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Controller synthesis for linear system with
reach-avoid specifications

Chuchu Fan, Zengyi Qin, Umang Mathur, Qiang Ning, Sayan Mitra, and Mahesh Viswanathan

Abstract—We address the problem of synthesizing provably
correct controllers for linear systems with reach-avoid specifica-
tions. Discrete abstraction-based controller synthesis techniques
have been developed for linear and nonlinear systems with
various types of specifications. However, these methods typically
suffer from the state space explosion problem. Our solution
decomposes the overall synthesis problem into two smaller, and
more tractable problems: one synthesis problem for an open-
loop controller which can produce a reference trajectory, and a
second for synthesizing a tracking controller, which can enforce
the other trajectories to follow the reference trajectory. As a key
building-block result, we show that, once a tracking controller is
fixed, the reachable states from an initial neighborhood, subject
to any disturbance, can be over-approximated by a sequence
of ellipsoids, with shapes that are independent of the open-loop
controller. Hence, the open-loop controller can be synthesized
independently to meet the reach-avoid specification for an initial
neighborhood. Moreover, we are able to reduce the problem
of synthesizing open-loop controllers to satisfiability problems
over quantifier-free linear real arithmetic. The number of linear
constraints in the satisfiability problem is linear to the number
of hyperplanes as the surfaces of the polytopic obstacles and
goal sets. The overall synthesis algorithm, computes a tracking
controller, and then iteratively covers the entire initial set to find
open-loop controllers for initial neighborhoods. The algorithm is
sound and, for a class of robust systems, is also complete. We
implement this synthesis algorithm in a tool REALSYN VER 2.0
and use it on several benchmarks with up to 20 dimensions.
Experiment results are very promising: REALSYN VER 2.0 can
find controllers for most of the benchmarks in seconds.

Index Terms—Controller syntheis, linear system, reach-avoid
specification, disturbance

I. INTRODUCTION

THE controller synthesis question asks whether an input
can be generated for a given system (or a plant) so that

it achieves a given specification. Algorithms for answering
this question hold the promise of automating controller de-
sign. They have the potential to yield high-assurance systems
that are correct-by-construction, and even negative answers
to the question can convey insights about unrealizability of
specifications. This is neither a new nor a solved problem,
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but there has been resurgence of interest with availability
of powerful tools like convex optimizations and satisfiability
modulo theories (SMT) solvers, and compelling applications
such as path planning [1], motion control [2], [3], and circuits
design [4].

In this paper, we study the control synthesis problem
for linear, discrete-time, and time-varying plant models with
bounded disturbance [5], [6]. We will consider reach-avoid
specifications which require that starting from any initial state
Θ, the controller has to drive the system to a target set G,
while avoiding certain unsafe states or obstacles O. Reach-
avoid specifications arise naturally in many domains such
as autonomous and assisted driving, multi-robot coordination,
and spacecraft autonomy, and have been studied for linear,
nonlinear, as well as stochastic models [7], [8], [9], [10], [11],
[12].

Textbook control design methods address specifications like
stability, disturbance rejection, and asymptotic convergence,
but they do not directly provide formal guarantees about reach-
avoid specifications. Receding horizon control and model pre-
dictive control (MPC), have been broadly used on constrained
control problems. Using MPC for reach-avoid specifications
typically solves a sequence of mixed integer linear program-
ming (MILP) [13], [14] or general nonlinear optimization
problems [15], [16]. Another approach is based on discrete
abstractions, where a discrete, finite-state, abstraction of the
original control system is computed, and a discrete controller
is synthesized by solving a two-player game on the abstracted
game graph [17], [18]. Theoretically, these methods can be
applied to systems with nonlinear dynamics and they can syn-
thesize controllers for a general class of linear temporal logic
(LTL) specifications. However, in practice, the discretization
step leads to state space explosion for higher dimensional
models. A detailed comparison between these methods and
our proposed approach is provided in Section II.

In this paper, the synthesis algorithm follows a natural
paradigm for designing controllers. The approach is to separate
the controller into two parts: an open-loop controller and a
tracking controller, and synthesize them separately. An open-
loop controller for a single initial state x0 ∈ Θ to meet
the reach-avoid specification. This is called the reference
trajectory. For the remaining states in the initial set, a tracking
controller is added, that drives these other trajectories towards
the reference trajectory that starts from x0. However, designing
such a combined controller can be computationally expen-
sive [19] because of the interdependency between the open-
loop controller and the tracking controller (Section IV-A).
Our approach to making this construction feasible, is to
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demonstrate that the two controllers can be synthesized in a
decoupled way as follows. We first design a tracking controller
using a standard LQR (linear quadratic regulator) method [20].
The crucial result (Lemma 1) that helps decouple the synthesis
of the tracking and open-loop controller, is that for such
a combined controller, once the tracking controller is fixed,
the set of states reached from the initial set is contained
within a sequence of ellipsoidal sets [21] centered around the
reference trajectory. The shape and size of these ellipsoidal
sets are solely dependent on the tracking controller and the
disturbance, and are independent of the reference trajectory
or the open-loop controller. In fact, this is a special case
of constructing a Lyapunuv function for the error dynamics
between the actual trajectory of the system and the reference
trajectory [22]. Moreover, ellipsoids have been widely used
in reachability computation to solve verification [23], [24]
and synthesis [25] problems. In this paper, we follow such
controller design paradigm and enjoy the benefit of using
ellipsoidal reachable sets: The open-loop controller and the
resulting reference trajectory can be chosen independent of
the fixed tracking controller.

Based on this, the problem of synthesizing the open-loop
controller can be completely decoupled from synthesizing the
tracking controller. Our open-loop controller is synthesized by
encoding the problem as an SMT problem. The straightforward
encoding of the synthesis problem is to find an open loop
controller that can make sure all states in the reach set
ellipsoids satisfy the reach-avoid specification. Such encoding
results in a ∃∀ formula in the theory of linear arithmetic.
Unfortunately, solving large instances of such formulas us-
ing current SMT solvers is challenging. To overcome this,
we exploit geometric properties of polytopes and ellipsoids,
and reduce the original ∃∀-formula into the quantifier-free
fragment of linear arithmetic (QF-LRA). Moreover, assuming
that the obstacles and goal set can be represented as polytopes,
then the number of linear constraints in the QF-LRA formulas
grows linearly with time and the number of hyperplanes as the
surfaces in obstacles and the goal set (Lemmas 2 and 3). In
this way, the proposed approach for synthesizing the combined
controller can scale to large dimensional systems.

Our overall algorithm (Algorithm 1), after computing an
initial tracking controller, iteratively synthesizes open-loop
controllers by solving QF-LRA formulas for smaller subsets
that cover the initial set. The algorithm will automatically
identify the set of initial states for which the combined
tracking+open-loop controller is guaranteed to work. Our
algorithm is sound (Theorem 1), and for a class of robust
linear systems, it is also complete (Theorem 2).

We have implemented the new synthesis algorithm in the
tool REALSYN VER 2.0, which was developed with [26]. We
compare the performance of the new algorithm proposed in
this paper with the previous algorithm as in [26], and a state-
of-the-art synthesis tool SMC [27], [28], on 10 benchmark
problems. Here the obstacles are general polytopes instead
of only axis-aligned hyper-rectangles. In REALSYN VER 2.0,
any SMT solver can be plugged in for solving the synthesis
problem. We report the results of using the Yices solver, as
it outperformed other solvers in [26]. Results show that our

new approach can achieve a 2 to 150 × speedup for most
benchmark models comparing with the previous algorithm
REALSYN VER 1.0 as in [26], and a 2 to 80 × speedup
comparing with SMC. The proposed new algorithm also
scales well for complex models — including a system with
3 vehicles (12-dimensional) trying to reach a common goal
while avoiding collision with the obstacles and each other,
and another system with 10 vehicles (20 dimensional) trying to
maintain a platoon. For all the benchmark models, REALSYN
VER 2.0 with the new algorithm finds a controller within 2
minutes using the Yices solver, and for most benchmarks it
finds a controller within 10 seconds.

The major contributions of this paper is to explore an
assembly of several techniques from control, geometry, SAT
solving to develop a fast and formally guaranteed algorithm
for controller synthesis. To be more concrete: 1) We propose a
synthesis algorithm to find correct-by-construction controllers
for linear time-varying systems with respect to reach-avoid
specifications. Our synthesis algorithm is sound, and is also
complete for a class of robust linear systems. 2) Our pro-
posed algorithm achieves scalability by reducing the synthesis
problem to satisfiability over quantifier-free linear arithmetic
and leveraging modern SMT solvers. We develop efficient
encoding methods so that the number of constraints in the
resulting SMT problem grows linearly with time and the
complexity of the reach-avoid specification. 3) Our algorithm
significantly improves the practical efficiency of control syn-
thesis for large linear systems with disturbances. Empirical
results show a significant improvement over state-of-the-art
synthesis methods.

II. RELATED WORKS

Controller synthesis techniques have been the center of
extensive investigation with numerous publications every year
lately. Here we briefly review related works based on different
plant models, specifications, and several major approaches.

a) Models and specifications for synthesis: In increasing
order of generality, the types of plant models that have been
considered for controller synthesis are double-integrator mod-
els [2], linear dynamical models [29], [30], [31], [32], [33],
[13], [34], piecewise affine models [8], [35], and nonlinear
(possibly switched) models [36], [7], [17], [37], [16]. There
is also a line of work on synthesis approaches for stochastic
plants (see [38], and the references therein). For each of the
classes, both continuous and discrete-time models have been
addressed with possibly different approaches.

There are several classes of specifications typically used for
synthesis: (1) stabilization for system with special properties,
including positive systems [29] and systems with quantized
measurements [39], [40], (2) pure safety or invariance specifi-
cations [17], [41], [42], (3) reach-avoid [9], [17], [41], [7], [8],
and (4) general LTL, GR(1) [43], [30], [44] [31], [35], [45],
Metric Temporal Logic [46], and Signal Temporal Logic [47],
[14]. For each of these classes both bounded and unbounded-
time variants have been considered.

In this work, we focus on linear, discrete-time, time-varying
systems with reach-avoid specifications.
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b) Model Predictive Control: MPC [48] utilizes an ex-
plicit plant model to predict the plant state and compute
the control input to the plant based on this prediction. At
each control interval, an MPC algorithm attempts to solve
a constrained, discrete-time, optimal control problem in an
online setting, with the objective of optimizing future plant
behavior based on current state. Without loss of generality,
assume the current state of the system is x[0], MPC solves a
finite horizon (N steps) optimal control problem defined by:

minu[0],...,u[N−1] Vf (x[N ]) +
∑N−1
i=0 `(x[i],u[i])

s.t.
∧N
i=0 x[i] ∈ X,

∧N−1
j=0 u[j] ∈ U,

(1)

where in the objective function Vf defines cost of the final
state of the controlled system x[N ], ` defines the cost of
the rest of the states and control inputs, and the controlled
system is required to satisfy the state and control constraints
x[i] ∈ X,u[i] ∈ U , respectively. The implicit MPC law asks
that at the state x[0], the first control u[0] of the computed
optimal control sequence is applied, and the entire calculation
is repeated at subsequent control intervals. When optimal
control problems admit an explicit offline solution, online
operations reduce to a simple function evaluation. Such ex-
plicit MPC has been exploited in many applications including
motion planing [33], [13], [34]. The idea of explicit MPC is
to solve the optimization problem (1) offline for all x within
a given set, and to make the dependence of u(t) on x(t)
explicit. The resulting MPC control law is a piecewise affine
function of the state x defined over a polyhedral partition of
the feasible set Xf . For systems with large state and input
spaces, explicit MPC is not practical. Furthermore, it is hard
to make explicit MPC handle cases where the system, cost
function, or constraints are time-varying [49].

Using MPC for controller synthesis typically requires model
reduction for casting the optimization problem (1) as a linear
programming (LP) [33], quadratic programming (QP) [50],
mixed integer linear programming (MILP) [13], [47], [14] or
general nonlinear optimization problems [15], [16].

In this paper, the obstacles at each step are specified by
a collection of polytopes. Therefore, the safe region X , as
the complement of the obstacles, is usually non-convex. To
encode such avoidance condition x[i] ∈ X in the optimiza-
tion problem (1) , one has to introduce disjunctions to the
constraints. In [16], the authors use Farkas’ lemma to change
the avoidance condition into its dual form that is compatible
for MPC formulation. However, the extra variables introduced
by Farkas’ lemma will lead to nonlinear constraints. In [13],
the authors introduce extra Boolean variables to eliminate the
disjunctions, and make the original optimization problem (1)
an MILP. Both the works use implicit MPC law. The main
drawback of implicit MPC is the need to solve a mathematical
program online or within the sampling time to compute the
control action. Therefore, it is hard to use on systems with
large dimensionality [51] and when the sampling period is
short. Explicit MPC can help relieve the heavy computation
load, especially when the optimization problem is a LP or
QP. However, in this case, the explicit solution for nonlinear
optimization and MILP cannot be solved very efficiently in

practice [51].
Compared with the above encoding for reach-avoid, our

proposed method benefits from the fact that the tracking con-
troller can fix the shapes and sizes of the reach set ellipsoids
from an initial set. We further exploit special properties of
the separation between ellipsoids and polytopes to make the
constraints quantifier-free over linear real arithmetics, which
can be efficiently solved using state-of-the-art SMT solvers or
MILP solvers.

The major differences between our approach and the MPC-
based approaches include:

1) Our approach does not require the help of a cost function.
Instead, we only need a feasible solution of the satisfia-
bility problem and sacrificed optimality.

2) MPC can be used in scenarios when obstacles are con-
structed dynamically when system evolves by solving the
optimization problem (1) iteratively, while our proposed
approach solves a one-shot SAT problem to find con-
trollers that work for an initial set X0 when obstacles
are fixed. In Section IV-D, we discuss how to adjust
our proposed encoding for the reach-avoid and input
constraints to be used in MPC.
c) Control Lyapunov and barrier functions: The idea

of control Lyapunov function (CLF) [52], [53], [54] is to
associate a Lyapunov function V (x) with its global minimum
at the target state x∗ to the nonlinear system that needs to be
stabilized. At each time step, find a control input u to force
V (x) to decrease to guarantee that the target state x∗ can be
reached asymptotically.

Control barrier functions (CBF) [55] play a similar role to
CLF in the study of liveness properties for nonlinear systems.
CBF can ensure safety by enforcing invariance of a set. That
is, CBF makes sure that that there exists a control input u such
that the nonlinear system will not leave a safe set. In general,
it is not easy to find a CLF for CBF for a given system.

d) Discrete abstractions: Controller synthesis based on
discrete abstractions have received considerable attention [17],
[41], [43], [30], [44], [30], [31], [32]. These techniques
involvee constructing a finite partition of the continuous state
space with respect to a set-valued map. Following those
methods, it is possible to synthesize controllers for general
nonlinear systems to enforce complex temporal logic specifi-
cations.

There is a growing set of controller synthesis tools and
libraries based on the discrete abstraction approach. These
include tools like CoSyMA [56], Pessoa [4], LTLMop [57],
[58], Tulip [44], [59], and SCOTS [36]. Compared with these
methods, our proposed solution takes a different route by
“designing” the shape of reach sets first with the tracking
controller, then “placing” the reach sets using the open loop
controller. The entire process does not involve any partition
of the state space, and therefore avoids the potential problem
of exponentially growing partitions for large dimensional
systems. Our trial with a 4-dimensional example on Tulip [44],
[59] did not finish the discretization step in one hour. Recent
methods like feedback refinement [60] and multi-Layered
abstraction [61] have been introduced to address the issue
of exponentially growing partitions. However, such methods
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are yet to be available as synthesis tools. LTLMop [57], [58]
handles GR(1) LTL specifications, which are more general
than reach-avoid specifications considered in this paper, but
it is designed for 2-dimensional robot models working in
the Euclidean plane. It generates a hybrid controller as a
combination of discrete controllers and continuous controllers
to meet the high-level specification under certain assumptions
on the environment.

e) Sampling based path planning: Sampling based meth-
ods such as Probabilistic Road Maps (PRMs) [62], Rapidly-
exploring Random Trees (RRT) [63], and fast marching tree
(FMT) [64] have offered the benefits of generating feasible
trajectories through known or partially known environments.
Compared with the deterministic guarantees provided by syn-
thesis methods discussed above, including ours, the sampling
based methods come with stochastic guarantees. Also, they are
not designed to be robust to model uncertainty or disturbances.

f) Satisfiability Modulo Convex Optimization::
SMC [27], [28] solves satisfiability problems which are
represented as Boolean combinations of convex constraints
over the real numbers. Unlike our approach that reduces
the reach-avoid problem to a pure SAT problem, SMC uses
a combination of SAT solving and convex programming
to provide a satisfying assignment or determine that the
formula is unsatisfiable. Therefore SMC enjoys both the
efficiency of convex optimizations and the formal guarantees
of SAT solving, while our approach depends more on the
efficiency of SMT solvers over quantifier-free linear real
arithmetic. SMC can be used to solve robotic motion planning
problems and has been shown to be much more effective than
sampling-based methods like RRT. In Section V, we compare
our proposed algorithm with SMC by adapting the original
implementation of SMC to handle our examples.

In addition to the above approaches, an alternative synthesis
technique generates mode switching sequences for switched
system models [65], [66], [67], [68], [69] to meet the spec-
ifications. This line of work focuses on a finite input space,
instead of the infinite input space we are considering in this
paper.

Abate et al. [42] use a controller template similar to the
one considered in this paper for invariant specifications. A
counter-example guided inductive synthesis (CEGIS) approach
is used to first find a feedback controller for stabilizing the
system. Since this feedback controller may not be safe for
all initial states of the system, a separate verification step is
employed to verify safety, or alternatively to find a counter-
example. In the latter case, the process is repeated until a valid
controller is found. This is different from our approach, where
any controller found needs no further verification.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

For a set S and a finite or infinite sequence σ of elements
from S, we denote the tth element of σ by σ[t]. In the
rest of the paper, we will use boldfaced letters (for example,
A,B,x,d,u, etc.,) to denote a sequence of matrices or
vectors. Given a vector x ∈ Rn, x(i) is the ith component

of x. Given a matrix A ∈ Rn×m, A(i) is the ith row of A.
Given an invertible matrix M ∈ Rn×n and a vector x ∈ Rn,
‖x‖M

∆
=
√
x>M>Mx is called the M -norm of x.

Given a vector c ∈ Rn, an invertible matrix M , and a scalar
value r ≥ 0, we define Er(c,M)

∆
= {x | ‖x − c‖M ≤ r} to

be the ellipsoid centered at c with radius r and shape M .
Br(c)

∆
= Er(c, I) is the ball of radius r centered at c. For two

sets R,S ⊆ Rn, we define R⊕ S ∆
= {x+ y | x ∈ R, y ∈ S};

for a singleton set, we abuse notation and use v⊕S to denote
{v} ⊕ S. For set S ⊆ Rn and matrix M ∈ Rn×n, we define
M ⊗S ∆

= {Mx | x ∈ S}. We say a set S ⊆ Rn is a polytope
if there is a matrix Ak×n and a vector b ∈ Rk such that
S = {x | Ax ≤ b}.

B. Discrete time linear control systems

An (n,m)-dimensional time-varying discrete-time linear
system A is a 5-tuple 〈A,B,Θ, U,D〉, where (i) A is an
infinite sequence of Rn×n matrices, called dynamic matrices.
(ii) B is an infinite sequence of Rn×m matrices, called input
matrices, and at each time step t, the pair (A[t],B[t]) is
controllable [6]. (iii) Θ ⊆ Rn is a set of initial states.
(iv) U ⊆ Rm is the space of inputs. (v) D ⊆ Rn is the
space of disturbances.

A control sequence for an (n,m)-dimensional system A
is a (possibly infinite) sequence u = u[0],u[1], . . ., where
each u[t] ∈ U . Similarly, a disturbance sequence for A is a
(possibly infinite) sequence d = d[0],d[1], . . ., where each
d[t] ∈ D. Given control u and disturbance d, and an initial
state x[0] ∈ Θ, the execution of A is uniquely defined as the
(possibly infinite) sequence of states x = x[0],x[1], . . . , where
for each t > 0,

x[t+ 1] = A[t]x[t] + B[t]u[t] + d[t]. (2)

An open-loop control sequence (also called an open-loop
controller) for a given single initial state x0 ∈ Θ is a control
sequence u such that the corresponding execution x with
x[0] = x0 and 0 disturbance (i.e. ∀t ≥ 0,d[t] = 0) satisfies
the reach-avoid constraints..

A (state feedback) controller for A is a function g : Θ ×
Rn → Rm, that maps an intial state and a (current) state to an
input. That is, given an initial state x0 ∈ Θ and state x ∈ Rn
at time t, the control input to the plant at time t is:

u[t] = g(x0, x). (3)

This controller is allowed to use the memory of some initial
state x0 (not necessarily the current execution’s initial state)
for deciding the current state-dependent feedback. Thus, given
an initial state x[0], a disturbance d, and a state feedback
controller g, Equations (2) and (3) define a unique execution
x of A. A state x is reachable at the tth-step if there exists an
execution x of A such that x[t] = x. The set of all reachable
states from some set S ⊆ Θ in exactly T steps using the
controller g is denoted by ReachA,g(S, T ). When A and g
are clear from the context, we simply write Reach(S, T ).
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C. Bounded controller synthesis problem

Given an (n,m)-dimensional time-varying discrete-time lin-
ear system A, a sequence O of obstacles or unsafe sets (with
O[t] ⊆ Rn, for each t), a goal G ⊆ Rn, and a time bound T ,
the bounded time controller synthesis problem is to find, a state
feedback controller g such that for every initial state θ ∈ Θ
and any disturbance sequence d ∈ DT of length T , the unique
execution x of A with g, starting from x[0] = θ, satisfies
(i) for all t ≤ T , u[t] ∈ U , (ii) for all t ≤ T , x[t] 6∈ O[t], and
(iii) x[T ] ∈ G. For the rest of the paper, we will assume that
each of the sets in {O[t]}t∈N, G and U are closed polytopes.

The controller synthesis problem requires one to find a state
feedback controller that ensures that the execution starting
from any initial state in Θ will meet the reach-avoid specifica-
tion. Since the set of initial states Θ will typically be an infinite
set, this requires the synthesized feedback controller g to have
a finite representation. An “enumerative” representation, where
a (separate) open-loop control sequence is constructed for each
initial state, is not feasible. We therefore need a useful template
that will serve as the representation for the feedback controller.

Example 1. Consider a mobile robot that needs to reach the
green area of an apartment starting from the entrance area,
while avoiding the red areas (Figure 1). The robot’s dynamics
are described by a linear model (for example the navigation
model from [70]). The obstacle sequence O (red rectangles
and outside of the figure region) here is static, that is, O[t] =
O[0] for all t ≥ 0. Both Θ (light green) and G (dark green)
are rectangles (which are also polytopes). Although these sets
are depicted in 2D, the dynamics of the robot may involve a
higher dimensional state space.

Fig. 1. The settings for controller synthesis of a mobile robot with
reach-avoid specification.

In this example, there is no disturbance, but a similar
problem can be formulated for a drone flying outdoors, in
which case, the disturbance input could model the effect of
wind. Time-varying obstacle sets are useful for modeling safety
requirements of multi-robot systems.

Suppose robot is asked to reach the target set in 40 steps.
The dotted curves are two executions from Θ and the pink
ellipsoids show the projection of the reachset on the robot’s
position with a synthesized controller.

IV. SYNTHESIS ALGORITHM

A. Algorithm overview

A natural controller design paradigm is to first find a refer-
ence execution xref which uses an open-loop controller, then
add a tracking controller which tries to force other executions
x starting from different initial states x[0] to get close to xref
by minimizing the distance between xref and x. This form of
controller combining open-loop control with tracking control
is also proposed in [19] for reach-avoid specifications. For the
discrete-time linear control system defined as Equation (2), the
combined controller is formally defined as follows:

Definition 1. Given a discrete-time linear system as Equa-
tion (2), the combined controller g is a tuple 〈K,xref[0],uref〉
such that the control input u[t] to the system is

u[t] = uref[t] + K[t](x[t]− xref[t]),with (4)

xref[t+ 1] = A[t]xref[t] + B[t]uref[t], (5)

where
(1) uref is called the open-loop control sequence, which

determines the value of the reference execution xref[t] at
each time step t ∈ N once xref[0] is fixed, and

(2) K is called the tracking controller, which is a sequence
of matrices that determine the additive component of the
input based on the difference between the current state
and the reference execution.

Given the combined feedback controller g as the tuple
〈K,xref[0],uref〉, we could rewrite the linear system in (4)
as an augmented system x

xref

 [t+ 1] =

A[t] + B[t]K[t] −B[t]K[t]

0 A[t]


 x

xref

 [t]

+

B[t] 0

0 B[t]


uref

uref

 [t] +

d
0

 [t].

Observe that the above augmented system has the form

x̂[t+ 1] = Â[t]x̂[t] + B̂[t]û[t] + d̂[t],

and its closed-form solution is given by

x̂[t] =
( t−1∏
i=0

Â[i]
)
x̂[0] +

t−1∑
i=0

( t−1∏
j=i+1

Â[j]
)
(B̂[i]û[i] + d̂[i]).

(6)
To synthesize a controller g of this form, therefore, requires
finding K,xref[0],uref such that the closed-form solution
meets the reach-avoid specification. This is indeed the ap-
proach followed in [19], albeit in the continuous time setting.
Observe that in the closed-form solution, Â[t], û, and x̂[0] all
depend on parameters that we need to synthesize. Therefore,
solving such constraints involves polynomials whose degrees
grow with the time bound. This is very expensive, and unlikely
to scale to large dimensions and time bounds.

In this paper, to achieve scalability, we take a slightly
different approach than the one where K,xref[0], and uref
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are simultaneously synthesized. We first synthesize a track-
ing controller K, independent of xref[0] and uref, using the
standard LQR method. Once K is synthesized, we show that,
no matter what xref[0] and uref are, the state of the system at
time t starting from x0 is guaranteed to be contained within
an ellipsoid centered at xref[t] with shape and radius that
depend only on K, the initial distance between x0 and xref[0],
time t, and disturbance set D. Moreover, this radius is only
a linear function of the initial distance (Lemma 1). Thus, if
we can synthesize an open-loop controller uref starting from
some state xref[0], such that ellipsoids centered around xref
satisfy the reach-avoid specification, we can conclude that the
combined controller will work correctly for all initial states
in some ball around the initial state xref[0]. The radius of the
ball around xref[0] for which the controller is guaranteed to
work will depend on the radii of the ellipsoids around xref that
satisfy the reach-avoid specification. This decoupled approach
to synthesis is the first key idea in our algorithm.

Synthesizing the tracking controller K still leaves open
the problem of synthesizing an open-loop controller for an
initial state xref[0]. A straightforward encoding of the problem
could be to find an open-loop controller that works for all
initial states in some ball around xref[0]. That is, finding
a satisfying solution for the formula ∃uref,∃r, such that
∀x[0] ∈ Br(xref[0]),

∧T
t=0 x[t] /∈ O[t]∧x[T ] ∈ G. This results

in a ∃∀-formula in the theory of real arithmetic. Unfortunately,
solving such formulas does not scale to large dimensional
systems using current SMT solvers [71]. The next key idea
in our algorithm is to simplify these constraints and make the
formula quantifier free. We reduce the problem of deciding
whether an ellipsoid (the set of reachable states) is separated
from (or contained in) a polytope (the obstacles or the goal)
to measuring the distances of the center of the ellipsoid to
surfaces of the polytopes in a linearly transformed coordinate.
In this way we are able to reduce the original ∃∀-formula
into the quantifier-free fragment of linear real arithmetic (QF-
LRA) [72], [73] (Section IV-D).

Putting it all together, the overall algorithm (Algorithm 1)
works as follows. After computing an initial tracking con-
troller K, it synthesizes open-loop controllers for different
initial states by solving QF-LRA formulas. After each open-
loop controller is synthesized, the algorithm identifies the set
of initial states for which the combined tracking+open-loop
controller is guaranteed to work, and removes this set from
Θ. In each new iteration, it picks a new initial state not
covered by previous combined controllers, and the process
terminates when all of Θ is covered. Our algorithm is sound
(Theorem 1)—whenever a controller is synthesized, it meets
the specifications. Further, for robust systems (defined later
in the paper), our algorithm is guaranteed to terminate when
the system has a combined controller for all initial states
(Theorem 2).

B. Synthesizing the tracking controller K

Given any open-loop controller uref and the corresponding
reference execution xref, by replacing in Equation (2) the

controller of Equation (4), we get:

x[t+ 1] = (A[t] + B[t]K[t])x[t]−B[t]K[t]xref[t]

+B[t]uref[t] + d[t].
(7)

Subtracting xref[t + 1] from both sides, we have that for
any execution x starting from the initial states x[0] and with
disturbance d, the distance between x and xref changes with
time as:

x[t+ 1]− xref[t+ 1] =

(A[t] + B[t]K[t]) (x[t]− xref[t]) + d[t].
(8)

With Ac[t]
∆
= A[t] + B[t]K[t], y[t]

∆
= x[t] − xref[t], Equa-

tion (8) becomes

y[t+ 1] = Ac[t]y[t] + d[t].

We want x[t] to be as close to xref[t] as possible, which means
K[t] should be designed to make |y[t]| converge. Equivalently,
K[t] should be designed as a linear feedback controller such
that the system y[t + 1] = Ac[t]y[t] is stable. Such a matrix
K[t] can be computed using several methods. In this work,
we compute K[t] as finding a linear state feedback controller
by solving the LQR problem [20], stated as follows.

Definition 2 (LQR). For a time-varying linear system A as
defined in Section III-B with 0 disturbance and a time bound
T , the linear quadratic regulator (LQR) problem is the optimal
control problem of finding open loop control u[0], · · · ,u[T −
1], such that the following objective function is minimized:

J(x[0],u, T )
∆
=

x[T ]>Q[T ]x[T ] +
∑T−1
t=0 (x[t]>Q[t]x[t] + u[t]>R[t]u[t]),

where Q and R are sequences of symmetric positive definite
matrices.

The optimal control for LQR is given by ∀t = 0, · · · , T−1,
u[t] = K[t]x[t] where

K[t]
∆
= −

(
B[t]>P[t+ 1]B[t] + R[t]

)−1
B[t]>P[t+ 1]A[t],

(9)
and P[t] is computed by solving the discrete time Riccati
difference equation:

P[t] = A[t]>P[t+ 1]A[t] + Q[t]−A[t]>P[t+ 1]B[t]
(B[t]>P[t+ 1]B[t] + R[t])−1B[t]>P[t+ 1]A[t]

with boundary condition P[T ] = Q[T ] [74]. The matrices
K in Equation (9) can be used as a tracking controller as in
Definition 1.

When T →∞ and ∀t ≥ 0,A[t] = A,B[t] = B,Q[t] = Q,
and R[t] = R are all constant matrices, and K[t] computed
using Equation (9) will also become a constant matrix K.
Furthermore, if the pair (A,B) is controllable (or stabilizable),
the closed-loop system x[t+1] = (A+BK)x[t] is stable. That
is, the eigenvalues of Ac = A+BK with K given by Equation
(9) have magnitudes less than 1. Therefore, when T →∞, the
tracking controller K computed using LQR can guarantee that
the any execution x will converge to xref asymptotically when
there is no disturbance.
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For most of the experiments presented in Section V, we
fix each Q[t] and R[t] to be identity matrices. Roughly, for a
given R, scaling up Q results in a K that makes an execution
x converge faster to the reference execution xref but will also
result in larger values of u. In this paper, the detailed tradeoffs
involved in the choices of Q[t] and R[t] will not be pursued
further.

With the synthesized K, we are able to compute the set of
reachable states for A with an arbitrary reference trajectory
xref, as shown in the following section.

C. Reachset over-approximation with tracking controller

In this section, we assume that the tracking controller, which
is a sequence of matrices K, computed as in Section IV-B, will
make A[t]+B[t]K[t] invertible for any time t. We do not need
A[t] +B[t]K[t] to be stable for the analysis of the rest of the
paper. However, later on we will see that if K can make the
other trajectories x converge to xref, the set of reachable states
will also converge to its center xref, which is desirable for the
overall synthesis algorithm.

Once we fix K, we show that the reachable states of
the system A with an open-loop controller uref (to be com-
puted in Section IV-D) can be over-approximated using a
sequence of ellipsoids centered at the corresponding xref with
shapes and radii depending on A,B,K, the initial set, and
the disturbances (Lemma 1). Moreover, for systems with 0
disturbances (i.e., D = {0}), Corollary 1 shows that the set
of reachable states can be computed precisely (i.e., there is no
over-approximation error).

Lemma 1. Consider a linear system A = 〈A,B,Θ, U,D〉
with a controller defined as in Equation (4). Fix
(1) a tracking controller K such that A[t] + B[t]K[t] is

invertible for each time t,
(2) an open-loop controller uref with the corresponding ref-

erence execution xref, and
(3) an ellipsoidal initial set S = Er[0](xref[0],M[0]) ⊆ Θ,

where r[0] and M[0] are the radius and shape of the
ellipsoid respectively. Then

Reach(S, t) ⊆ Er[t](xref[t],M[t]),∀ t ≤ T,where (10)

M[t] = M[0]

(
t−1∏
i=0

(A[i] + B[i]K[i])−1

)
,

r[t] = r[0] +

t−1∑
i=0

δ[i], and

δ[i] is chosen such that ∀i ≥ 0, Eδ[i](0,M[i+ 1]) ⊇ D.

Proof. We prove this lemma by induction on t.
Base case: When t = 0, from the condition (3)

of the Lemma we know that Reach(S, 0) = S =
Er[0](xref[0],M[0]).

Induction step: Assume that at time step t we have
Reach(S, t) ⊆ Er[t](xref[t],M[t]).

Let Ac[t] = A[t] + B[t]K[t]. At time step t + 1, from
Equation (8), we have that

x[t+ 1] = xref[t+ 1] + Ac[t](x[t]− xref[t]) + d[t].

∀x[t] ∈ Reach(S, t), we have x[t] − xref[t] ∈
Er[t](0,M[t]). Moreover, since d[t] ∈ D, we have that

x[t+ 1] ∈ xref[t+ 1]⊕Ac[t]Er[t](0,M[t])⊕D. (11)

Recall that ⊕ is the addition of all elements of sets,
and Ac[t]Er[t](0,M[t]) means multiplying each vector in
Er[t](0,M[t]) with Ac[t].

The right-hand side of Equation (11) can be computed as
follows:

(1) The second item Ac[t]Er[t](0,M[t]), which contains all
possible values of Ac[t](x[t] − xref[t]), can be computed
as:

Ac[t]Er[t](0,M[t]) = {Ac[t]x | ‖x‖M[t] ≤ r[t]}
= {Ac[t]x | ‖M[t]x‖2 ≤ r[t]}.

Letting y = Ac[t]x, then we have

Ac[t]Er[t](0,M[t]) = {y | ‖M[t]A−1c [t]y‖2 ≤ r[t]}
= {y | ‖y‖M[t]Ac[t]−1 ≤ r[t]} = Er[t](0,M[t+ 1]).

(2) Then, since D ⊆ Eδ[t](0,M[t+1]), which means ∀d ∈ D,
‖d‖M[t+1] ≤ δ[t]. Therefore, we have

Er[t](0,M[t+ 1])⊕D
= {x+ d | ‖x‖M[t+1] ≤ r[t], ‖d‖M[t+1] ≤ δ[t]}.

Using triangular inequality of the M [t+1] norm, we have

Er[t](0,M[t+ 1])⊕D
⊆ {y | ‖y‖M[t+1] ≤ r[t] + δ[t]} = Er[t+1](0,M[t+ 1]).

(3) Finally, it is easy to see that

xref[t+ 1]⊕ Er[t+1](0,M[t+ 1])

= Er[t+1](xref[t+ 1],M[t+ 1]).

Therefore, we have

Reach(S, t+ 1) ⊆ Er[t+1](xref[t+ 1],M[t+ 1]).

In the above proof, the only over-approximation happened
in Step 2, as we over-approximate the disturbance D using
an ellipsoid with shape M[t+ 1]. This is because we want to
keep reach sets represented as ellipsoids all the time. If there
is no disturbance, i.e. D = {0}, we do not need to conduct
Step 2, and Lemma 1 can give us exact reach sets:

Corollary 1. Consider a linear system A = 〈A,B,Θ, U,D =
{0}〉 with a controller defined as in Equation (4). Fix

(1) a tracking controller K,
(2) an open-loop controller uref with the corresponding ref-

erence execution xref, and
(3) an ellipsoidal initial set S = Er[0](xref[0],M[0]) ⊆ Θ,

where r[0] and M[0] are the radius and shape of the
ellipsoid respectively. Then,

Reach(S, t) = Er[t](xref[t],M[t]),∀ t ≤ T, (12)
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where M[t] = M[0]
(∏t−1

i=0(A[i] + B[i]K[i])−1
)

.

In Lemma 1, r[0] and M[0] can be chosen arbitrarily
as long as the corresponding ellipsoid Er[0](xref[0],M[0])
contains (or is equal to) the initial set S. It follows that
given any sequence of uref as the open-loop controller,
which leads to a corresponding reference trajectory xref,
the reachable states from S Reach(S, t) can be over-
approximated by an ellipsoid centered at xref[t+1] with shape
M[t] = M[0]

(∏t−1
i=0(A[i] + B[i]K[i])−1

)
and radius r[0]

(when there is no disturbance) or r[0] plus an additive term∑t−1
i=0 δ[i] which accounts for bounded disturbance. Note that

the shapes and radii of the ellipsoids are all independent of
the open-loop controller uref and the reference trajectory xref.
This is the key step to decouple the synthesis of the tracking
controller K and rest of the parameters in the feedback
controller (uref, xref[0]). In the next section, we discuss a novel
approach to finding the latter two efficiently.

D. Synthesis of open-loop controller

In this section, we will discuss the synthesis of the open-
loop controller uref and xref[0] in 〈K,xref[0],uref〉. From the
previous section, we know that given an initial set S, a tracking
controller K, and an open-loop controller uref, the reachable
set (under any disturbance) at time t is over-approximated by
Er[t](xref[t],M[t]). Thus, once we fix K, the problem of syn-
thesizing a controller reduces to the problem of synthesizing
an appropriate uref and xref[0] such that the reachset over-
approximations meet the reach-avoid specification. Indeed, for
the rest of the this section, we will assume fixed K.

For synthesizing uref and xref[0], we would like to formalize
the problem in terms of constraints that will allow us to
use SMT solvers. As we have discussed in Section IV-A,
the quantifier-free formulas are simpler than formulas with
quantifier alternations [73]. In the following, we describe the
details of how this problem can be formalized as a quantifier-
free first-order formula over the theory of reals. We will then
lay out specific assumptions and/or simplifications required to
reduce the problem to QF-LRA theory, which is implemented
effectively in existing state-of-the-art SMT solvers. Most SMT
solvers also provide the functionality of explicit model gener-
ation, and the concrete controller values can be read-off from
the models generated when the constraints are satisfiable.

1) Constraints for synthesizing uref: The uref synthesis
problem can be stated as finding satisfying solutions for
the formula φsynth, where the initial set of states is S =
Br[0](xref[0]).

φsynth
∆
= ∃uref[0],uref[1], . . .uref[T−1], r[0]

∃xref[0],xref[1], . . .xref[T ],

φcontrol(uref) ∧ φexecution(uref,xref)

∧φavoid(r[0],uref,xref) ∧ φreach(r[0],uref,xref)

(13)

where φcontrol constrains the space of inputs, φexecution states
that the sequence xref is a reference execution following

Equation (4), φavoid specifies the safety constraint, and φreach
specifies that the system reaches G:

φcontrol(uref)
∆
=
T−1∧
t=0

uref[t]⊕
(
K[t]⊗ Er[t](0,M[t])

)
⊆ U

φexecution(uref,xref)
∆
=

T−1∧
t=0

(xref[t+ 1] = A[t]xref[t] + B[t]uref[t])

φavoid(r[0],uref,xref)
∆
=

T∧
t=0

Er[t](xref[t],M[t]) ∩O[t] = ∅

φreach(r[0],uref,xref)
∆
= Er[T ](xref[T ],M[T ]) ⊆ G.

(14)
We make a few remarks about this formulation. First, each

of the formulas φcontrol, φavoid and φreach represent sufficient
conditions to check for the existence of uref. Second, the
constraints stated above belong to the (decidable) theory of
reals. However, φcontrol, φavoid and φreach, and thus φsynth,
are not quantifier free as they use subset and disjointness
checks. This is because for sets S, T expressed as predicates
ϕS(·) and ϕT (·), S ∩ T = ∅ corresponds to the formula
∀x·¬(ϕS(x)∧ϕT (x)) and S ⊆ T (or equivalently S∩T c = ∅)
corresponds to the formula ∀x · ϕS(x) =⇒ ϕT (x).

2) Reduction to QF-LRA: The central idea behind elim-
inating the universal quantification in the disjointness pred-
icates in φavoid, or in the inferred disjointness predicates in
φreach and φcontrol, is to check whether an ellipsoid is disjointed
or contained in a polytope. Lemmas 2 and 3 state that the
disjointness and containment checks can be done through
linear constraints.

Lemma 2. For an ellipsoid Er[t](xref[t],M[t]) and a polytope
{x ∈ Rk | Ax ≤ b}, if∨k

i=1

(
A(i)xref[t] > b(i)

)
∧(

A(i)xref[t]−b(i)
‖Ã(i)‖2

> r[t] ∨ A(i)xref[t]−b(i)
‖Ã(i)‖2

< −r[t]
) (15)

where Ã = AM−1[t], then

Er[t](xref[t],M[t]) ∩ {x | Ax ≤ b} = ∅.

Proof. Take an affine coordinate transformation y = M[t]x
and let x̃ref[t] = M[t]xref[t]. Under the transformed coordi-
nate, the ellipsoid Er[t](xref[t],M[t]) becomes a ball:

Er[t](M[t]xref[t], I) = Br[t](x̃ref[t]),

and the polytope also becomes Ãy ≤ b. Affine transformation
preserves the disjointness between objects. As long as the
ball Br[t](x̃ref[t]) is disjointed from the polytope Ãy ≤ b, the
original ellipsoid and polytope are disjointed.

Consider the ball Br[t](x̃ref[t]) in the transformed coordi-
nate, if the center x̃ref[t] is outside the polytope Ãy ≤ b and its
distance to an surface of the polytope is greater than r[t], then
the ball Br[t](x̃ref[t]) is not intersecting with any surfaces of
the polytope, and therefore is disjointed from the polytope (as
shown in Figure 2). Equivalently, this means that there exists
an i ≤ k, such that Ã(i)x̃ref[t] > b(i), and the distance from
x̃ref[t] to any surface, which is a hyperplane Ã(i)x = b(i), is
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Fig. 2. Illustration of Br[t](x̃ref[t]) being disjointed from the polytope
{y | Ãy ≤ b}.

greater than r[t]. Recall that A(i) and b(i) are the ith row of
A and b respectively.

The distance from x̃ref[t] to a hyperplane Ã(i)x = b(i) is
|Ã(i)x̃ref[t]−b(i)|
‖Ã(i)‖2

. Therefore, the ball Br[t](x̃ref[t]) is disjointed

from the polytope {y | Ãy ≤ b} if the following is true:

∨k
i=1

(
Ã(i)x̃ref[t] > b(i)

)
∧(

Ã(i)x̃ref[t]−b(i)
‖Ã(i)‖2

> r[t] ∨ Ã(i)x̃ref[t]−b(i)
‖Ã(i)‖2

< −r[t]
)
,

which is equivalent to Equation (15).

In Lemma 2, to check whether an ellipsoid is disjointed
from a polytope (obstacle) with k surfaces using Equation (15),
the formula contains 3k linear inequalities with conjunctions
and disjunctions. In [26] the reach set over-approximations
are represented using hyper-rectangles. The hyber-rectangle
is disjointed from the polytope if there is a surface of the
polytope such that the vertices of the hyber-rectangle lie on
the other side of the surface. Such a formula has 2nk linear
inequalities, where n is the dimensionality of the state space.
Compared with the methods used in [26], Lemma 2 reduces
the number of constraints in φavoid from 2nk to 3k, which is
the key fact that makes the proposed approach scale to systems
with large n. We will also see the same improvement in φreach
and φcontrol.

Similar to Lemma 2, as long as the center of the ball
Br[t](x̃ref[t]) is inside the polytope Ãy ≤ b, and the distances
from x̃ref[t] to all surfaces of the polytope Ã(i)x = b(i) are
greater than the radius r[t], the ball is entirely contained in
the polytope:

Lemma 3. For any ellipsoid Er[t](xref[t],M[t]) and a poly-
tope {x ∈ Rk | Ax ≤ b}, if∧k

i=1

(
A(i)xref[t] ≤ b(i)

)
∧(

A(i)xref[t]−b(i)
‖Ã(i)‖2

≥ r[t] ∨ A(i)xref[t]−b(i)
‖Ã(i)‖2

≤ −r[t]
) (16)

where Ã = AM−1[t], then

Er[t](xref[t],M[t]) ⊆ {x | Ax ≤ b}.

With Lemma 2 and 3, we can rewrite φavoid and φreach in
Equation 14 as:

φavoid(r[0],uref,xref)
∆
=

T∧
t=0

∧
{x|Ax≤b}∈O[t]

∨k
i=1

(
A(i)xref[t] > b(i)

)
∧
(

A(i)xref[t]−b(i)

‖Ã(i)‖2
> r[t] ∨ A(i)xref[t]−b(i)

‖Ã(i)‖2
< −r[t]

)
,

φreach(r[0],uref,xref)
∆
=
∧k

i=1

(
A

(i)
G xref[T ] ≤ bG(i)

)
∧
(

AG
(i)xref[T ]−bG(i)

‖ÃG
(i)‖2

≥ r[T ] ∨ AG
(i)xref[T ]−bG(i)

‖ÃG
(i)‖2

≤ −r[T ]
)
,

(17)
where in φreach, the goal set G is represented as an el-
lipsoid {x|AGx ≤ bG}. Once the tracking controller K
is fixed, the matrices Ã (or ÃG) are constants. Moreover,
r[t] = r[0] +

∑t−1
i=0 δ[i] and δ are also constants. There-

fore, φavoid and φreach are linear expressions of r[0],uref,xref
with disjunctions. In the expression φcontrol of Equation 14,
uref[t] ⊕

(
K[t] ⊗ Er[t](0,M[t])

)
is essentially also an ellip-

soid Er[t](uref[t],M[t]K−1[t]). Therefore, φcontrol can also be
represented as a linear expression of uref and r[0].

As discussed above, the constraints as in φcontrol, φexecution,
φavoid, and φreach only give rise to linear constraints, do
not have the ∀ quantification over states, and are sound
transformations of φsynth into QF-LRA. Moreover, the number
of linear inequality constraints in φsynth is only O(kT ), where
T is the number of time steps T , and k is the number of
surfaces in obstacles and the goal set. In Section IV-E we will
see that as the reach sets are exact when the disturbance is 0
(Corollary 1), these checks will also turn out to be sufficient
to ensure that if there exists a controller, φsynth is satisfiable.

Lemma 4. If the formula φsynth is satisfiable, then there is
a control sequence uref such that for every x ∈ Br[0](xref[0])
and for every d ∈ DT , the unique execution x defined by
the controller 〈K,xref[0],uref〉 and d, starting at x, satisfies
x[T ] ∈ G ∧ ∀t ≤ T · x[t] 6∈ O[t].

We remark that a possible alternative for eliminating the ∀
quantifier is the use of Farkas’ lemma, but this gives rise to
nonlinear constraints.1 Indeed, in our experimental evaluation,
we observed the downside of resorting to Farkas’ lemma in
this problem.

We also remark that the SAT encoding as in Lemma 2 can
be formulated as mixed integer linear constraints using the
“big-M” method to get rid of the disjunction operators ∨,
by introducing extra auxiliary integer variables (see details
in [75]). Then φsynth in Equation 13 can be solved through
solving a MILP or MIQP problem. In this way, our encoding
for φcontrol, φexecution, and φavoid (as mixed integer linear for-
mulae φ′control, φ

′
execution, and φ′avoid using the “big-M” method

on the original formulae) can be used in dynamic and real-time
control using MPC, where the obstacles O[t] are constructed
dynamically as system evolves, and Θ is a set instead of a
single point due to bounded localization errors:

1Farkas’ lemma introduces auxiliary variables that get multiplied with
existing variables xref[0], . . . ,xref[T ], leading to nonlinear constraints.
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min
uref[0],...uref[N−1],
r[0],xref[0],...xref[N ]

Vf (xref[N ]) +
∑N−1

i=0 `(xref[i],uref[i])

s.t. φ′control(uref) ∧ φ′execution(uref,xref)

∧φ′avoid(r[0],uref,xref) ∧ (xref[0] = center(Θ))

∧ (r[0] ≥ diameter(Θ)) .

(18)

We implemented both the SAT encoding as in Equation 17
and the corresponding mixed integer linear encoding with
the objective function ‖xref[N ] − center(G)‖2 (using the
GurobiTM solver), and observe that both the two encoding has
no major difference in terms of running time when N = T .
Moreover, both SAT over QF-LRA and MIP problems are
NP-hard [76].

E. Synthesis algorithm putting it all together
Section IV-D describes how to formalize constraints to

generate a control sequence that works for S, which could be
a subset of the initial set Θ. The overall synthesis procedure
(Algorithm 1), first computes a tracking controller K, then
generates open-loop control sequences and reference execu-
tions in order to cover the entire set Θ.

Algorithm 1: Algorithm for Synthesizing Combined
Controller

input : A, T,O, G,Q,R
output : controllers =

{(〈K,xref[0],uref〉, Br[0](xref[0]))}
initially: r∗ ← diameter(Θ)/2 ;
K,M, δ ← ReachParams(A, T,Q,R) ;
cover← ∅;
controllers← ∅

1 while Θ 6⊆ cover do
2 ψsynth ←

getConstraints(A, T,O, G,M, δ, r∗,cover) ;
3 if CHECKSAT(ψsynth) = SAT then
4 r[0],uref,xref ← model(ψsynth) ;
5 cover← cover ∪Br[0](xref[0]);
6 controllers← controllers ∪

{ ( 〈K,xref[0],uref〉 , Br[0](xref[0]) ) } ;
7 else
8 r∗ ← r∗/2 ;
9 return controllers ;

The procedure ReachParams computes the tracking con-
troller K, based on which it further computes a sequence of
shape matrices M and disturbance bounds δ using Lemma
1, for the system A and time bound T with Q,R for the
LQR method. Given any reference execution xref and initial
set Br[0](xref[0]), the parameters computed by ReachParams
can be used to over-approximate Reach(Br[0](xref[0]), t) with
the ellipsoid Er[t](xref[t],M[t]), where r[t] = r[0]+

∑t−1
i=0 δ[i].

The procedure getConstraints constructs the logical for-
mula ψsynth such that whenever ψsynth holds, we can find an

initial radius r[0] that is above some threshold t∗, and center
xref[0] in the set Θ \ cover and a control sequence uref
such that any controlled execution starting from Br[0](xref[0])
satisfies the reach-avoid requirements.

ψsynth
∆
= φsynth ∧ xref[0] ∈ Θ ∧ xref[0] 6∈ cover ∧ r[0] > r∗

(19)
Line 3 checks for the satisfiability of ψsynth. If satisfiable,

we extract the model generated to get the radius of the initial
ball, the control sequence uref and the reference execution
xref in Line 4. The generated controller 〈K,xref[0],uref〉 is
guaranteed to work for the ball Br[0](xref[0]), which can be
marked covered by adding it to the set cover. In order
to keep all the constraints linear, one can further under-
approximate Br[0](xref[0]) with a hyper-cube {x ∈ Rn | ∧ni=1

xref[0](i) − r[0](i)/
√
n ≤ x ≤ xref[0](i) + r[0](i)/

√
n}. If

ψsynth is unsatisfiable, then we reduce the minimum radius r∗

(Line 8) and continue to look for controllers, until we find that
Θ ⊆ cover.

The set controllers is the set of pairs
(〈K,xref[0],uref〉, S), such that the controller 〈K,xref[0],uref〉
drives the set S to meet the desired specification. Each time a
new controller is found, it is added to the set controllers
together with the initial set for which it works (Line 6).

The following theorem asserts the soundness of Algo-
rithm 1, and it follows from Lemmas 1 and 4.

Theorem 1. If Algorithm 1 terminates, then the synthesized
controller is correct. That is, (a) for each x ∈ Θ, there is
a (〈K,xref[0],uref〉, S) ∈ controllers, such that x ∈ S,
and (b) for each (〈K,xref[0],uref〉, S) ∈ controllers, the
unique controller 〈K,xref[0],uref〉 is such that for every x ∈
S and for every d ∈ DT , the unique execution defined by
〈K,xref[0],uref〉 and d (as in Equation (2) and (4)), starting
at x, satisfies the reach-avoid specification.

Algorithm 1 ensures that, upon termination, every x ∈ Θ
is covered, i.e., one can construct a combined controller that
drives x to G while avoiding O. However it may find multiple
controllers for a point x ∈ Θ. This non-determinism can be
easily resolved by picking any controller assigned for x.

Below, we show that, under certain robustness assumptions
on the system A, G and the sets O, and in the absence of
disturbance, Algorithm 1 terminates.

Robustly controllable systems. A system A =
〈A,B,Θ, U,D〉 is said to be ε-robustly controllable
(ε > 0) with respect to the reach-avoid specification (O, G)
and matrices K, if (a) D = {0}, and (b) for every initial
state θ ∈ Θ there is an open loop-controller uref ∈ UT such
that the unique execution starting from θ using the open-
loop controller uref satisfies the reach-avoid specification.
Moreover, with the controller 〈K, θ,uref〉 defined as in
Equation (4), ∀x ∈ Bε(θ), the unique trajectory x defined by
the controller 〈K, θ,uref〉 starting from x also satisfies the
reach avoid specification.

Theorem 2. If A is an ε-robust controllable system with
respect to the reach-avoid specification (O, G), the tracking
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controller K, and an arbitrarily small ε > 0, then Algorithm 1
terminates.

Proof. As seen in Corollary 1, when the system is robust,
then (in the absence of any disturbance i.e., D = {0}),
the computed ellipsoids are exact reach sets starting from
Br[0](xref[0]). Moreover, as r∗ approaches 0, r[0] can also ap-
proach 0. From Corollary 1 we know that ∀t ≥ 0, r[t] = r[0],
so the radii of the reach sets ellipsoids all converge to 0. With
r[t]→ 0, Equation (15) and Equation (16) in Lemmas 2 and 3
(therefore Equation (17)) also become satisfiable whenever
there is a controller. The correctness of Theorem 2 then follows
from the above observations.

We remark that an alternative approach to solve the bounded
controller synthesis problem is to synthesize an open-loop
control sequence uref for a single initial condition xref[0] first,
and then find the maximum cover such that there exists a
tracking controller K to make every execution starting from
the cover also satisfy the reach-avoid specification. However,
when implemented this approach, we observed that the syn-
thesized reference trajectory xref always got very close to the
obstacles. Therefore, the maximum initial cover for which this
reference trajectory works would be minuscule, and result in
a very large number of partitions in the initial set. In contrast,
Algorithm 1 asks the SMT solver to search for a reference
that works for an initial cover with the size of at least r∗ with
any disturbance (and r∗ is adjusted iteratively), resulting in a
much smaller solution space.

V. REALSYN VER 2.0 IMPLEMENTATION AND EVALUATION

For experimental evaluation, we have implemented Algo-
rithm 1 the tool REALSYN VER 2.0. The previous version
of the tool, REALSYN VER 1.0, appeared in our earlier
paper [26]. The key distinction in the new implementation
is the encoding of the reach-avoid constraints as in Lemmas 2
and 3. As a result, the final formulas for the reach-avoid
constraints (Equation (17)) for synthesizing the open-loop
controller consist of O(k) linear constraints, with k being the
number of hyperplanes of the obstacles and the goal set. In
contrast, in REALSYN VER 1.0, such formulas have O(2nk)
linear constraints, where n is the dimensionality of the state
space.

For solving Equation (19), REALSYN VER 2.0 can use
any SMT solver as a subroutine. For our results here we
use Yices [77], as it outperformed the other solvers in [26].
We evaluate our approach on 10 example synthesis problems
(from [26]) on a standard laptop with Intel® CoreTM i7 proces-
sor, 16GB RAM. The results are reported in Table I. Overall,
our results demonstrate the effectiveness of using our approach
and the feasibility of scalable controller synthesis for high-
dimensional systems and complex reach-avoid specifications.

Comparison with other tools: We considered other con-
troller synthesis tools for possible comparison with REALSYN
VER 2.0. In brief, CoSyMa [56], Pessoa [4], and SCOTS [36]
do not explicitly support discrete-time sytems. LTLMop [57],
[58] is designed to analyze models in the 2-dimensional
Euclidean plane, and therefore, is not suitable for most of our

examples. TuLiP [44], [59] comes closest to addressing the
same class of problems. TuLip relies on discretization of the
state space and a receding horizon approach for synthesizing
controllers for more general GR(1) specifications. However,
we found that TuLip succumbs to the state space explosion
problem when discretizing the state space, and it did not work
on most of our examples. For instance, TuLiP was unable to
synthesize a controller for the 2-dimensional system ‘1-robot’
(Table I), and returned unrealizable. On the benchmark
‘2-robot’ (n = 4), TuLip did not return any answer within
1 hour. SMC [27], [28] as discussed in Section II is the
closest to ours as in solving reach-avoid problems, and the
only one among the tools that can return comparable results
to REALSYN VER 2.0. We adopt the implementation of SMC
as in [78] to be used on our benchmarks and report results in
Table I.

Benchmarks: Our benchmarks are mainly vehicle mo-
tion planning problems with reach-avoid specifications. Bench-
marks 1-2 model robots moving on the Euclidean plane,
where each robot is a 2-dimensional system and admits a 1-
dimensional input. Starting from some initial region on the
plane, the robots are required to reach the common goal area
within the given time steps, while avoiding certain obstacles.
For ‘2-robot’, the robots are also required to maintain a
minimum separation. Benchmarks 3-7 are discrete vehicular
models adopted from [70]. Each vehicle is a 4-dimensional lin-
ear system with 2-dimensional input. Benchmark 3 from [26]
describes a mobile robot needs to accomplish a reach-avoid
goal in an apartment. Benchmark 4 describes a vehicle running
on a two-lane road, trying to overtake a vehicle in front of it.
The second vehicle serves as the dynamic obstacle. Bench-
marks 5-7 are similar to Benchmark 2 where the vehicles
are required to reach a common goal area while avoiding
collision with the obstacles and with each other (inspired by
a merge). The velocities and accelerations of the vehicles are
also constrained in each of these benchmarks. Figure 3 shows
the setting for three vehicles trying to reach the green goal set
while avoiding the red obstacle and maintaining a distance of
> 0.5 (m) all the time. Figure 3 also shows the reachsets of
each vehicle projected to the 2D plane of vehicles’ positions.
We observe from Figure 3 that to make sure that all vehicles do
not collide with each other, the synthesized controller forces
the vehicles to arrive at the goal set at different time steps.

Benchmarks 8-10 model multiple vehicles trying to form
a platoon by maintaining the safe relative distance between
consecutive vehicles. The models are adopted (and discretized)
from [19]. Each vehicle is a 2-dimensional system with 1-
dimensional input. For the 4-car platoon model, the running
times reported in Table I are much smaller than the time (5
minutes) reported in [19]. This observation aligns with our
analysis in Section IV-A. For the 10-car platoon case, Figure 4
shows the positions of the cars along time with the synthesized
controller using REALSYN VER 2.0. As shown in Figure 4, all
vehicles are maintaining a safe relative distance > 1(m) to its
neighbor vehicles even with disturbances.

Synthesis performance: In Table I, columns ‘n’ and ‘m’
stand for the dimensions of the state space and input space.
For each background solver, ‘#iter’ is the number of iterations
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TABLE I
RUN TIME PERFORMANCE COMPARISON OF CONTROLLER SYNTHESIS USING REALSYN VER 2.0 WITH THE ORIGINAL SYNTHESIS ALGORITHM REALSYN

VER 1.0 AS IN [26] AND SMC [27].

Model n m Algorithm 1 CAV Algorithm [26] SMC [27]
#iter time(s) #iter time(s) #iter time(s)

1 1-robot 2 1 7 0.03 7 0.06 1 0.09
2 2-robot 4 2 1 0.04 183 2.26 1 1.69
3 running-example in [26] 4 2 1 104 1 319.97 1 227.86
4 1-car dynamic avoid 4 2 12 8.12 12 8.49 1 15.58
5 1-car navigation 4 2 15 1.14 17 6.73 1 5.37
6 2-car navigation 8 4 1 1.86 1 4.07 1 6.07
7 3-car navigation 12 6 1 4.70 1 741.73 1 372.48
8 4-car platoon 8 4 1 0.03 1 0.15 1 0.33
9 8-car platoon 16 8 1 0.10 1 0.62 1 0.94

10 10-car platoon 20 10 1 0.12 1 7.74 1 5.72

Fig. 3. Reachsets of three cars with synthesized controller for reach-
avoid specification. Ellipsoids represent the projection of the reachset
on the vehicle’s position on the 2D plane. Ellipsoids of the same
color connected by the line of same color belong to the same vehicle.
Reachsets of the same time step are connected using the black dotted
line. Red polytope is the obstacle and green polytope is the goal set.
Note that different vehicles arrive at the goal set at different time steps
so they do not collide with each other, although some ellipsoids (at
different time steps) appear to overlap.

Algorithm 1 required to synthesize a controller, and ‘time’ is
the respective running times. All benchmarks are synthesized
for a specification with 10− 20 steps.

In general, the proposed algorithm improves the perfor-
mance of REALSYN VER 2.0 with the running time 2 to
150 times faster than REALSYN VER 1.0 as in [26], and 2
to 80 times faster than SMC as in [78]. The only exception
is Benchmark 4 where the running time stays almost the
same for REALSYN VER 1.0 and REALSYN VER 2.0. This is
because in Benchmark 4, all obstacles, goal set, and reach set
over-approximations in [26] were represented as axis-aligned
hyper-rectangles. To check the disjointness and containment

Fig. 4. Ten cars are forming a platoon with synthesized controller.
The x-axis is time and the y-axis is the position of each car.

of axis-aligned hyper-rectangles, [26] used a much simpler
method with O(n) linear inequalities, instead of enumerating
all the vertices of the hyper-rectangles, which introduces
O(2n) linear inequalities. Therefore, the improvement of the
proposed algorithm in this paper on Benchmark 4 is minor
over REALSYN VER 1.0.

However, for the rest of the benchmarks where the ob-
stacles are not axis-aligned hyper-rectangles, the proposed
new algorithm can reduce the number of linear constraints
in the final SAT problem (Equation (19)) from O(2n) to O(1)
with respect to the dimensionality of the system, comparing
with REALSYN VER 1.0. The results in Table I substantiate
our analysis in Section IV. SMC needs to discretize the
freespace (complimentary of the obstacles) into convex regions
for motion planning problems. Therefore the complexity of
the SMC problem relies on the number of convex regions.
We observe from Table I one that SMC performs comparable
to our proposed method for lower dimensional problems and
much slower on higher dimensional examples.
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VI. CONCLUSION

In this paper, we proposed a novel technique for synthe-
sizing controllers for systems with time-varying discrete-time
linear dynamics, operating under bounded disturbances, and
for reach-avoid specifications. Our approach relies on gener-
ating controllers that combine an open-loop controller with
a tracking controller, thereby allowing a decoupled approach
for synthesizing each component independently. Experimental
evaluation using our tool REALSYN VER 2.0 demonstrates the
value of the approach when analyzing systems with complex
dynamics and specifications.
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