to check partial admissibility.

Notice that, compared with the number of partial candidates, the number of partially admissible
tuples is not reduced significantly, and is still $(=3). However, tracking only partially admissible
tuples (instead of all partial candidates) allows us to bound the number of tuples we track. In
particular, for a set of partially admissible tuples with the same label, we can afford to track only
the maximum element. We observe that the number of all kinds of labels is the number of all
permutations of all subsequences of 01, . . . , 03 , which is 1! + · · · +3!, a constant number. This is also
the number of partially admissible tuples we track at any point when processing an execution. The
next lemma (Lemma 5.3) shows that the maximum element exists and is unique.

Before we formally show the existence of the maximum element, let us fix some helpful notations.
Let g1 = ⟨411, . . . , 4

1
<⟩, g2 = ⟨421, . . . , 4

2
<⟩ be two sequences of events in the execution f , such that

lab(g1) = lab(g2). We say that g1 ⊴ g2 if for all 1 ≤ 8 ≤ <, 418 <f 428 or 4
1
8 = 428 . Also, we use g1 ▽ g2

to denote the tuple ⟨41, . . . , 4<⟩, where for 1 ≤ 8 ≤ <, 48 = 428 if 418 <f 428 , and 418 otherwise. Let
⟨11, . . . , 1<⟩ be a permutation of a subsequence of ⟨01, . . . , 03⟩. We use mAdTpls(f, ⟨11, . . . , 1<⟩) to
denote the set of all partially admissible tuples g in f , such that lab(g) = ⟨11, . . . , 1<⟩.

Lemma 5.3. Let f be an execution and d be a prefix of f . Let ⟨11, . . . , 1<⟩ be a permutation of a
subsequence of ⟨01, . . . , 03⟩. Then the set mAdTpls(d, ⟨11, . . . , 1<⟩) has a unique maximum tuple g0
with regard to ⊴. That is, for every g ∈ mAdTpls(d, ⟨11, . . . , 1<⟩), we have g ⊴ g0.

The above lemma states the uniqueness of the maximum element. But observe that existence
implies uniqueness. Consider g1 and g2 that both are maximum, then g1 ⊴ g2 and g2 ⊴ g1. From the
definition, this implies that g1 = g2. The proof of existence relies on two observations. First, the
set mAdTpls(d, ⟨11, . . . , 1<⟩) is closed under ▽, which is formalized in Lemma 5.4. Second, from the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:19

Algorithm 2: Constant-Space Algorithm for Checking Existence of Admissible Tuples

Input: f ∈ Σ∗

Output: YES if there exists an admissible g ; NO otherwise
1 Let (" : Permutations of prefixes of 01, . . . , 03 → Partial admissible tuples) be an empty map;

2 for 5 ∈ f do

3 if lab(5) ∈ ⟨01, . . . , 03⟩ then

4 foreach c which is a permutation of a prefix of 01, . . . , 03 ending with lab(5) do

5 Let c ′ = c[: −1];

6 if " contains c ′ and"(c ′) ◦ 5 is partially admissible then

// compute the new maximum partial admissible tuple

7 "(c)← "(c ′) ◦ 5 ;

8 if " contains a key of length 3 then

9 return YES;

10 return NO;

definition, g = g1 ▽g2 implies that g1 ⊴ g and g2 ⊴ g . Combined the above two observations, we know
that ▽g∈mAdTpls(d,⟨11,...,1< ⟩)g is in mAdTpls(d, ⟨11, . . . , 1<⟩) and also, is the unique maximum element.

Lemma 5.4 (Closure Property under Join). Let f be an execution and d be a prefix of f . Let
⟨11, . . . , 1<⟩ be a permutation of a subsequence of ⟨01, . . . , 03⟩. The set mAdTpls(d, ⟨11, . . . , 1<⟩) is
closed under operation ▽. To be specific, for all g1, g2 ∈ mAdTpls(d, ⟨11, . . . , 1<⟩), we have g1 ▽ g2 ∈
mAdTpls(d, ⟨11, . . . , 1<⟩).

Our final ingredient is the observation that for any d , a prefix of the execution f , the maximum
partially admissible tuple of each kind in d can be computed incrementally using the maximum
ones computed in the immediate prefix of d . In the following Lemma 5.5, we formally establish this
observation. From now on, we use max(() to denote the maximum element of the set (of partially
admissible tuples.

Lemma 5.5. Let f be an execution. Let d ′ = d ◦ 5 be a prefix of f , where d is also a prefix of f and
5 is an event. Let ⟨11, . . . , 1<⟩ be a permutation of a subsequence of ⟨01, . . . , 03⟩. If lab(5) = 1< and
max(mAdTpls(d, ⟨11, . . . , 1<−1⟩)) ◦ 5 is partially admissible, then we have

max(mAdTpls(d ◦ 5 , ⟨11, . . . , 1<⟩)) = max(mAdTpls(d, ⟨11, . . . , 1<−1⟩)) ◦ 5 .

Otherwise, we have

max(mAdTpls(d ◦ 5 , ⟨11, . . . , 1<⟩)) = max(mAdTpls(d, ⟨11, . . . , 1<⟩)).

The above lemma ensures the feasibility of our streaming algorithm. Recall that we only keep
track of the maximum element of each kind for a processed prefix. When processing a new event,
the algorithm can compute the new maximum partially admissible tuples easily from those old
ones tracked so far. The proofs of Lemmas 5.3, 5.4 and 5.5 are presented in [Ang and Mathur 2023a].

Equipped with Lemma 5.3 and Lemma 5.5, we now present a constant-space streaming algorithm
for Problem 5.2 in Algorithm 2, where we omit some details about how to maintain after sets
and check partial local admissibility. A complete algorithm which combines Algorithm 1 and
Algorithm 2 will be discussed in Section 5.4. We use a map" to track maximum partially admissible
tuples with their labels as keys, and is initialized to be empty (line 1). The algorithm processes events
in the execution one after another. When processing an event whose label is in ⟨01, . . . , 03⟩, we

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:20 Zhendong Ang and Umang Mathur

Algorithm 3: Constant-Space Algorithm for Predictive Monitoring against Pattern Lan-
guages

Input: f ∈ Σ∗

Output: YES if there exists a f ′ ≡I f such that lab(f ′) ∈ Patt01,...,03 ; NO otherwise
1 Let (" : Permutations of prefixes of 01, . . . , 03 → Sequence of After Sets) be an empty map;

2 for 5 ∈ f do

3 foreach A4 ∈ " do // Update after sets

4 if ∃0 ∈ A4 s.t. (0, lab(5)) ∈ D then A4 ← A4 ∪ {lab(5)} ;

5 if lab(5) ∈ ⟨01, . . . , 03⟩ then

6 foreach c which is a permutation of a prefix of 01, . . . , 03 ending with lab(5) do

7 Let c ′ = c[: −1];

8 if " contains c ′ then

9 Let A5 = {lab(5)};

10 Let PartCandTuple = "(c ′) ◦ A5 ;

11 Let PartCandTuple† = sort(PartCandTuple, c);

// Check partial admissibility

12 if ∀A4 ∈ "(c ′), A5 occurs after A4 in PartCandTuple† or lab(5) ̸∈ A4 then

13 "(c)← "(c ′) ◦ {lab(5)}

14 if " contains a key of length 3 then

15 return YES;

16 return NO;

update the maximum partially admissible tuples we track if needed (line 3), as stated in Lemma 5.5.
If a complete admissible tuple is constructed (line 8), which is of length : , the algorithm returns
“YES” to claim the existence of admissible tuples. On the other hand, when finishing processing the
whole execution and no complete admissible tuple is constructed (line 10), it returns “NO” to refute
the existence.

5.4 Algorithm for Predictive Monitoring against Pa�ern Languages

We now present in Algorithm 3 the one-pass constant-space streaming algorithm for solving
predictive monitoring against pattern languages, by combining Algorithm 1 and Algorithm 2.
In this section, we first introduce the data structure used in the algorithm, then illustrate how
the algorithm works. In particular, we will elaborate on how to check partial admissibility using
Algorithm 1 and the data structure, which is omitted in Section 5.3.

The data structure is similar to what is used in Algorithm 2. First, recall that our algorithm tracks
the maximum partially admissible tuple for each kind of label. So, for any processed execution d , we
use a map to store key-value pairs, (⟨11, . . . , 1<⟩,max(mAdTpls(d, ⟨11, . . . , 1<⟩))), where ⟨11, . . . , 1<⟩
is a permutation of a subsequence of ⟨01, . . . , 03⟩. The difference lies in that we keep track of the
after set of each event in maximum partially admissible tuples, instead of events themselves. It is
sufficient to do so because the only information we need to check admissibility is the label and the
after set of an event. Notice that the label information is implicitly stored in the key of the map.
In Algorithm 3, we first initialize the map as empty (line 1). When processing an event 5 , we

first update all after sets we track by accommodating 5 (line 3 - line 4). If lab(5) participates in
⟨01, . . . , 03⟩, we try to update partially admissible tuples based on Lemma 5.2 (line 5 - line 15). Event

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:21

5 might participate in a maximum partially admissible tuples, whose labels end with lab(5). From
line 8 to line 13, we check whether a partially admissible tuple extended with 5 is still admissible.
The algorithm first constructs the after set for 5 , which contains only lab(5). Then it computes

the target PartCandTuple† uniquely determined from a partial candidate tuple PartCandTuple,
which is a concatenation of a previously computed maximum partially admissible tuples and 5

(Lemma 5.2). It finally uses Algorithm 1 to determine partial admissibility of PartCandTuple. This
can be done because we have maintained the label and the after set of each event.
Finally, similar to Algorithm 2, when it witnesses a :-length complete admissible tuple, the

algorithm claims the existence of a f ′ ≡I f , such that lab(f ′) ∈ Patt01,...,03 , and says “YES” to
the predictive monitoring problem (line 14). Otherwise, after the whole execution is processed, it
refutes the existence of such a reordering (line 16).

Fix (Σ,I) and the pattern language !. The following two theorems summarize the correctness and
the complexity of our Algorithm 3, where we assume that 3, |Σ|∈ $(1). The proof of Theorem 5.1 is
presented in [Ang and Mathur 2023a].

Theorem 5.1 (Correctness). On input execution f , Algorithm 3 declares “YES” iff there is a f ′ ≡I f

such that f ′ ∈ !.

Theorem 5.2 (Complexity). On input execution f , Algorithm 3 runs in time $(|f |) and uses
constant space.

For a generalized pattern language !, we have the following corollary.

Corollary 5.1. The problem of predictive trace monitoring against generalized pattern languages
can be solved in linear time and constant space.

5.5 Vector Clock Algorithm

In Algorithm 3, we store the after set for each event we track. Although the size of an after set is
constant and bounded by Σ, it can become too large when |Σ| is large. To overcome this problem,
in this section, we propose the use of vector timestamps that can be used to efficiently check
happens-before relation in the context of a concurrent execution [Fidge 1991; Mathur et al. 2022;
Mattern 1989]. Our resulting timestamp-based algorithm will be referred to as PatternTrack.

We first provide a brief introduction to vector timestamps and vector clocks. Formally, a vector
timestamp is a mapping VC : T → N from the threads to natural numbers. Vector clocks are
variables taking values from the space of vector timestamps. Three common operations on vector
clocks are join, comparison, and update. We use VC1 ⊔ VC2 to denote the join of two vector
timestamps VC1 and VC2, which is the vector timestamp _C,max(VC1(C),VC2(C)). The partial order
⊑ is defined so that VC1 ⊆ VC2 iff ∀C,VC1(C) ≤ VC2(C). The minimum timestamp _C, 0 is denoted
by ⊥. For 2 ∈ N, the updated timestamp VC[C → 2] is _D, if D = C then 2 else VC(D). Our
algorithm will assign a timestamp VC4 for each event 4 so that for each thread C ∈ T , we have
VC4 (C) = |{5 | 5 ≤f

D
4, lab(5) = [C, >?]}|. The following captures the relation between vector

timestamps and the order ≤f
D
:

Lemma 5.6. Let f be an execution. Let 4, 5 be two events in f . VC4 ⊑ VC5 ⇐⇒ 4 ≤f
D

5 .

The aforementioned lemma guarantees that our algorithm can utilize vector clocks to perform
the same task as long as we can compute the vector timestamp for each event in a streaming fashion
and constant space. Algorithm 4 demonstrates how to compute vector timestamps by maintaining
a vector clock for each label [C, >?] ∈ Σ and each C ∈ T .
In Algorithm 4, we maintain a vector clock, for each label 0 ∈ Σ, to track the vector timestamp

of the last event labeled with 0 in the prefix d seen so far. Additionally, we also maintain a vector

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:22 Zhendong Ang and Umang Mathur

Algorithm 4: Constant-Space Streaming Algorithm for Computing Vector Timestamps

Input: f ∈ Σ∗

1 Let VC[C,>?] = ⊥ for every [C, >?] ∈ Σ;

2 Let VCC = ⊥ for every C ∈ T ;

3 for 5 ∈ f do

4 Let [C, >?] = lab(5);

5 VCC ← VCC [C → (VCC (C) + 1)];

6 for [C ′, >?′] ∈ Σ such that ([C, >?], [C ′, >?′]) ̸∈ I do

7 VCC ← VCC ⊔ VC[C ′,>?′]

8 VC[C,>?] ← VCC ;

9 VC5 ← VC[C,>?]

clock to track the timestamp of the latest event of each thread. Initially, in line 1, all vector clocks
for every label and thread are initialized to ⊥. When processing an event 5 executed by thread C ,
the entry corresponding to C is first incremented in VCC (line 5). Then VCC is updated by joining it
with all vector clocks corresponding to labels that are dependent on lab(5), since the last events
with these labels happen before 5 (line 7). Finally, we update the clock for lab(5) with VCC . The
vector timestamp of 5 is precisely VClab(5).

Therefore, obtaining a vector-clock version of Algorithm 3 is simple. We can replace initialization
(Algorithm 3 line 1) and maintain (Algorithm 3 line 3) parts with the initialization of all vector
clocks and the computation of VClab(5) as in Algorithm 4. For checking partial admissibility, we
first update VC5 to be VClab(5) and compute PartCandTuple as "(c ′) ◦ VC5 (Algorithm 3 line 9
and line 10). Next we modify the condition in Algorithm 3 line 12 as follows: “∀VC4 ∈ "(c ′), VC5

occurs after VC4 in PartCandTuple† or VC4 ̸⊑ VC5 ”. Notice that we use the ⊑ relation between
vector timestamps to determine happens-before relation.

Fix (Σ,I) and the pattern language !. In the following, we assume that every arithmetic operation
takes $(1) time and 3, |T |, |Σ|∈ $(1).

Theorem 5.3 (Correctness). On input execution f , PatternTrack declares “YES” iff there is a
f ′ ≡I f such that f ′ ∈ !.

Theorem 5.4 (Complexity). On input execution f , PatternTrack runs in time $(|f |) and uses
constant space.

6 IMPLEMENTATION AND EVALUATION

In this section, we discuss the implementation and evaluation of our vector clock algorithm, which
we call PatternTrack, and the algorithm due to [Bertoni et al. 1989], which we call Bertoni. The
goal of our evaluation is two-fold. First, we want to understand whether the framework of pattern
languages can express high-level temporal properties beyond traditional concurrency bugs, such
as data races and atomicity violations. Further, we want to demonstrate whether the algorithm
we propose can effectively expose those violations. Our second objective is to understand the
performance improvement of our linear-time algorithm PatternTrack over the classical algorithm
Bertoni and show the scalability of our algorithm. For this, we collected benchmarks from the
Java Grande forum benchmark suite [Smith et al. 2001], the DaCapo benchmark suite [Blackburn
et al. 2006], as well as open-source GitHub projects used in prior work [Legunsen et al. 2016].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:23

6.1 Experimental Setup

Algorithm Implementation.We implemented the vector clock version of Algorithm 3 and the
classical algorithm from [Bertoni et al. 1989] in a public prototype tool RAPID [Mathur 2023],
written in Java. Both algorithms have been implemented in a streaming fashion, in that, they
process each event as soon as it is observed. To ensure a fair comparison, we input the same
executions to both algorithms. For this, we first generated one or more execution logs in each
benchmark (a total of 33 executions) using the instrumentation and logging facility provided by
RoadRunner [Flanagan and Freund 2010], and then, used the generated trace logs instead of
performing monitoring at runtime. The events of the logs are related to a full program which may
span many classes during the execution of a program. For native operations like read and write, the
instrumentation resolves references precisely, while for the calls to external APIs, we used manual
annotations to print the addresses of the objects.

TimeReporting.Comparing the two algorithms in a streaming way and with the same termination
criteria ensures the fairness and correctness of the comparison. Both algorithms return “YES” as
soon as they witness that a processed prefix can be reordered as a member of the pattern language.
Thus, the length of execution processed by both algorithms is always the same, either the same
prefix or the whole execution. This approach to the comparison ensures that any differences
in performance are due to algorithmic differences rather than variations in the amount of data
processed. In addition, we have imposed a 3-hour timeout (TO). Moreover, the maximum heap size
of the Java Virtual Machine is set to 256GB, which puts a limit on the amount of memory that can
be used during execution (OOM).

Machine Configuration. Our experiments were conducted on a 1996.250MHz 64-bit Linux
machine with Java 19 and 256GB heap space.

6.2 Bug Finding

We demonstrate the effectiveness of the class of pattern languages in encoding concurrency
properties, and of our algorithm to predict violations against these specifications using five Java
GitHub projects derived from [Legunsen et al. 2016]: logstash-logback-encoder [log 2023],
exp4j [exp 2023], jfreechart [jfr 2023], zmq-appender [zer 2023], antlrworks [ant 2023].

We examined five high-level properties that we will briefly describe. The first property ensures
consistency between two fields of a class. The last four come from Java API specifications [Legunsen
et al. 2016]. A violation of these specifications would result in runtime errors. In the following, we
describe these properties briefly and present how to encode them as pattern languages.

Class_Invariant. A common requirement in many object-oriented software designs is to ensure
that two (or, in general, more) fields of a given class are in a consistent state after every
method call. Consider two fields a,b and also two methods f1,f2, both of which write to both
a and b. The design specification of such a class asks that, in every execution, calls to f1 and
f2 behave atomically. In other words, an interleaving of f1 and f2 might leave the values in
an inconsistent state. We can encode one of the violations as the following pattern language:
Pattf1.write(a), f2.write(a), f2.write(b), f1.write(b) .

Buffer_ManipulateAfterClose. This property asks whether there is an access (write) to a buffer
that follows a call to the close() method on the buffer. We can encode the violation of this
property as the following pattern language: Pattbuf.close(), buf.write() .

UnsafeIterator. The property Collection_UnsafeIterator checks if an execution modifies
a collection while iterating it. We encode the violation as Pattiter.next(), c.add(), iter.next(),

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:24 Zhendong Ang and Umang Mathur

Table 1. Experimental Results on Violation Prediction: Columns 1 - 3 present the benchmark name, number

of processed events, and number of threads. Column 4 shows the name of the violation that our algorithm

predicts. Columns 5 and 6 report the processing time of PatternTrack and Bertoni.

Program N T Property Violation PatternTrack Bertoni

logstash-logback-encoder 587 3 Buffer_ManipulateAfterClose 23ms 64ms

jfreechart 2753 3 Collection_UnsafeIterator 63ms 683ms

zmq-appender 10742 8 Map_UnsafeIterator 168ms OOM

exp4j 1420 3 Collection_UnsynchronizedAddAll 56ms 171ms

antlrworks 1027 3 Class_Invariant 76ms 379ms

1 class JFreeChart{

2 public LegendTitle getLegend(int index) {

3 int seen = 0;

4 Iterator iterator = this.subtitles.iterator();

5 while (iterator.hasNext()) {

6 Title subtitle = (Title) iterator.next();

7 ...

8 /* get title */

9 ...

10 }

11 return null;

12 }

13

14 public void addSubtitle(Title subtitle) {

15 ...

16 this.subtitles.add(subtitle);

17 ...

18 }

19 }

(a) jfreechart

1 class ReusableByteBuffer extends OutputStream {

2 @Override

3 public void close() {

4 this.closed = true;

5 }

6

7 @Override

8 public void write(byte[] data ...) {

9 ...

10 if (this.closed) {

11 /* throw IOException */

12 }

13 while (length > 0) {

14 ...

15 /* write to buffer */

16 ...

17 }

18 }

19 }

(b) logstash

Fig. 3. Code snippets. Violation of Collection_UnsafeIterator in jfreechart. Violation of Buffer_-

ManipulateAfterClose in logstash.

where c is a collection and iter is one of its iterators. The property Map_UnsafeIterator is
almost the same except that iter is one of the iterators of c.entrySet().

Collection_UnsynchronizedAddAll. This property checks whether a call to addAll() inter-
leaves with another modification, such as add(), to the same collection. Here, we encode the
violation of this property as Pattc.addAll()Enter, c.add(), c.addAll()Exit,where c.addAll()Enter
and c.addAll()Exit are events corresponding to the invocation and the return of this
method respectively.

We executed multi-threaded test cases of the aforementioned 5 GitHub Java projects and logged
the executions. We ensure that these executions do not contain any pattern violations themselves
either by ensuring that no runtime exception is thrown or by manual inspection. Nevertheless,
as shown in Table 1, our algorithm is able to predict violations in these executions, indicating
the ability of PatternTrack to find real-world bugs. Table 1 also demonstrates the performance
improvement of PatternTrack over Bertoni. In the execution of zmq-appender, we observed
that Bertoni throws an out-of-memory exception. Recall that the space complexity of Bertoni is
$(N | T |) (since the width is U = |T |), which is large when the number of processed events and the
number of threads is even moderately large, and this is evident in its memory usage.
Let us highlight some of the snippets from the source code of these benchmarks and patterns

exhibited by them that lead to violations of the mentioned properties. First, Figure 3a shows a
real bug violating the property Collection_UnsafeIterator in JFreeChart. When two different
threads call the methods getLegend and addSubtitle concurrently, a ConcurrentModification

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:25

Table 2. Experimental results on pa�erns of dimension 3: Columns 1 - 3 contain benchmark information,

including name, number of events, and number of threads. Columns 4 - 13 report the time spent until the

first instance of an admissible tuple is found, or the time to process the entire execution (if there is no match)

of PatternTrack and Bertoni on five different 3-dimension pa�erns. It is important to note that the pa�erns

in the same column are different for different benchmarks. For the sake of clarity and ease of presentation,

we have named the five pa�erns as Pa�ern 1-5.

1 2 3 4 5 6 7 8 9 10 11 12 13

Program N T Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

P.Tk B.ni P.Tk B.ni P.Tk B.ni P.Tk B.ni P.Tk B.ni

exp4j-1 1.0K 2 0.03s 1.80s 0.03s 0.66s 0.04s 1.10s 0.03s 0.33s 0.03s 0.16s

crawler-1 1.8K 2 0.04s 0.18s 0.07s 0.37s 0.05s 0.46s 0.04s 0.38s 0.05s 0.32s

crawler-2 2.0K 2 0.06s 0.51s 0.06s 0.23s 0.06s 0.19s 0.03s 0.23s 0.06s 0.38s

junit4-1 3.1K 3 0.07s 0.10s 0.08s 2m27s 0.07s 40.19s 0.06s 11m43s 0.10s OOM

junit4-2 5.5K 101 0.05s TO 0.04s TO 0.06s TO 0.04s TO 0.04s TO

junit4-3 5.5K 101 0.05s TO 0.07s TO 0.04s TO 0.05s TO 0.05s TO

junit4-4 25K 501 0.09s TO 0.08s TO 0.09s TO 0.11s TO 0.11s TO

metafacture 195K 3 0.83s 4.76s 0.98s 19.27s 0.92s 24.18s 1.04s 4.30s 1.17s 22.51s

logstash-1 371K 11 0.19s OOM 0.14s OOM 0.13s OOM 0.14s OOM 0.14s OOM

logstash-2 446K 3 0.02s 3.31s 0.02s 2.40s 0.02s 3.22s 1.69s OOM 1.68s OOM

cassandra-1 1.3M 4 0.10s 0.52s 0.08s 1.42s 0.08s 1.61s 1.78s OOM 1.75s OOM

cassandra-2 1.5M 4 3.04s OOM 0.09s OOM 0.07s OOM 3.50s OOM 0.07s OOM

cassandra-3 1.6M 3 3.66s OOM 0.34s 26.57s 3.44s OOM 3.26s OOM 3.22s OOM

cassandra-4 1.6M 3 0.30s 36.48s 0.32s 1.67s 0.35s 1.71s 3.38s OOM 0.31s 34.68s

cassandra-5 1.6M 3 6.14s OOM 0.51s 2.11s 0.49s 1.46s 3.77s OOM 4.33s OOM

exp4j-2 1.9M 11 0.05s 3.88s 0.04s 29.93s 0.04s 1.50s 0.04s 2.91s 0.05s 8m48s

zookeeper-1 2.2M 18 0.30s OOM 0.25s OOM 0.28s OOM 0.31s 8m41s 0.39s OOM

tomcat 2.6M 11 5.39s OOM 5.48s OOM 5.41s OOM 5.44s OOM 5.31s OOM

zookeeper-2 5.6M 10 0.76s OOM 0.28s OOM 0.30s OOM 14.48s OOM 0.32s OOM

zookeeper-3 7.5M 18 0.29s TO 0.43s TO 0.21s TO 0.20s TO 0.33s TO

zookeeper-4 8.0M 10 0.09s 0.37s 0.22s OOM 0.18s OOM 0.20s OOM 0.13s 6.62s

batik 95M 4 1m34s OOM 1m42s OOM 1m34s OOM 1m47s OOM 1m8s OOM

xalan 248M 3 3.97s OOM 4.97s OOM 4.97s OOM 3.39s OOM 6.09s OOM

sunflow 262M 5 25.41s OOM 25.83s OOM 26.22s OOM 26.04s OOM 25.91s OOM

lusearch 325M 4 0.76s OOM 0.40s OOM 0.98s OOM 2m2s OOM 0.48s OOM

moldyn 401M 4 14.21s OOM 14.90s OOM 14.80s OOM 14.64s OOM 14.55s OOM

series 509M 4 0.09s OOM 0.62s OOM 0.17s OOM 0.07s OOM 0.12s OOM

montecarlo 530M 4 0.47s 0.83s 1.38s OOM 1.32s OOM 1.25s OOM 1.31s OOM

raytracer 545M 4 2m45s OOM 2m36s OOM 2m34s OOM 2m33s OOM 2m34s OOM

sparsematmult 602M 4 7m45s OOM 7m57s OOM 7m48s OOM 7m55s OOM 7m55s OOM

lufact 616M 4 1m29s OOM 1m26s OOM 57.77s OOM 2m26s OOM 3m33s OOM

sor 642M 4 1m39s OOM 1m42s OOM 1m40s OOM 18.92s 43.08s 1m0s OOM

avrora 739M 8 19.09s OOM 31.29s OOM 48.93s OOM 52.88s OOM 36.23s OOM

Mean 168M - 30.29s 2h0m 30.75s 2h0m 29.86s 2h5m 35.19s 2h17m 32.59s 2h22m

error might be thrown. This is because the call to add() in addSubtitle might interleave between
two next() calls. Next, consider the code snippet in Figure 3b derived from logstash. Here,
Buffer_ManipulateAfterClose property might be violated. Even though the write() method
checks this.closed before writing to the buffer, it is still possible that setting this.closed in
close() occurs between the checking (line 10) and the writing (lines 13 - 17). The author of this
project has claimed that this class is not thread-safe. The last example of antlrworks has been
presented as the motivating example in Example 2.1. In conclusion, pattern languages are expressive
enough to encode simple and intuitive real-world high-level correctness specifications, and our
algorithm can predict violations of these effectively.

6.3 Performance Evaluation

The goal of this section is to evaluate the performance of PatternTrack over large execution traces
and a variety of patterns. We first discuss how we obtained the patterns we monitor against. Next,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:26 Zhendong Ang and Umang Mathur

Table 3. Experimental results on pa�erns of dimension 5. Columns 1 - 3 contain benchmark information,

including name, number of events, and number of threads. Columns 4 - 13 report the time spent until the

first instance of an admissible tuple is found, or the time to process the entire execution (if there is no match)

of PatternTrack and Bertoni on five different pa�erns.

1 2 3 4 5 6 7 8 9 10 11 12 13

Program N T Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

P.Tk B.ni P.Tk B.ni P.Tk B.ni P.Tk B.ni P.Tk B.ni

exp4j-1 1.0K 2 0.04s 1.62s 0.04s 1.15s 0.05s 1.17s 0.04s 1.56s 0.04s 0.36s

crawler-1 1.8K 2 0.07s 0.33s 0.06s 0.34s 0.05s 0.46s 0.05s 0.33s 0.06s 0.44s

crawler-2 2.0K 2 0.08s 0.49s 0.10s 0.43s 0.05s 0.48s 0.07s 0.48s 0.08s 0.45s

junit4-1 3.1K 3 0.09s 5m5s 0.13s OOM 0.08s OOM 0.09s OOM 0.10s OOM

junit4-2 5.5K 101 0.06s TO 0.04s TO 0.05s TO 0.05s TO 0.06s TO

junit4-3 5.5K 101 0.06s TO 0.06s TO 0.05s TO 0.06s TO 0.06s TO

junit4-4 25K 501 0.10s TO 0.09s TO 0.16s TO 0.12s TO 0.09s TO

metafacture 195K 3 1.19s 22.75s 1.01s 19.18s 0.91s 19.17s 1.12s 22.53s 0.92s 22.98s

logstash-1 371K 11 0.26s OOM 0.30s OOM 0.28s OOM 0.28s OOM 0.40s OOM

logstash-2 446K 3 1.83s OOM 0.03s 2.45s 2.11s OOM 0.02s 3.18s 2.08s OOM

cassandra-1 1.3M 4 1.99s OOM 1.99s OOM 1.92s OOM 2.05s OOM 0.08s 1.24s

cassandra-2 1.5M 4 49.05s OOM 1m14s OOM 15.41s OOM 6.14s OOM 9.50s OOM

cassandra-3 1.6M 3 3.42s OOM 4.11s OOM 7.96s OOM 4.56s OOM 4.10s OOM

cassandra-4 1.6M 3 3.62s OOM 5.19s OOM 4.06s OOM 3.25s OOM 3.90s OOM

cassandra-5 1.6M 3 5.19s OOM 20.42s OOM 5.42s OOM 4.20s OOM 3.87s OOM

exp4j-2 1.9M 11 0.04s 6m49s 0.05s 10m34s 0.06s 56.35s 0.07s 9m14s 0.09s OOM

zookeeper-1 2.2M 18 6.02s OOM 0.45s OOM 0.36s OOM 0.45s OOM 0.33s OOM

tomcat 2.6M 11 5.33s OOM 5.35s OOM 5.42s OOM 5.43s OOM 5.48s OOM

zookeeper-2 5.6M 10 0.39s 19.50s 0.33s OOM 18.48s OOM 21.51s OOM 28.82s OOM

zookeeper-3 7.5M 18 0.34s TO 0.21s TO 0.23s TO 1.77s TO 0.58s TO

zookeeper-4 8.0M 10 0.23s OOM 0.29s OOM 0.34s OOM 0.27s OOM 24.08s OOM

batik 95M 4 2m27s OOM 2m25s OOM 2m27s OOM 2m26s OOM 2m25s OOM

xalan 248M 3 3.59s OOM 6.98s OOM 4.71s OOM 7.17s OOM 8.14s OOM

sunflow 262M 5 25.43s OOM 27.92s OOM 25.63s OOM 25.36s OOM 26.28s OOM

lusearch 325M 4 0.75s OOM 2m5s OOM 1.57s OOM 39.54s OOM 3.65s OOM

moldyn 401M 4 15.48s OOM 15.61s OOM 13.39s OOM 16.44s OOM 15.25s OOM

series 509M 4 0.14s OOM 0.09s OOM 0.14s OOM 0.24s OOM 0.12s OOM

montecarlo 530M 4 2.12s OOM 1.62s OOM 1.75s OOM 1.15s OOM 1.54s OOM

raytracer 545M 4 2m36s OOM 2m41s OOM 3m49s OOM 51m11s OOM 47m11s OOM

sparsematmult 602M 4 7m43s OOM 7m50s OOM 7m52s OOM 7m47s OOM 7m51s OOM

lufact 616M 4 3m45s OOM 58.28s OOM 1m31s OOM 3m19s OOM 1m6s OOM

sor 642M 4 1m43s OOM 2m1s OOM 52.96s OOM 1m53s OOM 52.18s OOM

avrora 739M 8 1m57s OOM 3m20s OOM 42.06s OOM 1m28s OOM 53.27s OOM

Mean 168M - 40.66s 2h22m 43.97s 2h27m 34.74s 2h32m 2m8s 2h27m 1m53s 2h32m

we evaluate both PatternTrack as well Bertoni [Bertoni et al. 1989] against these specifications
and compare their performance. Finally, we investigate the impact of several parameters that may
affect the practical performance of our algorithm. Specifically, we examine how the performance of
our algorithm evolves with changes in the length of executions and the number of threads.

Pattern Generation. In order to ensure that the comparison is sufficient and fair, we generated
pattern languages of dimension 3 = 5 and 3 = 3 at random by sampling events in each execution log.
The choice of 3 = 5 and 3 = 3 is in line with prior empirical observations that most concurrent bugs
in real-world scenarios can be observed by the ordering of a small number of events [Burckhardt
et al. 2010]. In our experiment, our pattern is a sequence of program locations ⟨;1, . . . , ;3⟩, instead
of labels. Each program location can be viewed as a set of program labels, so we evaluate the
membership problem against a generalized pattern language ! =

⋃

01
8
∈;1,...,0

3

8
∈;3

Patt01
8
,...,03

8

.

To generate a pattern, we randomly chose 5 or 3 events and logged their program locations.
We employed two policies for selecting events. The first policy we utilized is locality. We divided
each execution into 100 parts of equal length and randomly selected one of those parts as the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:27

(a) raytracer (b) sparsematmult

Fig. 4. Scalability with number of events in the executions

source of one pattern. Events chosen from widely separated parts of the execution are less likely
to participate in a bug-inducing pattern. The second policy is diversity. We chose events from as
many different threads as possible, as this leads to more concurrency.

Speedup over [Bertoni et al. 1989]. Theoretical analysis indicates that our algorithm runs in
$(|f |) time, while the algorithm in [Bertoni et al. 1989] runs in$(|f |U) time. As shown in Table 2 and
Table 3, our algorithm PatternTrack exhibits significant performance advantages over Bertoni
in practice. Additionally, Bertoni is not scalable when the length of the execution increases, as
evidenced by the numerous instances of “OOM” (Out of Memory) cases in the tables. This is
because Bertoni needs to store all ideals of a partial order, which consumes $(|f |U) space. As a
result, this limits its scalability only to short executions. In contrast, our constant-space algorithm
PatternTrack, catered to pattern regular languages, is not burdened by this limitation and can
handle executions with millions of events.

Performance w.r.t. execution length.We next investigate whether the theoretical linear-time
complexity of our algorithm also translates empirically. We selected two executions, from programs
raytracer and sparsematmult, based on the fact that their length and the time taken to witness the
first pattern match are both large. This selection criterion ensures that we can gather sufficient
data to evaluate the performance across a range of execution lengths. To accomplish this, we
recorded the time taken by our algorithm to process every 10 million events for raytracer and every
20 million events for sparsematmult. Figure 4 presents the result, and is in alignment with the
theoretical linear running time of PatternTrack.

Fig. 5. Performance over #threads

Performance w.r.t number of threads. The time taken by
each vector clock operation is proportional to the number of
threads, and we expect that PatternTrack’s running time is
also proportional to this number. To test this assumption, we
generated seven executions from benchmark raytracer with
5, 10, 15, 20, 25, and 35 threads respectively. The raytracer ap-
plication allows us to configure the number of threads when
generating executions. We then recorded the time taken by
PatternTrack to process 1, 000, 000 events for each execu-
tion. The results, in Figure 5, show that the time consumption
increases as the number of threads increases, in line with PatternTrack’s theoretical complexity.

7 RELATED WORK

Runtime verification has emerged as a popular class of techniques instrumental in popularizing
the adoption of lightweight formal methods in large-scale industrial settings. Several classes of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:28 Zhendong Ang and Umang Mathur

specifications such as LTL [Rosu and Havelund 2005], extended regular expressions [Sen and
Rosu 2003], and CFG [Meredith et al. 2010] and techniques to monitor the runtime behaviour
of the underlying software in conjunction with these specifications have been proposed. Aspect-
oriented monitoring frameworks have been developed to bridge the gap between formal algorithms
and practical tools. These include Java-MaC [Kim et al. 2004] and JavaMOP [Jin et al. 2012].
However, such techniques are catered towards the problem of the “detection” of violations of these
specifications at runtime, in contrast to the “prediction” problem, which we address in our work
when the underlying software is concurrent or multi-threaded.

Predictive techniques have recently emerged as a fundamental paradigm to enhance the efficacy
of runtime verification techniques — instead of focusing on bugs in the observed sequence of
events, such techniques attempt to find bugs in alternate correct reorderings. Most works in the
runtime predictive analysis are centered around the detection of implicit concurrency-centric
specifications such as the presence of data races, deadlocks, or violations of atomicity. Some of the
early works that studied predictive analysis for data races are instrumental in formulating core
ideas such as sound and maximal causal models and correct reorderings [Chen and Rosu 2007;
Chen et al. 2008; Huang et al. 2015, 2014; Said et al. 2011; Sen et al. 2005, 2006; Serbanuta et al. 2012].
Many of these techniques, however, primarily employ heavy-weight approaches such as exhaustive
enumeration or the use of SAT/SMT solvers, limiting their scalability in practice. The focus of
recent works in predictive analysis tools [Cai et al. 2021; Kini et al. 2017; Mathur et al. 2018, 2021;
Pavlogiannis 2019; Roemer and Bond 2019; Roemer et al. 2020] has been on efficiency and practical
scalability. Such techniques develop carefully crafted algorithms relying on specific heuristics or
partial orders and avoid heavy-weight SMT solving. Beyond data races, recent improvements in
these techniques have been used for predicting other concurrency bugs such as deadlocks [Cai et al.
2021; Kalhauge and Palsberg 2018; Mathur et al. 2018; Sorrentino et al. 2010; Tunç et al. 2023]. Some
works also propose predictive methods for higher level, but specific properties such as use-after-free
violations [Huang 2018], null-pointer dereferences [Farzan et al. 2012], and violations of atomicity
specifications [Biswas et al. 2014; Farzan and Madhusudan 2008, 2009; Flanagan et al. 2008a; Mathur
and Viswanathan 2020; Sinha et al. 2011]. Our work is a step towards adapting predictive techniques
to explicitly defined specifications. GPredict [Huang et al. 2015] proposes the use of SMT solving
for generalized predictive monitoring over explicitly defined specifications (under the maximal
causality model) but has limited scalability.
We remark that for the case of implicitly defined bugs such as data races, the computational

intractability [Gibbons and Korach 1997; Mathur et al. 2020] in prediction arises primarily because
of the exhaustive space of correct reorderings considered in these techniques [Serbanuta et al. 2012;
Smaragdakis et al. 2012]. Reasoning based on Mazurkiewicz traces, though less exhaustive, is in
general more scalable. Indeed, the most widely adopted data race detection techniques crucially
rely on the happens-before partial order [Flanagan and Freund 2009; Mathur et al. 2018; Poznianski
and Schuster 2003] based on a Mazurkiewicz dependence relation, and typically run in linear time
(assuming the alphabet is of constant size) or in low-degree polynomial time (when the alphabet is
not constant [Kulkarni et al. 2021]). Our work has been inspired by this contrast in computational
complexity of reasoning with Mazurkiewicz traces v/s correct reorderings. Unfortunately, though,
our hardness result depicts that this insight does not trivially generalize to arbitrary properties
beyond data races. Our work therefore proposes pattern languages to offer a good balance of
expressiveness and algorithmic efficiency. Our central result essentially says that the trace closure
of pattern languages is regular. A complete characterization of regular languages whose closure is
regular is that of star-connected regular languages due to [Ochmański 1985]. However, this result
does not immediately yield an algorithm to translate an arbitrary star-connected languages to an
automaton that recognizes its trace closure. Languages generated by Alphabetic Pattern Constraints

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

Predictive Monitoring against Pa�ern Regular Languages 73:29

(APC) [Bouajjani et al. 2001] are a subclass of star-connected language, are closed under trace
closure, and are strictly more expressive than generalized pattern languages. However, an efficient
vector clock algorithm for predictive monitoring against APCs is not known. Our work thus fills
the gap between theoretical results and practical techniques by designing small-sized monitors
for predictive monitoring against pattern languages. The use of after sets in our constant space
algorithm has been inspired from work in data race detection [Kini et al. 2018].
Soundness (absence of false positives), although highly desirable, often comes at a cost of com-

putational complexity. Towards this, many runtime predictive analysis techniques often forego
soundness in favour of the simplicity of analysis, including the Eraser algorithm based on lock-
sets [Savage et al. 1997] or works on deadlock prediction [Bensalem and Havelund 2005; Cai et al.
2020]. Some approaches perform post-hoc analysis to reduce false positives [Roemer et al. 2018,
2020]. Other approaches rely on re-executions to confirm the predicted bugs [Joshi et al. 2009;
Sorrentino et al. 2010] to reduce false positives.
Concurrency bug detection has been an active area of research for several decades. Besides

runtime verification and predictive monitoring, there are many other techniques for the analysis
of concurrent programs. Model checking [Clarke et al. 1986] has emerged as a popular paradigm
for finding bugs, thanks to advances such as dynamic partial order reduction [Flanagan and
Godefroid 2005] and stateless model checking [Abdulla et al. 2014; Kokologiannakis et al. 2022,
2019; Oberhauser et al. 2021]. Randomized testing techniques [Burckhardt et al. 2010; Joshi et al.
2009; Ozkan et al. 2019; Yuan et al. 2018] as well as fuzz testing techniques [Jeong et al. 2019] have
also been shown effective in practice. Static analysis techniques [Blackshear et al. 2018; Engler
and Ashcraft 2003; Naik et al. 2006; Voung et al. 2007] have been developed, but their adoption is
often limited by high false positive rates. Type systems for preventing data races [Boyapati et al.
2002; Flanagan et al. 2008b; Flanagan and Qadeer 2003] have been instrumental in the design of
programming languages such as Rust.

8 CONCLUSIONS

In this work, we study the predictive monitoring problem — given an execution of a concurrent pro-
gram, can it be reordered to witness the violation of a specification? We show that for specifications
expressed using regular languages, and when the reorderings are restricted to the trace equivalence
class of the observed execution, this problem suffers a high complexity polynomial lower bound.
Towards this, we propose a sub-class of regular languages, called (generalized) pattern languages,
and show that this class of languages can be effectively monitored, in a predictive sense, using a
constant-space linear-time algorithm. Our experimental evaluation, using an implementation of the
algorithm PatternTrackwe develop, shows the effectiveness of our proposed class of specification
languages and the algorithms for (predictive) monitoring against them.

There are many avenues for future work. We expect pattern languages to be useful in controlled
concurrency testing techniques [Agarwal et al. 2021; Musuvathi and Qadeer 2006] and fuzz testing
for concurrent software [Jeong et al. 2019]. Another interesting direction is to generalize the
algorithms developed here to a larger class of temporal specifications, such as APCs [Bouajjani et al.
2001], which remain easier to write, are developer-friendly, and house the potential of widespread
adoption. Building optimal stateless model checking [Kokologiannakis et al. 2022] algorithms for
richer specifications such as pattern languages is another interesting direction.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for several comments that helped improve the paper. We thank
Vladimir Gladshtein and Martin Mirchev for initial discussions, and Georg Zetzsche for pointing us
to the connection with the work of Edward Ochmański on star-connected languages. This work

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

73:30 Zhendong Ang and Umang Mathur

was partially supported by a Singapore Ministry of Education (MoE) Academic Research Fund
(AcRF) Tier 1 grant.

DATA AVAILABILITY STATEMENT

The artefact for this work is available [Ang and Mathur 2023b], which contains source code and
benchmarks to reproduce our evaluation in Section 6.

REFERENCES

2023. AntLRWorks. https://github.com/antlr/antlrworks. [Online; accessed 24-October-2023].

2023. exp4j. https://github.com/fasseg/exp4j. [Online; accessed 24-October-2023].

2023. JFreeChart. https://github.com/jfree/jfreechart. [Online; accessed 24-October-2023].

2023. Logstash Logback Encoder. https://github.com/logfellow/logstash-logback-encoder. [Online; accessed 24-October-

2023].

2023. ZeroMQ log4j appender. https://github.com/lusis/zmq-appender. [Online; accessed 24-October-2023].

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic partial order

reduction. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 373–384. https:

//doi.org/10.1145/2535838.2535845

Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankaranarayanan Krishna. 2019. Verification of Programs

under the Release-Acquire Semantics. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA,

1117–1132. https://doi.org/10.1145/3314221.3314649

Udit Agarwal, Pantazis Deligiannis, Cheng Huang, Kumseok Jung, Akash Lal, Immad Naseer, Matthew Parkinson, Arun

Thangamani, Jyothi Vedurada, and Yunpeng Xiao. 2021. Nekara: Generalised Concurrency Testing. In 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE). 679–691. https://doi.org/10.1109/ASE51524.2021.

9678838

Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining Sequential Patterns. In Proceedings of the Eleventh International

Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, Philip S. Yu and Arbee L. P. Chen (Eds.). IEEE Computer

Society, 3–14. https://doi.org/10.1109/ICDE.1995.380415

Rajeev Alur, Kousha Etessami, and P. Madhusudan. 2004. A Temporal Logic of Nested Calls and Returns. In Tools and

Algorithms for the Construction and Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004,

Proceedings (Lecture Notes in Computer Science, Vol. 2988), Kurt Jensen and Andreas Podelski (Eds.). Springer, 467–481.

https://doi.org/10.1007/978-3-540-24730-2_35

Zhendong Ang and Umang Mathur. 2023a. Predictive Monitoring against Pattern Regular Languages. arXiv:2310.14611

https://arxiv.org/abs/2310.14611

Zhendong Ang and Umang Mathur. 2023b. Predictive Monitoring against Pattern Regular Languages. https://doi.org/10.5281/

zenodo.8424626 Artifact.

Cyrille Artho, Klaus Havelund, and Armin Biere. 2003. High-level data races. Softw. Test. Verification Reliab. 13, 4 (2003),

207–227. https://doi.org/10.1002/STVR.281

Saddek Bensalem and Klaus Havelund. 2005. Dynamic Deadlock Analysis of Multi-threaded Programs. In Hardware and

Software Verification and Testing, First International Haifa Verification Conference, Haifa, Israel, November 13-16, 2005,

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 3875), Shmuel Ur, Eyal Bin, and Yaron Wolfsthal (Eds.).

Springer, 208–223. https://doi.org/10.1007/11678779_15

A. Bertoni, G. Mauri, and N. Sabadini. 1989. Membership problems for regular and context-free trace languages. Information

and Computation 82, 2 (1989), 135–150. https://doi.org/10.1016/0890-5401(89)90051-5

Swarnendu Biswas, Jipeng Huang, Aritra Sengupta, and Michael D. Bond. 2014. DoubleChecker: efficient sound and

precise atomicity checking. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 28–39.

https://doi.org/10.1145/2594291.2594323

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.

The DaCapo benchmarks: java benchmarking development and analysis. In Proceedings of the 21th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,

Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190. https://doi.org/10.1145/1167473.1167488

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

https://github.com/antlr/antlrworks
https://github.com/fasseg/exp4j
https://github.com/jfree/jfreechart
https://github.com/logfellow/logstash-logback-encoder
https://github.com/lusis/zmq-appender
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1109/ASE51524.2021.9678838
https://doi.org/10.1109/ASE51524.2021.9678838
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1007/978-3-540-24730-2_35
https://arxiv.org/abs/2310.14611
https://arxiv.org/abs/2310.14611
https://doi.org/10.5281/zenodo.8424626
https://doi.org/10.5281/zenodo.8424626
https://doi.org/10.1002/STVR.281
https://doi.org/10.1007/11678779_15
https://doi.org/10.1016/0890-5401(89)90051-5
https://doi.org/10.1145/2594291.2594323
https://doi.org/10.1145/1167473.1167488

Predictive Monitoring against Pa�ern Regular Languages 73:31

Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: Compositional Static Race Detection.

Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (oct 2018), 28 pages. https://doi.org/10.1145/3276514

Ahmed Bouajjani, Anca Muscholl, and Tayssir Touili. 2001. Permutation Rewriting and Algorithmic Verification. In 16th

Annual IEEE Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. IEEE

Computer Society, 399–408. https://doi.org/10.1109/LICS.2001.932515

Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. 2002. Ownership types for safe programming: preventing

data races and deadlocks. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages and Applications, OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002, Mamdouh Ibrahim and Satoshi

Matsuoka (Eds.). ACM, 211–230. https://doi.org/10.1145/582419.582440

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. 2010. A Randomized Scheduler

with Probabilistic Guarantees of Finding Bugs. In Proceedings of the Fifteenth International Conference on Architectural

Support for Programming Languages and Operating Systems (Pittsburgh, Pennsylvania, USA) (ASPLOS XV). Association

for Computing Machinery, New York, NY, USA, 167–178. https://doi.org/10.1145/1736020.1736040

Yan Cai, Ruijie Meng, and Jens Palsberg. 2020. Low-overhead deadlock prediction. In ICSE ’20: 42nd International Conference

on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,

1298–1309. https://doi.org/10.1145/3377811.3380367

Yan Cai, Hao Yun, JinqiuWang, Lei Qiao, and Jens Palsberg. 2021. Sound and efficient concurrency bug prediction. In ESEC/FSE

’21: 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,

Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta

(Eds.). ACM, 255–267. https://doi.org/10.1145/3468264.3468549

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The Complexity of Satisfiability of Small Depth Circuits.

In Parameterized and Exact Computation: 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11,

2009, Revised Selected Papers. Springer-Verlag, Berlin, Heidelberg, 75–85. https://doi.org/10.1007/978-3-642-11269-0_6

Feng Chen and Grigore Rosu. 2007. Parametric and Sliced Causality. In Computer Aided Verification, 19th International

Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4590), Werner

Damm and Holger Hermanns (Eds.). Springer, 240–253. https://doi.org/10.1007/978-3-540-73368-3_27

Feng Chen, Traian-Florin Serbanuta, and Grigore Rosu. 2008. jPredictor: a predictive runtime analysis tool for java. In

30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Wilhelm Schäfer,

Matthew B. Dwyer, and Volker Gruhn (Eds.). ACM, 221–230. https://doi.org/10.1145/1368088.1368119

Dmitry Chistikov, Rupak Majumdar, and Filip Niksic. 2016. Hitting Families of Schedules for Asynchronous Programs. In

Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,

Part II (Lecture Notes in Computer Science, Vol. 9780), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, 157–176.

https://doi.org/10.1007/978-3-319-41540-6_9

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. 1986. Automatic Verification of Finite-State Concurrent Systems

Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8, 2 (1986), 244–263. https://doi.org/10.1145/5397.

5399

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. 2011. Delay-Bounded Scheduling. In Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11). Association

for Computing Machinery, New York, NY, USA, 411–422. https://doi.org/10.1145/1926385.1926432

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of Race Conditions and Deadlocks. In Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles (Bolton Landing, NY, USA) (SOSP ’03). Association for

Computing Machinery, New York, NY, USA, 237–252. https://doi.org/10.1145/945445.945468

Azadeh Farzan and P. Madhusudan. 2008. Monitoring Atomicity in Concurrent Programs. In Computer Aided Verification,

20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings (Lecture Notes in Computer Science,

Vol. 5123), Aarti Gupta and Sharad Malik (Eds.). Springer, 52–65. https://doi.org/10.1007/978-3-540-70545-1_8

Azadeh Farzan and P. Madhusudan. 2009. The Complexity of Predicting Atomicity Violations. In Tools and Algorithms for

the Construction and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in

Computer Science, Vol. 5505), Stefan Kowalewski and Anna Philippou (Eds.). Springer, 155–169. https://doi.org/10.1007/978-

3-642-00768-2_14

Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. 2012. Predicting null-pointer dereferences

in concurrent programs. In 20th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20), SIG-

SOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012, Will Tracz, Martin P. Robillard, and Tevfik Bultan (Eds.). ACM, 47.

https://doi.org/10.1145/2393596.2393651

Colin Fidge. 1991. Logical Time in Distributed Computing Systems. Computer 24, 8 (Aug. 1991), 28–33. https://doi.org/10.

1109/2.84874

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

https://doi.org/10.1145/3276514
https://doi.org/10.1109/LICS.2001.932515
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/3377811.3380367
https://doi.org/10.1145/3468264.3468549
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1007/978-3-540-73368-3_27
https://doi.org/10.1145/1368088.1368119
https://doi.org/10.1007/978-3-319-41540-6_9
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1145/945445.945468
https://doi.org/10.1007/978-3-540-70545-1_8
https://doi.org/10.1007/978-3-642-00768-2_14
https://doi.org/10.1007/978-3-642-00768-2_14
https://doi.org/10.1145/2393596.2393651
https://doi.org/10.1109/2.84874
https://doi.org/10.1109/2.84874

73:32 Zhendong Ang and Umang Mathur

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise Dynamic Race Detection. In Proceedings of

the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).

Association for Computing Machinery, New York, NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner Dynamic Analysis Framework for Concurrent Programs.

In Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering

(Toronto, Ontario, Canada) (PASTE ’10). Association for Computing Machinery, New York, NY, USA, 1–8. https:

//doi.org/10.1145/1806672.1806674

Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. 2008b. Types for atomicity: Static checking and

inference for Java. ACM Trans. Program. Lang. Syst. 30, 4 (2008), 20:1–20:53. https://doi.org/10.1145/1377492.1377495

Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008a. Velodrome: a sound and complete dynamic atomicity checker

for multithreaded programs. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design

and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 293–303.

https://doi.org/10.1145/1375581.1375618

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order Reduction forModel Checking Software. In Proceedings

of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long Beach, California, USA)

(POPL ’05). Association for Computing Machinery, New York, NY, USA, 110–121. https://doi.org/10.1145/1040305.1040315

Cormac Flanagan and Shaz Qadeer. 2003. A type and effect system for atomicity. In Proceedings of the ACM SIGPLAN 2003

Conference on Programming Language Design and Implementation 2003, San Diego, California, USA, June 9-11, 2003, Ron

Cytron and Rajiv Gupta (Eds.). ACM, 338–349. https://doi.org/10.1145/781131.781169

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan. 2023. Probabilistic Concurrency Testing for Weak Memory

Programs. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New

York, NY, USA, 603–616. https://doi.org/10.1145/3575693.3575729

Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In

IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013,

Francesca Rossi (Ed.). IJCAI/AAAI, 854–860. https://doi.org/10.5555/2540128.2540252

Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memories. SIAM J. Comput. 26, 4 (1997), 1208–1244.

https://doi.org/10.1137/S0097539794279614

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans.

Program. Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

Jeff Huang. 2018. UFO: predictive concurrency use-after-free detection. In Proceedings of the 40th International Conference on

Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha

Chechik, and Mark Harman (Eds.). ACM, 609–619. https://doi.org/10.1145/3180155.3180225

Jeff Huang, Qingzhou Luo, and Grigore Rosu. 2015. GPredict: Generic Predictive Concurrency Analysis. In 37th IEEE/ACM

International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, Antonia Bertolino,

Gerardo Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 847–857. https://doi.org/10.1109/ICSE.2015.96

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow

Abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA, 337–348. https:

//doi.org/10.1145/2594291.2594315

Ayal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai. 1999. Toward Integration of Data Race Detection in DSM

Systems. J. Parallel and Distrib. Comput. 59, 2 (1999), 180–203. https://doi.org/10.1006/jpdc.1999.1574

Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik Shin. 2019. Razzer: Finding Kernel Race Bugs

through Fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP). 754–768. https://doi.org/10.1109/SP.2019.00017

Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu. 2012. JavaMOP: Efficient parametric runtime

monitoring framework. In 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,

Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer Society, 1427–1430. https://doi.org/

10.1109/ICSE.2012.6227231

Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. 2009. A randomized dynamic program analysis technique

for detecting real deadlocks. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 110–120.

https://doi.org/10.1145/1542476.1542489

Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction. Proc. ACM Program. Lang. 2, OOPSLA,

Article 146 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276516

Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy Diagnosis of In-Production Concurrency Bugs. In

Proceedings of the 26th Symposium onOperating Systems Principles (Shanghai, China) (SOSP ’17). Association for Computing

Machinery, New York, NY, USA, 582–598. https://doi.org/10.1145/3132747.3132767

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1145/1377492.1377495
https://doi.org/10.1145/1375581.1375618
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/781131.781169
https://doi.org/10.1145/3575693.3575729
https://doi.org/10.5555/2540128.2540252
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3180155.3180225
https://doi.org/10.1109/ICSE.2015.96
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1006/jpdc.1999.1574
https://doi.org/10.1109/SP.2019.00017
https://doi.org/10.1109/ICSE.2012.6227231
https://doi.org/10.1109/ICSE.2012.6227231
https://doi.org/10.1145/1542476.1542489
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3132747.3132767

Predictive Monitoring against Pa�ern Regular Languages 73:33

Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky. 2004. Java-MaC: A Run-Time

Assurance Approach for Java Programs. Formal Methods Syst. Des. 24, 2 (2004), 129–155. https://doi.org/10.1023/B:

FORM.0000017719.43755.7C

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race Prediction in Linear-Time. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).

Association for Computing Machinery, New York, NY, USA, 157–170. https://doi.org/10.1145/3062341.3062374

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2018. Data Race Detection on Compressed Traces. In Proceedings of

the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York,

NY, USA, 26–37. https://doi.org/10.1145/3236024.3236025

Michalis Kokologiannakis, IasonMarmanis, Vladimir Gladstein, and Viktor Vafeiadis. 2022. Truly Stateless, Optimal Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 6, POPL, Article 49 (jan 2022), 28 pages. https://doi.org/10.1145/3498711

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model checking for weakly consistent libraries.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 96–110. https:

//doi.org/10.1145/3314221.3314609

Ron Koymans. 1990. Specifying Real-Time Properties with Metric Temporal Logic. Real Time Syst. 2, 4 (1990), 255–299.

https://doi.org/10.1007/BF01995674

Rucha Kulkarni, Umang Mathur, and Andreas Pavlogiannis. 2021. Dynamic Data-Race Detection Through the Fine-Grained

Lens. In 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference

(LIPIcs, Vol. 203), Serge Haddad and Daniele Varacca (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 16:1–16:23.

https://doi.org/10.4230/LIPICS.CONCUR.2021.16

Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Rosu, and Darko Marinov. 2016. How good are the specs? a study

of the bug-finding effectiveness of existing Java API specifications. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven Apel, and Sarfraz

Khurshid (Eds.). ACM, 602–613. https://doi.org/10.1145/2970276.2970356

Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of Continuous Signals. In Formal Techniques,

Modelling and Analysis of Timed and Fault-Tolerant Systems, Joint International Conferences on Formal Modelling and

Analysis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004,

Grenoble, France, September 22-24, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3253), Yassine Lakhnech and

Sergio Yovine (Eds.). Springer, 152–166. https://doi.org/10.1007/978-3-540-30206-3_12

Umang Mathur. 2023. RAPID. https://github.com/umangm/rapid Accessed: 2023-10-25.

Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What Happens-after the First Race? Enhancing the Predictive

Power of Happens-before Based Dynamic Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 145 (oct 2018),

29 pages. https://doi.org/10.1145/3276515

Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan. 2022. A Tree Clock Data Structure for

Causal Orderings in Concurrent Executions. In Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for

Computing Machinery, New York, NY, USA, 710–725. https://doi.org/10.1145/3503222.3507734

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2020. The Complexity of Dynamic Data Race Prediction.

In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20).

Association for Computing Machinery, New York, NY, USA, 713–727. https://doi.org/10.1145/3373718.3394783

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2021. Optimal Prediction of Synchronization-Preserving

Races. Proc. ACM Program. Lang. 5, POPL, Article 36 (jan 2021), 29 pages. https://doi.org/10.1145/3434317

Umang Mathur and Mahesh Viswanathan. 2020. Atomicity Checking in Linear Time using Vector Clocks. In ASPLOS

’20: Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020,

James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 183–199. https://doi.org/10.1145/3373376.3378475

Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems. In Parallel and Distributed Algorithms:

proceedings of the International Workshop on Parallel & Distributed Algorithms, M. Cosnard et. al. (Ed.). Elsevier Science

Publishers B. V., 215–226.

Antoni Mazurkiewicz. 1987. Trace theory. In Petri Nets: Applications and Relationships to Other Models of Concurrency,

W. Brauer, W. Reisig, and G. Rozenberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–324.

Robert McNaughton and Seymour Papert. 1971. Counter-Free Automata.

Patrick O’Neil Meredith, Dongyun Jin, Feng Chen, and Grigore Rosu. 2010. Efficient monitoring of parametric context-free

patterns. Autom. Softw. Eng. 17, 2 (2010), 149–180. https://doi.org/10.1007/S10515-010-0063-Y

Vijayaraghavan Murali, Edward Yao, Umang Mathur, and Satish Chandra. 2021. Scalable Statistical Root Cause Analysis

on App Telemetry. In Proceedings of the 43rd International Conference on Software Engineering: Software Engineering in

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

https://doi.org/10.1023/B:FORM.0000017719.43755.7C
https://doi.org/10.1023/B:FORM.0000017719.43755.7C
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1145/3236024.3236025
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/BF01995674
https://doi.org/10.4230/LIPICS.CONCUR.2021.16
https://doi.org/10.1145/2970276.2970356
https://doi.org/10.1007/978-3-540-30206-3_12
https://github.com/umangm/rapid
https://doi.org/10.1145/3276515
https://doi.org/10.1145/3503222.3507734
https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1145/3434317
https://doi.org/10.1145/3373376.3378475
https://doi.org/10.1007/S10515-010-0063-Y

73:34 Zhendong Ang and Umang Mathur

Practice (Virtual Event, Spain) (ICSE-SEIP ’21). IEEE Press, 288–297. https://doi.org/10.1109/ICSE-SEIP52600.2021.00038

Madan Musuvathi and Shaz Qadeer. 2006. CHESS: Systematic Stress Testing of Concurrent Software. In Logic-Based Program

Synthesis and Transformation, 16th International Symposium, LOPSTR 2006, Venice, Italy, July 12-14, 2006, Revised Selected

Papers (Lecture Notes in Computer Science, Vol. 4407), Germán Puebla (Ed.). Springer, 15–16. https://doi.org/10.1007/978-

3-540-71410-1_2

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection for Java. In Proceedings of the 27th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Ottawa, Ontario, Canada) (PLDI ’06).

Association for Computing Machinery, New York, NY, USA, 308–319. https://doi.org/10.1145/1133981.1134018

Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha

Bhat, YuzhongWen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: push-button verification and optimization

for synchronization primitives onweakmemorymodels. InASPLOS ’21: 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Virtual Event, USA, April 19-23, 2021, Tim Sherwood, Emery D.

Berger, and Christos Kozyrakis (Eds.). ACM, 530–545. https://doi.org/10.1145/3445814.3446748

Edward Ochmański. 1985. Regular behaviour of concurrent systems. Bull. EATCS 27 (1985), 56–67.

Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. 2019. Trace aware random testing for distributed systems.

Proc. ACM Program. Lang. 3, OOPSLA (2019), 180:1–180:29. https://doi.org/10.1145/3360606

Andreas Pavlogiannis. 2019. Fast, Sound, and Effectively Complete Dynamic Race Prediction. Proc. ACM Program. Lang. 4,

POPL, Article 17 (dec 2019), 29 pages. https://doi.org/10.1145/3371085

Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of

Computer Science (SFCS ’77). IEEE Computer Society, USA, 46–57. https://doi.org/10.1109/SFCS.1977.32

Eli Poznianski and Assaf Schuster. 2003. Efficient On-the-Fly Data Race Detection in Multithreaded C++ Programs. In 17th

International Parallel and Distributed Processing Symposium (IPDPS 2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts

Proceedings. IEEE Computer Society, 287. https://doi.org/10.1109/IPDPS.2003.1213513

Jake Roemer and Michael D. Bond. 2019. Online Set-Based Dynamic Analysis for Sound Predictive Race Detection. CoRR

abs/1907.08337 (2019). arXiv:1907.08337 http://arxiv.org/abs/1907.08337

Jake Roemer, Kaan Genç, and Michael D. Bond. 2018. High-coverage, unbounded sound predictive race detection. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018,

Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 374–389. https://doi.org/10.

1145/3192366.3192385

Jake Roemer, Kaan Genç, and Michael D. Bond. 2020. SmartTrack: efficient predictive race detection. In Proceedings of the 41st

ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,

June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 747–762. https://doi.org/10.1145/3385412.3385993

Grigore Rosu and Klaus Havelund. 2005. Rewriting-Based Techniques for Runtime Verification. Autom. Softw. Eng. 12, 2

(2005), 151–197. https://doi.org/10.1007/S10515-005-6205-Y

Grigore Rosu and Mahesh Viswanathan. 2003. Testing Extended Regular Language Membership Incrementally by Rewriting.

In Rewriting Techniques and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9-11, 2003,

Proceedings (Lecture Notes in Computer Science, Vol. 2706), Robert Nieuwenhuis (Ed.). Springer, 499–514. https://doi.org/

10.1007/3-540-44881-0_35

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from Building

Static Analysis Tools at Google. Commun. ACM 61, 4 (mar 2018), 58–66. https://doi.org/10.1145/3188720

Mahmoud Said, Chao Wang, Zijiang Yang, and Karem A. Sakallah. 2011. Generating Data Race Witnesses by an SMT-

Based Analysis. In NASA Formal Methods - Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20,

2011. Proceedings (Lecture Notes in Computer Science, Vol. 6617), Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J.

Holzmann, and Rajeev Joshi (Eds.). Springer, 313–327. https://doi.org/10.1007/978-3-642-20398-5_23

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas E. Anderson. 1997. Eraser: A Dynamic Data

Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (1997), 391–411. https://doi.org/10.1145/

265924.265927

M.P. Schützenberger. 1965. On finite monoids having only trivial subgroups. Information and Control 8, 2 (1965), 190–194.

https://doi.org/10.1016/S0019-9958(65)90108-7

Koushik Sen, Grigore Roşu, and Gul Agha. 2005. Detecting Errors in Multithreaded Programs by Generalized Predictive

Analysis of Executions. In Proceedings of the 7th IFIP WG 6.1 International Conference on Formal Methods for Open

Object-Based Distributed Systems (Athens, Greece) (FMOODS’05). Springer-Verlag, Berlin, Heidelberg, 211–226. https:

//doi.org/10.1007/11494881_14

Koushik Sen and Grigore Rosu. 2003. Generating Optimal Monitors for Extended Regular Expressions. In Third Workshop on

Run-time Verification, RV@CAV 2003, Boulder, Colorado, USA, July 14, 2003 (Electronic Notes in Theoretical Computer Science,

Vol. 89), Oleg Sokolsky andMahesh Viswanathan (Eds.). Elsevier, 226–245. https://doi.org/10.1016/S1571-0661(04)81051-X

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

https://doi.org/10.1109/ICSE-SEIP52600.2021.00038
https://doi.org/10.1007/978-3-540-71410-1_2
https://doi.org/10.1007/978-3-540-71410-1_2
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3360606
https://doi.org/10.1145/3371085
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/IPDPS.2003.1213513
https://arxiv.org/abs/1907.08337
http://arxiv.org/abs/1907.08337
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/3385412.3385993
https://doi.org/10.1007/S10515-005-6205-Y
https://doi.org/10.1007/3-540-44881-0_35
https://doi.org/10.1007/3-540-44881-0_35
https://doi.org/10.1145/3188720
https://doi.org/10.1007/978-3-642-20398-5_23
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/11494881_14
https://doi.org/10.1007/11494881_14
https://doi.org/10.1016/S1571-0661(04)81051-X

Predictive Monitoring against Pa�ern Regular Languages 73:35

Koushik Sen, Grigore Rosu, and Gul Agha. 2006. Online efficient predictive safety analysis of multithreaded programs. Int.

J. Softw. Tools Technol. Transf. 8, 3 (2006), 248–260. https://doi.org/10.1007/S10009-005-0192-Y

Traian-Florin Serbanuta, Feng Chen, and Grigore Rosu. 2012. Maximal Causal Models for Sequentially Consistent Systems.

In Runtime Verification, Third International Conference, RV 2012, Istanbul, Turkey, September 25-28, 2012, Revised Selected

Papers (Lecture Notes in Computer Science, Vol. 7687), Shaz Qadeer and Serdar Tasiran (Eds.). Springer, 136–150. https:

//doi.org/10.1007/978-3-642-35632-2_16

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data Race Detection in Practice. In Proceedings

of the Workshop on Binary Instrumentation and Applications (New York, New York, USA) (WBIA ’09). Association for

Computing Machinery, New York, NY, USA, 62–71. https://doi.org/10.1145/1791194.1791203

Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. 2011. Predicting Serializability Violations: SMT-Based Search vs.

DPOR-Based Search. In Hardware and Software: Verification and Testing - 7th International Haifa Verification Conference,

HVC 2011, Haifa, Israel, December 6-8, 2011, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7261), Kerstin

Eder, João Lourenço, and Onn Shehory (Eds.). Springer, 95–114. https://doi.org/10.1007/978-3-642-34188-5_11

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound predictive race detection

in polynomial time. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 387–400.

https://doi.org/10.1145/2103656.2103702

L. A. Smith, J. M. Bull, and J. Obdrzálek. 2001. A Parallel Java Grande Benchmark Suite. In Proceedings of the 2001 ACM/IEEE

Conference on Supercomputing (Denver, Colorado) (SC ’01). ACM, New York, NY, USA, 8–8. https://doi.org/10.1145/

582034.582042

Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. 2010. PENELOPE: weaving threads to expose atomicity

violations. In Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

2010, Santa Fe, NM, USA, November 7-11, 2010, Gruia-Catalin Roman and André van der Hoek (Eds.). ACM, 37–46.

https://doi.org/10.1145/1882291.1882300

Hünkar Can Tunç, Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2023. Sound Dynamic Deadlock

Prediction in Linear Time. Proc. ACM Program. Lang. 7, PLDI (2023), 1733–1758. https://doi.org/10.1145/3591291

Mandana Vaziri, Frank Tip, and Julian Dolby. 2006. Associating synchronization constraints with data in an object-oriented

language. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2006, Charleston, South Carolina, USA, January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM,

334–345. https://doi.org/10.1145/1111037.1111067

Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static race detection on millions of lines of code. In Proceedings

of the 6th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007, Ivica Crnkovic and Antonia Bertolino

(Eds.). ACM, 205–214. https://doi.org/10.1145/1287624.1287654

Virginia Vassilevska Williams. 2018. On some fine-grained questions in algorithms and complexity. In Proceedings of the

International Congress of Mathematicians: Rio de Janeiro 2018. World Scientific, 3447–3487. https://doi.org/10.1142/

9789813272880_0188

Xinhao Yuan, Junfeng Yang, and Ronghui Gu. 2018. Partial Order Aware Concurrency Sampling. In Computer Aided

Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,

UK, July 14-17, 2018, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10982), Hana Chockler and Georg

Weissenbacher (Eds.). Springer, 317–335. https://doi.org/10.1007/978-3-319-96142-2_20

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 73. Publication date: January 2024.

https://doi.org/10.1007/S10009-005-0192-Y
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1007/978-3-642-34188-5_11
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/582034.582042
https://doi.org/10.1145/582034.582042
https://doi.org/10.1145/1882291.1882300
https://doi.org/10.1145/3591291
https://doi.org/10.1145/1111037.1111067
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1007/978-3-319-96142-2_20

	Abstract
	1 Introduction
	2 Preliminaries
	3 Trace Languages and Predictive Monitoring
	3.1 Predictive Monitoring for Trace Equivalence
	3.2 Hardness of Predictive Trace Monitoring

	4 Pattern and generalized Pattern Langauges
	4.1 Properties of Pattern and Generalized Pattern Languages

	5 Predictive Monitoring against Generalized Pattern Languages
	5.1 Overview of the Algorithm
	5.2 Checking Admissibility of Candidate Tuples
	5.3 Checking Existence of Admissible Tuples
	5.4 Algorithm for Predictive Monitoring against Pattern Languages
	5.5 Vector Clock Algorithm

	6 Implementation and Evaluation
	6.1 Experimental Setup
	6.2 Bug Finding
	6.3 Performance Evaluation

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

