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Abstract Model checking systems formalized using probabilistic models such as
discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) can
be reduced to computing constrained reachability properties. Linear programming
methods to compute reachability probabilities for DTMCs and MDPs do not scale
to large models. Thus, model checking tools often employ iterative methods to
approximate reachability probabilities. These approximations can be far from the
actual probabilities, leading to inaccurate model checking results. On the other
hand, specialized techniques employed in existing state-of-the-art exact quantita-
tive model checkers, don’t scale as well as their iterative counterparts. In this work,
we present a new model checking algorithm that improves the approximate results
obtained by scalable iterative techniques to compute exact reachability probabili-
ties. Our techniques are implemented as an extension of the PRISM model checker
and are evaluated against other exact quantitative model checking engines.
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1 Introduction

Probabilistic models such as discrete time Markov chains (DTMCs) and Markov
decision processes (MDPs) are often used to describe systems in many applica-
tion areas such as distributed systems [25, 50], hardware communication proto-
cols [26], reliability engineering in circuits [15, 35, 46, 47], dynamic power man-
agement [14, 49], networking [42, 41] and security [20]. Probabilistic transitions in
these models are used to capture random faults, uncertainty of environment and
explicit randomization used in algorithms. Analyzing properties of these proba-
bilistic models is typically achieved through Probabilistic Computation Tree Logic
(PCTL) model checking [51], wherein, desired properties of the model are specified
as PCTL formulas and their validity is evaluated against the system in question.

PCTL is a quantitative extension of the temporal logic Computation Tree Logic
(CTL) used to describe how a system evolves over time. For example, a PCTL
formula ψ can be used to specify the property that almost surely no execution of
a probabilistic program leads to a state with a deadlock. Given on∈ {≤, <,≥, >},
the formula Ponp[ψ] expresses the property that the measure of computation paths
satisfying ψ is onp. For a DTMC or MDP M and a PCTL formula φ, the PCTL
model checking procedure recursively computes the set of states ofM that satisfy
subformulas of φ. Each recursive step, in turn, reduces to constrained quantitative

reachability, wherein, given a set of good states G and a set of target states T ,
the goal is to compute the measure of the paths that reach T while remaining
in G. If the model is decorated with costs or rewards, one may also be interested
in computing the expected cost/reward of reaching T . It is well known that the
constrained quantitative reachability problem for DTMCs and MDPs can be solved
in polynomial time by a reduction to linear programming [10, 51].

Despite its low asymptotic complexity, linear programming, unfortunately,
doesn’t scale to large models and is rarely used to solve the constrained quan-
titative reachability problem in practice. Instead, probabilistic model checkers [44,
23, 38, 32, 22, 39], typically compute approximations to the exact reachability
probabilities through an iterative process. The most prevalent iterative technique
is value iteration, where exact reachability probabilities may only be approached in
the limit. To ensure completion in a finite number of steps, it is common practice
for model checking tools to terminate value iteration based on various heuristics,
for example, when the difference between the computed reachability probabilities
of successive iterations is “small”. This approximation step may lead to unsound
results [11, 31, 54], particularly in systems where high magnitude changes in value
iteration are preceded by periods of stability that cause iteration to terminate
prematurely.

Another iterative technique for computing constrained quantitative reachabil-
ity is interval iteration [31, 17, 11, 53]. Aimed at addressing the shortcomings of
value iteration, interval iteration utilizes two simultaneous value iteration proce-
dures converging to the exact probability values from above and below. While,
this allows one to bound the error present in the approximation, the exact so-
lution cannot be obtained from such an interval bound. Further, state-of-the-art
model checkers typically implement these iterative procedures using floating-point
numbers and finite-precision arithmetic. As a result, both iterative techniques are
susceptible to overflows in floating-point calculations. The inherent imprecision in
the approximate answers, combined with the errors introduced from finite preci-



Exact Quantitative Probabilistic Model Checking Through Rational Search 3

sion arithmetic can be further compounded by the presence of nested probability
operators in PCTL formulas when the sets of good states G and target states T
are not correctly computed in the recursive step (see Example 3 in Section 3).

Contributions. In this article, we present a new algorithm and its implementa-
tion that sharpens approximate solutions computed by fast iterative techniques,
to obtain the exact constrained reachability probabilities. The starting point of
our approach is the observation that when transition probabilities in the model
are rational numbers, the exact solution is also a rational number of polynomially
many bits. The second ingredient in our technique is an algorithm due to Kwek
and Mehlhorn [40], which, given a “close enough” approximation to a rational
number, finds the rational number efficiently. The rough outline of our algorithm
is as follows. We use an iterative technique (value iteration or interval iteration) to
compute an approximate solution and then apply the Kwek-Mehlhorn algorithm
to find a close candidate rational solution. Since the approximate solution we start
with is of unknown quality, the candidate rational solution obtained may not be
the exact answer. Therefore, we check if the candidate satisfies certain necessary
and sufficient conditions that characterize the actual solution. This allows one to
confirm the correctness of the candidate rational solution. If it is not correct, the
process is repeated, starting with an approximate solution of improved precision.
Precise details of the algorithm are given in Section 5.

We have implemented this approach as an extension of the PRISM model
checker, called RationalSearch. Our tool computes exact constrained reachabil-
ity probabilities and exact expected rewards when model checking DTMCs against
PCTL specifications. Our implementation also computes min reachability proba-
bilities and max expected rewards when model checking MDPs against PCTL
specifications. For max reachability probabilities, we currently support only the
Explicit engine of PRISM. Evaluation of our implementation against a large set
of examples from the PRISM benchmark suite [2] and case studies [3] shows that
our technique can be applied to a wide array of examples. In many cases, our tool
is orders of magnitude faster than the exact model checking engines implemented
in state-of-the-art tools like PRISM [44] and STORM [22].

Related Work. The work closest in spirit to ours is [30], which presents an ap-
proach to obtain exact solutions for reachability properties for MDPs and dis-
counted MDPs. The basic idea there is to interpret the scheduler obtained for
an approximate solution, as a basis for the linear program corresponding to the
verification question. By examining the optimality of the solution associated with
this basis, the exact solution can be obtained by improving the scheduler using
the Simplex algorithm. This is significantly different from our approach. In par-
ticular, for DTMCs (where there is no scheduler), the approach of [30] reduces to
solving a linear program, which is known to be not scalable. Since the implemen-
tation from [30] is not available, we could not experimentally compare with this
approach.

Several existing tools [22, 44] implement algorithms for exact quantitative
model checking. Essentially these tools work by creating a model representation
using rational numbers and performing a state elimination computation similar to
Gauss elimination. Much of the infrastructure of this computation can be derived
from parametric model checking techniques [21, 23, 33, 34] that analyze systems
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in which portions of the model are left unspecified. These computations are in-
trinsically more complicated than those performed by approximation engines. Our
techniques avoid these expensive computations while still producing exact solu-
tions for a large class of examples.

History and Organization. An extended abstract of this article appeared in [13].
The main difference from [13] is that in [13], we had claimed that in order to
check whether a candidate solution vector represents the actual exact solution of
max/min reachability probabilities or that of max/min expected costs for MDPs,
it suffices to only check that the candidate vector is a solution to a set of linear
equations. This happens to be incorrect for the case of max reachability probabil-
ities and min expected costs (see Section 4), and additional checks are required to
claim that the candidate solution vector is indeed correct (Lemmas 1 and 3). We
have modified our algorithm to reflect this and have also updated our prototype
implementation and evaluated the new version on our benchmarks. We have also
computed the asymptotic complexity of the algorithm (see Theorem 2). Further,
the version of RationalSearch evaluated in this work extends our original pro-
totype by integrating with interval iteration and including several performance
enhancements. Additionally, we describe the full details of our implementation
and provide a more comprehensive evaluation of the tool.

The paper is organized as follows. Section 2 discusses preliminary notations,
definitions and algorithms concerning PCTL model checking of DTMCs and MDPs.
Section 3 describes iterative model checking techniques and their shortcomings.
In Section 4, we discuss fixpoint characterizations for solutions to PCTL model
checking questions of MDPs. In Section 5 we present our exact model checking
algorithm. Sections 6 and 7 describe the implementation and evaluation of our
techniques and we conclude with Section 8.

2 Preliminaries

A common technique in the analysis of systems is to model them as state transitions

systems where states describe information about the system at a point in time and
transitions describe how the system evolves from one state to another. When this
evolution is governed by random phenomena, such state transition systems can
then be enriched to capture probabilistic behavior. The resulting model is known as
a DTMC, in which every state is mapped to a distribution over the successor states.
MDPs generalize DTMCs, in that, the distribution over the successor states is non-
deterministically chosen. Our presentation follows [52] . We begin by formalizing
DTMCs and introducing the logic Probabilistic computation tree logic (PCTL)
which is used to specify properties of DTMCs. We then formally describe MDPs
and PCTL model checking for MDPs.

2.1 Discrete time Markov chains (DTMCs)

Syntax and semantics. A DTMC is a tupleM = (Z,∆,C, L) where Z is a finite set
of states, ∆ : Z → Dist(Z) is the probabilistic transition function that maps every
state to a probability distribution over Z, C : Z × Z → Q≥0 is a cost (or reward)
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structure and L : Z → 2AP is a labeling function that maps states to subsets of
AP, the set of atomic propositions. For each z ∈ Z, ∆(z) : Z → Q ∩ [0, 1] defines
a discrete probability distribution over Z, that is, ∆(z)(z′) ≥ 0 for all z′ ∈ Z, and∑
z′∈Z ∆(z)(z′) = 1. We will henceforth denote ∆(z)(z′) by ∆(z, z′). Intuitively,

a DTMC M evolves as follows. If M is in state z, it transitions to state z′ with
probability ∆(z, z′).

Formally, a finite (resp. infinite) path ρ ofM is a finite (resp. infinite) sequence
of states z0 → z1 → · · · such that ∆(zi, zi+1) > 0. We write ρ(i) to denote the ith

state zi in ρ. For a DTMC M, the set of all infinite paths starting from state z
will be denoted by Pathsz(M). For a finite path ρfin = z0 → · · · → zm starting
at state z0, we associate a measure probz0(ρfin) =

∏m−1
i=0 ∆(zi, zi+1). The cylinder

set of ρfin is Cyl(ρfin) = {ρ ∈ Pathsz0(M) | ρfin is a prefix of ρ} and its associated
measure is probz0(Cyl(ρfin)) = probz0(ρfin). This measure probz0 can be extended
to a unique probability measure over the smallest σ-algebra on Pathsz0(M) that
contain all cylinder sets; the resulting probability measure will also be denoted by
probz0 .

Reachability Probability and Expected Cost. Let z ∈ Z and F ⊆ Z. The probability
of reaching F from the state z is defined to be the measure probz(Reach) where
Reach is the set of all infinite paths ρ such that ρ(i) ∈ F for some i ≥ 0. Define a
function costz(F ) : Pathsz → Q≥0 such that for any ρ ∈ Pathsz(M), costz(F )(ρ) =∑m−1
i=0 C(zi, zi+1) if z0 → · · · → zm is the shortest prefix of ρ such that zm ∈ F

and costz(F )(ρ) = ∞ if no such prefix exists. Let Ez be the usual expectation on
Pathsz(M) with respect to the measure probz. Then Ez[costz(F )] is defined to be
the expected cost of reaching F . Observe that, following [52], the expected cost
Ez[costz(F )] is finite iff the set F can be reached from z with probability 1.

Example 1 Consider an embedded control system [43] comprised of an input pro-
cessor, a main processor, an output processor and a bus. In each cycle of the sys-
tem, the input processor collects data from a set of n sensors S1, S2, . . . , Sn. The
main processor polls the input processor and passes instructions to the output
processor controlling a set of m actuators A1, A2, . . . Am. Communication between
processors occurs over the bus. The system is designed to tolerate failures in a
limited number of components. If the input processor reports that the number of
sensor failures exceeds some threshold MAX FAILURES, then the main processor
shuts the system down. Otherwise, it activates the actuators, which again, are
prone to failure. When the probabilities with which each of these components fail
are known, one can model the system’s reliability using a DTMC. In Figure 1, we
give a DTMC that models a single cycle of such a system with n = 2 sensors and
m = 1 actuator. For simplicity, we assume that each sensor fails with probability
Es and each actuator fails with probability Ea. States of the model are labeled
with es1, ..., e

s
n ∈ {0, 1} and ea1 , ..., e

a
m ∈ {0, 1}, where esi = 1 denotes the failure of

sensor Si and eai = 1 denotes the failure of actuator Ai. In Figure 1, we omit labels
if they are not relevant in a particular state.
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Fig. 1 Markov chain for a simple embedded control system with two sensors and one actuator
tolerating a single sensor fault.

2.2 Probabilistic computation tree logic (PCTL)

Properties of DTMCs be expressed in the logic PCTL, which extends the temporal
logic CTL with the ability to reason quantitatively. We start by describing the
syntax and semantics of PCTL.

Syntax Analogous to CTL, PCTL has state formulas that model properties of
states and path formulas that model properties of paths.

Definition 1 Let a ∈ AP be an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1],
c ∈ Q≥0 and k ∈ N. The syntax of PCTL is

φ ::= true a ¬φ φ ∧ φ Ponp[ψ] Eonc[φ]

where ψ ::= Xφ | φUφ.
Here φ is a state formula and ψ a path formula.

Semantics. The state formulas are interpreted over states and path formulas over
infinite paths.

Definition 2 LetM = (Z,∆,C, L) be a DTMC, φ, φ1, φ2 be state formulas and ψ

be a path formula. The satisfaction relation |= for PCTL state formulas and for
PCTL path formulas is defined by mutual induction:

M, z |= true for all z ∈ Z
M, z |= a ⇔ a ∈ L(z)
M, z |= ¬φ ⇔ M, z 6|= φ

M, z |= φ1 ∧ φ2 ⇔ M, z |= φ1 and M, z |= φ2

M, z |= Ponp[ψ] ⇔ pz(ψ) on p

M, z |= Eonc[φ] ⇔ ez(φ) on c

M, ρ |= Xφ ⇔ M, ρ(1) |= φ

M, ρ |= φ1Uφ2 ⇔ ∃i≥0 : (M, ρ(i) |= φ2 and ∀j < i :M, ρ(j) |= φ1)
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where pz(ψ) = probz({ρ ∈ Pathsz(M) | M, ρ |= ψ}), ez(φ) = Ez[costz(Zφ)] with
Zφ = {z′ ∈ Z | M, z′ |= φ}.

Example 2 Consider the DTMC modeling an embedded control system from Ex-
ample 1. One can describe many important properties of this model using PCTL
as follows (on,on′∈ {≤,≥, <,>} and p ∈ [0, 1])

1. The probability of success is onp:

Ponp [ true U “Sucess” ]

2. The probability of reaching the set of states where there are no sensor failures
is onp:

Ponp [ true U (es1 + ...+ esn = 0) ]

3. Let G be the set of states from which the probability of reaching a state where
sensor S1 fails is on1

2 . Let T be the set of states from which the probability of
reaching a state in which actuator A1 fails is 0. The probability of remaining
in some state from the set G until reaching a state in T is on′p:

Pon′p [ Pon 1
2
[true U (es1=1)] U P≤0[true U (ea1=1)] ]

2.3 PCTL model checking

The PCTL model checking question asks, given a state z0 of a DTMC M and a
PCTL formula φ, determine whether M, z0 |= φ. Similar to the model checking
algorithm for CTL, the PCTL model checking algorithm recursively computes the
set of states satisfying a state sub-formula (see [52, 10] for the complete details).

Let φ, φ′ be state formulas. To check whether M, z0 |= Ponp[φ U φ′], one re-
cursively computes the set of states Zφ and Zφ′ satisfying the state formulas φ
and φ′, respectively. These can then be used to derive, for every z∈Z, the quantity
pz(φ U φ′) which represents the probability of reaching the set Zφ′ while remaining
in the set Zφ, starting from the state z. Let λz. pz(φ U φ′) denote the state-indexed
vector (or the function) that maps z ∈ Z to pz(φ U φ′). The state-indexed vector
λz. pz(φ U φ′) can be computed as the unique solution to following linear program
[52, 10]:

yz=


0 if z ∈ Prob0[φ U φ′]
1 if z ∈ Prob1[φ U φ′]∑

z′∈Z
∆(z, z′) · yz′ otherwise

(1)

In the equation above, Prob0[φ U φ′] and Prob1[φ U φ′] are the set of states of M
that satisfy φ Uφ′ with probability 0 and 1, respectively. These sets can be deter-
mined via a pre-computation step that analyzes the underlying graph structure of
the DTMC. The value of yz in the solution is exactly the value pz(φ U φ′). To verify
ifM, z0 |= Ponp[φ U φ′], one computes λz. pz(φ U φ′) and compares pz0(z U z′) on p.

The model checking algorithm for ¬φ, φ ∧ φ′, and Ponc[Xφ] are as expected.
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To check whether Eonc[φ], one recursively computes Zφ satisfying the state for-
mula φ. The expected costs {ez(φ) | z ∈ Z} can then be computed as the unique

solution to the following linear program [52] (with the convention that 0 ·∞ = 0):

yz=


0 if z ∈ Zφ
∞ if z ∈ Cost∞[φ]∑

z′∈Z
∆(z, z′) · (C(s, s′) + yz′) otherwise

(2)

In the equation above, Cost∞[φ] is the set of states for which the expected cost is
∞. The set Cost∞ is exactly the set of states that satisfy φ with probability < 1,
and can be determined via a pre-computation step that analyzes the underlying
graph structure of the DTMC.

2.4 Markov decision processes (MDPs) and PCTL

Syntax. An MDP is a tupleM = (Z,Act,∆,C, L) where Z is a finite set of states,
Act is a finite set of actions, the partial function ∆ : Z×Act ↪→ Dist(Z), called prob-

abilistic transition function, maps pairs of states and actions to probability distribu-
tions over Z, C : Z×Act→ Q≥0 is a cost (or reward) structure and L : Z → 2AP is
a labeling function. The set enabled(z) = {α ∈ Act |∆(z, α) is defined}, describing
the actions enabled from a state z, is assumed to be non-empty for every z ∈ Z.
An MDP, therefore, differs from a DTMC, in that, at each state z, there is a choice
among several possible distributions. The choice of which distribution to trigger is
resolved by a scheduler (or an attacker). Informally, an MDPM evolves as follows.
It starts from some state z0 ∈ Z. After i execution steps, if M is in state z, the
scheduler chooses an action α ∈ enabled(z), which then defines a unique probability
distribution µ given by ∆(z, α). The process then moves to state z′ in step (i+ 1)
with probability ∆(z, α)(z′). We will write ∆(z, α, z′) to denote ∆(z, α)(z′) when
α ∈ enabled(z).

Reachability Probability and Expected Cost. Formally, a path ρ of an MDP
M is a sequence z0

α1−−→z1
α2−−→· · · such that for each i ≥ 0, αi+1 ∈ enabled(zi) and

∆(zi, αi+1, zi+1) > 0. As discussed above, the choice of which action to trigger in
a given state is resolved by a scheduler, which is a function S from finite paths to
actions1. A path z0

α1−−→z1
α2−−→· · · is a S-path if S(z0z1 . . . zi) = αi+1 for all i ≥ 0. We

will write Pathsz(M) for the set of infinite paths starting from z and PathsSz (M)
for the set of infinite S-paths starting from z. The set of all schedulers will be
denoted by S. A scheduler S ∈ S for MDP M induces a (potentially infinite)
DTMCMS where the states ofMS, denoted ZS, are the set of finite paths ofM
and the transition function ∆S is as follows. For any two finite paths ρ, ρ′ ∈ ZS

where ρ = z0
α1−−→ · · · αm−−→ zm let

∆S(ρ, ρ′)=

{
µ(z′) if ρ′ is of the form ρ

S(ρ)−−−→ z′ and ∆(zm,S(ρ)) = µ

0 otherwise.

1 One can alternatively define a scheduler as a function from finite paths into probability
distributions on actions. However, both definitions are equivalent in the context of PCTL
model checking.
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This allows one to use probability measure over DTMCs to define a probability
measure probSz over the set of paths PathsSz (M). One can also define the expected
cost of reaching a target set of states F with respect to a scheduler S, denoted
eSz (F ), in a fashion similar to the DTMC case. Interested readers should refer to
standard texts such as [52, 10] for more details.

2.4.1 Probabilistic computation tree logic (PCTL)

Like DTMCs, properties of MDPs can be expressed in the logic PCTL. The se-
mantics of PCTL formulae stay the same, except for the semantics of Ponp[ψ] and
Eonc[φ], which now require a quantification over all schedulers. Given an adversary
S, let pSz (ψ) = probSz ({ρ ∈ PathsSz (M)|ρ |= ψ}). One can analogously define eSz (φ).

Definition 3 Let M be an MDP, φ be a state formula and ψ be a path formula.
The satisfaction relation |= for PCTL state formulae is defined identically to Def-
inition 2, with the exception of the following cases.

M, z |= Ponp[ψ] ⇔ ∀S ∈ S, pSz (ψ) on p

M, z |= Eonc[φ] ⇔ ∀S ∈ S, eSz (φ) on c

2.5 PCTL model checking for MDPs

Similar to the PCTL model checking algorithm for DTMCs, the PCTL model
checking algorithm for MDPs recursively computes the set of states satisfying a
state sub-formula (see [52, 10] for the complete details). We illustrate here the
changes that are required when we model check the probability and expected cost
operators.

Ponp[φ U φ′] operator. For checking whether a state z0 satisfies Ponp[φ U φ′], we
recursively compute the sets of states Zφ and Zφ′ as in the case of DTMCs. Given

a state z, let pmax
z (φ U φ′) = max

S∈S
pSz (φ U φ′) and pmin

z (φ U φ′) = min
S∈S

pSz (φ U φ′).

Thus, pmax
z (φ U φ′) (resp. pmin

z (φ U φ′)) is the maximum (resp. minimum) prob-
ability of satisfying φ U φ′. We note that both pmax

z (φ U φ′) and pmin
z (φ U φ′)

exist [52, 10, 14, 9, 16]) Thus, in order to check whether M, z0 |= Ponp[φ U φ′], it
suffices to compute pmax

z0 (φ U φ′) when on∈ {<,≤} and to compute pmin
z0 (φ U φ′) if

on∈ {>,≥}. We explain below how these are computed.
In order to compute pmax

z0 (φ U φ′), we compute the state-indexed vector λz. pmax
z0 (φ U φ′)

that maps each z ∈ Z to pmax
z (φ U φ′). For each z ∈ Z, pick a variable yz . Consider

the following linear optimization problem:

min
∑
z∈Z

yz subject to

yz = 0 if z ∈ Probmax
0 [φ U φ′]

yz = 1 if z ∈ Probmax
1 [φ U φ′]

yz ≥
∑
z′∈Z

∆(z, α, z′) · yz′ if z ∈ Z \ (Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′]), α ∈ enabled(z)

(3)
where Probmax

0 [φ U φ′] (Probmax
1 [φ U φ′] respectively) is the set of states z such that

pmax
z (φ U φ′) is 0 (1 respectively). The sets Probmax

0 [φ U φ′] and Probmax
1 [φ U φ′] can
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be computed using graph-theoretic algorithms. Now, the vector λz. pmax
z (φ U φ′)

is the unique solution set for this linear optimization problem, ie, objective is
minimized and constraints satisfied if and only if we replace yz by pmax

z (φ U φ′).
Computation of λz. pmin

z (φ U φ′), the state-indexed vector that maps z ∈
Z to pmin

z (φ U φ′), is along similar lines; the objective changes to maximiza-
tion, Probmax

0 [φ U φ′] and Probmax
1 [φ U φ′] are replaced by Probmin

0 [φ U φ′] and
Probmin

1 [φ U φ′] respectively, and the direction the last inequality is reversed. Here
Probmin

0 [φ U φ′] (Probmin
1 [φ U φ′] respectively) is the set of states z such that pmin

z is
0 (1 respectively).

Eonp[φ] operator. For checking whether a state z0 satisfies Eonp[φ], we recursively
compute the set of states Zφ as in the case of DTMCs. Given a state z, let emax

z (φ) =

max
S∈S

eSz (φ) and emin
z (φ) = min

S∈S
eSz (φ). Thus, emax

z (φ) (emin
z (φ) respectively) is the

maximum (minimum respectively) expected cost of reaching the set Zφ. Again, we

note that both emax
z (φ) and emin

z (φ) exist [52, 10, 14]). Thus, it suffices to compute
emax
z0 (φ) when on∈ {<,≤} and to compute emin

z0 (φ) if on∈ {>,≥}.
In order to compute emax

z0 (φ), we compute the state-indexed vector λz. emax
z (φ).

For each z ∈ Z, pick a variable yz . Consider the following linear optimization
problem (with the convention that 0 · ∞ = 0):

min
∑
z∈Z

yz subject to

yz = 0 if z ∈ Zφ
yz =∞ if z ∈ Costmax

∞ [φ]
yz ≥ C(z, α) +

∑
z′∈Z

∆(z, α, z′) · yz′ if z ∈ Z \ (Zφ ∪ Costmax
∞ [φ]), α ∈ enabled(z)

(4)
where Costmax

∞ is the set of states z such that emax
z (φ) = ∞. Observe that z ∈

Costmax
∞ if and only if there is a scheduler S such that pSz (φ) < 1. This allows

computation of the set Costmax
∞ using graph-theoretic methods. Now, the vector

λz. emax
z (φ) is the unique solution set for this linear optimization problem, ie, the

objective is minimized and constraints satisfied if and only if we replace yz by
emax
z (φ). Computation of λz. emin

z (φ) is along similar lines; the objective changes
to maximization, Costmax

∞ [φ] is replaced by Costmin
∞ [φ], and the direction the last

inequality is reversed. Here Costmin
∞ [φ] is the set of states z such that emin

z is ∞.
Observe that z ∈ Costmin

∞ [φ] if and only if pSz (φ) < 1 all schedulers S. The set
Costmin

∞ [φ] can also be computed graph-theoretically.

3 Approximate model checking

As discussed above, solving quantitative properties of DTMCs and MDPs by a
reduction to linear programming does not scale well enough to make it a viable
solution technique in practice. As a result, techniques for approximating solutions
to the model checking problem using floating point arithmetic have been widely
adopted. In this section, we describe two such techniques, value iteration and inter-
val iteration and demonstrate how each approach can produce incorrect solutions.
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3.1 Iterative Techniques

The linear program described in Equation (1) for DTMCs can equivalently be
expressed in the below, for some appropriate matrix A and vector b.

x̄ = Ax̄+ b

This allows for an alternate approach to solving the linear program from equa-
tion (1) known as value iteration. In the case of DTMCs, the unique solution to
Equation (1) can be computed iteratively as the the limit of the following sequence.

x̄0(z) =

{
1 if z ∈ Prob1[φ U φ′]
0 otherwise .

x̄i+1 = Ax̄i + b̄

(5)

For the case of MDPs, the unique solution that minimizes the objective function
of the linear program in Equation (3) and used to compute maximum probabilities
of satisfying [φ U φ′] can be obtained as the limit of the iterative sequence {xi}i≥0:

x̄0(z) =

{
1 if z ∈ Probmax

1 [φ U φ′]
0 otherwise .

x̄i+1(z) =


1 if z ∈ Probmax

1 [φ U φ′]
0 if z ∈ Probmax

0 [φ U φ′]
max{

∑
z′∈Z

∆(z, α, z′) · x̄i(z′) |α∈enabled(z)} otherwise

(6)
For the solution to the linear program that is used to compute minimum prob-

abilities, the iterative sequence is similar except that max is replaced by min. The
iterative sequences for computing expected costs can be similarly defined with
one notable variation. For computing min expected costs, the MDPs have to be
transformed to rid of cost 0 cycles. We refer the reader to [52, 28, 9] for details.

In many cases, the sequence does not converge in a finite number of steps, and
therefore model checkers terminate the sequence when successive vectors vk and
vk+1 become “close enough”. The choice of stopping criterion is based largely on
heuristics. The PRISM model checker, for example, implements two criteria (i) ab-

solute convergence, and (ii) relative convergence. Under the absolute criterion, value
iteration terminates if the norm ‖vk+1 − vk‖<ε for some ε > 0. Under the relative

criterion, termination occurs when ‖vk+1−vk‖
‖vk‖ < ε. In spite of the fact that iterative

techniques only approximate solutions, value iteration remains the popular choice
for widely used tools that analyze PCTL properties as it vastly outperforms linear
programming techniques, despite their theoretically better asymptotic complexity.

As originally observed in [27], value iteration provides no guarantees about the
quality of the solution, regardless of the stopping criterion used. To help rectify this
problem, Haddad et. al. [31] and Brázdil et. al. [17] concurrently introduce interval

iteration for computing min/max reachability probabilities in DTMCs and MDPs.
In this approach, one simultaneously computes two sequences of vectors, one con-
verging to the solution from below and one converging to the exact solution from
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above. In this setting, the stopping criterion becomes straightforward; terminate
when the distance between the two vectors is within some ε threshold. Assuming
the absence of floating point errors, this effectively gives a small ε-neighborhood
that contains the actual solution. In order to achieve convergence, interval iter-
ation requires a pre-processing step that transforms the underlying graph of the
model. The interval iteration technique was extended to expected costs in [11].

Both iterative techniques described above can be further enhanced by perform-
ing arithmetic operations using Multi-terminal binary decision diagrams (MTBDDs)
[29, 36]. MTBDDs generalize BDDs [18] by allowing terminal values to be different
from 0 or 1. Similar to the role of BDDs in symbolic model checking [45], MTBDD
based model checkers leverage the performance benefit due to the succinct rep-
resentations of the data structures involved. Let Vars = {v1, v2, . . . vk} be a finite
and ordered set of boolean variables, and let D be some domain of values. Given
a function f : 2Vars → D, an MTBDD that represents f is a full binary tree of
height |Vars| with leaf nodes labeled with elements from D and internal nodes at
depth i labeled with variable vi+1. Each path in an MTBDD then represents a
specific valuation of the variables Vars and the leaf node represents the value of
f for this valuation. A reduced order MTBDD, similar to a reduced order BDD
(ROBDD), merges isomorphic subtrees in the MTBDDs. In particular, this means
that, a reduced order MTBDD has exactly one leaf node for every value d in the
range of the function f . In what follows, we will refer reduced order MTBDDs as
simply MTBDDs.

3.2 Shortcomings of iterative techniques

When computing constrained reachability probabilities using value iteration, both
the absolute and relative convergence criteria can result in solutions that are very
far from the actual answers. In [31], the authors give a DTMC and a PCTL
property whose solution is 1

2 , yet PRISM reports 9.77 × 10−4 for the absolute
criterion and 0.198 for the relative criterion. This drastic error is the result of a
premature termination of value iteration. Several other sources of imprecision can
also cause state-of-the-art quantitative model checkers to produce unsound results.
For example, consider a PCTL formula of the form P≥p(ψ) and a system M such
that the probability measure of the formula ψ is exactly p. When value iteration,
with floating point numbers, is used to compute this measure, the value p may
only be approached in the limit, and hence the procedure will return some p′ that
approximates p from below. This means that the formula P≥p(ψ) will evaluate to
false, where of course the correct value is true. This phenomenon was first pointed
out in [54]. We also demonstrate a similar phenomenon with the DTMC from
Example 1. For the sake of illustration, let Es = 1

2 . Clearly, from the initial state,
the probability of reaching a state where sensor 1 fails is exactly 1

2 and hence
the formula P< 1

2
[ true U (es1=1) ] evaluates to false for the initial state. However,

PRISM returns true. Errors such as these can be compounded in PCTL formulas
containing nested operators, wherein the recursive step of the model checking
algorithm returns an incorrect set of states. This can lead to substantial logical
errors in model analysis, as we demonstrate with the example below.
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Example 3 Let us instantiate the DTMC from Example 1 with n = 14 sensors,
m = 1 actuator, MAX FAILURES=1 and with Es = Ea = 1

2 . Recall the third
PCTL property of the embedded control system given in Example 2:

Pon′p [ Pon 1
2
[true U (es1=1)] U P≤0[true U (ea1=1)] ].

When on is ≤, the PRISM model checker returns “0.7096993582589287” as the
probability for the initial state with both value iteration and interval iteration2.
With our tool RationalSearch, one can verify that the correct probability is
212895/229376, or “0.9281485421316964”. Further, when on is <, PRISM again
returns the value given above for both iterative techniques. This time, the ac-
tual solution, as generated by RationalSearch, is 0. The errors above are the
result of the fact that PRISM incorrectly computes the set of states satisfying
Pon 1

2
[true U (es1=1)]. This error in the recursive step results in an incorrect formu-

lation of the constraints in the outermost constrained reachability problem.

4 Fixpoint formulations for constrained reachability and expected costs

As discussed in Section 2.3, the probability, associated with each state z of a
DTMC, of satisfying a PCTL path formula φ U φ′ can be characterized as the
unique solution to a system of linear equations. Similarly, the expected cost of
reaching some state satisfying φ in a DTMC M starting from any given state
z in M can also be characterized as the unique solution to a system of linear
equations. In both these cases, the solution can be seen as the unique fixpoint
of a linear transformation. The same holds for MDPs, albeit, with one crucial
difference. In the case of DTMCs, the pertinent sets of equations turn out to have
unique solutions. Thus, when given candidate solution for the set of probabilities
(or the set of expected costs), we can check the correctness of this set by plugging

the candidate solution in the set of corresponding set of equations. For MDPs,
however, the system of equations may have multiple solutions. We will show below
that in cases the system of equations for MDPs is not guaranteed to have a unique
solution, we can perform an additional graph-theoretical check to confirm that a
given candidate solution for the set of probabilities (or the set of expected costs)
is correct. Such a conformation check, as we will discuss in Section 5, is crucial to
our algorithm for computing exact answers.

4.1 Fixpoint formulation for constrained reachability

LetM = (Z,Act,∆,C, L) be a MDP and φ, φ′ be PCTL state formulas. The state-
indexed vector Pmax(φ U φ′) = λz. pmax

z (φ U φ′) can be characterized as the least

fix point (least under pointwise ordering) of the set of equations:

yz = 0 if z ∈ Probmax
0 [φ U φ′]

yz = 1 if z ∈ Probmax
1 [φ U φ′]

yz = max
α∈enabled(z)

∑
z′∈Z

∆(z, α, z′) · yz′ if z ∈ Z \ (Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′])

(7)

2 Using the Hybrid engine, the absolute convergence criterion and ε = 10−16.
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The state-indexed vector Pmin(φ U φ′) = λz. pmin
z (φ U φ′) can be similarly charac-

terized by replacing max by min. For min, the fix point, in fact, turns out to be
unique [9]. For max, the fix point is not unique, although several references claim
this to be case (see Theorem 10.100 in [10] for example). The non-uniqueness has
also been pointed out by [31]. However, for the max case, a simple graph-theoretic
check can be performed to verify if a given fix point to the set of equations is
indeed the exact solution Pmax. We describe this below.

Let V : Z → [0, 1] be a solution of the set of equations given by Equation 7.
We start by defining a directed graph that is obtained from M by selecting for
each state, the set of actions that potentially achieve the maximum reachability
probabilities.

Definition 4 Let V : Z → [0, 1] be a fix point of Equation 7. Let Z? = Z \
(Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′]) For each state z ∈ Z?, let

argmaxVz = {α ∈ enabled(z) | V(z) =
∑
z′∈Z

∆(z, α, z′) · V(z′)}.

Let GV = (Z,E) be a directed graph such that (z1, z2) ∈ E iff z1 ∈ Z? and ∃α ∈
argmaxVz1 such that ∆(z1, α, z2) > 0.

With the above definition of the graph GV, we can characterize the solution to
the max reachability problem for MDPs as follows.

Lemma 1 Let M = (Z,Act,∆,C, L) be a MDP and φ, φ′ be PCTL state formulas.

For each state z ofM, let pmax
z (φ U φ′) be the maximum probability of satisfying φ U φ′.

Let V : Z → [0, 1] be a solution of the set of equations given by Equation 7. Consider

GV as defined in Definition 4 above. Let Z0 be the set of states z such that there is no

path from z to any state z′ ∈ Probmax
1 [φ U φ′] in the graph GV. Then,

Z0 = Probmax
0 [φ U φ′]⇔ ∀z ∈ Z.V(z) = pmax

z (φ U φ′).

Proof If Z = Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′] then the lemma is immediate. So
we will consider the case that Z \(Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′]) 6= ∅. Note also

that we have that for each state z ∈ Z, V(z) ≥ pmax
z (φ U φ′) as the state-indexed

vector Pmax = λz. pmax
z (φ U φ′) is the least fix point of Equation 7.

It can be easily shown that in order to establish the Lemma, we can assume
that φ is true, φ′ is a, Probmax

0 [φ U φ′] and Probmax
1 [φ U φ′] consists of exactly one

state (say rej and acc respectively), exactly one action α0 is enabled in rej and acc,
∆(rej, α0) = rej, and ∆(acc, α0) = acc.

(⇒) It suffices to show that V(z) ≤ pmax
z (φ U φ′) for each state z ∈ Z. Let

Z? = Z \ (Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′]). Let m be the number of elements
of Z?. From the fact that Probmax

0 [φ U φ′] = Z0, we can construct inductively an
enumeration z1, . . . , zm of states in Z? and an enumeration of actions α1, . . . , αm
in Act such that for each 1 ≤ i ≤ m,

1. αi ∈ argmaxVzi , and
2. ∆(zi, αi, z) 6= 0 for some z ∈ {acc, z1, . . . , zi−1}.

Consider the memoryless scheduler forM, SV, that picks αi when the last state
in the execution is zi and picks α0 otherwise. By definition, probSV

z (true U a) ≤
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pmax
z (true U a) for each z ∈ Z. Thus, it suffices to show that probSV

z (true U a) =
V(z) for each z ∈ Z.

Now we construct a DTMC from M which picks for each state z, the action
SV(z). Formally, the DTMC M0 = (Z,∆0,C, L) where ∆0(z, z′) = ∆(z,SV(z), z′)
for all z, z′ ∈ Z. It is easy to see that probSV

z (true Ua) is the probability that z
satisfies the formula true Ua inM0. By construction ofM0, this probability is 0 (1
respectively) if and only if z is rej (acc respectively). Thus, {probSV

z (true U a)}z∈Z
is the unique solution of the set of equations:

xrej = 0
xacc = 1

xz =
∑
z′∈Z

∆(z,SV(z), z′) · xz′ otherwise.
(8)

As αi ∈ argmaxVzi , we get by construction, V is also a solution to Equation 8. By

uniqueness, we must have that probSV
z (true U a) = V(z) for each z ∈ Z.

(⇐) The maximum probability of reaching acc is realized by a memoryless

scheduler, namely a scheduler that assigns the same action to any two finite paths
ending in the same state (see [52, 10, 9]). Fix one such scheduler S. We have that
for all states z ∈ Z,V(z) = pmax

z (true U a) = probSz (true U a). From this, it is easy
to show that the following hold:

1. S(z) ∈ argmaxz,V for all z ∈ Z \ {acc, rej}.

2. For each z ∈ Z \ {acc, rej}, there is a finite path ρ = z1
S(z1)−→ · · ·

S(z`−1)
−→ z` such

that z1 = z and z` = acc.

From the above two observations, we have that Probmax
0 [φ U φ′] = Z0. ut

4.2 Fixpoint formulation for expected costs.

Let M = (Z,Act,∆,C, L) be a MDP and φ be a PCTL state formula. The state-
indexed vector Emax = λz. emax

z (φ) can be characterized as a fix point of the set of
equations [28] (with the convention that 0 · ∞ = 0):

yz = 0 if z ∈ Zφ
yz = ∞ if z ∈ Costmax

∞ [φ]

yz = max
α∈enabled(z)

C(z, α) +
∑
z′∈Z

∆(z, α, z′) · yz′ otherwise
(9)

While Emax is described to the least fix point of Equation 9 in [28], we can show
that Equation 9 admits only one solution.

Lemma 2 Let M = (Z,Act,∆,C, L) be a MDP and φ be a PCTL state formula. Let

Zφ be the set of states of M that satisfy φ. For each state z of M, let emax
z (φ) be the

maximum expected cost of reaching the set of states Zφ. Then Emax = λz. emax
z (φ) is

the unique solution to Equation 9.

Proof We only need to show that Equation 9 has a unique solution. Let V1 and
V2 be two solutions of Equation 9. Observe that V1(z) = V2(z) for each z ∈
Zφ ∪ Costmax

∞ [φ]. Let U = Z \ (Zφ ∪ Costmax
∞ [φ]) and d = maxz∈U |V1(z)− V2(z)|. It

suffices to show that d = 0.
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We will establish the result reductio ad absurdum. Assume d > 0. By definition,
each state z ∈ U does not belong to the set Costmax

∞ [φ]. This implies that for all
schedulers S and state z ∈ U , pSz (true U φ) = 1. This leads to the following
observations:

1. For z ∈ U and α ∈ enabled(z), probability of transitioning from z on action α

to each state in Costmax
∞ [φ] is 0.

2. For each k = 1, 2 , z ∈ U and let vk,αz = C(z, α) +
∑
z′∈U

∆(z, α, z′) · Vk(z′). By

definition and the previous observation, Vk(z) = max
α∈enabled(z)

vk,αz .

3. There is an enumeration z1, . . . , zn of states in U such that for any action α, if
α ∈ enabled(zi) then ∆(z1, α, z) 6= 0 for some state z ∈ Zφ ∪ {zj | 1 ≤ j < i}.

Claim |V1(zi)− V2(zi)| < d for each 1 ≤ i ≤ n.

Proof The proof proceeds by induction on i.

Base case: Fix α0 ∈ enabled(z1). By construction of z1,
∑
z′∈U

∆(z1, α0, z
′) < 1.

We have that for each k = 1, 2,

vk,α0
z1 = C(z1, α0) +

∑
z′∈U

∆(z1, α0, z
′) · Vk(z′)

= C(z1, α0) +
∑
z′∈U

∆(z1, α0, z
′) · (Vk(z′)− V3−k(z′) + V3−k(z′))

= C(z1, α0) +
∑
z′∈U

∆(z1, α0, z
′) · V3−k(z′) +

∑
z′∈U

∆(z1, α0, z
′) · (Vk(z′)− V3−k(z′))

= v3−k,α0
z1 +

∑
z′∈U

∆(z1, α0, z
′) · (Vk(z′)− V3−k(z′))

≤ v3−k,α0
z1 +

∑
z′∈U

∆(z1, α0, z
′) · d

≤ v3−k,α0
z1 + d ·

∑
z′∈U

∆(z1, α0, z
′)

< v3−k,α0
z1 + d · 1 ≤ max

α∈enabledz1
v3−k,α0
z1 + d = V3−k(z1) + d.

Since α0 is an arbitrary action in enabled(z1), we get that

Vk(z1) < V3−k(z1) + d for each k ∈ {1, 2}.

Thus, both V1(z1)−V2(z1) < d and V2(z1)−V1(z1) < d establishing the base case.

Induction step: Assume that we have |V1(zi)− V2(zi)| < d for each 1 ≤ i ≤ `. Now,
consider z`+1 and fix α0 ∈ enabled(z`+1). By construction of z`+1,

– either
∑
z′∈U

∆(z`+1, α0, z
′) < 1

– or ∆(z`+1, α0, zj) > 0 for some 1 ≤ j ≤ `.

If
∑
z′∈U

∆(z`+1, α0, z
′) < 1 then we can show by an argument similar to the one

used in base case that

vk,α0
z`+1

< v3−k
z`+1

+ d for each k = 1, 2.



Exact Quantitative Probabilistic Model Checking Through Rational Search 17

Now, consider the case when ∆(z`+1, α0, zj) > 0 for some 1 ≤ j ≤ `. Fix one
such j0. Thus, we have ∆(z`+1, α0, zj0) > 0. By Induction hypothesis, we also have
that |V1(zj0)− V2(zj0)| < d. For each k = 1, 2,

vk,α0
z`+1

= v3−k,α0
z`+1

+
∑
z′∈U

∆(z`+1, α0, z
′) · (Vk(z′)− V3−k(z′))

= v3−k,α0
z`+1

+∆(z`+1, α0, zj0) · (Vk(zj0)− V3−k(zj0))+∑
z′∈U\{zj0}

∆(z`+1, α0, z
′) · (Vk(z′)− V3−k(z′))

≤ v3−k,α0
z`+1

+∆(z`+1, α0, zj0) · (Vk(zj0)− V3−k(zj0)) +
∑

z′∈U\{zj0}
∆(z`+1, α0, z

′) · d

< v3−k,α0
z`+1

+∆(z`+1, α0, zj0) · d+
∑

z′∈U\{zj0}
∆(z`+1, α0, z

′) · d

= v3−k,α0
z`+1

+ d ·
∑
z′∈U

∆(z`+1, α0, z
′) = v3−k,α0

z`+1
+ d · 1 ≤ V3−k(z`+1) + d.

Since α0 is an arbitrary action in enabled(z`+1), we get once again that

Vk(z`+1) < V3−k(z`+1) + d for each k ∈ {1, 2}.

Thus, we get both V1(z`+1)−V2(z`+1) < d and V2(z`+1)−V1(z`+1) < d establishing
the induction step. (End: Proof of claim) ut

Thus, we have that d = maxz∈U |V1(z)− V2(z)| < d, which is a contradiction. ut

The state-indexed vector Emin(φ) = λz. emin
z (φ) can also be characterized as a

fix point of the set of equations [28, 9]:

yz = 0 if z ∈ Zφ
yz = ∞ if z ∈ Costmin

∞ [φ]

yz = minα∈enabled(z)C(z, α) +
∑
z′∈Z

∆(z, α, z′) · yz′ otherwise
(10)

However, in this case, the fix point may not be unique. Emin(φ) is the greatest fix
point of Equation 10 [9]. Nevertheless, we can perform an additional check to see
if a given solution of Equation 10 is indeed the function Emin(φ).

Let V : Z → Q≥0 be a solution of the set of equations given by Equation 10. We
start by defining a directed graph that is obtained from M by selecting for each
state, the set of actions that potentially achieve the minimum expected costs.

Definition 5 Let V : Z → Q≥0 be a fix point of Equation 10. For each state
z ∈ Z \ (Zφ ∪ Costmin

∞ [φ]), let

argminVz = {α ∈ enabled(z) | V(z) = C(z, α) +
∑
z′∈Z

∆(z, α, z′) · V(z′)}.

Let HV = (Z,E) be a directed graph such that (z1, z2) ∈ E iff z1 ∈ Z \ (Zφ ∪
Costmin

∞ [φ]) and ∃α ∈ argminVz1 st ∆(z1, α, z2) > 0.

The following can be proved along the same lines as Lemma 1:
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Lemma 3 Let M = (Z,Act,∆,C, L) be a MDP and φ be a PCTL state formula. For

each state z of M, let emin
z (φ) be the minimum expected cost of reaching the set Zφ.

Let V : Z → Q≥0 be a solution of the set of equations given by Equation 10. Consider

HV as defined in Definition 5 above. Let Z∞ be the set of states z such that there is

no path from z to any state z′ ∈ Zφ in the graph HV. Then

Z∞ = Costmin
∞ [φ]⇔ ∀z ∈ Z.V(z) = emin

z (φ).

5 Exact model checking

As demonstrated in the section Section 3, approximate solution techniques can
lead to unreliable results and the incorrect analysis of systems. To rectify this
serious limitation, tools such as PRISM and STORM have implemented exact
model checking engines, which make heavy use of techniques from parametric
model checking [21, 23, 33, 34]. The idea behind these engines is to interpret the
probabilistic model (DTMC or MDP) as a finite automaton in which transitions
probabilities are described by letters of an alphabet. When one is interested in
costs, states are additionally labeled by a cost structure. Using techniques derived
from state elimination [37], one can then calculate a regular expression representing
the language of this automaton. The core idea of this translation is to eliminate a
state s by increasing the probability of moving from each predecessor s1 of s to each
successor s2 of s by the probability of moving from s1 to s2 when passing through
s. In the case of parametric model checking, various techniques can then be used
to translate the regular expression into a rational function over the parameters of
the model. When using this approach for exact model checking, one can likewise
derive a parameter-free function that describes the property in question.

Although they rectify the problems with approximation techniques, the ex-
act quantitative model checking engines implemented in tools like PRISM and
STORM don’t scale as well as their iterative counterparts. See Example 4 below
and Section 7 for a complete analysis. The goal of our technique, to which the re-
mainder of this section is dedicated, is to utilize the advantages of fast approximate
model checking techniques to produce exact solutions.

Example 4 Again consider the DTMC modeling an embedded control system with
the parameters given in Example 3. To guarantee the correctness of one’s analy-
sis, exact solution techniques must be employed. Unfortunately, the exact model
checking engines of PRISM and STORM do not scale well enough to analyze this
example, which contains about 4.8 million states and about 44 million transitions.
Under our test setup (see Section 7), both tools reached a 30 minute timeout
when trying to analyze the properties from Example 3. On the other hand, Ra-

tionalSearch found the exact answer to both the formulae in under a minute.

We next describe our approach for exact model checking. The broad idea is to
utilize approximate solutions generated by an iterative technique, and then succes-
sively refine these solutions to the exact solution. We begin by first describing the
first ingredient of our solution — the Kwek Mehlhorn algorithm [40] in Section 5.1.
We then describe the overall algorithm in Section 5.2.



Exact Quantitative Probabilistic Model Checking Through Rational Search 19

5.1 The Kwek-Mehlhorn algorithm

Given an ordered set of integers of bounded size, the classical binary search algo-
rithm can be used to locate the smallest element in the set that is larger than a
given value, in logarithmic time. Kwek and Mehlhorn [40] extend this methodology
to efficiently locate the rational number with the smallest size in a given interval.
In our paper, we present a novel application of this technique where approximate
answers to quantitative model checking problems can be used to efficiently gener-
ate exact solutions.

Let I = [αβ ,
γ
δ ] be an arbitrary interval with rational end-points. It was estab-

lished [40] that for such an interval, there exists a unique rational amin(I)/bmin(I)
such that for all rational numbers a

b ∈ I, amin(I) ≤ a and bmin(I) ≤ b. We
will call amin(I)/bmin(I) the minimal fraction of I. Further, this minimal frac-
tion amin(I)/bmin(I) can be found using Algorithm 1 from [40]. The input to the
findFraction procedure are integers denoting the numerators and denominators
of the end points of the interval I, and the output is a pair of integers, correspond-
ing to the numerator and denominator of the unique minimal fraction of the input
interval.

Algorithm 1 Compute the minimal rational in [αβ ,
γ
δ ]

function findFraction(α, β, γ, δ):
if bα

β
c = b γ

δ
c and α

β
6∈ N then

b, a ← findFraction(δ, γ mod δ, β, α mod β)
return bα

β
cb+ a, b

else
return dα

β
e, 1

end if
end function

Let QM = {p/q | p, q ∈ {1, ...,M}} ∩ [0, 1]. For µ ∈ N, if a
b ∈ QM is contained

in the interval [ µ
2M2 ,

µ+1
2M2 ] of length 1

2M2 then a
b is the unique element of QM in

[ µ
2M2 ,

µ+1
2M2 ]. It turns out that a

b must also be the minimal element of [ µ
2M2 ,

µ+1
2M2 ],

meaning it can be found using Algorithm 1 in time O(logM).

5.2 Rational search

In this section, we explain our approach for exact quantitative model checking of
PCTL formulas. The key insight we exploit is that iterative techniques for solving
constrained reachability typically converge very fast and produce a precise enough
answer. Using this precise approximation, we can then effectively construct a small
interval so that the minimal fraction in the interval corresponds to an element of
the exact solution vector, and thus the Kwek-Mehlhorn algorithm can be employed
to find the exact solution.

Recall that each iterative technique for approximating a set of equations, like
those given in equations (1) and (3), yields a different guarantee on the precision of
an approximate solution. The difference between the approximation generated by
interval iteration and the actual solution is bounded by a given ε value, provided
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there are no errors generated by floating-point arithmetic. Value iteration, on the
other hand, comes with no such guarantees. When an approximate solution vector
contains values of known precision, like in the case of interval iteration, one can
translate it into an exact solution vector as follows. For each value q in the vector,
construct the interval [q−ε, q+ε] and run Algorithm 1 to find the smallest rational
in this interval. Then, check that the generated rational values V? are correct by
verifying that they satisfy the fix point equations for constrained reachability and
expected costs. In addition, if the algorithm also checks that condition on the graph
GV? (or HV?) also hold in accordance with Lemma 1 (Lemma 3 respectively) if
we are computing max reachability probabilities (min reachability respectively)
properties. Lemmas 1 and 3, along with the uniqueness of the fix points for the
rest of the cases imply that these checks are only satisfied by the desired solution
vector. If these checks fail for the candidate solution vector, one obtains a more
precise approximation and re-runs the procedure.

When a solution vector contains values of unknown quality, we can find exact
solutions using a similar technique. Here the idea is to “guess” a sequence intervals,
with decreasing sizes, that may contain the actual value. This process is formalized
in Algorithm 2, which takes as input the model M, a maximum precision P and
a state-indexed vector V† that approximates the exact solution vector V.

Algorithm 2 Sharpen values of unknown precision

function sharpen(M, P , V†, ξ, obj):
for all p ∈ {1, ..., P} do

for all z ∈ Z do
α, β, γ, δ ← bounds(p, V†(z))
V?(z) ← bV†(z)c+ findFraction(α, β, γ, δ)

end for
if fixpoint(M, V?, ξ, obj ) then

return V?

end if
end for
return null

end function

For a given precision p and state z, bounds(p,V†(z)) returns α, β, γ, δ such
that α is the first p decimal digits of the fractional part of V†(z), β = 10p, γ =
α + 1 and δ = β. Observe that α/β is the rational representation of the first
p digits of the fractional part of V†(z). From this approximation, we identify a
sharpened solution vector V? using the findFraction procedure from Algorithm 1.
The procedure fixpoint then tests if V? is the correct solution by checking if the
equation satisfies the appropriate fix point equation in addition to the check, if
needed, required by Lemma 1 or 3. If the input vector V† is not precise enough,
then shapren returns “null”, indicating that more precision is required to infer
an exact solution. The guarantees of Algorithm 2 are formalized as follows. Let
Vb satisfying |V(z) − Vb(z)| ≤ 10−b for all z ∈ Z be an approximate solution
vector of precision b. Then, Lemma 4 establishes that starting from a close enough
approximation, Algorithm 2 finds the actual solution vector.

Lemma 4 Let M be an MDP with the set of states Z. Let ξ be a PCTL path formula

or a PCTL state formula. Given an objective obj ∈ {max,min}, let V be the vector
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λz · pobjz [ξ] if ξ is a path formula and the vector λz · eobjz [ξ] if ξ is a state formula. Let

b, P ∈ N be such that P ≥ b and Vb is an approximate solution vector of precision b. If

V(z) ∈ Qb
√

10b/2c for every z ∈ Z, then sharpen(M, P,Vb, ξ, obj) = V.

Proof Fix a state z and assume V(z) ∈ QM for M=b
√

10b/2c. If P≥b then
sharpen(M, P,Vb, ξ, obj) searches for V(z) in I = [α/β, γ/δ] for α, β, γ, δ = bounds(b,Vb(z)).
Now, V(z) ∈ I since Vb(z) satisfies |V(z) − Vb(z)| ≤ 10−b. Further, |I| = 10−b ≤

1
2M2 . Due to Kwek et. al. [40], we have that an interval of size 1

2M2 contains at
most 1 element of QM . Clearly, findFraction(α, β, γ, δ) returns V(z) which is the
unique “minimal” element in I ∩QM . ut

Using the techniques for sharpening an approximate solution into an exact
value from Algorithm 2, we can now derive a procedure for solving constrained
reachability (and hence PCTL) formulas exactly. The procedure is given in Algo-
rithm 3 which takes as arguments an MDP or DTMCM, a constrained reachability
formula φ and a precision ε. The iteration procedure can be either of value iter-
ation or interval iteration. Algorithm 3 begins by running the iteration procedure
up to a given precision ε. If the procedure is value iteration, ε is used in the con-
vergence criterion — absolute or relative — described in Section 3. In the case of
interval iteration, ε defines the bound on the maximum error in the approximate
solution vector. The approximate solution vector V† generated by the iteration
procedure is then used by the shapren procedure, which attempts to strengthen
the approximate answer to an exact one. Note the the version of the shapren

varies according to iterative method being utilized. If it succeeds, the whole pro-
cess terminates. Otherwise, V† is further refined by re-invoking iteration with an
increased ε precision and the sharpening process is repeated.

Algorithm 3 Rational Search

function rationalSearch(M, ξ, obj, ε0):
Vinit ← init(M, φ)
ε ← ε0

while true do
V† ← iteration(M, ξ, obj, V init, ε)
V? ← sharpen(M, dlog10( 1

ε
)e, V†,ξ, obj)

if V? 6= null then
return V?

end if
Vinit ← V†

ε ← ε/10
end while

end function

When successive approximations in value iteration or interval iteration are
computed using arbitrary precision arithmetic, the correctness guarantees of Al-
gorithm 3 can be stated as follows.

Theorem 1 LetM be an MDP with the set of states Z. Let ξ be a PCTL path formula

or a PCTL state formula. Given an objective obj ∈ {max,min}, let V be the state-

indexed vector λz · pobjz [ξ] if ξ is a path formula and the vector λz · eobjz [ξ] if ξ is a state

formula. Then, RationalSearch(M, ξ, obj, ε0) (with ε0 > 0) terminates and returns

the exact solution vector V.
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Proof It is easy to see that there is a b > 0 such that, for every state z, V(z) ∈ QN
for N = b

√
10b/2c. Now, since value iteration converges in the limit, we have that

the first b digits of V†(z) match that of V(z) for each state z ∈ Z, eventually.
Also, in every iteration of the loop in Algorithm 3, sharpen is invoked with an
incremented value of P and eventually P ≥ b. ut

Let us now state the complexity of computing the exact solutions using Ra-

tionalSearch. We assume that the transition probabilities are given as rational
numbers.

Theorem 2 LetM be an MDP with the set of states Z. Let n = |Z|, m = |{(z, α, z′)|α ∈
enabled(z),∆(z, α)(z′) > 0}| and let δ be the largest denominator in any probability

value in the transition function of M. Let ξ be a PCTL path formula. Let pmin be the

min{δ(z, α, z′) |∆(z, α)(z′) > 0}. Given an objective obj ∈ {max,min} and let V be the

state-indexed vector λz·pobjz [ξ]. Let ` = n(m+n) log δ
pnmin

. Then, RationalSearch(M, ξ, obj, 1)

makes at most O(`) value iteration steps, O(n`2) calls to FindFraction, and O(`2)
calls to FixPoint, assuming arbitrary precision arithmetic.

Proof Observe that we can assume without loss of generality that there is at least
one transition probability that is contained in the open interval (0, 1) (Otherwise,
the value iteration finishes in zero steps as all probabilities are 0 or 1).

We will proceed as follows. We assume that the objective obj is min. We first
estimate the number of iterations k of value iteration that are required to reach an
approximate solution state-indexed vector V† of precision b such that V† can be
used to obtain the exact solution V using one call to sharpen based on Lemma 4..

From [19], we know that the maximum denominator (and thus maximum nu-
merator) of any value in {V(z)|z ∈ Z} is less than δ4m. Now, the required precision

b satisfies
⌊√

10b

2

⌋
≥ δ4m, giving us

10−b ≤ δ−8m

2
.

Let us now estimate the number of steps of value iteration that are required to
guarantee that the resulting approximate solution vector ||V − V†|| < 10−b. Here,
the norm || · || is defined to be the point wise maximum.

Let U = [0, 1]Z be the set of all state-indexed vectors. For a vector x̄ we denote
its zth component by x̄(z). Consider the function f : U → U be the function such
that

f(x̄)(z) =


0 if z ∈ Probmin

0 [ξ]

1 if z ∈ Probmin
1 [ξ]

min
α∈enabled(z)

∑
z′∈Z

∆(z, α, z′) · x̄(z′) otherwise

Observe that value-iteration described in Section 3 is such that x̄0 is the vector
all of whose components is 0, and x̄i+1 = f(x̄i). The n-th iterate of f , namely fn,
is a contracting mapping (Please see Appendix A for the proof):

Claim For all vectors x̄, ȳ ∈ U ,

||fn(x̄)− fn(ȳ)|| ≤ q||x̄− ȳ||

where q = (1−pnmin) and pmin is the smallest non-zero probability in the description
of M.
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Let V† = x̄i·n be the required approximation, obtained after i · n value iteration
steps. Using, Banach’s fixpoint theorem [12], we have

||V − x̄i·n|| ≤
qi

1− q ||x̄n − x̄0|| =
qi

1− q ||x̄n|| <
qi

1− q .

Based on our requirement for k = i · n, we will need only one function call to
Sharpen if

qi

1− q < 10−b ≤ δ−8m

2
.

Let i0 be smallest integer such that

qi0 <
δ−8m(1− q)

2
.

We have that i0 is an upper bound on i.

Now qi0 < δ−8m(1−q)
2 iff

i0 log(1− pnmin) < −1− 8m log δ + n log pmin.

Since log(1− pnmin) is negative, we get that qi0 < δ−8m(1−q)
2 iff

i0 >
−1− 8m log δ + n log pmin

log(1− pnmin)
.

Observe that pmin ≥ 1
δ . Thus, log pmin ≥ − log δ and hence

log pmin

log(1− pnmin)
≤ − log δ

log(1− pnmin)
.

Thus, qi0 < δ−8m(1−q)
2 if

i0 >
−1− 8m log δ − n log δ

log(1− pnmin)
.

Using the inequality ln(1 + x) ≤ x for x > −1, we have that ln(1 − pnmin) ≤ −pnmin

and hence − ln 2
pnmin

≤ 1
log(1−pnmin)

and hence −1
pnmin
≤ 1

log(1−pnmin)
. Since multiplying an

inequality by a negative number changes signs, we get that

1 + 8m log δ + n log δ

pnmin

≥ −1− 8m log δ − n log δ

log(1− pnmin)
.

Thus, qi0 < δ−8m(1−q)
2 if

i0 >
1 + 8m log δ + n log δ

pnmin

.

Thus, we are guaranteed to terminate the algorithm using one call to Sharpen

after k steps, where

k = i0 · n =
1 + 8m log δ + n log δ

pnmin

· n = O(
n(m+ n) log δ

pnmin

) = O(`).
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Now, let us analyze the calls to Sharpen. Note that the jth call to Sharpen

has precision Pj = j. The maximum value of Pj is k. Every call to Sharpen gives
rise to nPj calls to FindFraction and Pj calls to FixPoint, giving us O(n`2) calls
to FindFraction and O(`2) calls to FixPoint.

When obj is max, then please note that there is a memoryless scheduler S :
Z → Act such that for each state z ∈ Z, pmax

z (ξ) = pSz (ξ). Consider the functions
f1, f2 : U → U defined as follows:

f1(x̄)(z) =


0 if z ∈ Probmax

0 [ξ]

1 if z ∈ Probmax
1 [ξ]∑

z′∈Z
∆(z,S(z), z′) · x̄(z′) otherwise

and

f2(x̄)(z) =


0 if z ∈ Probmax

0 [ξ]

1 if z ∈ Probmax
1 [ξ]

maxα∈enabled(z)

∑
z′∈Z

∆(z, α, z′) · x̄(z′) otherwise

Observe that value-iteration described in Section 3 is such that x̄0 is the vector all
of whose components is 0, and x̄i+1 = f2(x̄i) = f i2(x̄0).

Now, it is easy to see that the required solution vector V is the pointwise limit
limi→∞ f i1(x̄0) = limi→∞ f i2(x̄0). Further, we also have that for each i, f i1(x̄0) ≤
f i2(x̄0) ≤ V and hence ||V − x̄i|| ≤ ||V − f i1(x̄0)||. Observe that we can show f i1 is
contracting with factor 1 − pnmin exactly like the claim above. The theorem now
follows similar to the case when obj is min. ut

Example 5 Our experiments show that Algorithm 3 can make non-trivial improve-
ments to solution quality. Consider the standard example of tossing N biased coins
independently, where each coin yields heads with probability 1/3 and tails with
probability 2/3. Analyzing the DTMC model to compute the probability of the
event that 11 coins land heads, PRISM’s floating-point model checker returned
the decimal “0.000005645029269476758”. Our tool was able to correctly deter-
mine the exact probability to be 1/177,147 by examining with the first 12 digits of
this approximate answer. This is remarkable given that the period of this fraction
(and hence its most succinct decimal representation) is almost 20,000 digits long.
Moreover, the algorithm is able to simultaneously infer the reachability probabili-
ties for all of the roughly 200,000 states of the model with a single fixpoint check.
This illustrates another advantage of our technique; the algorithm is agnostic of
the number of initial states in the system. The exact model checking engine of
PRISM, on the other hand, currently only supports systems with a single initial
state.

6 Implementation

We have implemented Algorithm 3 in our tool RationalSearch, which is an exten-
sion of the PRISM model checker (version 4.3.1). RationalSearch is available for
download at [8]. Before describing our integration with PRISM, we briefly describe
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the relevant portions of its architecture. PRISM is a Java-based tool comprised of
four solution engines, three of which (Mtbdd, Hybrid, Sparse) are based (entirely
or partially) on symbolic methods using compact data structures like MTBDDs.
The fourth engine (Explicit) manipulates sparse matrices, vectors and bit-sets
directly.

The Sparse engine is similar to the Explicit engine in that it uses explicit data
structures for storing vectors and matrices. However, it makes use of symbolic data
structures during model construction, allowing it to efficiently remove portions of
the state space that are not reachable. This is achieved through a conjunction of
the MTBDD representing the model’s state space with a BDD representing the
characteristic function for the reachable states of the model. The Mtbdd engine
is based entirely on symbolic data structures. During value iteration, the transi-
tion matrix and solution vector are both given as MTBDDs. The matrix-vector
multiplications used to update the solution vector are carried out over these data
structures. As described in [48] one drawback of this approach is that the size of
the solution vector can grow substantially as more computations are performed.
To address this issue, the Hybrid engine combines the advantages present in both
the symbolic and explicit engines. In particular, it stores the solution vector as a
fixed size array and the transition matrix as an MTBDD (which can usually be
done succinctly due to symmetry in the model). Updates to the solution vector
are carried out by operations over these mixed-type data structures.

RationalSearch implements Algorithm 3 on top of all four engines for model
checking DTMCs against PCTL specifications. For exact model checking of MDPs,
our tool RationalSearch implements Algorithm 3 for all four engines when the
PCTL specification does not involve computing any max probabilities and min-
imum expected costs. RationalSearch only supports the Explicit engine for
the case of max probabilities and min rewards in MDPs, for which the fixpoint
check involve additional graph-theoretic analyses (see Section 4). The architecture
of our extension is outlined in Figure 2. It intercepts PRISM’s routine for solving
constrained reachability probabilities and expected costs, sharpening the probabil-
ities every time it is invoked. These engines are built using floating point numbers,
which can store at most 16 digits in the fractional part of the decimal expansion
of any floating point number. Hence, the convergence criteria support a mini-
mum ε of 10−16. Our implementation, thus, bypasses the ε refinement loop from
Algorithm 3 and directly invokes the procedure iteration for the maximum preci-
sion supported by doubles. Further, for computing max reachability probabilities,
checking whether the candidate solution vector returned by the Explicit engine
is a fixpoint, we do not take recourse to Lemma 1. Instead, we take advantage
of PRISM’s ability to return a candidate memoryless scheduler that achieves the
maximum reachability property. The candidate scheduler S returned by PRISM
is a proper scheduler, whose definition we articulate below.

Definition 6 Let M = (Z,Act,∆,C, L) be a MDP and φ, φ′ be PCTL state for-
mulas. A memoryless scheduler S for M is said to be proper for M, φ, φ′ if for
each z ∈ Z\Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′], there is a sequence of states z1, . . . , z`

such that

– z1 = z,
– z` ∈ Probmax

1 [φ U φ′], and
– ∆(zi,S(z), zi+1) > 0 for each 1 ≤ i < `.
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In order to check whether a given candidate solution, V̂, to the set of Equa-
tions 7 is indeed the actual exact solution V = λz · pmin

z (φ U φ′), it suffices to check

that the proper scheduler, S, returned by PRISM is such that S(z) ∈ argmaxV̂z for
every z ∈ Z \ Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′] :

Proposition 1 Let M = (Z,Act,∆,C, L) be a MDP, φ, φ′ be PCTL state formu-

las and S a proper memoryless scheduler for M, φ, φ′. For each state z of M, let

pmax
z (φ U φ′) be the maximum probability of satisfying φ U φ′ in M. Let V̂ : Z → [0, 1]

be a solution of the set of equations given by Equation 7. Suppose further that

V̂(z) =
∑
z′∈Z

∆(z,S(z), z′) · V̂(z′) for each z ∈ Z \ Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′].

Then ∀z ∈ Z, V̂(z) = pmax
z (φ U φ′).

Proof As V = λz · pmax
z (φ U φ′) is the least fix point of Equation 7, we have that

for each state z ∈ Z,
pSz (φ U φ′) ≤ pmax

z (φ U φ′) ≤ vz .

Thus, it suffices to show that pSz (φ U φ′) = V̂(z) for each z ∈ Z.
Let propφ, propφ′ be distinct propositions. Given a proper memoryless scheduler

S forM, φ, φ′, letMS
φ,φ′ = (Z,Act,∆S,C, LS) be the DTMC such that ∆S(z, z′) =

∆(z,S(z), z′), LS(z) = {propφ} if M, z |= φ and LS(z) = {propφ′} if M, z |= φ′.

It is easy to see that pSz (φ U φ′) is exactly the probability of z satisfying the
formula propφ′ U propφ′ in MS

φ,φ′ . Observe further that from the fact that S is

proper, the set of states of MS
φ,φ′ that satisfy propφ′ U propφ′ with probability 0

(1 respectively) is exactly the set Probmax
0 [φ U φ′] ( Probmax

1 [φ U φ′] respectively).
Since MS is a DTMC, VS = λz · pSz (φ U φ′) is the unique solution to the set of
equations:

yz = 0 if z ∈ Probmax
0 [φ U φ′]

yz = 1 if z ∈ Probmax
1 [φ U φ′]

yz =
∑
z′∈Z

∆S(z, z′) · yz′ =
∑
z′∈Z

∆(z, α, z′) · yz′ otherwise
(11)

Finally, observe that V̂ is a solution to the above Equation 11. Hence, we must
have pSz (φ U φ′) = V̂(z) for each z ∈ Z. ut

Among the 4 engines, Explicit is the only one implemented entirely in Java.
To support this engine, our tool uses the libraries JScience [7] and Apfloat [4]
to construct the transition matrix using rational entries, perform matrix-vector
multiplications for the fixpoint check in Algorithm 3, and implement the Kwek-
Mehlhorn algorithm (Algorithm 1).

PRISM implements the remaining three engines using an extension of the
CUDD library [5]. The off-the-shelf version of CUDD only supports floating point
numbers at the terminals. RationalSearch enhances CUDD by allowing terminals
to hold either floating points or arbitrary precision rational numbers provided by
the GNU MP library [6]. Our extension allows the data type at a terminal node to
be easily interchanged and the full suite of MTBDD operations can be performed
regardless of the data type.
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PRISM

PCTL Formula
ϕ

Approximation
Engine

CUDD

sharpen

Approximate
solution V †

CUDD
+

GMP
Exact

Solution
Found

ε← ε/10

Not
found

Kwek Mehlhorn

Fixpoint

Candidate solution

YES NO

Fig. 2 RationalSearch Architecture: Given a PCTL formula ϕ, PRISM (equipped with
CUDD) approximates the solution using value/interval iteration. The sharpen procedure uses
this approximation V † and employs findFraction, in conjunction with the rational extension
to CUDD (CUDD + GMP), to generate a candidate rational vector. If this candidate rational
vector satisfies an appropriate fixpoint check, it is guaranteed to be correct. Otherwise, the
process is repeated with a better approximation.

RationalSearch makes use of this extended CUDD functionality in the fol-
lowing manner. When the model is parsed, it constructs two transition matrices,
one with doubles at the terminal nodes and one with rationals. The procedure
iteration uses double-precision transition matrix to generate a double-precision
solution vector. RationalSearch translates this solution vector into a candidate
solution vector stored as a rational MTBDDs using sharpen. The fixpoint check
from sharpen can then be performed by an MTBDD matrix-vector multiplication
between rational MTBDDs.

Algorithm 3 has also been integrated into the STORM model checker. Their
implementation3 differs from ours in that it supports running iteration with both
floating-point and arbitrary-precision numbers. It begins by running value iteration
using floating-point numbers and attempts to infer and exact solution from the ap-
proximation. If double-precision is determined to be insufficient for extracting the
precise solution, the approximation engine is re-invoked using arbitrary-precision
numbers. Another major difference in the STORM implementation is that STROM
uses the Sylvan [24] MTBDD library instead of CUDD. Sylvan provides built-in
support for arbitrary precision arithmetic.

3 Information about the implementation of Algorithm 3 in STORM was obtained through
private email conversations with the developers.
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7 Evaluation

We evaluated our tool against examples involving quantitative reachability and
costs from the PRISM benchmark suite and case studies [2, 3] and compared the
results with the exact parametric engines implemented in PRISM and STORM.
In particular, we used version 4.3.1 of PRISM and version 1.0.0 of STORM. Our
tests were carried out on an Intel core i7 dual core processor @2.2GHz with 8Gb
RAM running macOS 10.12.4.

Performance overhead. We examined the overhead incurred by RationalSearch’s
extension of PRISM. The results are given in Table 1 for the approximation en-
gines Explicit, MTBDD and Hybrid of PRISM. Due to the similarity between the
Explicit and Sparse engines, we chose to only report metrics for the former. In
Table 1, all of the tests were conducted using value iteration as the approximation
scheme. The overhead incurred for interval iteration is similar and thus not re-
ported. The quantitative properties tested against in two of the MDP benchmarks
(‘Fair Exch.’ and ‘Dice Coin’) involve computation of max probabilities. Recall
that RationalSearch supports this combination only for the Explicit engine,
and as a result, the corresponding entries in columns 8-11 (MTBDD and Hybrid

engines) are marked ‘-’ for these benchmarks.
On several examples with large state spaces, the Explicit engine fails with an

out-of-memory exception. This can be attributed to the fact that the implemen-
tation stores two copies of the transition matrix in memory. On all the examples
where Explicit fails, the symbolic engines (MTBDD and Hybrid) find the solu-
tion quickly, typically with an overhead of less than 50%. For the examples on
which the Explicit engine did not encounter an out-of-memory exception, over-
head times where much higher. One major reason for this difference is that the
Explicit engine stores the solution vector as an array. Further, in this case, Ra-

tionalSearch runs the sharpen procedure for each element of this array, thus
resulting into redundant computation when a number appears multiple times. By
contrast the symbolic engines perform symmetry reductions on the data structures
and store only distinct values at the terminal nodes of the solution vector. As a
result, sharpen needs only be run once for each terminal node.

An encouraging observation from our results was that the overhead times did
not vary drastically with the size of the model or the type of property being
checked. In particular, both PCTL properties that we examined required solving
three instances of constrained reachability properties. In spite of this, the overhead
induced by RationalSearch on these examples remained consistent with the other
examples.

Comparison with exact engines. We also compared RationalSearch with the exact
engines implemented in PRISM and STORM. The results are reported in Table 2.
The existing exact engines of both PRISM and STORM were invoked with the
-exact flag. In addition, STORM also uses the flag --minmax:method pi. Ratio-

nalSearch was run with the underlying Hybrid engine and value iteration with
absolute convergence criterion (with ε = 10−16) as the underlying approximation
scheme. We set javamaxmem=4g and cuddmaxmem=4g wherever applicable. As before,
Table 2 does not include benchmarks ‘Fair Exch.’ and ‘Dice Coin’ from Table 1.
This is because these benchmarks are MDP models and the specifications to be
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1 2 3 4 5 6 7 8 9 10 11

Model Explicit MTBDD Hybrid

Name Type Prop Param States Time Overhead Time Overhead Time Overhead

Biased Coins DTMC Reach 15 14348907 OOM n/a .18 62% 2.23 3%

IPv4 DTMC Reach 100000 100003 4.1 254% 1708 1% 1702 1%

Crowds DTMC Reach 15 119800 MP n/a MP n/a MP n/a

Lead. Elec. DTMC Cost 4 12302 1.5 117% 6.3 27% 19.6 7%

ECS DTMC PCTL 14 4815782 OOM n/a .4 70% 11.1 1%

Dice MDP Reach 6 4826809 OOM n/a .57 48% 2.4 6%

Din. Crypt. MDP Reach 9 855095 OOM n/a .381 41% .84 13%

Fair Exch. MDP Reach 400 321600 11.4 490% - - - -

Firewire MDP Reach 11000 428364 87.7 640% 15.1 7% 16.7 7%

Din. Phil. MDP Cost 3 956 .54 55% 2.86 1% .22 10%

Virus MDP Cost 3 809 .47 70% 2.3 1% .2 19%

Dice Coin MDP PCTL 1 728 .59 114% - - - -

Table 1 Experimental Evaluation of RationalSearch Overhead:. Columns 1-5 describe
the benchmark examples. Columns 6-10 report the performance and overhead metrics for
RationalSearch’s extension of the various PRISM engines. Running times are reported in
seconds. Overhead percentages were calculated by examining the time the routines added by
RationalSearch contributed to the overall running time. All tests were conduced with the
absolute convergence criterion (ε = 10−16), javamaxmem=4g and cuddmaxmem=4g. TO represents
a timeout (set to 30 minutes), OOM indicates an out of memory exception and MP indicates
that more than double precision is required to produce an exact answer. We write n/a if
information could not be determined due to a timeout or an out of memory exception.

tested involve computation of max probabilities, which RationalSearch does not
currently support.

1 2 3 4 5 6 7 8 9 10 11

Model PRISM Exact STORM Exact RationalSearch

Name Type Prop Param States Time Model Time Model Time Model

Biased Coins DTMC Reach 15 14348907 TO n/a 458 375 2.23 .02

IPv4 DTMC Reach 100000 100003 1141 6 342 .6 1702 1701

Lead. Elec. DTMC Cost 4 12302 70 1.7 1.37 0.2 19.6 1.2

ECS DTMC PCTL 14 4815782 TO 1435 TO 104 11.1 .04

Dice MDP Reach 6 4826809 TO 1016 109 76 2.4 .05

Din. Crypt. MDP Reach 9 855095 TO 39 12 11.5 .84 .06

Firewire MDP Reach 11000 428364 244 6.8 27 2.4 16.7 6.6

Din. Phil. MDP Cost 3 956 2.1 .2 .13 .125 .22 .03

Virus MDP Cost 3 809 1.3 .5 PE PE .2 .05

Table 2 Experimental Comparison of Exact Engines:. Columns 1-5 describe the bench-
mark examples. Columns 6,8,10 report the running times (in seconds) for each of the tools.
Columns 7,9,11 report the portion of the model checking times (Columns 6,8,10) used for
model construction. The configuration options for each of the tools is described in the main
text. TO represents a timeout (set to 30 minutes) and OOM indicates an out of memory ex-
ception. We write n/a if information could not be determined due to a timeout or an out of
memory exception. The PE in Columns 8 and 9 represent a parsing error in STORM.

RationalSearch drastically outperformed PRISM’s exact engine; in many
cases, by several orders of magnitude. For about half of the examples, PRISM
exact reached the 30 minute timeout. In every case, RationalSearch was able
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to find the exact solution in a matter of seconds. The comparison with STORM
is more competitive. For the majority of the small and medium size examples
(IPv4, Fair Exchange, Firewire, Dinning Philosophers) the running times for both
engines was within the same order of magnitude. However, the performance ben-
efit of RationalSearch became apparent with large models (Biased Coins, Dice,
ECS). RationalSearch achieved a 200x speed-up on the biased coins example
and 45x speed-up on the dice example. For the embedded control system example,
RationalSearch returned a solution in a matter of seconds while both PRISM
and STORM hit the 30 minute timeout.

In order to check the scalability of each of the exact engines, we also compared
the running times on specific models (Biased Coins and Dice) where the number of
states is governed by parameters that can be tuned to change the size of the under-
lying models. The results are depicted in Figure 3, where we use an approximate
engine of PRISM as a baseline for our comparative analysis. Several interesting
observations can be made here. As expected, the approximate engine of PRISM is
the fastest. Since, RationalSearch is crucially tied to the approximate engine(s)
in PRISM, it is not surprising again, that (RationalSearch) scales very well on
large models, with comparable performance to the underlying approximate en-
gine because of the low overhead our technique imposes. While the existing exact
model checking engines in PRISM and STORM do perform well when the models
are small, the performance quickly degrades when the models become reasonably
large (the scale is a logarithmic scale). This clearly demonstrates the power of the
insight that the approximate answers from fast iterative model checking techniques
can be utilized to obtain exact rational solutions with only little overhead.

2 4 6 8 10
10−2

10−1

100

101

102

Biased Coins

2 3 4 5 6

10−1

100

101

102

Dice

RationalSearch PRISM Exact PRISM Approx STORM Exact

Fig. 3 Scaling Comparison. Running times for various model checking engines on the
biased coins (left) and dice (right) examples. In both graphs, the values on the x-axis represent
the parameters of the given model and the values on the y-axis represent the running times
(in log10 scale). The configuration options for RationalSearch, PRISM Exact and STORM
exact identical to those in Figure 2. PRISM approx was invoked using the same base options
as RationalSearch. No data point is given for PRISM Exact with parameter 6 on the dice
example as a 30 minute timeout was reached.
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Comparison of iterative techniques. The final goal of our evaluation was to determine
which approximation technique, amongst value iteration and interval iteration,
could be more effectively integrated with Algorithm 3. In particular, we compared
the two approaches for speed and the quality of their approximations. The results
are given in Table 3. We integrated RationalSearch with the implementation of
interval iteration in PRISM from prior work [11], available at [1].

To our surprise, we found that the interval iteration implementation from [1]
did not always produce an approximate solution within the specified ε threshold.
In particular, for the dice example under the parameter 6, the approximations for
both ε = 10−6 and ε = 10−12 were not within the given threshold. This resulted
in RationalSearch not being able infer an exact solution. Several other examples
also suffered from this symptom. Although the approximate probabilities for the
initial states were precise enough, poor approximations for the other states in the
solution vector prevented RationalSearch from finding an exact solution.

1 2 3 4 5 6 7 8 9 10

Model Value Iteration Interval Iteration

Name Param States Epsilon Solution Approx FP Time Approx Time

Firewire 11000 428364 10−6 2087481/2097152 0.9953885078430176 n/a n/a 0.9953885078430176 n/a

Firewire 11000 428364 10−12 2087481/2097152 0.9953885078430176 11 16.2 0.9953885078430176 27.7

Dice 3 2197 10−6 1/216 0.004629455506801605 4 .1 0.004629705101251602 n/a

Dice 3 2197 10−12 1/216 0.00462962962906488 4 .1 0.0046296296297008155 n/a

Dice 6 4826809 10−6 1/46656 2.131238579750061E-5 n/a n/a 2.143591779395712E-5 n/a

Dice 6 4826809 10−12 1/46656 2.143347024102793E-5 9 2.6 2.1433470555450964E-5 n/a

Din. Crypt. 9 855095 10−6 1/256 0.00390625 4 .71 0.00390625 .97

Din. Crypt. 9 855095 10−12 1/256 0.00390625 4 1 0.00390625 1

Biased Coins 11 177147 10−6 1/177147 5.645029269476758E-6 10 .11 5.645029269476758E-6 n/a

Biased Coins 11 177147 10−12 1/177147 5.645029269476758E-6 10 .15 5.645029269476758E-6 .1

Din. Phil. 3 956 10−6 27 26.999990834143837 1 .13 27.00000014876298 .28

Din. Phil. 3 956 10−12 27 26.99999999999123 1 .14 27.000000000000142 .22

Lead. Elec. 4 12302 10−6 256/49 5.2244897630362175 3 12.2 5.224489867467293 30.1

Lead. Elec. 4 12302 10−12 256/49 5.224489795918261 3 12.4 5.22448979591833 29.7

Table 3 Experimental Comparison of Iterative Techniques. Columns 1-5 describe the
benchmark examples. Columns 6 and 9 are the approximate values generated by value itera-
tion and interval iteration, respectively. Columns 8 and 10 report the running times for each
engine (including the time for model construction). Column 7 gives the number of fixpoints
checks computed by Algorithm 2. We do not report the number of fixpoint checks for inter-
val iteration as the implementation of sharpen for this technique always calculates a single
fixpoint. The probabilities given in columns 5,6 and 9 represent the probability of satisfying
the given property from the initial state. The model types and properties for the evaluated
examples are the same as in Figure 1. Both iterative techniques were invoke using the Hybrid
engine with the options javamaxmem=4g and cuddmaxmem=4g. We write n/a in column 10 if no
fixpoint was found by the shapren procedure.

The quality of solution produced by approximation techniques varied according
to the ε threshold and the iterative technique used. Although we have not reported
the numbers in Table 3, there are also examples for which the approximations for
value (interval) iteration differ across the solution engines (for the same value of
ε). In spite of this variation, RationalSearch is able to infer an exact solution for
all of these different approximations.

In terms of speed, we observed only a small variance in the performance of the
two techniques on the benchmarks we used. In most cases value iteration slightly
outperformed interval iteration. The difference is primarily a result of the extra
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cost incurred by interval iteration to perform the additional pre-processing steps
it requires. This cost outweighs the savings afforded by the version of shapren

used with interval iteration that requires only a single fixpoint. In addition, our
benchmarks did not identify any examples for which the improved precision of
interval iteration allowed RationalSearch to infer an exact solution where value
iteration could not. The preceding observations, in conjunction, lead us to conclude
value iteration is the more effective partner for Algorithm 3.

8 Conclusion

Techniques for exact model checking allow one to avoid logical errors in system
analysis that can arise due to approximation techniques. We presented an algo-
rithm and tool, RationalSearch, that computes the exact probabilities described
by PCTL formulas for DTMCs and MDPs. Our tool works by sharpening ap-
proximate results obtained through value iteration, allowing it to benefit from the
performance enhancements gained through approximation techniques. Our experi-
mental evaluation concurs with this hypothesis, and shows that our approach often
performs significantly better than existing exact quantitative model checking tools
while also scaling to large model sizes. We believe there are also performance en-
hancements that can be achieved by a tighter integration with the Kwek-Mehlhorn
algorithm, wherein computations from previous iterations can be reused.
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A Proof of the claim in Theorem 2

It can be shown easily that f is non-expanding, i.e, for any x̄1, x̄2 ∈ U ,

||f(x̄2)− f(x̄1)|| ≤ ||x̄1 − x̄2||.

We will assume without loss of generality that Probmin
1 [ξ] consists of exactly one element z0.

Further, we assume that Probmin
0 [ξ] consists of at least 1 element as otherwise the claim is

trivially true.
Let Z? = Z \ (Probmin

0 [ξ] ∪ Probmin
1 [ξ]). For x̄ ∈ U , z ∈ Z? and α ∈ enabled(z), we denote

the sum
∑
z′∈Z

∆(z, α, z′) · x̄(z′) by hx̄,z,α. By definition

f(x̄)(z) = min
α∈enabled(z)

hx̄,z,α.

Fix x̄, ȳ ∈ U . The definition of Z? implies that for any scheduler S, the probability of
reaching z0 from a state z ∈ Z? is not zero. From this, there it follows that there is an
enumeration z1, z2, . . . zr of Z? such that for any 1 ≤ i ≤ r and any action α ∈ enabled(zi),
∆(zi, α, zj) > 0 for some 0 ≤ j < i.
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We will show by induction on 0 ≤ i ≤ r,

|f i+1(x̄)(zi)− f i+1(ȳ)(zi)| ≤ (1− pimin)||x̄− ȳ||.

Observe that this suffices to conclude the claim since this implies for any zi ∈ Z?,

|fn(x̄)(zi)− fn(ȳ)(zi)| ≤ ||f i+1(x̄)(zi)− f i+1(ȳ)(zi)||
≤ (1− pimin)||x̄− ȳ|| ≤ (1− pnmin)||x̄− ȳ||.

So, now we show that 0 ≤ i ≤ r, |f i+1(x̄)(zi)− f i+1(ȳ)(zi)| ≤ (1− pimin)||x̄− ȳ||.
Base case: The base case is trivial since f(x̄)(z0) = 1 = f(ȳ)(z0).
Induction hypothesis: Let |f i+1(x̄)(zi)− f i+1(ȳ)(zi)| ≤ (1− pimin)||x̄− ȳ|| for each 0 ≤ i ≤ `.

Fix β ∈ enabled(z`+1). Denote the set {z0, z1, . . . , z`} by Z`. We have that

hf`+2(x̄),z`+1,β
=

∑
z′∈Z

∆(z`+1, β, z
′) · f`+1(x̄)(z′)

= hf`+2(ȳ),z`+1,β
+

∑
z′∈Z

∆(z`+1, β, z
′) · (f`+1(x̄)(z′)− f`+1(ȳ)(z′))

= hf`+2(ȳ),z`+1,β
+

∑
z′∈Z`

∆(z`+1, β, z
′) · (f`+1(x̄)(z′)− f`+1(ȳ)(z′))+∑

z′∈Z\Z`

∆(z`+1, β, z
′) · (f`+1(x̄)(z′)− f`+1(ȳ)(z′)).

Now, note that (1− pimin) ≤ (1− p`min) for each i ≤ `. Thus, we get by induction hypothesis,

hf`+2(x̄),z`+1,β
≤ hf`+2(ȳ),z`+1,β

+ (1− p`min)
∑
z′∈Z`

∆(z`+1, β, z
′) · ||x̄− ȳ||∑

z′∈Z\Z`

∆(z`+1, β, z
′) · (f`+1(x̄)(z′)− f`+1(ȳ)(z′)).

As f is non-expanding, we get that

hf`+2(x̄),z`+1,β
≤ hf`+2(ȳ),z`+1,β

+ (1− p`min)
∑
z′∈Z`

∆(z`+1, β, z
′) · ||x̄− ȳ||+∑

z′∈Z\Z`

∆(z`+1, β, z
′) · ||x̄− ȳ||

≤ hf`+2(ȳ),z`+1,β
+ ||x̄− ȳ|| ·

∑
z′∈Z

∆(z`+1, β, z
′)

−p`min||x̄− ȳ|| ·
∑
z′∈Z`

∆(z`+1, β, z
′)

≤ hf`+2(ȳ),z`+1,β
+ ||x̄− ȳ||(1− p`min

∑
z′∈Z`

∆(z`+1, β, z
′)).

By construction,
∑
z′∈Z`

∆(z`+1, β, z
′)) ≥ pmin and hence

hf`+2(x̄),z`+1,β
≤ hf`+2(ȳ),z`+1,β

+ ||x̄− ȳ||(1− p`+1
min )||.

Now, we have that

f`+2(x̄)(z`+1) ≤ hf`+2(x̄),z`+1,β
≤ hf`+2(ȳ),z`+1,β

+ ||x̄− ȳ||(1− p`+1
min )||.

As β is arbitrary, the above inequality also holds for the β that minimizes hf`+2(x̄),z`+1,β
.

Hence,

f`+2(x̄)(z`+1) ≤ f`+2(ȳ)(z`+1) + ||x̄− ȳ||(1− p`+1
min )||.

Similarly, we can show that

f`+2(ȳ)(z`+1) ≤ f`+2(x̄)(z`+1) + ||x̄− ȳ||(1− p`+1
min )||.

Thus, we get

|f`+2(x̄)(z`+1)− f`+2(ȳ)(z`+1)| ≤ (1− p`+1
min )||x̄− ȳ||.


