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Happens before-based dynamic analysis is the go-to technique for detecting data races in large scale software
projects due to the absence of false positive reports. However, such analyses are expensive since they employ
expensive vector clock updates at each event, rendering them usable only for in-house testing. In this paper,
we present a sampling-based, randomized race detector that processes only constantly many events of the
input trace even in the worst case. This is the first sub-linear time (i.e., running in 𝑜 (𝑛) time where 𝑛 is the
length of the trace) dynamic race detection algorithm; previous sampling based approaches like Pacer run in
linear time (i.e., 𝑂 (𝑛)). Our algorithm is a property tester for HB-race detection — it is sound in that it never
reports any false positive, and on traces that are far, with respect to hamming distance, from any race-free
trace, the algorithm detects an HB-race with high probability. Our experimental evaluation of the algorithm
and its comparison with state-of-the-art deterministic and sampling based race detectors shows that the
algorithm does indeed have significantly low running time, and detects races quite often.

1 INTRODUCTION
A concurrent program is said to have a data race (or simply a race) if it has an execution in which a
pair of threads access a shared memory location consecutively and in which one of the accesses
writes a value to the shared memory location. Data races are one of the most common source of bugs
in concurrent programs and are the cause of more serious problems like data corruption [Boehm
2011; Kasikci et al. 2013; Narayanasamy et al. 2007]. Absence of data races is often a pre-requisite
for the semantics of programs to be well defined [Boehm and Adve 2008; Zhivich and Cunningham
2009] and for compiler optimizations to be sound [Ševčík 2011; Ševčík and Aspinall 2008]. Sound
dynamic data race prediction is a popular approach to identify such bugs in concurrent programs.
Here one observes a single execution of the program, and the goal of the analysis is to see if the
execution provides evidence for the presence of a data race in the program. This requires reasoning
about alternate re-orderings of the events of the observed execution to determine if an execution
with a data race is possible.

The simplest and most commonly used dynamic data race detection technique is based on Lamport’s
happens-before (HB) partial order [Lamport 1978]. The idea is to (implicitly) compute theHB partial
order on the events of the observed execution and check if there are a pair of conflicting accesses to
a shared memory location that are unordered by HB. Happens before based data race detection is
known to be sound — the presence of HB unordered memory accesses is proof that the program has
a data race. Early vector clock based algorithms [Fidge 1991; Mattern 1988] for happens before race
detection have been improved over the years to the extent that it is the go-to data race detection
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in practice [Serebryany and Iskhodzhanov 2009; Serebryany et al. 2011]. However, the analysis
has high runtime costs [Biswas et al. 2017; Bond et al. 2010; Marino et al. 2009] due to expensive
metadata updates at each event, despite optimizations introduced [Flanagan and Freund 2009;
Pozniansky and Schuster 2003]. This makes dynamic race detection suitable only for in-house
testing, and makes an otherwise lucrative premise of data races exceptions [Adve 2010; Elmas et al.
2007] rather impractical.

One approach that attempts to reduce the analysis cost in HB race detection uses sampling [Bond
et al. 2010]. The informal idea behind this approach is to sample some events of the observed
trace, and analyze only the sampled subset of events to determine if the program has data races,
with the hope being that the sampled subset will be small compared to the whole trace and that
often it will be sufficient to find a race. Though the algorithm presented in [Bond et al. 2010]
(Pacer) is experimentally shown to run faster than known deterministic race detection algorithms,
its expected running time is linear and in the worst case it can be shown to be no better than a
deterministic algorithm — there are examples on which, with non-zero probability, Pacer will
analyze all the events in the trace.

The motivation behind this work is to explore the possibility of a sound race detection algorithm
that analyzes, even in the worst case, a sub-linear number of events in an execution (i.e., “little
𝑜” of the length of the trace), but nonetheless has provable mathematical guarantees of precision.
The hope is that such an algorithm will help scale sound dynamic race detection beyond in-house
testing.

To achieve our goal, we investigate the design of a property tester [Goldreich 2017] for HB race
detection. A (one-sided) (𝜖, 𝛿)-property tester for a decision problem 𝐿 is an algorithm𝐴 that meets
the following obligation: on an input 𝑥 ∈ 𝐿, 𝐴 answers “yes” with probability 1, while on an input
that is “𝜖-far” from any input in 𝐿, 𝐴 answers “no” with probability at least 1 − 𝛿 . Notice that the
definition of a property tester is based on a distance metric on input strings. The standard notion
of distance used in property testing is hamming distance. Therefore, rephrasing and specializing to
HB race detection, we have the following. A property tester for HB race detection is an algorithm
𝐴 such that on any HB race-free execution 𝜎 , 𝐴 answers “yes”, and on any execution 𝜎 in which at
least 𝜖 fraction of the events must be modified to obtain a race-free execution, 𝐴 answers “no” with
probability at least 1− 𝛿 . Any sound and complete algorithm for HB race detection is, by definition,
a property tester for race detection since it distinguishes between race-free and racy executions.
However, a property tester has weaker obligations and solves a decision problem approximately —
on executions 𝜎 that have an HB race but at the same time are very close to a race-free execution,
a property tester has no obligation to correctly classify them as having an HB race. This flexibility
has enabled computer scientists to design extremely fast, but nonetheless useful, algorithms for a
variety of decision problems [Goldreich 2017] and has led to sub-linear algorithm design being a
vibrant field of study for the past 25 years.

In this paper we present a (𝜖, 𝛿)-property tester RPT (Race Property Tester) for HB-race detection
that provably examines only constantly many events in the observed program execution. More
precisely, let 𝑡 be an upper bound on the number of threads and ℎ be the maximum number of
locks held at any point in the trace of a concurrent program. Our property tester analyzes only
𝑂 (𝑡 + ℎ) events of a trace 𝜎 and correctly classifies them as having an HB-race with probability at
least 1 − 𝛿 , when 𝜎 is 𝜖-far from race-free executions. Here 𝑂 (·) hides constant, ln(1/𝛿) and (1/𝜖)
factors. Notice that the number of events examined by our property tester only depends on the
parameters 𝑡 and ℎ, which are often very small, regarded as constants, and is independent of the
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length of the input trace 𝜎 . Also note that, by design, RPT is a sound race detector —- whenever it
flags the presence of a race, the execution has a real race.

Our property tester is a very simple, almost naïve, algorithm, which maybe a feature when it comes
to implementing it and deploying it in practice. It works as follows. If the input trace is “short”
(defined precisely in Algorithm 3), run a deterministic race detector such as FastTrack [Flanagan
and Freund 2009]. Otherwise, sample, uniformly at random, 𝑂 ( ln(1/𝛿)

𝜖
) sub-traces of input 𝜎 , each

of length𝑂 ( 𝑡+ℎ
𝜖
), and check that none of the sampled sub-traces contain an HB race. If they do, the

algorithm declares the input trace 𝜎 to be racy, and otherwise, declares it to be race-free. To check
whether any of the sampled sub-traces contain an HB-race, we could use any HB race detection
algorithm. In our experiments, we use the FastTrack algorithm [Flanagan and Freund 2009] that
uses vector clocks and employs the epoch optimization.

The challenge, as for most randomized algorithms, is to prove that this simple algorithm is correct.
This means we need to show that, if the input 𝜎 , observed by running a multi-threaded program, is
𝜖-far from every race-free execution, then our algorithm will find an HB race with high probability.
The crux of our correctness proof is in the following observation. We show that any trace 𝜎 that is
𝜖-far from every race-free execution, has many, short (of length 𝑂 (𝑡 + ℎ)) sub-traces that contain
an HB race. Thus, by sampling a few different sub-traces independently, using standard arguments,
one can show that the algorithm’s answer is correct with high probability.

We expect that the promise of a constant runtime overhead race detector will be useful for practi-
tioners. Given that the formal guarantee of our property tester is parameterized by 𝜖 and 𝛿 , it is
natural to ask how a practitioner should use our algorithm. After all, on the face of it, it seems like
we need to know how far an observed execution 𝜎 is from race-free traces! RPT, like most dynamic
techniques, is primarily an approach to find bugs. Therefore, our recommendation is to view 𝜖 and
𝛿 as adjustable parameters that a software developer can progressively decrease. If at any stage a
race is discovered then debugging can begin. On the other hand, if no race is discovered even as 𝜖
and 𝛿 are decreased, then the software developer can be more confident about the reliability of the
code based on the mathematical statements that back the correctness of the property tester. Finally,
our experimental results show that even when the 𝜖 used in the algorithm is a poor measure of the
actual distance of the input 𝜎 from race-free executions, the algorithm detects HB races reasonably
often.

RPT has been implemented. We have evaluated the performance of RPT on benchmark examples
and compare it against the state-of-the-art deterministic (FastTrack) and sampling-based (Pacer)
HB race detector, to see if the theoretical promises hold. We choose not to compare against
techniques which employ a two-phase hybrid analysis [Choi et al. 2002; Jeong et al. 2019; Kasikci
et al. 2013] because our innovations are primarily in dynamic analysis which is orthogonal to these
approaches. Our techniques can be modularly plugged into hybrid race detection techniques to
reduce the running time of the dynamic analysis phase and like RaceMob, can benefit from an
additional static analysis phase (see Section 5 for more details).

Preliminary results suggest that RPT is a promising approach. When compared with FastTrack
and Pacer, RPT has the lowest running time among the 3. Moreover, RPT’s competitive advantage
grows as the length of the trace increases. In fact, RPT’s running time flattens out as the trace
length grows in our experiments. Despite that, our results show that RPT reports a race quite often.
This is especially true when considering traces that have a large proportion of race warnings —
when the number of race warnings reported by FastTrack divided by trace length is at least 10−5,
RPT detects races with at least the same probability if not better than Pacer. This is despite the fact
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that RPT in these experiments was run with a large value for 𝜖 , namely 0.01. Detailed experimental
results are presented in Section 4.

2 BACKGROUND AND PRELIMINARIES
In this section we discuss preliminary notations and also recap relevant background on data race
detection and property testing.

2.1 Traces and Data Races
Concurrent Program Traces and Events. The focus of our work is dynamic race detection,
where one monitors the execution trace of a concurrent program, observing events generated by
different threads, and analyzes it to infer the presence of a data race. Each event is labeled with a
tuple ⟨𝑡, 𝑜⟩ (denoted simply as 𝑒 = ⟨𝑡, 𝑜⟩), where 𝑡 is the unique identifier of the thread that performs
𝑒 and 𝑜 represents the operation associated with 𝑒 . For our exposition, the operation 𝑜 can be one
of 1: (a) read/write access to a memory location 𝑥 (i.e., 𝑜 = r(𝑥) or 𝑜 = w(𝑥)), or (b) lock-based
synchronization — acquire/release of a lock ℓ (i.e., 𝑜 = acq(ℓ) or 𝑜 = rel(ℓ)). We use the notation
thr(𝑒) = 𝑡 and op(𝑒) = 𝑜 for the event 𝑒 = ⟨𝑡, 𝑜⟩. A trace 𝜎 can thus be viewed as a sequence of such
events (denoted Events𝜎 ). We denote by Threads𝜎 , Locks𝜎 and Mem𝜎 to denote the set of threads,
locks and memory locations that appear in the trace 𝜎 . We use |𝜎 | to denote the length of 𝜎 .

Sub-traces. Traces, as mentioned, are a sequence of events. We will adopt the convention that the
first event in the sequence has index 0. Thus, a trace of length 𝑛 is of the form 𝜎 = 𝑒0𝑒1 · · · 𝑒𝑛−1. The
𝑖th event of trace 𝜎 (namely 𝑒𝑖 ) will also be denoted as 𝜎 [𝑖]. A sub-trace 𝜎 [𝑖, 𝑗] = 𝑒𝑖𝑒𝑖+1 · · · 𝑒 𝑗−1 is the
subsequence of 𝜎 of length 𝑗 − 𝑖 from index 𝑖 to index 𝑗 − 1. When 𝑗 ≤ 𝑖 , we adopt the convention
that 𝜎 [𝑖, 𝑗] is the empty sequence 𝜀. The concatenation of traces 𝜎1 = 𝑒0 · · · 𝑒𝑛−1 and 𝜎2 = 𝑓0 · · · 𝑓𝑚−1
is the sequence 𝑒0 · · · 𝑒𝑛−1 𝑓0 · · · 𝑓𝑚−1 of length 𝑛 +𝑚 and will be denoted by 𝜎1𝜎2.

Well formed Traces and Sub-traces. Executions of concurrent programs, in addition to being
a sequence of events of the form described above, satisfy some properties. A trace 𝜎 = 𝑒0 · · · 𝑒𝑛−1
is well formed if critical sections on the same lock do not overlap. That is, for every 𝑗 < 𝑛, if
𝑒 𝑗 = ⟨𝑡, rel(ℓ)⟩ releases lock ℓ , then there is an 𝑖 < 𝑗 such that 𝑒𝑖 = ⟨𝑡, acq(ℓ)⟩ and further, for
every 𝑖 < 𝑘 < 𝑗 , op(𝑒𝑘 ) ∉ {acq(ℓ), rel(ℓ)}2. Henceforth, we will assume traces to be well formed.
A sequence 𝜂 is a well formed sub-trace if there is a well formed trace 𝜎 and indices 𝑖 and 𝑗 such
that 𝜂 = 𝜎 [𝑖, 𝑗]. Finally, in a well formed sub-trace 𝜂 = 𝑒0𝑒1 · · · 𝑒𝑛−1, we say that lock ℓ is held by
thread 𝑡 at 𝑗 (for 0 ≤ 𝑗 ≤ 𝑛) if either (a) there is an 𝑖 < 𝑗 such that 𝑒𝑖 = ⟨𝑡, acq(ℓ)⟩ and for every
𝑖 < 𝑘 < 𝑗 , op(𝑒𝑘 ) ≠ rel(ℓ), or (b) there is an 𝑖 ≥ 𝑗 such that 𝑒𝑖 = ⟨𝑡, rel(ℓ)⟩ and for every 𝑗 ≤ 𝑘 < 𝑖 ,
op(𝑒𝑘 ) ≠ acq(ℓ). We say that lock ℓ is held at the beginning (resp. end) of a non-empty well-formed
sub-trace 𝜂 if ℓ is held at 0 (resp. |𝜂 |).

Data Races. A trace is said to have a data race if two different threads access the same memory
location without explicit synchronization in between. This is formalized in terms of Lamport’s
Happens-Before (HB) partial order [Lamport 1978], which we recap next, while generalizing this
notion to well formed sub-traces.

1We omit other synchronizations like forks and joins or wait-notify, for simplicity of presentation. It is straightforward to
accommodate them, and all our results apply to the more general setting too. Further, our experiments do account for such
events in the benchmarks.
2We assume that locks are not re-entrant; all our results can nevertheless be extended in the presence of such locks.
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Algorithm 1: Outline for dynamic data race detection
Input: Trace 𝜎

1 InitMetadata()

2 for 𝑒 in 𝜎 do checkRaceAndUpdateMetadata(𝑒)

Definition 1 (Happens-Before). For a well formed sub-trace 𝜎 , the happens-before partial order
induced by 𝜎 , denoted <𝜎

HB
, is the smallest binary relation on Events𝜎 such that for any two events

𝑒1 ≠ 𝑒2 ∈ Events𝜎 , we have 𝑒1 <𝜎
HB

𝑒2 if 𝑒1 occurs before 𝑒2 in 𝜎 , and one of the following holds:

(program-order) thr(𝑒1) = thr(𝑒2).

(lock synchronization) 𝑒1 releases a lock ℓ , which 𝑒2 acquires (i.e., op(𝑒1) = rel(ℓ) and op(𝑒2) =
acq(ℓ)), or

(transitivity) there is an event 𝑒3 such that 𝑒1 <𝜎
HB

𝑒3 <
𝜎
HB

𝑒2.

A pair of events (𝑒1, 𝑒2) of 𝜎 is said to be conflicting if thr(𝑒1) ≠ thr(𝑒2), both are memory access
events on a common location (say) 𝑥 with at least one of them being a write. An HB-race in 𝜎 is a
pair (𝑒1, 𝑒2) of conflicting events in 𝜎 such that neither 𝑒1 <𝜎

HB
𝑒2 nor 𝑒2 <𝜎

HB
𝑒1. Finally, 𝜎 is said to

have a data race if there is an HB-race in it; otherwise 𝜎 is said to be race-free.

An important observation about the HB partial order is that it is ‘context-free’, i.e., whether a pair
of events is ordered by HB only depends on the events that appear between the two events in
the trace. This is formalized in Proposition 2.1 and will be crucially exploited by our randomized
algorithm.

Proposition 2.1. Let 𝜎 = 𝑒0𝑒1 · · · 𝑒𝑛−1 be a well formed sub-trace. For any pair of indices 𝑖 < 𝑗 ,
𝑒𝑖 <

𝜎
HB 𝑒 𝑗 if and only if 𝑒𝑖 <

𝜎 [𝑖, 𝑗+1]
HB 𝑒 𝑗 .

Proof. Follows from the definition of HB. □

2.2 Dynamic Data Race Detection
Data races can be detected in a streaming fashion, by processing events one-by-one, updating meta-
data and checking for races at each event of interest, as shown in the general outline Algorithm 1.
Most of the algorithms known for detecting data races dynamically [Elmas et al. 2007; Flanagan
and Freund 2009; Itzkovitz et al. 1999; Pozniansky and Schuster 2003] adhere to this generic outline,
and differ only on the precise details of the data maintained by the algorithm or the implementation
of the functions InitMetadata and checkRaceAndUpdateMetadata.

Here, we discuss the most popular algorithm Djit [Itzkovitz et al. 1999] which uses vector clocks
for assigning vector timestamps [Fidge 1991; Mattern 1988] to events and uses them to check
for HB-races; Djit has further been optimized in subsequent works including Djit+ [Pozniansky
and Schuster 2003] and FastTrack [Flanagan and Freund 2009]. A vector timestamp is a map
𝑉 : Threads𝜎 → N that assigns a natural number to every thread of the trace 𝜎 being analyzed.
The ordering on two timestamps is defined as 𝑉1 ⊑ 𝑉2 ≜ ∀𝑡 ∈ Threads𝜎 ,𝑉1 (𝑡) ≤ 𝑉2 (𝑡). In essence,
the Djit algorithm computes a vector timestamp 𝑉𝑒 for each event 𝑒 such that for any two events
𝑒1 ≠ 𝑒2, 𝑒1 ≤𝜎

HB
𝑒2 iff𝑉𝑒1 ≤𝜎HB 𝑉𝑒2 . However, instead of actually storing the timestamps of each event,

the algorithm uses vector clocks to store a small number of timestamps. Overall, the algorithm
maintains, a vector clock C𝑡 , Lℓ , R𝑥 andW𝑥 for every 𝑡 ∈ Threads𝜎 , ℓ ∈ Locks𝜎 and 𝑥 ∈ Mem𝜎 .
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Algorithm 2: Vector clock updates

1 function InitMetadata()
2 for 𝑡 ∈ Threads · do
3 C𝑡 := ⊥[1/𝑡]
4 for 𝑥 ∈ Mem · do
5 R𝑥 := ⊥;W𝑥 := ⊥
6 for ℓ ∈ Locks · do
7 Lℓ := ⊥

8 handler acquire(𝑡 , ℓ)
9 C𝑡 ← C𝑡 ⊔ Lℓ

10 handler release(𝑡 , ℓ)
11 L𝑡 ← C𝑡
12 handler read(𝑡 , 𝑥)
13 checkW𝑥 ⊑ C𝑡
14 R𝑥 ← C𝑡
15 handler write(𝑡 , 𝑥)
16 check R𝑥 ⊑ C𝑡
17 checkW𝑥 ⊑ C𝑡
18 W𝑥 ← C𝑡

Algorithm 2 summarizes how vector clocks are initialized and updated — the function
checkRaceAndUpdateMetadata calls the appropriate handler based on the operation performed in
the event (the timestamp ⊥ is 𝜆𝑢, 0). The lines 13,16 and 17 perform the race detection checks. We
omit the increment ‘C𝑡 ← C𝑡 [C𝑡 (𝑡) + 1/𝑡]’ at the end of each handler.

While HB-based dynamic analysis is considered the go-to method for data race detection in
practice [Serebryany and Iskhodzhanov 2009; Serebryany et al. 2011], it is known to add high
runtime costs [Biswas et al. 2017; Bond et al. 2010; Marino et al. 2009] due to expensive metadata
updates at each event, despite optimizations introduced [Flanagan and Freund 2009; Pozniansky
and Schuster 2003]. This makes dynamic race detection suitable only for in-house testing.

2.3 Property Tesing
A property tester [Goldreich 2017] is an algorithm that solves a decision problem under a promise
setting. Another way to think about it is that it solves a decision problem “approximately”. It is
typically a randomized algorithm. A property tester for a decision problem characterized by a
language 𝐿 is an algorithm that provides the following guarantees: on a input 𝑥 ∈ 𝐿 the algorithm
answers yes with high probability, and on an input 𝑥 that is “far” from anything in 𝐿, it answers
no with high probability. Thus, to define a property tester precisely, we need to identify a notion
of distance between elements of the space of inputs. The most commonly used distance metric is
hamming distance which we define first.

Definition 2 (Hamming Distance). For sequences 𝑢, 𝑣 ∈ Σ∗ over alphabet Σ, the hamming distance
between 𝑢 and 𝑣 (𝑑h (𝑢, 𝑣)) is defined as follows:

𝑑h (𝑢, 𝑣) =
{
|{𝑖 |𝑢 [𝑖] ≠ 𝑣 [𝑖]}| if |𝑢 | = |𝑣 |
∞ otherwise

For 𝑢 ∈ Σ∗ and 𝐿 ⊆ Σ∗, 𝑑h (𝑢, 𝐿) = inf𝑣∈𝐿 𝑑h (𝑢, 𝑣).

Note that for 𝑢, 𝑣 ∈ Σ∗, either 𝑑h (𝑢, 𝑣) = ∞, when |𝑢 | ≠ |𝑣 |, or 𝑑h (𝑢, 𝑣) ≤ |𝑢 | = |𝑣 |, when |𝑢 | = |𝑣 |.

Having defined the notion of distance between an input and a language, we can define precisely
what a property tester is. In this paper, we only consider one-sided testers and so we specialize the
definition to this case.
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Definition 3 (Property Tester). A (one-sided) (𝜖, 𝛿) property tester for a problem 𝐿 is a randomized
algorithm 𝐴 such that on any input 𝑥 , 𝐴’s output satisfies the following property.

(a) If 𝑥 ∈ 𝐿, 𝐴(𝑥) = yes with probability 1.

(b) If 𝑑h (𝑥, 𝐿) ≥ 𝜖 |𝑥 |, 𝐴(𝑥) = no with probability at least 1 − 𝛿 .

We note some observations about Definition 3. On inputs 𝑥 that are not in 𝐿 but are “close” (i.e.
𝑑h (𝑥, 𝐿) < 𝜖 |𝑥 |), the property tester may answer either yes or no, without violating its obligation.
In this sense, a property tester is an approximate algorithm for a decision problem. Second, since
we are considering one-sided testers, we can arrive at the following conclusions about an input
based on the tester’s response. If 𝐴(𝑥) = no then we can conclude that 𝑥 ∉ 𝐿. On the other hand, if
𝐴(𝑥) = yes then we cannot conclude anything definite about the membership of 𝑥 in 𝐿.

3 A PROPERTY TESTER FOR RACE DETECTION
Our randomized algorithm for dynamic race detection is simple and straightforward. It is as follows.

(1) Sample uniformly at random 𝑟 sub-traces, each having length 𝑘 , of the observed trace 𝜎 .

(2) If any of the sampled sub-traces has a data race, declare 𝜎 to have a data race.

(3) If none of the sampled sub-traces have a data race, declare 𝜎 to be race-free.

To complete the description of the above algorithm, we need to answer the following questions. How
many sub-traces should the algorithm sample (parameter 𝑟 )?What should the length of sampled sub-
traces be (parameter 𝑘)? Obviously these parameters are set to ensure that the resulting algorithm
is a property tester for race detection. The correctness proof is the most critical piece, and also the
most technically challenging part of the algorithm itself. Our description in this section will use
vague terms like “many”, “very far”, “short”, “long” etc. These terms will be precisely characterized
by parameters in our formal theorem and lemma statements, but our use of these informal terms in
the text helps illuminate the main ideas behind the correctness argument without getting lost in
the technical details.

Before we begin outlining the correctness proof, let us examine our algorithm template and establish
some straightforward facts. First notice that no matter what values we set for parameters 𝑟 and
𝑘 , the algorithm is sound — if the algorithm declares a trace 𝜎 to have a data race then it does
indeed have a data race. This is because of the “context-free” property of HB-races articulated in
Proposition 2.1 — whether events 𝑒1 and 𝑒2 of 𝜎 are in HB-race only depends on the events in the
sub-trace of 𝜎 that starts with 𝑒1 and ends with 𝑒2. This means that a race-free execution 𝜎 will
be declared to be correct with probability 1. Thus, to establish correctness, our obligation is to
find values for 𝑟 and 𝑘 that ensure that on traces which are very far from any race-free execution,
the algorithm discovers a sub-trace with an HB-race with high probability. Second, to check if
a sampled sub-trace has a data race, we could use any algorithm to check for HB-races [Elmas
et al. 2007; Flanagan and Freund 2009; Itzkovitz et al. 1999; Pozniansky and Schuster 2003]. In our
implementation, we use FastTrack [Flanagan and Freund 2009], but this could be replaced by any
improvements to HB-race checking to yield faster running times.

Let us now present an overview of our correctness proof. It crucially relies on our main theorem
(Theorem 3.3) which says that if the input trace 𝜎 is far from any race-free execution (with respect to
hamming distance), then there are many short sub-traces that contain anHB-race. The measure that
characterizes “short” in this theorem will be taken to be the value of 𝑘 . Observe that if Theorem 3.3
guarantees that presence of many𝑘-length sub-traces that have a race, then by analyzing a randomly
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chosen 𝑘-length sub-trace guarantees that we will discover a race with some probability. Therefore
if we repeat this experiment a few times (namely 𝑟 times), we can ensure that we discover a race
with high probability. Here the number of samples 𝑟 will be set based on the chance that a single
𝑘-length sub-trace is racy, using standard counting arguments. The main theorem (Theorem 3.3)
itself is established by first observing that a trace 𝜎 which is far from any race-free execution
has many (not necessarily short) disjoint sub-traces that have an HB-race. This is the content of
Lemma 3.2 which is proved as follows. We show that if 𝜎 has very few disjoint sub-traces that are
racy, then 𝜎 can be transformed by changing very few events into a racy-free execution. Since we
know 𝜎 is far, we can conclude that it has many disjoint races. Finally, to show that few disjoint
racy sub-traces means closeness to a race-free execution, we need Lemma 3.1 which proves that any
pair of race-free sub-traces 𝜎1 and 𝜎2 can be combined into a larger race-free sub-trace, provided
we paste a short sub-trace 𝜇 between 𝜎1 and 𝜎2.

Having provided an overview of our proof, we are ready to present the technical details. We start
with a technical lemma that shows that for any well formed sub-traces 𝜎1 and 𝜎2, there is a short
trace 𝜇 such that the concatenated sub-trace 𝜎1𝜇𝜎2 is well formed with the property that every
event in 𝜎1 is HB-before any event in 𝜎2. This will be used later to show that in traces that are far
from race-free executions, there are many disjoint racy sub-races.

Lemma 3.1. Let 𝜎1 and 𝜎2 be well formed subtraces over threads 𝑇 . Let ℎ be an upper bound on the
number of locks held at the end of 𝜎1 and at the beginning of 𝜎2. There exists a sub-trace 𝜇 (𝜎1, 𝜎2)
such that |𝜇 (𝜎1, 𝜎2) | ≤ 4|𝑇 | + 2ℎ, and 𝜎 = 𝜎1𝜇 (𝜎1, 𝜎2)𝜎2 is well formed. Moreover, for any events
𝑒1 ∈ Events𝜎1 and 𝑒2 ∈ Events𝜎2 , we have 𝑒1 <𝜎

HB 𝑒2.

Proof. Let LH1 be the set of locks held at the end of 𝜎1 and let LH2 be the set of lock held at the
beginning of 𝜎2. Notice that |LH1 | ≤ ℎ and |LH2 | ≤ ℎ. Without loss of generality, let us assume that
ℓ∗ ∈ Locks𝜎1 ∪ Locks𝜎2 . 𝜇 (𝜎1, 𝜎2) is the following sequence of events in the given order.

(1) If ℓ∗ is held by thread 𝑡∗ at the end of 𝜎1 then start with ⟨𝑡∗, rel(ℓ∗)⟩.

(2) For each thread 𝑡 ∈ 𝑇 , add the sequence ⟨𝑡, acq(ℓ∗)⟩⟨𝑡, rel(ℓ∗)⟩. After adding such a sequence
for each thread, repeat this sequence again. That is, once again, for every thread 𝑡 ∈ 𝑇 , add the
sequence ⟨𝑡, acq(ℓ∗)⟩⟨𝑡, rel(ℓ∗)⟩.

(3) For each lock ℓ ∈ LH1 \ {ℓ∗} that is held by thread 𝑡 at the end of 𝜎1, add the event ⟨𝑡, rel(ℓ)⟩.

(4) For each lock ℓ ∈ LH2 held by thread 𝑡 at the beginning of 𝜎2, add the event ⟨𝑡, acq(ℓ)⟩.

Observe that the number of events added in step 1 + step 3 is at most ℎ. Similarly, the number
events added in step 4 is at most ℎ. Finally, the number of events added in step 2 is 4|𝑇 |. Putting all
of this together, proves that |𝜇 (𝜎1, 𝜎2) | ≤ 4|𝑇 | + 2ℎ. Next, the order in which events are added in
𝜇 (𝜎1, 𝜎2) ensures that in 𝜎 each lock is held by at most one thread at any given time, which means
that 𝜎 is well formed. Moreover, the set of locks held at the beginning of 𝜎2 in 𝜎 is exactly LH2.
Finally, the events added in step 2 ensure that for any events 𝑒1 ∈ Events𝜎1 and 𝑒2 ∈ Events𝜎2 , we
have 𝑒1 <𝜎

HB
𝑒2. □

Remark. It is worth noting an important consequence of Lemma 3.1 that we will exploit in our
proof. Observe that the sub-trace 𝜇 (𝜎1, 𝜎2) constructed in the proof has no data access events. Thus,
if 𝜎1 and 𝜎2 are race-free, then so is 𝜎1𝜇 (𝜎1, 𝜎2)𝜎2.
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For the rest of this section, let fix a set of threads 𝑇 , a set of locks 𝐿, and a set of memory locations
𝑀 . Let RF be the set of all well formed traces over 𝑇 , 𝐿 and𝑀 that are race free. That is,

RF = {𝜎 race free | Threads𝜎 ⊆ 𝑇, Locks𝜎 ⊆ 𝐿, Mem𝜎 ⊆ 𝑀}.

Observe that for any trace 𝜎 , 𝑑h (𝜎,RF) ≤ |𝜎 |. This is because we can always pick 𝜂 ∈ RF of the
same length as 𝜎 , by ensuring that either 𝜂 only events performed by a single thread, or has no
write events, etc.

Let us also assume that ℎ is an upper bound on the number of locks held at any point in a trace; in
the worst case ℎ = |𝐿 |, but typically ℎ is much smaller than |𝐿 |. Finally, let us fix𝑚 = 4|𝑇 | + 2ℎ.

Lemma 3.1 allows one to show that if a trace 𝜎 is very far from the set RF (as measured by parameter
𝜖), then there are many disjoint sub-traces of 𝜎 that contain a pair of events that are in HB-race.
In other words, if 𝜎 is far from any race-free trace, then there are many disjoint witnesses that
demonstrate that 𝜎 has a race.

Lemma 3.2. Let 𝜎 be a trace of length 𝑛 such that 𝑑h (𝜎,RF) ≥ 𝜖𝑛. There is an integer 𝑢 ≥ 𝜖𝑛
𝑚

and an
increasing sequence of indices 0 = 𝑖11 < 𝑖21 < 𝑖12 < 𝑖22 < · · · < 𝑖1𝑢 < 𝑖2𝑢 ≤ 𝑛 of length 2 · 𝑢 such that each
sub-trace 𝜎 [𝑖1𝑗 , 𝑖2𝑗 ] (1 ≤ 𝑗 ≤ 𝑢) has an HB-race.

Proof. Let us construct an increasing sequence of indices as follows. Take 𝑖11 = 0. The remaining
indices are inductively defined as follows. Assuming 𝑖11, 𝑖

2
1, . . . 𝑖

1
𝑗 have been defined. Then,

𝑖2𝑗 = min{𝑘 ≤ 𝑛 | 𝜎 [𝑖1𝑗 , 𝑘] has a race}.

In the above equation, if the set over which we are taking a minimum is empty (i.e., 𝜎 [𝑖1𝑗 , 𝑛] is
race-free) then our construction of the sequence ends. Next, assuming 𝑖11, 𝑖

2
1, . . . 𝑖

1
𝑗 , 𝑖

2
𝑗 are defined, we

take 𝑖1𝑗+1 = 𝑖2𝑗 +𝑚 − 1, provided 𝑖2𝑗 +𝑚 − 1 < 𝑛; again if 𝑖2𝑗 +𝑚 − 1 ≥ 𝑛, then we stop the construction.

Notice that by definition, our sequence is increasing and each sub-trace 𝜎 [𝑖1𝑗 , 𝑖2𝑗 ] has an HB-race.
To complete the proof of the lemma, all we need to argue is that the sequence we have constructed
is long, i.e., if 𝑖2𝑢 is the last index constructed by the above sequence, then 𝑢 ≥ 𝜖𝑛

𝑚
. We will use the

fact that 𝑑h (𝜎,RF) ≥ 𝜖𝑛 to establish this.

Suppose we have constructed the sequence 0 = 𝑖11 < 𝑖21 < · · · < 𝑖1𝑢 < 𝑖2𝑢 as above. Since we stopped
at 𝑖2𝑢 , it means that either 𝑖2𝑢 +𝑚 − 1 ≥ 𝑛 or 𝜎 [𝑖2𝑢 +𝑚 − 1, 𝑛] is race-free. Let us define the sub-trace
𝜎 𝑗 as 𝜎 [𝑖1𝑗 , 𝑖2𝑗 − 1]. Notice by definition of 𝑖2𝑗 this means that 𝜎 𝑗 is race free. Consider the trace 𝜎 ′
defined as follows.

𝜎 ′ = 𝜎1𝜇 (𝜎1, 𝜎2)𝜎2𝜇 (𝜎2, 𝜎3) · · ·𝜎𝑢𝜇∗ .
Here 𝜇 (𝜎 𝑗 , 𝜎 𝑗+1) is the sequence guaranteed by Lemma 3.1 for 𝜎 𝑗 and 𝜎 𝑗+1, and 𝜇∗ is defined as
follows: if 𝑖2𝑢 +𝑚 − 1 ≥ 𝑛, then 𝜇∗ is some race-free trace of length 𝑛 − 𝑖2𝑢 + 1 and if 𝜎 [𝑖2𝑢 +𝑚 − 1, 𝑛] is
race-free then 𝜇∗ = 𝜇 ′∗𝜎 [𝑖2𝑢 +𝑚 − 1, 𝑛] where 𝜇 ′∗ = 𝜇 (𝜎𝑢, 𝜎 [𝑖2𝑢 +𝑚 − 1, 𝑛]). Without loss of generality,
we will assume that sub-traces of the form 𝜇 (𝜎 𝑗 , 𝜎 𝑗+1) guaranteed by Lemma 3.1 are of length
exactly𝑚 — if they are shorter, we can pad them with events.

Notice that |𝜎 ′ | = 𝑛 = |𝜎 | and𝜎 ′ is (by construction) race-free because of the remark after Lemma 3.1.
Moreover 𝑑h (𝜎, 𝜎 ′) ≤ 𝑢𝑚, since at most 𝑚 events are changed in each 𝜇-sub-trace. Since 𝜎 ′ is
race-free and 𝑑h (𝜎,RF) ≥ 𝜖𝑛, we have 𝑢𝑚 ≥ 𝜖𝑛 which means that 𝑢 ≥ 𝜖𝑛

𝑚
. This completes the proof

of the lemma. □
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Lemma 3.2 guarantees the presence of many disjoint, racy sub-traces. However, that by itself is not
enough to get an efficient property tester for data race detection. In particular, Lemma 3.2 provides
no bounds on the length of the racy sub-traces it identifies. If we do not strengthen Lemma 3.2,
the only bound we can get on the sample length 𝑘 in our template algorithm would be |𝜎 |, which
would make our property tester no more efficient than a deterministic race detector. Our main
theorem, established next, shows that, for sufficiently long traces, there are many racy sub-traces
of short length, when a trace 𝜎 is far from any race-free trace. The proof uses Lemma 3.2. This will
enable us to bound 𝑘 and get good asymptotic bounds.

Theorem 3.3. Let 𝜎 be a trace of length 𝑛 such that 𝑑h (𝜎,RF) ≥ 𝜖𝑛. In addition, let 𝑛 ≥ (12𝑚)/𝜖 .
Then there are at least 2(𝜖𝑛)/15 sub-traces of 𝜎 of length 4𝑚/𝜖 that contain an HB-race.

Proof. Let 0 = 𝑖11 < 𝑖21 < 𝑖12 < · · · 𝑖1𝑢 < 𝑖2𝑢 ≤ 𝑛 be the increasing sequence of indices guaranteed by
Lemma 3.2 such that each subtrace 𝜎 [𝑖1𝑗 , 𝑖2𝑗 ] has a data race. Consider the set

long = {𝜎 [𝑖1𝑗 , 𝑖2𝑗 ] | 𝑖2𝑗 − 𝑖1𝑗 ≥ (2𝑚/𝜖)}.

Since each element of long is a sub-trace of 𝜎 , the sum of the lengths of such sub-traces is ≤ 𝑛. On
the other hand, each sub-trace in long is of length at least 2𝑚/𝜖 and so the sum of the lengths is at
least 2𝑚 |long |

𝜖
. Putting it together, we get

𝑛 ≥
∑︁

𝜌∈long
|𝜌 | ≥ 2𝑚 |long|

𝜖
⇒ |long| ≤ 𝜖𝑛

2𝑚
.

Since 𝑢 ≥ (𝜖𝑛)/𝑚, we have |short| ≥ (𝜖𝑛)/(2𝑚), where

short = {𝜎 [𝑖1𝑗 , 𝑖2𝑗 ] | 𝑖2𝑗 − 𝑖1𝑗 < (2𝑚/𝜖)}.

The above counting argument guarantees that the number of disjoint short racy traces is large.
However, we can improve the bound further if we allow sub-traces to overlap. This improvement
will help improve the running time of our property tester in turn.

Consider a sub-trace 𝜂 = 𝜎 [𝑖1𝑗 , 𝑖2𝑗 ] ∈ short. Let |𝜂 | = 𝑠 ; we know 𝑠 ≤ (2𝑚/𝜖). Each such sub-trace 𝜂
(unless 𝑗 = 1 or 𝑗 = 𝑢) is a sub-trace of (4𝑚/𝜖 − 𝑠) sub-traces of 𝜎 of length 4𝑚/𝜖 . The reason is
because any sub-trace of 𝜎 of length 4𝑚/𝜖 that starts at a position in the interval [𝑖2𝑗 − 4𝑚/𝜖, 𝑖1𝑗 ]
contains 𝜂. Since 𝑠 ≤ 2𝑚/𝜖 , we have each such 𝜂 is contained in at least 4𝑚/𝜖 − 𝑠 ≥ (2𝑚/𝜖) sub-
traces of length 4𝑚/𝜖 . Note, that each sub-trace of length 4𝑚/𝜖 that contains such an 𝜂 ∈ short has
a data race. On the other hand, any sub-trace 𝜌 of 𝜎 of length 4𝑚/𝜖 can contain at most (5𝑚/𝜖)/𝑚
sub-traces from short. This can be argued as follows. Suppose 𝜌 contains 𝑎 sub-traces in short.
Since each sub-trace in short is separated by𝑚 positions (see proof of Lemma 3.2), the sum of the
lengths of all short sub-traces plus their intervening gaps is at least (𝑎 − 1)𝑚. Now |𝜌 | = 4𝑚/𝜖 .
Thus, (𝑎 − 1)𝑚 ≤ 4𝑚/𝜖 , which means that 𝑎 ≤ (4/𝜖) + 1 ≤ 5/𝜖 . In other words, each sub-trace of 𝜎
of length 4𝑚/𝜖 contains at most 5/𝜖 of the sub-traces in short. Putting these observations together,
we see that the number of sub-traces 𝜌 of 𝜎 of length 4𝑚/𝜖 that contain a data race is at least

2𝑚
𝜖
· 𝜖
5
· [|short| − 2] ≥ 2𝑚

5

[ 𝜖𝑛
2𝑚
− 2

]
.

In the above equation, “−2” is to discount 𝜎 [𝑖11, 𝑖21] and 𝜎 [𝑖1𝑢, 𝑖2𝑢] if they belong to short. Assuming
𝑛 ≥ (12𝑚)/𝜖 , we have (𝜖𝑛)/(2𝑚) − 2 ≥ (𝜖𝑛)/(3𝑚). Thus, the number of sub-traces of length 4𝑚/𝜖
that contain a data race is at least 2𝑚

5 ·
𝜖𝑛
3𝑚 = 2𝜖𝑛

15 . □
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Algorithm 3: Property Tester for Checking HB-races
Parameters: 𝜖, 𝛿 ∈ [0, 1]
Input: Trace 𝜎

1 InitMetadata()

2 𝑚 ← 4|𝑇 | + 2ℎ ; 𝑘 ← 4𝑚/𝜖 ; 𝑟 ← 15 ln(1/𝛿)/(2𝜖)
3 if |𝜎 | < 12𝑚/𝜖 then
4 Run Algorithm 1 on 𝜎

5 else

6 𝐼 ← Sample 𝑟 indices in [0, 𝑛 − 𝑘]
7 𝑆 ← mergeSubtraces ({𝜎 [𝑖, 𝑖 + 𝑘]}𝑖∈𝐼 )
8 for 𝑒 in 𝜎 do

9 if 𝑒 is the start of a sub-trace in 𝑆 then

10 resetData()

11 if 𝑒 is in an sub-trace in 𝑆 then

12 checkRaceAndUpdateMetadata(𝑒)

Theorem 3.3 helps complete the description of our algorithm. Our property tester will pick sub-
traces of length 4𝑚/𝜖 , the parameter used in Theorem 3.3. There are 𝑛 such sub-traces, since each
starting position identifies such a sub-trace. From Theorem 3.3 it follows that the probability that a
random sub-trace of length 𝑘 = 4𝑚/𝜖 has a data race (when 𝜎 is 𝜖-far from RF), is at least 2𝜖/15. If
we pick 𝑟 = 15 ln(1/𝛿)

2𝜖 , the probability we will not detect is data race is at most

(1 − 2𝜖/15)𝑟 < 𝑒− ln(1/𝛿) = 𝛿.

Let us conclude this section by presenting a pseudo-code for our property tester (Algorithm 3).
Recall that the algorithm is to sample 𝑟 = 15 ln(1/𝛿)

2𝜖 sub-traces of input 𝜎 of length 𝑘 = 4𝑚/𝜖 , and
check if any of the sampled sub-traces have an HB-race. Notice that sampling a sub-trace of length
𝑘 is the same as picking a starting index 𝑖 with the understanding that the sampled sub-trace is
𝜎 [𝑖, 𝑖 + 𝑘]. Thus, sampling 𝑟 sub-traces is the same as picking 𝑟 starting indices (Line 6). Consider
two sub-traces 𝜎 [𝑖1, 𝑖1+𝑘] and 𝜎 [𝑖2, 𝑖2+𝑘] of 𝜎 that overlap. That is, wlog 𝑖1 < 𝑖2 < 𝑖1+𝑘 . Notice that
by the definition of HB partial order, if the sub-trace 𝜎 [𝑖1, 𝑖2 + 𝑘] is race-free then both 𝜎 [𝑖1, 𝑖1 + 𝑘]
and 𝜎 [𝑖2, 𝑖2 + 𝑘] are race-free. Thus, we can merge sampled sub-traces that are overlapping without
sacrificing on our ability to detect races. Therefore, in Line 7, we merge the overlapping sub-traces
to get a smaller set of sampled sub-traces, but with the possibility of the sampled sub-traces being
longer that 𝑘 . This step reduces the total number of events our algorithm will process. After this
initial pre-processing step, the algorithm proceeds as follows. When an event is the start of a
sampled sub-trace, the meta-data is reset so that there is a fresh start to race detection. In addition,
whenever an event is in our sampled sub-trace we call the function checkRaceAndUpdateMetadata
which in turn calls the appropriate handler in Algorithm 2 based on the operation performed by the
event. When an event is not in any of our sampled sub-traces, no checking and meta-data updates
take place.
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4 EXPERIMENTAL EVALUATION
We evaluated the practical feasibility of our property tester by implementing RPT and comparing
against the go-to deterministic race detection algorithm FastTrack due to Flanagan and Fre-
und [Flanagan and Freund 2009], and against Pacer [Bond et al. 2010], which is the state-of-the art
sampling based race detection algorithm. Each of these tools has a different philosophy and solves
a slightly different problem — FastTrack processes every event in the trace and reports all HB
races; Pacer promises that every HB race has an equal, non-zero probability of being reported;
and in contrast, RPT is engineered to sample just enough to ensure that we can mathematically
prove that at least one race will be reported with high probability, when the trace is far from being
race free. Their comparison is not a like-for-like comparison. As a consequence, the experiments in
this section are not to suggest that one tool is better than another. They are there to merely help
one understand the likely performance of RPT on practical programs: is the running time low as
promised by the theory, how often does it report at least one race, does it work only when there
are many races, what types of races arise in practice and are there some that RPT will always fail
on. If we only report the performance of RPT it becomes difficult to gauge how reasonable it is,
and therefore, we report the performance of both FastTrack and Pacer to serve as a baseline.

The rest of this section is organized as follows. After explaining our implementation and setup
(Section 4.1), and characteristics of our extracted traces (Section 4.2), we present our experimental
analysis in two parts. In the first part (Section 4.3), we present experiments that help understand
how effectiveRPT is in reporting at least one race. We look at how the running time of RPT changes
with trace characteristics like length and number of threads + locks held. Next, our theoretical
analysis only guarantees reporting at least one race with high probability whenever the observed
execution is far from a race-free execution. Therefore, we ask how does RPT perform on traces
with very few races, since the number of races in a trace is an upper bound on the distance of a
trace from a race-free trace. Finally, recall that RPT relies on sampling short sub-traces and can
only detect races between events that are not far apart. So we ask, how often do traces have races
that are close by, and how does RPT perform on traces where most or all races are between events
that far apart (when compared to the length of sub-traces sampled by RPT). The second part of
our analysis (Section 4.4) reports on the performance of RPT as measured by the number of races
detected. Note that RPT is not engineered to report all races or most races or even every race with
some probability. It only guarantees reporting some race with high probability, when the trace is far
from being race-free. Thus, these experiments are not consistent with the design of RPT, but our
objective here is to understand if there are some types of races that will escape detection with RPT.

4.1 Implementation and Setup
We have implemented our algorithm RPT, the FastTrack algorithm and Pacer’s sampling al-
gorithm in Java. Our implementation is designed to run all three algorithms on the exact same
trace to allow for a fair comparison and reduce noise in the results introduced by the runtime
thread-scheduler.

Pacer. Pacer is the state-of-the art sampling based race detection technique for detecting data
races. At a high level, Pacer partitions the observed execution trace into sampling and non-sampling
phases, similar to RPT. In each sampling period, Pacermonitors all events, by performing metadata
updates as in FastTrack, similar to RPT. But unlike RPT, the expected total size of the sampling
periods is 𝑟 · 𝑛 where 𝑟 is a sampling rate set by Pacer, and 𝑛 is the total size of the execution trace.
The more stark difference is that Pacer also performs metadata updates on (a subset of) events
in a non-sampling period —- all synchronization operations, as well as all memory locations that
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Table 1. Characteristics of traces. We aggregate benchmark traces in 6 clusters, based on the values of

parameter𝑚 = 4|𝑇 | + 2ℎ. Column 1 shows the range of𝑚 values in each cluster and Column 2 shows the

number of traces in each such cluster. Columns 3-9 show the average, min, max and different percentiles of

the lengths of the traces in each cluster. The last row shows these metrics for the entire dataset.

1 2 3 4 5 6 7 8 9

𝑚 Num. of Trace Length Distribution

(range) traces Average Min 20 %-ile 40 %-ile 60 %-ile 80 %-ile Max

(0, 29] 12 650.2M 40.0M 134.3M 291.7M 539.6M 607.8M 2.8B
(29, 59] 10 391.3M 1.0M 47.0M 124.6M 253.4M 323.0M 2.4B
(59, 69] 57 165.9M 3.1M 104.9M 112.3M 135.0M 168.9M 1.3B
(69, 95] 14 541.1M 11.7M 90.2M 265.4M 533.9M 771.1M 1.6B
(95, 231] 49 294.2M 11.7M 106.8M 132.9M 175.1M 360.0M 2.1B
(231, 1000] 7 158.7M 39.1M 65.2M 177.8M 199.9M 207.5M 259.1M

All traces 149 297M 1.0M 102M 127M 172M 349M 2.8B

were accessed in prior sampling periods are tracked. This means that, in general, Pacer effectively
can analyze a large number of events, much more than what is determined by its proportionality
constant 𝑟 . On the other hand, our approach guarantees that the number of events analyzed by
RPT over the course of the entire execution is bounded by a constant which is determined by the
number of threads, lock nesting depth and the chosen values for the parameters 𝜖 and 𝛿 .

The publicly available implementation of Pacer [Bond 2021] is built on top of Jikes RVM-3.1.0,
which is only compatible with an old version of Java 1.6.0. Further, this implementation does not
support comparing the same execution trace against different runtime techniques. A distinguishing
feature of the Jikes-RVM implementation of Pacer’s algorithm is the use of the runtime garbage
collector to implement a periodic random sampler. In our implementation, we simulate the effect of
a periodic sampler by invoking our sampler in a periodic fashion. Our implementation of Pacer in
RAPID closely mimics the algorithm’s description in the original paper [Bond et al. 2010], including
the use of version clocks, shallow copies and optimizations in vector clock joins.

Benchmarks. Our benchmark programs are primarily derived from prior works which evaluate
the performance of different race detection techniques [Flanagan and Freund 2009; Huang et al.
2014; Kini et al. 2017; Mathur et al. 2022, 2021]. These include Java benchmarks from the DaCaPo
benchmark suite [Blackburn et al. 2006], Java Grande Forum [Smith et al. 2001], microbenchmarks
from [von Praun and Gross 2003] and SIR [Do et al. 2005], and OpenMP benchmarks derived from
DataAccelerator [Schmitz et al. 2020], DataRaceBench [Liao et al. 2017], OpenMP source code
repository [Dorta et al. 2005] and the NAS parallel benchmarks [Bailey et al. 1991] as well as from
HPC applications including CORAL benchmarks [Advanced Simulation and Computing, LLNL
2022a,b], ECP proxy applications [LLNL 2022], and Mantevo project [Sandia National Laboratories
2022].

Experimental Setup. The execution traces of Java benchmarks were logged using the RoadRun-
ner [Flanagan and Freund 2010] dynamic analysis framework and traces from OpenMP benchmarks
were logged using ThreadSanitizer [Serebryany and Iskhodzhanov 2009]. There were 90 programs
in the benchmark suite and we ran some programs on two different inputs. This resulted in a total
of 149 benchmark traces, after filtering out short traces (with < 1𝑀 events). We analyzed each of
these traces against the three algorithms we have implemented. We use the parameter combination
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(𝜖 = 0.01, 𝛿 = 0.1) for RPT and set Pacer’s sampling rate to be 3% as suggested in [Bond et al.
2010]. On each trace and for each combination of parameters, we ran FastTrack 20 times, while
RPT and Pacer 50 times, to account for randomization and variations in system load; FastTrack
was run fewer times because it is a deterministic algorithm. We report the average performance
of each tool in our tables and graphs. Our experiments were conducted on machine with 2.6GHz
64-bit Linux machine, using Java-1.8 as the JVM and 30GB heap space.

4.2 Trace Characteristics
Since the number of traces in our collection is large, we will summarize the data by clustering
traces according to the values of several parameters. We choose two metrics for clustering traces —
length of the traces (or number of events), and the value of𝑚 = 4|𝑇 | + 2ℎ which governs the length
of each sample RPT extracts, and thus the total number of sampled events. The choice of the second
metric allows us to focus on intrinsically similar traces at the same time. Table 1 summarizes our
set of traces, in overall terms, as well as with the details of each𝑚-based cluster. Observe that the
total number of events go as high as 2.8 billion, the average trace length is 297 million and the
median trace length is around 135 million. The trace lengths are diverse overall, as well as within
each cluster. In total there are 5 benchmarks that are race free. Categorized by trace length, there
are 30 benchmarks in (0, 100𝑀], 70 in (100𝑀, 200𝑀], 24 in (200𝑀, 400𝑀], 14 in (400𝑀, 700𝑀] and
11 in (700𝑀, 3𝐵] 3. We also provide a table with more detailed information for the benchmarks in
the appendix.

4.3 Detecting at least one race
RPT is designed to approximately solve the decision problem of race detection, i.e., answer the
question whether an observed trace has a race. The innovation in the algorithm is to identify
how little sampling will still allow one to mathematically guarantee reporting a race (with high
probability) in a trace that is far from being race-free. In this section, we explore how effective the
theoretical claims are in practice by answering the following questions.

• RPT is designed to sample minimally so that its running time is low. Does this hold in practice?
We answer this in the affirmative.

• Theoretical claims about RPT’s correctness guarantee detecting a race only when the trace
is 𝜖-far from being race-free. In practice, how does RPT perform when the distance of the
observed trace from race-free traces is much less than 𝜖? Does RPT successfully report races in
such traces? We find that RPT does report races often even when the observed trace is very
close to being race free.

• RPT samples short sub-traces and checks for races within these sub-traces. Thus, a race pair
that is far apart will not be detected by RPT since the sub-traces sampled will not have both
the events forming the race pair. How often do traces contain race pairs that are not far apart?
Second, is RPT able to report races, when almost all the races are at distance greater than the
sample length used by RPT? In our benchmark suite, we observe that most traces have races
between nearby events. Moreover, even in traces where almost all races are far apart, RPT
successfully reports races often.

Running Time. Our implementation of each of FastTrack, Pacer and RPT analyzes trace logs,
and we measure the running time of race detection by simply measuring the time taken by each of
the algorithms to analyze each trace. The running times are computed as the average of the time

3100𝑀 denotes 100 million or 108, while 1𝐵 denotes 1 billion or 109.
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taken during each run of an algorithm on a given trace. In order to be able to present our results
for the large benchmarks visually, we cluster traces by their lengths. For each cluster, we compute
the weighted average of the running times for FastTrack, Pacer, and RPT, where the weight for
a trace is the reciprocal of its length.
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Fig. 1. Weighted running time (average) as function of trace length (range). The running time of RPT grows

slower than that of Pacer.

Not surprisingly, the running time of RPT is pretty low, and in fact, the lowest for the larger
traces. Further, Pacer is also significantly faster than FastTrack. As trace lengths increase, RPT’s
competitive advantage over Pacer and FastTrack becomes more significant, and RPT’s running
time does not grow as fast.

We next ‘zoom-in’ into the traces to understand the running times better, instead of aggregating
the running times for several traces. Indeed, the number of traces in the extremal buckets (for
example, for traces with length > 700M) averaging the running times smoothes out interesting
behavior that we would like to otherwise understand. For a fine grained analysis, we cluster the
traces according to the parameter𝑚 and analyze each such cluster individually. Fig. 2 shows how
the running time varies with trace lengths, in each cluster. The first observation we make is that
the exact runtimes vary widely across clusters (even for similar trace lengths); see for example the
clusters corresponding to𝑚 ∈ (29, 59] and𝑚 ∈ (95, 231] where the time taken varies significantly
for traces of similar lenghts. However, inside a given cluster, the times increase, roughly linearly
with the length of the trace. This justifies our choice of𝑚 as a measure for clustering traces. Indeed,
the number of threads (and thus𝑚) governs the size of the vector clocks and also the running time,
and further, also governs the the number of events sampled by RPT. Finally, the time taken by RPT,
in each cluster, is much lower than Pacer, which is much lower than the deterministic algorithm of
FastTrack where every event in the trace is analyzed for detecting data races.

Observe that, even though our theoretical analysis of RPT (Section 3) guarantees constant running
time, the trend for RPT in any of the figures in Fig. 2 does not completely ‘flatten’ out. This is
due to the cost introduced by the random number generator and in detecting when sampling is
switched on or off. In the next subsection, we investigate the running times in further detail to
highlight this. Overall, RPT introduces much lower analysis cost than Pacer and FastTrack.

Constant Running Time. Recall that the number of events sampled by RPT is 𝑂 (𝑚) and is
independent of the length of the trace. A natural question to ask is if that is reflected in RPT’s
running time experimentally. We study two collections of traces from our benchmarks to better
understand this. The first set consists of all traces (12 in total) with 𝑚 = 70, and the second
consists of all traces (28 in total) with 𝑚 = 226. Trace lengths vary in each collection to help
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(a) Running times for traces with𝑚 ∈ (0, 29]
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(b) Running times for traces with𝑚 ∈ (29, 59]
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(c) Running times for traces with𝑚 ∈ (59, 69]
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(d) Running times for traces with𝑚 ∈ (69, 95]
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(e) Running times for traces with𝑚 ∈ (95, 231]
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(f) Running times for traces with𝑚 ∈ (231, 1000]

Fig. 2. Running time as a function for trace length in each cluster.

understand overheads of each algorithm with increasing trace length. For both these sets, we plot
the overhead due to processing meta-data for FastTrack, Pacer, and RPT for the corresponding
set of benchmarks in Fig. 3. This excludes the time taken by the sampling-based algorithms in
generating the random numbers. Since FastTrack performs meta-data operations on all events,
we report the total time taken for it. For RPT and Pacer, we only report the time for processing
meta-data on the chosen events. We see that as expected, RPT spends constant amount of time for
analyzing the sampled part of the trace. On the other hand, both Pacer and FastTrack spend time
that increases with trace length.

Precision.Wewant to evaluate how RPT performs in terms of its ability to expose data races. Since
RPT samples only a constant number of events, it is bound to not report every dynamic warning,
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Fig. 3. Time to update metadata as a function of trace length, when the parameter𝑚 is constant.
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Fig. 4. Success rate as a function of raciness (average)

i.e., those events that appear as the second event 𝑒2 in a data race event pair (𝑒1, 𝑒2). At the same
time, the (𝜖, 𝛿)-guarantee of RPT ensures that whenever the observed execution is sufficiently
‘racy’, it will report a race with a high probability. In the following, we report on the precision of
RPT and compare it with the precision of Pacer.

Fig. 4 shows the probability with which Pacer and RPT detect at least one race for each benchmark;
we call this the success rate of each benchmark:

success =
# runs with ≥ 1 warnings
Total number of runs

Recall that since RPT is a property tester, it guarantees to detect a race with high probability only
when the trace being analyzed is far from race-free traces with respect to hamming distance. This
is difficult to measure for a trace. We computed an approximation to the hamming distance that we
call the raciness of a trace:

raciness =
avg. # warnings reported by FastTrack

Trace length
Raciness of a trace 𝜎 is an upper bound on the hamming distance of 𝜎 from any race-free trace. In
other words, if a trace has low raciness, then it is very close to being race-free with respect to the
hamming distance. However, it could be a poor overestimate. We expect that the success rate of
RPT will increase as the raciness of the trace increases. In Fig. 4, we cluster traces based on their
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raciness, and aggregate the success rates for each bucket, and then evaluate both RPT and Pacer
based on their success rates. Observe that over most of the clusters, RPT’s probability of detecting
a race is similar, if not better, than Pacer’s probability of race detection. Overall, we conclude
that RPT successfully flags an execution racy with very high probability, even if the number of
warnings in the trace is small (about 10−7 times the number of events in the trace). Recall that in
our experiments, we run RPT with 𝜖 = 0.01 and 10−7 ≪ 0.01 = 𝜖 .

Distance between racy pairs. RPT samples short sub-traces, and can only report races between
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Fig. 5. Distribution of number of benchmarks over ratios of racy second events over all racy second events.

pairs of events that both belong to a sampled sub-trace. Thus, RPT cannot report races between
pairs of events that are far apart. How often do traces have races separated by a small number of
events? Let us say that a race pair (𝑒1, 𝑒2) in trace 𝜎 is “short”, if the distance between 𝑒1 and 𝑒2
is less than the length of the sub-traces sampled by RPT. We cluster our benchmark traces based
on the number of short races as a fraction of the total number of races in the trace, and this is
plotted as a histogram in Fig. 5; when plotting this histogram, we drop the one race-free trace in
our suite. We observe that in 52 traces the percentage of short races is < 25%, while in 96 traces
(approximately 2/3rds of our suite), the percentage of short races is at least 40%. Thus, short races
are quite common in practice.

Next, we study how RPT does on traces where the number of short races is very small, i.e., < 5%.
There are 29 such traces (about 1/5th of our suite). Surprisingly RPT’s success rate is very good
even on this set. On average RPT reports at least one race 84% of the time on these traces. On 21
(out of 29) traces, RPT reports a race 100% of the time, and it reports a race at least half the time
on 25 of these traces. In some of these examples, the percentage of short races is less than 0.01%.
Among the remaining 4 examples, there was one trace where RPT never reported a race, and on
the remaining 3 examples whose percentage of short races is 0.003 − 0.02%, RPT reported a race
20 − 25% of the time. Needless to say, the one example on which RPT never reports a race, there
are no short races and Pacer also fails to report any race in any of its runs on this trace.

4.4 Detecting Various Races
FastTrack reports every race pair and Pacer guarantees to report every race pair with an equal
and non-zero probability. RPT, in contrast, does not provide such strong guarantees with it when
comes to reporting an arbitrary race pair. It only promises to report some race on traces that are
far from race-free traces. Nonetheless, we would like to understand how many races RPT reports
and whether there are races that escape detection with RPT. We report the results of investigation
in this section.
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Average ratios of warnings per run. In Fig. 6, we depict how the number of warnings reported
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Fig. 6. Ratio of warnings (with warnings of FastTrack) as a function of trace length and𝑚.

varies in our suite of traces. As before, to visualize the data, we cluster it as per trace length and
𝑚. For each cluster, we consider the ratio of warnings reported by an algorithn (RPT, Pacer or
FastTrack) and the number of warnings in the trace (namely those reported by the deterministic
algorithm FastTrack). For each cluster, we compute the average of these ratios. Fig. 6a, we report
how the ratio varies across clusters of different trace lengths. For smaller traces, RPT reports a large
fraction of the warnings, as compared to Pacer. This is expected, because RPT samples constantly
many events, which for the case of smaller traces, amounts to sampling a large fraction of the trace.
As a result, it reports many warnings. On the other hand, Pacer misses races for smaller traces
due to its proportional sampling. For the large traces, Pacer is able to find more races as expected
because of its proportional nature. Fig. 6b plots these ratios when the traces are clustered by the
value of𝑚. The reason to study these plots clustered by𝑚 is because the number of samples drawn
by RPT on a trace grows as a function of𝑚; as shown in Table 1, clustering by𝑚 and trace length
are different ways to slice up our examples, and there is no correlation between these measures.
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(a) Racy memory locations v/s trace length
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Fig. 7. Number of memory locations (normalized by those reported by FastTrack) as a function of trace

length and𝑚.

Exposing racy memory locations. Our benchmarks exhibit HB-races on enormous memory
locations. Here we evaluate the following question — can RPT detect each racy memory location?
Or, there are a large number of variables with data races that are inherently difficult for RPT to
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discover? Admittedly, reports on unique memory locations are more insightful for developers using
a race detector, as excessive number of repeated warnings (on the same location) are known to
easily overwhelm developers. As before, we compute the aggregated ratios of memory locations
that RPT, Pacer and FastTrack report (as compared with those reported by FastTrack), where
the aggregation is performed according to trace lengths and𝑚. This is shown in Fig. 7. While the
trends here are similar to those for number of warnings, these figures show that, in fact, when we
focus on the number of unique memory locations flagged as racy, RPT is able to correctly flag a
good ratio of memory locations to be racy.
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Fig. 8. Number of source code locations (normalized by those reported by FastTrack) as a function of trace

length and𝑚.

Exposing racy source code locations. We next focus on the source code locations that these
race detection algorithms report. From the standpoint of a software developer using a race detector,
this metric is even more valuable since developers are interested in localizing the data races and
thereafter fix them. We report the number of source code locations flagged to be racy by each of the
three tools, and present them, as before, by clustering according to trace lengths and𝑚, in Fig. 8.
We observe that both Pacer and RPT report reasonably many source code locations. This shows
the power of sampling based approaches. Notably, for traces with higher𝑚 (that is, higher number
of threads), RPT can report almost all locations in the source code that are flagged to be racy by
the baseline determinsitic algorithm FastTrack.

4.5 Choosing 𝜖

The performance of our property testing algorithm RPT, both in terms of its runtime and its
ability to detect races, depends on parameters 𝜖 and 𝛿 . Changes to 𝛿 do not significantly affect the
number of sampled events (which vary as ln( 1

𝛿
)). Therefore, we keep 𝛿 fixed at 0.1 and see how

things change as we vary 𝜖 . We ran RPT on one of the DaCaPo benchmark xalan, with values of
𝜖 ∈ {0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001}. The choice of xalan was determined by a desire
to pick a long trace with reasonable raciness. In Fig. 9, we plot how running time of RPT changes
with 𝜖 and how the probability of detecting a race changes with 𝜖 (right axis). As expected, both
the running time and the probability of detecting a race increase as 𝜖 is decreased.

5 RELATEDWORK
Data races form the most common [Lu et al. 2008] as well difficult to detect [Musuvathi et al. 2008]
class of concurrency bugs. Extensive research on developing techniques for automatically detecting
data races has led to the development of many influential static and dynamic analysis techniques
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Fig. 9. The running time and success rate of RPT on xalan as 𝜖 varies.

for race detection. Static techniques such as [Abadi et al. 2006; Blackshear et al. 2018; Flanagan and
Freund 2000; Naik et al. 2006; Voung et al. 2007] employ type based analysis or interprocedural
data and control flow analysis to infer if two accesses on a common memory location may not be
protected by a common lock. Besides the inherent unsoundness in this criteria (memory accesses
may still not be racy even when they are not protected by a common lock), computability limits
imply that static techniques either report many false races, do not scale or require extensive manual
annotation in the software to be analyzed.

Dynamic analysis techniques, on the other hand, do not detect races in the entire source code, but
instead limit their attention to single executions, and are typically sound and completely automated.
Popular techniques include Eraser-style lockset analysis [Savage et al. 1997], happens-before
(HB) [Lamport 1978] based race detection [Elmas et al. 2007; Itzkovitz et al. 1999; Pozniansky and
Schuster 2003] or hybrid techniques [O’Callahan and Choi 2003]. Amongst these, only HB-based
techniques are sound (upto the first race reported [Mathur et al. 2018]), and are implemented in
popular tools like ThreadSanitizer [Serebryany and Iskhodzhanov 2009; Serebryany et al. 2011],
Helgrind [Müehlenfeld and Wotawa 2007] or Intel Inspector [int 2021] using vector clocks. Even
though such techniques are fully automated, their use is typically limited to in-house testing to
avoid the large overhead of tracking metadata required for analysis.

Reducing runtime overhead. Our work aims to to improve the performance of HB-race detectors.
The most prominent work with similar goal is the FastTrack algorithm that reduces the overhead
of race checking, simplifying it using the epoch optimization. In our evaluation, we compare
against this algorithm and show that sampling approaches like ours and Pacer’s can indeed
complement its performance, without compromising soundness. The overhead due to vector clocks
updates can also be systematically reduced for programs whose execution graphs exhibit special
structures [Agrawal et al. 2018; Cheng et al. 1998; Dimitrov et al. 2015; Feng and Leiserson 1997;
Raman et al. 2012; Surendran and Sarkar 2016]. Other works with similar goals include the use of
hardware support [Devietti et al. 2012], optimizing metadata synchronization [Bond et al. 2013;
Wood et al. 2017], or static analysis for optimizing race check placement [Flanagan and Freund
2013; Rhodes et al. 2017].

Sampling Based Dynamic Analysis. The Pacer algorithm due to Bond, Coons and McKin-
ley [Bond et al. 2010] is closest in spirit to our approach, although has significant differences.
First the Pacer algorithm has stronger guarantees. The algorithm has a sampling parameter 𝜌
and it guarantees that every race in the input trace will be detected with probability at least 𝜌 . A
property tester, as presented in this paper, however has weaker guarantees. It promises to detect
races in traces that are far, in terms of hamming distance, from race-free executions with high
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probability. However, in order obtain the stronger guarantees, Pacer needs to sample significantly
more events than the algorithm presented here. The expected number of samples drawn by Pacer
is 𝜌𝑛 (where input trace 𝜎 has length 𝑛), and it can be easily shown that there are executions on
which with non-zero probability Pacer will sample all events in the trace. In contrast, the number
of events sampled by our algorithm is at most 𝑂 (𝑡 + ℎ), which is independent of the length of
the input trace 𝜎 . This means that our algorithm will typically have lower overheads than Pacer,
at the cost of finding fewer races. This is borne out by our experiments. Other sampling based
approaches that are closely related include LiteRace [Marino et al. 2009] also resorts to sampling
for reducing runtime overhead guided by the ‘cold-region hypothesis’ that data races are more
likely exhibited in parts of the source code that are not exercised frequently during the execution.
DataCollider [Erickson et al. 2010] samples memory locations to detect data races on, in order to
reduce runtime overhead of dynamic race detection. However, most of these algorithms provide no
formal mathematical guarantees for the likelihood of reporting races or any upper bound on the
number of events sampled.

Sampling BasedHybrid Analysis. The work in RaceMob [Kasikci et al. 2013] deploys a two-phase
hybrid analysis. The first static analysis phase identifies a more precise set of memory locations
that may potentially be racy, and in the second pass, performs sampled dynamic analysis while
focusing on the memory locations identified from during the first static analysis phase. This is in
line with the work of Choi et al [Choi et al. 2002], and is also more recently deployed for kernel
race bugs [Jeong et al. 2019]. We remark that the fundamental algorithmic improvements proposed
in our paper are orthogonal to such analyses and can be modularly plugged into such hybrid race
detection techniques to reduce the overhead of the dynamic analysis phase. Similar to RaceMob’s
analysis, RPT can also benefit from an additional static analysis phase which can identify a focused
set of memory locations. Such a set can help reduce space usage due to redundant metadata and the
performance cost due to updates on such metadata. Further, if a candidate set of memory locations
is known prior to the dynamic analysis, the core algorithm of RPT can also be adopted so that it
only samples sub-traces that begin at access events of memory locations belonging to this candidate
set. In our paper, we focus on experimental comparison with purely dynamic analysis techniques
to precisely distill the algorithmic benefits our approach offers.

Randomized scheduling. Another popular set of race detection techniques that employ random-
ization include those that drive the thread schedulers using randomization [Burckhardt et al. 2010;
Luo and Demsky 2021; Sen 2008; Xu et al. 2020], with the goal of enhancing the likelihood of cover-
ing a racy location. Such techniques fall into the general class of controlled concurrency testing
techniques [Thomson et al. 2016] that employ heuristics such as bounding context switches [Kahlon
et al. 2005; Musuvathi and Qadeer 2007; Sorrentino et al. 2010], thread speed control [Chen et al.
2018] or reinforcement learning to determine a buggy thread schedule [Mukherjee et al. 2020]. Our
approach is orthogonal to all such approaches and can potentially reduce the overhead of intensive
exploration.

Other Approaches. Dynamic race detection has been a topic of interest, and recent advances
such as predictive analysis aim to enhance coverage of HB-based race detectors by considering
alternate reorderings that exhibit a race, without explicitly re-executing the program, and have
been shown to be effective in catching hidden races. These include explicit enumeration based
techniques [Sen et al. 2005], symbolic techniques [Huang et al. 2014; Said et al. 2011], graph based
analyses [Pavlogiannis 2019] and partial order based techniques [Kini et al. 2017; Mathur et al.
2021; Roemer et al. 2018, 2020; Smaragdakis et al. 2012].
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Property Testing. Property testing [Goldreich 2017] is a widely studied sub-field in theoretical
computer science, where the relaxation to solve a decision problem is exploited to design sublinear
algorithms for a variety of problems. Our algorithm and its proof, draws heavily from the ideas
presented in [Alon et al. 2001], where it is shown that regular languages can be property tested
with a constant number of samples. The proof we present here specializes the ideas in [Alon et al.
2001] for race detection. In particular, we have paid particular attention to the constants involved
in our analysis, because even small factor changes can impact the performance of our algorithm on
benchmarks we experiment with.

6 CONCLUSIONS
We presented a randomized property tester (RPT) for detecting HB-races. The algorithm is sound,
i.e., never reports a race when there is none, and guarantees to detect a race if the input trace
is far from any race-free trace. Moreover, the algorithm samples and processes only constantly
many events even in the worst case. This is in contrast to previously proposed sampling based
approaches for race detection. RPT was implemented and compared against two well know HB

race detectors: FastTrack and Pacer. Experimental evaluation showed that RPT did indeed have
the lowest running time among all the algorithms, and detects races often.
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A APPENDIX
Trace characteristics, sampling statistics and races reported. 𝛿 = 0.1 for RPT. Pacer uses sampling
ratio=3%.
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1 2 3 4 5 6 7 8 9 10 11
Benchmark trace length 𝑀 Pacer sampled RPT sampled # Warnings # Warning variables

FT Pacer RPT FT Pacer RPT
zero-reversal-logs-final-logs 1.0M 56.0 358.9K 499.0K 29.6K 3.5K 18.4K 988.00 163.53 634.67
zero-reversal-logs-final-logs1 1.4M 32.0 136.5K 814.5K 72.00 4.58 39.63 24.00 1.22 12.83
zero-reversal-logs-final-logs2 3.1M 60.0 747.3K 2.6M 14.00 0.29 8.80 13.00 0.27 8.20
zero-reversal-logs-final-logs3 11.7M 72.0 1.5M 11.1M 252.00 7.13 123.98 28.00 1.02 17.05

HPCBench-NPBS-DC.S-12M-events 11.7M 228.0 2.9M 11.3M 5.8K 119.09 5.4K 574.00 17.62 534.35
HPCBench-NPBS-DC.S-12M-events1 11.7M 68.0 3.5M 11.1M 82.00 2.84 18.17 82.00 2.84 18.17

sunflow 16.8M 68.0 1.3M 15.1M 252.00 2.35 109.96 28.00 0.24 15.90
misc-hsqldb-hsqldb 18.8M 184.0 3.0M 18.1M 284.00 5.40 258.87 5.00 0.75 4.55

DRACC-DRACC-OMP-017-Counter-wr 27.0M 68.0 11.6M 21.8M 15.00 1.09 13.12 15.00 1.09 13.12
OmpSCR-v2.0-c-testPath-30M-eve 30.2M 68.0 18.0M 23.4M 181.00 12.89 26.37 16.00 0.89 11.73
OMPRacer-Lulesh-35M-events-16 35.3M 70.0 8.0M 26.0M 8.8M 253.2K 1.9M 65.4K 36.5K 51.4K
OmpSCR-v2.0-c-testPath-37M-eve 37.5M 228.0 19.8M 35.8M 289.00 8.80 207.83 57.00 2.05 52.48

misc-tradesoap-tradesoap 39.1M 904.0 4.8M 38.8M 7.4K 247.87 7.2K 396.00 9.60 387.88
misc-tradebeans-tradebeans 39.1M 908.0 4.6M 39.0M 7.2K 22.09 7.1K 401.00 7.93 399.45

series 40.0M 18.0 22.3K 10.3M 0.00 0.00 0.00 0.00 0.00 0.00
DataRaceBench-DRB155-missingor 50.0M 68.0 20.6M 29.7M 17.00 0.04 7.60 17.00 0.04 7.60
DataRaceBench-DRB155-missingor1 50.0M 228.0 27.3M 46.5M 58.00 55.11 38.85 58.00 55.11 38.85
OMPRacer-Lulesh-52M-events-56 52.1M 226.0 11.0M 49.4M 12.1M 379.2K 6.8M 86.4K 48.6K 86.3K

zero-reversal-logs-final-logs4 58.5M 42.0 8.8M 22.8M 93.00 1.71 0.98 4.00 0.20 0.32
tomcat 63.2M 212.0 4.8M 56.6M 1.2M 35.4K 498.9K 17.8K 9.2K 16.4K

OmpSCR-v2.0-cpp-sortOpenMP-cpp 88.9M 66.0 35.9M 35.0M 32.1M 986.0K 240.7K 8.0K 5.4K 7.9K
DRB177-fib-taskdep-yes-90M-eve 90.2M 70.0 44.3M 37.2M 3.8K 112.52 1.2K 1.5K 102.50 692.37
DataRaceBench-DRB176-fib-taskd 90.2M 70.0 44.3M 37.0M 9.9K 334.80 3.3K 2.3K 256.53 1.4K
DRB177-fib-taskdep-yes-90M-eve1 90.3M 230.0 44.2M 74.8M 7.8K 452.84 4.8K 3.9K 425.11 2.7K
DataRaceBench-DRB176-fib-taskd1 90.3M 230.0 44.3M 74.6M 26.6K 934.31 19.5K 7.2K 783.18 6.3K

fop 96.0M 8.0 9.9M 5.4M 0.00 0.00 0.00 0.00 0.00 0.00
OmpSCR-v2.0-c-LoopsWithDepende 96.4M 66.0 6.7M 36.1M 1.7K 113.79 551.70 31.00 14.43 21.02
OmpSCR-v2.0-c-LoopsWithDepende1 96.4M 66.0 6.8M 35.9M 2.9K 97.56 569.07 31.00 14.55 20.35
OMPRacer-XSBench-97M-events-16 96.6M 66.0 23.0M 36.4M 27.00 5.09 7.45 27.00 5.09 7.45
OMPRacer-XSBench-97M-events-56 96.6M 226.0 21.4M 77.5M 89.00 6.69 61.02 89.00 6.69 61.02

DRACC-DRACC-OMP-014-Counter-wr 104.9M 68.0 54.2M 37.5M 15.00 0.27 6.87 15.00 0.27 6.87
DRACC-DRACC-OMP-020-Counter-wr 104.9M 68.0 52.9M 37.9M 15.00 0.27 5.28 15.00 0.27 5.28
DRACC-DRACC-OMP-019-Counter-wr 104.9M 68.0 3.9M 37.3M 94.6M 2.8M 33.2M 527.00 512.27 515.25
DRACC-DRACC-OMP-018-Counter-wr 104.9M 68.0 3.9M 37.8M 93.9M 2.8M 33.3M 527.00 512.55 518.25
DRACC-DRACC-OMP-013-Counter-wr 104.9M 68.0 3.9M 36.6M 96.0M 2.9M 33.0M 527.00 512.00 517.40
DRACC-DRACC-OMP-012-Counter-wr 104.9M 68.0 3.9M 37.8M 95.6M 2.8M 33.9M 527.00 512.27 517.25
OmpSCR-v2.0-cpp-sortOpenMP-cpp1 106.7M 228.0 74.1M 82.3M 193.00 7.65 146.87 56.00 3.91 44.08
OmpSCR-v2.0-cpp-sortOpenMP-cpp2 106.8M 228.0 74.2M 82.3M 177.00 5.38 140.02 56.00 1.95 48.65
OmpSCR-v2.0-cpp-sortOpenMP-cpp3 107.0M 68.0 41.7M 38.0M 47.00 1.85 14.50 16.00 0.89 5.13
OmpSCR-v2.0-cpp-sortOpenMP-cpp4 107.1M 228.0 74.5M 82.4M 199.00 5.98 150.23 56.00 0.96 42.52
OmpSCR-v2.0-cpp-sortOpenMP-cpp5 107.5M 68.0 42.3M 38.0M 48.00 1.38 15.97 16.00 0.60 6.28
DataRaceBench-DRB154-missinglo 112.0M 68.0 56.4M 38.3M 15.00 0.27 5.78 15.00 0.27 5.78
DataRaceBench-DRB152-missinglo 112.0M 68.0 34.4M 37.8M 16.00 0.09 5.00 16.00 0.09 5.00
DataRaceBench-DRB150-missinglo 112.0M 68.0 34.3M 38.3M 16.00 0.05 6.00 16.00 0.05 6.00
DataRaceBench-DRB122-taskundef 112.0M 66.0 61.6M 37.4M 15.00 0.82 4.00 15.00 0.82 4.00
DataRaceBench-DRB123-taskundef 112.0M 66.0 31.6M 37.4M 14.0M 409.2K 4.7M 227.00 212.00 217.75
DataRaceBench-DRB122-taskundef1 112.0M 226.0 61.2M 84.2M 55.00 55.00 24.02 55.00 55.00 24.02
DataRaceBench-DRB123-taskundef1 112.0M 226.0 36.6M 84.0M 13.9M 406.6K 10.4M 712.00 712.00 681.83
OmpSCR-v2.0-c-LoopsWithDepende2 112.6M 66.0 14.2M 37.4M 2.9K 57.60 106.07 30.00 14.16 19.00
OmpSCR-v2.0-c-LoopsWithDepende3 112.6M 66.0 14.1M 37.0M 2.9K 70.86 89.90 30.00 13.98 18.93
OmpSCR-v2.0-cpp-sortOpenMP-cpp6 114.2M 228.0 75.4M 85.3M 1.1M 72.6K 133.0K 99.7K 9.3K 15.7K
OmpSCR-v2.0-cpp-sortOpenMP-cpp7 115.4M 228.0 83.9M 84.9M 56.00 2.00 40.58 56.00 2.00 40.58
OmpSCR-v2.0-c-Mandelbrot-116M 115.7M 66.0 55.8M 37.4M 26.00 0.95 5.03 26.00 0.95 5.03
OmpSCR-v2.0-c-Mandelbrot-116M1 115.7M 226.0 115.7M 85.6M 87.00 55.98 28.78 87.00 55.98 28.78
OMPRacer-Kripke-117M-events-16 117.5M 68.0 13.1M 38.6M 12.2M 998.9K 91.4K 175.1K 68.0K 22.8K
OMPRacer-Kripke-119M-events-56 119.2M 228.0 44.6M 87.3M 10.4M 999.4K 640.1K 116.3K 31.4K 49.6K
DataRaceBench-DRB110-ordered-o 120.0M 68.0 55.4M 38.7M 15.00 0.27 4.25 15.00 0.27 4.25
DataRaceBench-DRB110-ordered-o1 120.0M 228.0 68.9M 87.2M 55.00 55.00 25.90 55.00 55.00 25.90

zero-reversal-logs-final-logs5 122.5M 36.0 27.5M 22.1M 77.00 3.69 11.98 34.00 1.73 5.47
crypt 126.0M 30.0 105.8M 18.9M 0.00 0.00 0.00 0.00 0.00 0.00

OMPRacer-QuickSilver-133M-even 132.6M 228.0 47.1M 90.6M 1.1M 33.0K 344.2K 121.3K 9.1K 11.3K
DataRaceBench-DRB105-taskwait 134.0M 66.0 45.2M 38.6M 6.6K 209.44 1.6K 1.3K 172.93 719.35
DataRaceBench-DRB106-taskwaitm 134.0M 66.0 45.5M 38.1M 1.3K 36.47 176.00 877.00 35.82 160.47
DataRaceBench-DRB105-taskwait1 134.0M 226.0 41.4M 91.5M 40.9K 1.5K 23.8K 4.6K 1.1K 4.2K
DataRaceBench-DRB106-taskwaitm1 134.0M 226.0 43.5M 90.7M 3.3K 278.91 1.3K 2.5K 275.85 1.1K

zero-reversal-logs-final-logs6 134.1M 22.0 14.1M 14.3M 33.1M 595.9K 87.9K 185.8K 22.3K 14.6K
OmpSCR-v2.0-c-QuickSort-134M-e 134.3M 66.0 19.3M 38.6M 419.9K 19.8K 3.50 34.9K 6.1K 3.50
OmpSCR-v2.0-c-QuickSort-134M-e1 134.3M 226.0 19.8M 92.3M 419.9K 20.7K 33.92 35.0K 6.6K 33.92

lufact 135.0M 18.0 13.6M 11.9M 33.1M 515.8K 55.7K 185.8K 21.4K 11.2K
DRACC-DRACC-OMP-017-Counter-wr1 135.0M 68.0 58.4M 39.7M 15.00 0.00 5.50 15.00 0.00 5.50
DRACC-DRACC-OMP-015-Counter-wr 135.0M 68.0 35.9M 39.6M 5.1M 154.2K 1.5M 16.00 1.27 6.25

DataRaceBench-DRB148-critical1 135.0M 68.0 36.1M 39.3M 5.4M 161.3K 1.6M 16.00 2.36 5.75
DRACC-DRACC-OMP-010-Counter-wr 135.0M 68.0 35.9M 39.5M 5.2M 155.1K 1.5M 16.00 1.82 5.58
DRACC-DRACC-OMP-009-Counter-wr 135.0M 68.0 36.1M 38.7M 5.3M 160.9K 1.5M 16.00 2.09 4.50
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1 2 3 4 5 6 7 8 9 10 11
Benchmark trace length 𝑀 Pacer sampled RPT sampled # Warnings # Warning variables

FT Pacer RPT FT Pacer RPT
DRACC-DRACC-OMP-016-Counter-wr 135.0M 68.0 35.9M 39.6M 5.4M 161.7K 1.6M 16.00 1.55 5.43
OmpSCR-v2.0-c-LUreduction-136M 136.4M 66.0 10.7M 38.7M 42.2M 1.2M 175.1K 89.4K 71.9K 1.8K
OmpSCR-v2.0-c-LUreduction-137M 136.9M 226.0 86.3M 93.1M 37.2M 1.2M 2.7M 89.1K 64.3K 22.9K
DataRaceBench-DRB144-critical 140.0M 68.0 43.0M 39.9M 16.00 0.87 4.52 16.00 0.87 4.52

OmpSCR-v2.0-cpp-sortOpenMP-cpp 141.7M 68.0 96.6M 39.6M 16.00 0.55 2.50 16.00 0.55 2.50
HPCBench-OmpSCR-v2.0-c-fft6-14 146.0M 66.0 56.0M 39.0M 30.00 0.69 5.25 30.00 0.69 5.25
OmpSCR-v2.0-c-fft6-146M-events 146.0M 226.0 56.1M 94.5M 74.00 7.75 40.17 74.00 7.75 40.17
OmpSCR-v2.0-c-Pi-150M-events-1 150.0M 66.0 103.0M 39.3M 27.00 7.89 4.85 27.00 7.89 4.85
OmpSCR-v2.0-c-Pi-150M-events-5 150.0M 226.0 149.6M 95.9M 91.00 84.45 25.13 91.00 84.45 25.13
HPCBench-NPBS-IS.W-153M-events 152.9M 66.0 37.9M 39.4M 51.4M 2.6M 12.4K 2.0M 553.2K 11.55
OmpSCR-v2.0-cpp-sortOpenMP-cpp1 164.0M 68.0 65.6M 40.8M 667.6K 19.8K 7.2K 99.0K 6.9K 1.3K
OMPRacer-amg2013-170M-events-1 169.9M 358.0 21.8M 130.3M 24.0M 703.6K 4.3M 595.2K 43.7K 68.8K
SimpleMOC-170M-events-16-threa 170.2M 68.0 43.1M 41.0M 25.6K 723.89 28.13 2.1K 55.38 26.27
HPCBench-graph500-171M-events 171.3M 66.0 49.2M 40.0M 86.0M 2.6M 340.3K 115.2K 18.3K 11.5K
HPCBench-graph500-172M-events 172.5M 226.0 49.8M 102.8M 83.9M 2.8M 4.0M 118.5K 18.0K 19.4K

CoMD-CoMD-omp-task-deps-174M-e 174.1M 66.0 24.1M 39.1M 124.3M 3.4M 94.0K 16.5K 15.8K 1.9K
CoMD-CoMD-openmp-174M-events-1 174.1M 66.0 24.7M 40.1M 124.3M 3.7M 95.9K 16.5K 15.9K 1.8K
CoMD-CoMD-openmp-175M-events-5 175.1M 226.0 30.4M 103.4M 128.5M 3.5M 3.5M 16.9K 15.5K 6.2K
CoMD-CoMD-omp-task-175M-events 175.1M 226.0 29.9M 103.4M 128.5M 3.1M 3.4M 16.9K 15.7K 6.2K
CoMD-CoMD-omp-task-174M-events 175.1M 226.0 30.5M 103.3M 128.5M 3.1M 3.3M 16.9K 15.6K 6.3K
CoMD-CoMD-omp-task-deps-175M-e 175.1M 226.0 30.5M 103.3M 128.5M 3.5M 3.3M 16.9K 15.6K 6.3K
DataRaceBench-DRB062-matrixvec 183.9M 66.0 90.3M 38.7M 33.9M 1.1M 3.5M 31.00 16.82 19.53
OMPRacer-amg2013-190M-events-5 189.6M 518.0 25.1M 159.6M 28.0M 928.1K 8.9M 718.4K 65.3K 155.0K
OmpSCR-v2.0-c-LoopsWithDepende 192.6M 66.0 25.0M 40.5M 2.8K 88.75 52.42 32.00 15.82 17.45
DataRaceBench-DRB062-matrixvec1 193.2M 226.0 99.5M 106.9M 36.0M 1.4M 17.5M 116.00 111.07 72.32
OmpSCR-v2.0-c-MolecularDynamic 204.3M 66.0 77.8M 40.8M 83.2M 2.5M 51.7K 1.6K 1.6K 814.13
OmpSCR-v2.0-c-MolecularDynamic1 204.4M 226.0 86.9M 109.1M 87.0M 2.7M 569.4K 1.7K 1.7K 1.7K
OMPRacer-miniFE-207M-events-58 206.7M 518.0 49.8M 165.7M 27.8M 1.3M 6.3M 992.2K 51.0K 22.9K
OMPRacer-miniFE-208M-events-18 207.7M 358.0 48.3M 144.2M 19.4M 816.5K 1.5M 968.5K 41.2K 18.0K

misc-graphchi-graphchi 215.8M 86.0 51.7M 52.0M 1.8M 42.2K 1.2K 318.5K 10.1K 83.08
zero-reversal-logs-final-logs 217.5M 38.0 95.8M 24.7M 750.6K 9.4K 33.07 177.00 5.18 4.67

misc-biojava-biojava 221.0M 22.0 59.8M 14.7M 2.00 0.00 0.00 2.00 0.00 0.00
HPCBench-HPCCG-228M-events-16 228.1M 66.0 24.0M 41.3M 30.8M 1.1M 310.2K 15.0K 14.8K 1.0K
HPCBench-HPCCG-230M-events-56 229.5M 226.0 35.5M 113.3M 41.8M 2.0M 3.6M 15.8K 15.7K 13.8K
DRB177-fib-taskdep-yes-382M-ev 236.2M 70.0 115.8M 43.7M 2.1K 60.58 274.45 1.2K 56.64 226.92

CoMD-CoMD-omp-taskloop-251M-ev 251.5M 66.0 52.7M 41.5M 981.7K 35.6K 224.43 30.8K 1.1K 4.80
CoMD-CoMD-omp-taskloop-251M-ev1 251.5M 226.0 53.5M 115.9M 798.4K 55.1K 2.5K 64.9K 2.1K 38.37

misc-cassandra-cassandra 259.1M 704.0 150.3M 218.8M 42.1K 3.7K 30.7K 9.4K 255.93 6.9K
OmpSCR-v2.0-cpp-sortOpenMP-cpp2 295.5M 226.0 167.5M 120.9M 144.5M 4.5M 1.3M 6.1K 5.9K 6.0K
HPCBench-NPBS-IS.W-300M-events 300.1M 226.0 60.5M 121.6M 117.2M 12.1M 81.3K 2.1M 597.6K 324.48

zero-reversal-logs-final-logs1 307.3M 42.0 282.9M 27.7M 10.4M 401.6K 614.85 1.00 0.62 0.88
tsp 312.0M 38.0 270.1M 25.2M 10.4M 430.7K 480.34 1.00 0.52 0.90

OmpSCR-v2.0-c-LoopsWithDepende1 337.2M 226.0 180.8M 123.5M 7.3K 239.65 2.0K 118.00 54.33 75.37
OmpSCR-v2.0-c-LoopsWithDepende2 337.3M 226.0 181.0M 124.8M 8.5K 274.67 2.0K 116.00 55.82 77.00

pmd 367.0M 54.0 104.5M 35.4M 144.8K 3.5K 0.96 1.6K 50.43 0.96
DRB177-fib-taskdep-yes-211M-ev 382.1M 70.0 187.4M 45.3M 5.7K 188.85 488.33 1.8K 164.80 353.00

OmpSCR-v2.0-c-LoopsWithDepende3 394.0M 226.0 207.5M 128.8M 9.6K 250.02 483.77 118.00 55.55 75.58
OmpSCR-v2.0-c-LoopsWithDepende4 394.0M 226.0 205.3M 128.7M 9.4K 127.56 370.32 113.00 46.31 65.63

zero-reversal-logs-final-logs2 397.8M 24.0 297.6M 16.0M 1.00 0.02 0.00 1.00 0.02 0.00
montecarlo 494.0M 18.0 102.0M 12.3M 57.2K 1.6K 129.52 5.00 1.15 1.00

OmpSCR-v2.0-c-fft-496M-events 496.0M 70.0 115.8M 45.9M 2.2M 62.2K 28.10 2.0M 57.5K 1.73
OmpSCR-v2.0-c-fft-496M-events1 496.0M 230.0 102.6M 135.9M 2.1M 63.8K 302.18 2.1M 63.8K 18.53
OMPRacer-Lulesh-543M-events-16 543.4M 70.0 91.2M 46.2M 119.8M 3.6M 209.5K 326.6K 203.3K 840.27

misc-zxing-zxing 546.4M 64.0 97.8M 42.4M 10.1M 264.2K 9.40 27.2K 754.49 1.58
OMPRacer-Lulesh-569M-events-56 569.5M 230.0 114.1M 138.3M 145.3M 4.1M 2.5M 470.3K 309.7K 21.8K

luindex 570.0M 24.0 298.8M 16.3M 1.00 0.07 0.00 1.00 0.07 0.00
zero-reversal-logs-final-logs3 606.9M 22.0 51.7M 15.0M 0.00 0.00 0.00 0.00 0.00 0.00

sor 608.0M 18.0 49.0M 12.3M 0.00 0.00 0.00 0.00 0.00 0.00
DRB177-fib-taskdep-yes-618M-ev 618.3M 70.0 303.0M 46.5M 9.6K 297.89 522.72 2.2K 251.45 375.13
DataRaceBench-DRB176-fib-taskd 618.3M 70.0 303.9M 46.5M 7.9K 203.64 489.02 2.4K 174.24 353.95
DRB177-fib-taskdep-yes-618M-ev1 618.3M 230.0 303.0M 139.8M 27.5K 1.1K 4.6K 6.8K 934.60 2.5K
DRB176-fib-taskdep-no-341M-eve 618.3M 230.0 303.6M 139.8M 49.3K 1.8K 9.2K 9.7K 1.4K 4.3K

OmpSCR-v2.0-c-LoopsWithDepende5 674.2M 226.0 349.6M 137.1M 6.7K 198.91 187.25 116.00 50.64 64.22
xalan 1000.0M 60.0 225.0M 40.5M 2.3K 7.77 8.98 202.00 7.27 0.82

DRB177-fib-taskdep-yes-552M-ev 1.0B 70.0 490.6M 47.2M 7.6K 240.22 241.97 2.1K 209.13 199.43
OMPRacer-RSBench-1.2B-events-1 1.3B 66.0 828.8M 44.7M 22.00 0.78 0.28 22.00 0.78 0.28
OMPRacer-RSBench-1.2B-events-5 1.3B 226.0 882.0M 146.9M 95.00 5.95 12.23 95.00 5.95 12.23
DRB177-fib-taskdep-yes-1.6B-ev 1.6B 70.0 793.8M 47.6M 11.4K 374.89 258.20 2.4K 306.84 209.53
DRB176-fib-taskdep-no-1.6B-eve 1.6B 70.0 795.7M 47.6M 12.5K 396.09 319.93 2.9K 309.67 245.15
DRB176-fib-taskdep-no-1.6B-eve1 1.6B 230.0 795.4M 151.2M 71.6K 2.5K 5.4K 11.1K 1.9K 3.0K

moldyn 1.7B 18.0 650.1M 12.4M 17.6M 668.5K 747.57 18.4K 17.5K 3.24
OmpSCR-v2.0-c-fft-2.1B-events 2.1B 230.0 477.8M 152.9M 8.1M 233.4K 56.27 7.8M 233.4K 4.72

avrora 2.4B 32.0 956.3M 22.0M 3.1M 93.0K 20.0K 414.7K 17.5K 4.4K
raytracer 2.8B 18.0 1.5B 12.4M 7.00 1.42 0.00 4.00 1.19 0.00
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