
145

What Happens-After the First Race? Enhancing the
Predictive Power of Happens-Before Based Dynamic Race
Detection

UMANG MATHUR, University of Illinois, Urbana Champaign, USA

DILEEP KINI, Akuna Capital LLC, USA

MAHESH VISWANATHAN, University of Illinois, Urbana Champaign, USA

Dynamic race detection is the problem of determining if an observed program execution reveals the presence

of a data race in a program. The classical approach to solving this problem is to detect if there is a pair of

conflicting memory accesses that are unordered by Lamport’s happens-before (HB) relation. HB based race

detection is known to not report false positives, i.e., it is sound. However, the soundness guarantee of HB only

promises that the first pair of unordered, conflicting events is a schedulable data race. That is, there can be pairs

of HB-unordered conflicting data accesses that are not schedulable races because there is no reordering of the

events of the execution, where the events in race can be executed immediately after each other. We introduce a

new partial order, called schedulable happens-before (SHB) that exactly characterizes the pairs of schedulable

data races — every pair of conflicting data accesses that are identified by SHB can be scheduled, and every

HB-race that can be scheduled is identified by SHB. Thus, the SHB partial order is truly sound. We present a

linear time, vector clock algorithm to detect schedulable races using SHB. Our experiments demonstrate the

value of our algorithm for dynamic race detection — SHB incurs only little performance overhead and can

scale to executions from real-world software applications without compromising soundness.

CCS Concepts: • Software and its engineering → Software testing and debugging; Formal software
verification;

Additional Key Words and Phrases: Concurrency, Race Detection, Dynamic Program Analysis, Soundness,

Happens-Before

ACM Reference Format:
Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What Happens-After the First Race? Enhancing

the Predictive Power of Happens-Before Based Dynamic Race Detection. Proc. ACM Program. Lang. 2, OOPSLA,
Article 145 (November 2018), 29 pages. https://doi.org/10.1145/3276515

1 INTRODUCTION
The presence of data races in concurrent software is the most common indication of a programming

error. Data races in programs can result in nondeterministic behavior that can have unintended

consequences. Further, manual debugging of such errors is prohibitively difficult owing to nonde-

terminism. Therefore, automated detection and elimination of data races is an important problem

that has received widespread attention from the research community. Dynamic race detection

techniques examine a single execution of a concurrent program to discover a data race in the

program. In this paper we focus on dynamic race detection.

Authors’ addresses: Umang Mathur, Department of Computer Science, University of Illinois, Urbana Champaign, USA,

umathur3@illinois.edu; Dileep Kini, Akuna Capital LLC, USA, dileeprkini@gmail.com; Mahesh Viswanathan, Department

of Computer Science, University of Illinois, Urbana Champaign, USA, vmahesh@illinois.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART145

https://doi.org/10.1145/3276515

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

https://doi.org/10.1145/3276515
https://doi.org/10.1145/3276515

145:2 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

t1 t2

1 y := x+5;
2 if (y == 5)
3 x := 10;
4 else
5 while (true);

(a) Example concurrent program P1.

t1 t2

1 r(x)
2 w(y)
3 r(y)
4 w(x)

(b) Trace σ1 generated from P1.

Fig. 1. Concurrent program P1 and its sample execution σ1. Initially x = y = 0.

Dynamic race detection may either be sound or unsound. Unsound techniques, like lockset

based methods [Savage et al. 1997], have low overhead but they report potential races that are

spurious. Sound techniques [Lamport 1978; Mattern 1988; Said et al. 2011; Huang et al. 2014;

Smaragdakis et al. 2012; Kini et al. 2017], on the other hand, never report the presence of a data

race, if none exist. The most popular, sound technique is based on computing the happens-before
(HB) partial order [Lamport 1978] on the events of the trace, and declares a data race when there is

a pair of conflicting events (reads/writes to a common memory location performed by different

threads, at least one of which is a write operation) that are unordered by the partial order. There

are two reasons for the popularity of the HB technique. First, because it is sound, it does not

report false positives. Low false positive rates are critical for the wide-spread use of debugging

techniques [Serebryany and Iskhodzhanov 2009; Sadowski and Yi 2014]. Second, even though

HB-based algorithms may miss races detected by other sound techniques [Said et al. 2011; Huang

et al. 2014; Smaragdakis et al. 2012; Kini et al. 2017], they have the lowest overhead among sound

techniques. Many improvements [Pozniansky and Schuster 2003; Flanagan and Freund 2009; Elmas

et al. 2007] to the original vector clock algorithm [Mattern 1988] have helped reduce the overhead

even further.

However, HB-based dynamic analysis tools suffer from some drawbacks. Recall that a program

has a data race, if there is some execution of the program where a pair of conflicting data accesses

are performed consecutively. Even though HB is a sound technique, its soundness guarantee is only

limited to the first pair of unordered conflicting events; a formal definition of “first” unordered pair

is given later in the paper. Thus, a trace may have many HB-unordered pairs of conflicting events

(popularly called HB-races) that do not correspond to data races. To see this, consider the example

program and trace shown in Fig. 1. The trace corresponds to first executing the statement of thread

t1, before executing the statements of thread t2. The statement y := x + 5 requires first reading
the value of x (which is 0) and then writing to y. Recall that HB orders (i) two events performed

by the same thread, and (ii) synchronization events performed by different threads, in the order

in which they appear in the trace. Using ei to denote the ith event of the trace, in this trace since

there are no synchronization events, both (e1, e4) and (e2, e3) are in HB race. Observe that while e2
and e3 can appear consecutively in a trace (as in Fig. 1b), there is no trace of the program where e1
and e4 appear consecutively. Thus, even though the events e1 and e4 are unordered by HB, they do

not constitute a data race.

As a consequence, developers typically fix the first race discovered, re-run the program and

the dynamic race detection algorithm, and repeat the process until no races are discovered. This

approach to bug fixing suffers from many disadvantages. First, running race detection algorithms

can be expensive [Sadowski and Yi 2014], and so running them many times is a significant overhead.

Second, even though only the first HB race is guaranteed to be a real race, it doesn’t mean that it

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:3

t1 t2

1 if (x == 0)
2 skip;
3 if (y == 0)
4 skip;
5 y := 1;
6 x := 2;

(a) Example concurrent program P2.

t1 t2

1 r(x)
2 r(y)
3 w(y)
4 w(x)

(b) Trace σ2 generated from P2.

Fig. 2. Concurrent program P2 and its sample execution σ2. Initially x = y = 0.

is the only HB race that is real. Consider the example shown in Fig. 2. In the trace σ2 (shown in

Fig. 2b), both pairs (e1, e4) and (e2, e3) are in HB-race. σ2 demonstrates that (e2, e3) is a valid data race
(because they are scheduled consecutively). But (e1, e4) is also a valid data race. This can be seen by

first executing y := 1; in thread t2, followed by if (x == 0) skip; in thread t1, and then finally

x := 2; in t2. The approach of fixing the first race, and then re-executing and performing race

detection, not only unnecessarily ignores the race (e1, e4), but it might miss it completely because

(e1, e4) might not show up as a HB race in the next execution due to the inherent nondeterminism

when executing multi-threaded programs. As a result, most practical race detection tools including

ThreadSanitizer [Serebryany and Iskhodzhanov 2009], Helgrind [Müehlenfeld and Wotawa 2007]

and FastTrack [Flanagan and Freund 2009] report more than one race, even if those races are

likely to be false, to give software developers the opportunity to fix more than just the first race. In

our companion technical report [Mathur et al. 2018], we illustrate this observation on four practical

dynamic race detection tools based on the happens-before partial order. Each of these tools resort

to naïvely reporting races beyond the first race and produce false positives as a result.

The central question we would like to explore in this paper is, can we detect multiple races

in a given trace, soundly? One approach would be to mimic the software developer’s strategy in

using HB-race detectors — every time a race is discovered, force an order between the two events

constituting the race and then analyze the subsequent events. This ensures that the HB soundness

theorem then applies to the next race discovered, and so on. Such an algorithm can be proved to

only discover valid data races. For example, in trace σ1 (Fig. 1), after discovering the race (e2, e3)
assume that the events e2 and e3 are ordered when analyzing events after e3 in the trace. By this

algorithm, when we process event e4, we will conclude that (e1, e4) are not in race because e1 comes

before e2, e2 has been force ordered before e3, and e3 is before e4, and so e1 is ordered before e4.
However, force ordering will miss valid data races present in the trace. Consider the trace σ2 from
Fig. 2. Here the force ordering algorithm will only discover the race (e2, e3) and will miss (e1, e4)
which is a valid data race. Another approach [Huang et al. 2014], is to search for a reordering of

the events in the trace that respects the data dependencies amongst the read and write events,

and the effect of synchronization events like lock acquires and releases. Here one encodes the

event dependencies as logical constraints, where the correct reordering of events corresponds to

a satisfying truth assignment. The downside of this approach is that the SAT formula encoding

event dependencies can be huge even for a trace with a few thousand events. Typically, to avoid the

prohibitive cost of determining the satisfiability of such a large formula, the trace is broken up into

small “windows”, and the formula only encodes the dependencies of events within a window. In

addition, solver timeouts are added to give up the search for another reordering. As a consequence

this approach can miss many data races in practice (see our experimental evaluation in Section 5).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:4 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

In this paper, we present a new partial order on events in an execution that we call schedulable
happens-before (SHB) to address these challenges. Unlike recent attempts [Smaragdakis et al. 2012;

Kini et al. 2017] to weaken HB to discover more races, SHB is a strengthening of HB — some HB

unordered events, will be ordered by SHB. However, the first HB race (which is guaranteed to

be a real data race by the soundness theorem for HB) will also be SHB unordered. Further, every

race detected using SHB is a valid, schedulable race. In addition, we prove that, not only does SHB

discover every race found by the naïve force ordering algorithm and more (for example, SHB will

discover both races in Fig. 2), it will detect all HB-schedulable races. The fact that SHB detects

precisely the set of HB-schedulable races, we hope, will make it popular among software developers

because of its enhanced predictive power per trace and the absence of false positives.

We then present a simple vector clock based algorithm for detecting all SHB races. Because the

algorithm is very close to the usual HB vector clock algorithm, it has a low overhead. We also

show how to adapt existing improvements to the HB algorithm, like the use of epochs [Flanagan
and Freund 2009], into the SHB algorithm to lower overhead. We believe that existing HB-based

detectors can be easily modified to leverage the greater power of SHB-based analysis. We have

implemented our SHB algorithm and analyzed its performance on standard benchmarks. Our

experiments demonstrate that (a) many HB unordered conflicting events may not be valid data

races, (b) there are many valid races missed by the naïve force ordering algorithm, (c) SHB based

analysis poses only a little overhead as compared to HB based vector clock algorithm, and (d)

improvements like the use of epochs, are effective in enhancing the performance of SHB analysis.

The rest of the paper is organized as follows: Section 2 introduces notations and definitions

relevant for the paper. In Section 3, we introduce the partial order SHB and present an exact

characterization of schedulable races using this partial order. In Section 4, we describe a vector

clock algorithm for detecting schedulable races based on SHB. We then show how to incorporate

epoch-based optimizations to this vector clock algorithm. Section 5 describes our experimental

evaluation. We discuss relevant related work in Section 6 and present concluding remarks in

Section 7.

2 PRELIMINARIES
In this section, we will fix notation and present some definitions that will be used in this paper.

Traces. We consider concurrent programs under the sequential consistency model. Here, an

execution, or trace, of a program is viewed as an interleaving of operations performed by different

threads. We will use σ , σ ′ and σ ′′ to denote traces. For a trace σ , we will use Threadsσ to denote

the set of threads in σ . A trace is a sequence of events of the form e = ⟨t ,op⟩, where t ∈ Threadsσ ,
and op can be one of r(x), w(x) (read or write to memory location x), acq(ℓ), rel(ℓ) (acquire or
release of lock ℓ) and fork(u), join(u) (fork or join of some thread u) 1. To keep the presentation

simple, we assume that locks are not reentrant. However, all the results can be extended to the case

when locks are assumed to be reentrant. The set of events in trace σ will be denoted by Eventsσ .

We will also use Readsσ (x) (resp. Writesσ (x)) to denote the set of events that read from (resp.

write to) memory location x . Further Readsσ (resp.Writesσ) denotes the union of the above sets

over all memory locations. For an event e ∈ Readsσ (x), the last write before e is the (unique) event
e ′ ∈ Writesσ (x) such that e ′ appears before e in the trace σ , and there is no event e ′′ ∈ Writesσ (x)
between e ′ and e in σ . The last write before event e ∈ Readsσ (x) maybe undefined, if there is no

w(x)-event before e . We denote the last write before e by lastWrσ (e). An event e = ⟨t1,op⟩ is said

1
Formally, each event in a trace is assumed to have a unique event id. Thus, two occurences of a thread performing the

same operation will be considered different events. Even though we will implicitly assume the uniqueness of each event in a

trace, to reduce notational overhead, we do not formally introduce event ids.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:5

t1 t2 t3 t4

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 acq(ℓ)
5 w(x)
6 rel(ℓ)
7 r(x)
8 fork(t4)
9 w(x)
10 w(x)
11 join(t4)
12 r(x)

Fig. 3. Trace σ3.

to be an event of thread t if either t = t1 or op ∈ {fork(t), join(t)}. The projection of a trace σ to a

thread t ∈ Threadsσ is the maximal subsequence of σ that contains only events of thread t , and
will be denoted by σ |t ; thus an event e = ⟨t , fork(t ′)⟩ (or e = ⟨t , join(t ′)⟩) belongs to both σ |t and
σ |t ′ . For an event e of thread t , we denote by predσ (e) to be the last event e ′ before e in σ such

that e and e ′ are events of the same thread. Again, predσ (e) may be undefined for an event e . The
projection of σ to a lock ℓ, denoted by σ |ℓ , is the maximal subsequence of σ that contains only

acquire and release events of lock ℓ. Traces are assumed to be well formed — for every lock ℓ, σ |ℓ
is a prefix of some string belonging to the regular language (∪t ∈Threadsσ ⟨t , acq(ℓ)⟩ · ⟨t , rel(ℓ)⟩)

∗
.

Example 2.1. Let us illustrate the definitions and notations about traces introduced in the previous
paragraph. Consider the trace σ3 shown in Fig. 3. As in the introduction, we will refer to the ith
event in the trace by ei . For trace σ3 we have — Eventsσ3 = {e1, e2, . . . e12}; Readsσ3 = Readsσ3 (x) =
{e7, e12}; Writesσ3 = Writesσ3 (x) = {e2, e5, e9, e10}. The last write of the read events is as follows:

lastWrσ3 (e7) = e5 and lastWrσ3 (e12) = e10. The projection with respect to lock ℓ is σ3 |ℓ = e1e3e4e6.
The definition of projection to a thread is subtle in the presence of forks and joins. This can be

seen by observing that σ3 |t4 = e8e9e10e11; this is because the fork event e8 and the join event

e11 are considered to be events of both threads t3 and t4 by our definition. Finally, we illustrate

predσ3 (·) through a few examples — predσ3 (e2) = e1, predσ3 (e7) is undefined, predσ3 (e9) = e8, and
predσ3 (e11) = e10. The cases of e9 and e11 are the most interesting, and they follow from the fact

that both e8 and e11 are also considered to be events of t4.

Orders. A given trace σ induces several total and partial orders. The total order ≤σ
tr
⊆ Eventsσ ×

Eventsσ , will be used to denote the trace-order — e ≤σ
tr
e ′ iff either e = e ′ or e appears before e ′ in

the sequence σ . Similarly, the thread-order is the smallest partial order ≤σ
TO
⊆ Eventsσ × Eventsσ

such that for all pairs of events e ≤σ
tr
e ′ of the same thread, we have e ≤σ

TO
e ′.

Definition 2.2 (Happens-Before). Given trace σ , the happens-before order ≤σ
HB

is the smallest

partial order on Eventsσ such that

(a) ≤σ
TO
⊆≤σ

HB
,

(b) for every pair of events e = ⟨t , rel(ℓ)⟩, and, e ′ = ⟨t ′, acq(ℓ)⟩ with e ≤σ
tr
e ′, we have e ≤σ

HB
e ′

Example 2.3. We illustrate the definitions of ≤
tr
, ≤

TO
, and ≤

HB
using trace σ3 from Fig. 3. Trace

order is the simplest; ei ≤
σ3
tr

ej iff i ≤ j. Thread order is also straightforward in most cases; the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:6 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

interesting cases of e8 ≤
σ3
TO

e9 and e10 ≤
σ3
TO

e11 follow from the fact that e8 and e11 are events of both

threads t3 and t4. Finally, let us consider ≤
σ3
HB

. It is worth observing that e7 ≤
σ3
HB

e9 ≤
σ3
HB

e10 ≤
tr3
HB

e12
simply because these events are thread ordered due to the fact that e8 and e11 are events of both
thread t3 and t4. In addition, e2 ≤

σ3
HB

e5 because e3 ≤
σ3
HB

e4 by rule (b), e2 ≤
σ3
TO

e3 and e4 ≤
σ3
TO

e5, and
≤
σ3
HB

is transitive.

Trace Reorderings. Any trace of a concurrent program represents one possible interleaving of

concurrent events. The notion of correct reordering [Smaragdakis et al. 2012; Kini et al. 2017] of trace

σ identifies all these other possible interleavings of σ . In other words, if σ ′ is a correct reordering
of σ then any program that produces σ may also produce σ ′. The definition of correct reordering is

given purely in terms of the trace σ and is agnostic of the program that produced it. We give the

formal definition below.

Definition 2.4 (Correct reordering). A trace σ ′ is said to be a correct reordering of a trace σ if

(a) ∀t ∈ Threadsσ ′,σ
′ |t is a prefix of σ |t , and

(b) for a read event e = ⟨t , r(x)⟩ ∈ Eventsσ ′ such that e is not the last event in σ ′ |t , lastWrσ ′ (e)
exists iff lastWrσ (e) exists. Further, if it exists, then lastWrσ ′ (e) = lastWrσ (e).

The intuition behind the above definition is the following. A correct reordering must preserve

lock semantics (ensured by the fact that σ ′ is a trace) and the order of events inside a given thread

(condition (a)). Condition (b) captures local determinism [Huang et al. 2014]. That is, the next event

of a given thread can be completely determined by the earlier events in that thread. Now, the

underlying program, that generated σ , can have conditional statements and the actual branches

taken depend upon the data in shared memory locations. As a result, we demand that all reads in

σ ′, with the exception of the last events in each thread, must see the same value as in σ . Since our
traces don’t record the value written, this can be ensured by conservatively requiring that every

read event in σ ′ has the same last write event as in σ . We relax this requirement for read events

that are last events in their corresponding threads. For example, consider the program and trace

given in Fig. 1. The read event r(y) in the conditional in thread t2 cannot be swapped with the

preceding event w(y) in thread t1, because such a swap would result in a different branch being

taken in t2, and the assignment x := 10 in t2 will never be executed. However, this is required
only if the read event is not the last event of the thread in the reordering. If it is the last event, it

does not matter what value is read, because it does not affect future behavior.

We note that the definition of correct reordering we have is more general than in [Kini et al.

2017; Smaragdakis et al. 2012] because of the relaxed assumption about the last-write events

corresponding to read events which are not followed by any other events in their corresponding

threads. In other words, every correct reordering σ ′ of a trace σ according to the definition

in [Smaragdakis et al. 2012; Kini et al. 2017] is also a correct reordering of σ as per Definition 2.4,

but the converse is not true. On the other hand, the related notion of feasible set of traces [Huang
et al. 2014] is even more general and allows for an even larger set of alternate reorderings that can

be inferred from an observed trace σ . We note that the read/write events in [Huang et al. 2014]

also record the value read/written to the memory location. In this case, for a trace σ ′ to be in the

feasible set of trace σ , [Huang et al. 2014] require that for every read event e , the value written by

lastWrσ ′ (e) equals the value written by lastWrσ (e). In particular, lastWrσ ′ (e) may not be the same

as lastWrσ (e), thus allowing for more reorderings.

In addition to correct reorderings, another useful collection of alternate interleavings of a trace

is as follows. Under the assumption that ≤σ
HB

identifies certain causal dependencies between events

of σ , we consider interleavings of σ that are consistent with ≤σ
HB

.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:7

Definition 2.5 (≤
HB

-respecting trace). For trace σ , we say trace σ ′ respects ≤σ
HB

if for any e, e ′ ∈

Eventsσ such that e ≤σ
HB

e ′ and e ′ ∈ Eventsσ ′ , we have e ∈ Eventsσ ′ and e ≤
σ ′
tr

e ′.

Thus, a ≤σ
HB

-respecting trace is one whose events are downward closed with respect to ≤σ
HB

and

in which ≤σ
HB

-ordered events are not flipped. We will be using the above notion only when the

trace σ ′ is a reordering of σ , and hence Eventsσ ′ ⊆ Eventsσ .

Example 2.6. We give examples of correct reorderings of σ3 shown in Fig. 3. The traces ρ1 = e1e2e7,
ρ2 = e4e5e6, and ρ3 = e1e2e3e4e5e7 are all examples of correct reorderings of σ3. Among these, the

trace ρ2 is not ≤
HB

-respecting because it is not ≤
HB

-downward closed — events e1, e2, e3 are all
HB-before e4 and none of them are in ρ2.

Race. It is useful to recall the formal definition of a data race, and to state the soundness guarantees

of happens-before. Two data access events e = ⟨t1, a1 (x)⟩ and e ′ = ⟨t2, a2 (x)⟩ are said to be

conflicting if t1 , t2, and at least one among e and e ′ is a write event (a1 = w or a2 = w). A trace σ is

said to have a race if it is of the form σ = σ ′ee ′σ ′′ such that e and e ′ are conflicting; here (e, e ′) is
either called a race pair or a race. A concurrent program is said to have a race if it has an execution

that has a race.

The partial order ≤σ
HB

is often employed for the purpose of detecting races by analyzing program

executions. In this context, it is useful to define what we call an HB-race. A pair of conflicting

events (e, e ′) is said to be an HB-race if e ≤σ
tr
e ′ and e and e ′ are incomparable with respect to ≤σ

HB

(i.e., neither e ≤σ
HB

e ′ nor e ′ ≤σ
HB

e). We say an HB-race (e, e ′) is the first HB-race if for any other

HB-race (f , f ′) , (e, e ′) in σ , either e ′ <σ
tr
f ′, or e ′ = f ′ and f <σ

tr
e . For example, the pair (e2, e3)

in trace σ1 from Fig. 1 is the first HB-race of σ1. The soundness guarantee of HB says that if a trace

σ has an HB-race, then the first HB-race is a valid data race.

Theorem 2.7 (Soundness of HB). Let σ be a trace with an HB-race, and let (e, e ′) be the first
HB-race. Then, there is a correct reordering σ ′ of σ , such that σ ′ = σ ′′ee ′.

Instead of sketching the proof of Theorem 2.7, we will see that it follows from the main result of

this paper, namely, Theorem 3.3.

Example 2.8. We conclude this section by giving examples of HB-races. Consider again σ3 from
Fig. 3. Among the different pairs of conflicting events in σ3, the HB-races are (e2, e7), (e5, e7), (e2, e9),
(e5, e9), (e2, e10), (e5, e10), (e2, e12), and (e5, e12).

Remark. Our model of executions and reorderings assume sequential consistency, which is a

standard model used by most race detection tools. Executions in a more general memory model,

such as Total Store Order (TSO), would also have events that indicate when a local write was

committed to the global memory [Huang and Huang 2016]. In that scenario, the definition of

correct reorderings would be similar, except that “last write” would be replaced by “last observed

write”, which would either be the last committed write or the last write by the same thread,

whichever is later in the trace. The number of correct reorderings to be considered would increase

— instead of just considering executions where every write is immediately committed, as we do

here, we would also need to consider reorderings where the write commits are delayed. However,

since our results here are about proving the existence of a reordered trace where a race is observed,

they carry over to the more general setting. We might miss race pairs that could be shown to be in

race in a weaker memory model, where more reoderings are permitted, but the races we identify

would still be valid.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:8 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

3 CHARACTERIZING SCHEDULABLE RACES
The example in Fig. 1 shows that not every HB-race corresponds to an actual data race in the

program. The goal of this section is to characterize those HB-races which correspond to actual data

races. We do this by introducing a new partial order, called schedulable happens-before, and using

it to identify the actual data races amongst the HB-races of a trace. We begin by characterizing the

HB-races that correspond to actual data races.

Definition 3.1 (≤σ
HB

-schedulable race). Let σ be a trace and let e ≤σ
tr
e ′ be conflicting events in σ .

We say that (e, e ′) is a ≤σ
HB

-schedulable race if there is a correct reordering σ ′ of σ that respects

≤σ
HB

and σ ′ = σ ′′ee ′ or σ ′ = σ ′′e ′e for some trace σ ′′.

Note that any ≤σ
HB

-schedulable race is a valid data race in σ . Our aim is to characterize ≤σ
HB

-

schedulable races by means of a new partial order. The new partial order, given below, is a strength-

ening of ≤
HB

.

Definition 3.2 (Schedulable Happens-Before). Letσ be a trace. Schedulable happens-before, denoted

by ≤σ
SHB

, is the smallest partial order on Eventsσ such that

(a) ≤σ
HB
⊆≤σ

SHB

(b) ∀e, e ′ ∈ Eventsσ , e
′ ∈ Readsσ ∧ e = lastWrσ (e

′) =⇒ e ≤σ
SHB

e ′

The partial order ≤σ
SHB

can be used to characterize ≤σ
HB

-schedulable races. We state this result,

before giving examples illustrating the definition of ≤σ
SHB

.

Theorem 3.3. Let σ be a trace and e1 ≤σtr e2 be conflicting events in σ . (e1, e2) is an ≤
σ
HB

-schedulable
race iff either predσ (e2) is undefined, or e1 ≰

σ
SHB

predσ (e2).

Proof. (Sketch) The full proof is presented in Appendix A; here we sketch the main ideas. We

observe that if σ ′ is a correct reordering of σ that also respects ≤σ
HB

, then σ ′ also respects ≤σ
SHB

except possibly for the last events of every thread in σ ′. That is, for any e, e ′ such that e ≤σ
SHB

e ′,

e ′ ∈ Eventsσ ′ , and e
′
is not the last event of some thread in σ ′, we have e ∈ Eventsσ ′ and e ≤

σ ′
tr

e ′.
Therefore, if e ≤σ

SHB
predσ (e2), then any correct reordering σ ′ respecting ≤σ

HB
that contains both

e1 and e2 will also have e = predσ (e2). Further since e is not the last event of its thread (since e2 is
present in σ ′) and e1 ≤

σ
SHB

e , e must occur between e1 and e2 in σ ′. Therefore (e1, e2) is not a ≤
σ
HB

-

schedulable race. The other direction can be established as follows. Let σ ′′ be the trace consisting
of events that are ≤σ

SHB
-before e1 or predσ (e2) (if defined), ordered as in σ . Define σ ′ = σ ′′e1e2.

We prove that when e1 and e2 satisfy the condition in the theorem, σ ′ as defined here, is a correct

reordering and also respects ≤σ
HB

. □

Remark. We remark that the proof of Theorem 3.3 can be easily lifted to construct a trace that

witnesses a given ≤
HB

-schedulable race (e1, e2). Demonstrating an actual trace witnessing a bug

is very useful for debugging purposes and enhances confidence of programmers using the race

detector.

We now illustrate the use of ≤
SHB

through some examples.

Example 3.4. In this example, we will look at different traces, and see how ≤
SHB

reasons. Like in

the introduction, we will use ei to refer to the ith event of a given trace (which will be clear from

context). Let us begin by considering the example program and trace σ1 from Fig. 1. Notice that

≤
σ1
HB
=≤

σ1
TO
, and so (e1, e4) and (e2, e3) are HB-races. Because e2 = lastWrσ1 (e3), we have e1 ≤

σ1
SHB

e2 ≤
σ1
SHB

e3 ≤
σ1
SHB

e4. Using Theorem 3.3, we can conclude correctly that (a) (e2, e3) is ≤
σ1
HB

-schedulable

as predσ1 (e3) is undefined, but (b) (e1, e4) is not, as e1 ≤
σ
SHB

predσ (e4) = e3.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:9

t1 t2 t3 t4

1 acq(ℓ)
2 w(x)
3 r(x)
4 w(y)
5 w(x)
6 r(x)
7 rel(ℓ)
8 acq(ℓ)
9 w(z)
10 r(z)
11 w(y)
12 w(z)
13 r(z)
14 rel(ℓ)

Fig. 4. Trace σ4.

Let us now consider trace σ2 from Fig. 2. Observe that ≤
σ2
HB
=≤

σ2
SHB
=≤

σ2
TO
, and so both (e1, e4) and

(e2, e3) are ≤
σ2
HB

-schedulable races by Theorem 3.3. Note that, unlike force ordering, ≤
σ2
SHB

correctly

identifies all real data races.

Finally, let us consider two trace examples that highlight the kind of subtle reasoning ≤
SHB

is

capable of. Let us begin with σ3 from Fig. 3. As observed in Example 2.8, the only HB-races in

this trace are (e2, e7), (e5, e7), (e2, e9), (e5, e9), (e2, e10), (e5, e10), (e2, e12), and (e5, e12). Both (e2, e7)
and (e5, e7) are ≤

σ3
HB

-schedulable as demonstrated by the reorderings ρ1 and ρ3 from Example 2.6.

However, the remaining are not real data races. Let us consider the pairs (e2, e9) and (e5, e9) for
example. Theorem 3.3’s justification for it is as follows: e2 ≤

σ3
HB

e5 = lastWrσ3 (e7) ≤
σ3
TO

e8 =
predσ3 (e9). But, let us unravel the reasoning behind why neither (e2, e9) nor (e5, e9) are data races.

Consider an arbitary correct reordering σ ′ of σ3 that respects ≤
σ3
HB

and contains e9. Since e8 is also
an event of t4, e8 ∈ Eventsσ ′ . In addition, e7 ∈ Eventsσ ′ as e7 ≤

σ3
TO

e8. Now, since e5 = lastWrσ3 (e7),
e5 is before e7 in σ ′ and since e2 ≤

σ3
HB

e5, e2 must also be before e7. Therefore, e7 and e8 will be
between e2 and e9 and between e5 and e9. Similar reasoning can be used to conclude that the other

pairs are not ≤
σ3
HB

-schedulable as well.

Lastly, consider trace σ4 shown in Fig. 4. In this case, ≤
σ4
SHB
=≤

σ4
tr
. All conflicting memory accesses

are in HB-race. While HB correctly identifies the first race (e2, e3) as valid, there are 3 HB-races
that are not real data races — (e2, e5), (e9, e12), and (e4, e11). (e2, e5) is not valid because any correct

reordering of σ4 must have e2 before e3 and e3 before e5. This is also captured by SHB reasoning

because e2 ≤
σ4
SHB

e3 ≤
σ4
TO

e4 = predσ4 (e5). A similar reasoning shows that (e9, e12) is not valid.
The interesting case is that of (e4, e11). Here, in any correct reordering σ ′ of σ4, the following

must be true: (a) if e4 ∈ Eventsσ ′ then e1 ∈ Eventsσ ′ ; (b) if e11 ∈ Eventsσ ′ then e8 ∈ Eventsσ ′ ;

(c) if {e1, e4, e7} ⊆ Eventsσ ′ then e1 ≤
σ ′
tr

e4 ≤
σ ′
tr

e7; and (d) if {e8, e11, e14} ⊆ Eventsσ ′ then e8 ≤
σ ′
tr

e11 ≤
σ ′
tr

e14. Therefore, any correct reordering σ ′ of σ4 containing both e4 and e11 contains e1 and e8
(because of (a) and (b)) and must contain at least one of e7 or e14 to ensure that critical sections of

ℓ don’t overlap. Then in σ ′, e4 and e11 cannot be consecutive because either e7 or e14 will appear
between them (properties (c) and (d)). This is captured using SHB and Theorem 3.3 by the fact that

e4 ≤
σ3
SHB

e7 ≤
σ3
SHB

e10 = predσ4 (e11).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:10 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

We conclude this section by observing that the soundness guarantees of HB (Theorem 2.7) follows

from Theorem 3.3. Consider a trace σ whose first HB-race is (e1, e2). We claim that (e1, e2) is a ≤
σ
HB

-

schedulable race. Suppose (for contradiction) it is not. Then by Theorem 3.3, e = predσ (e2) is defined
and e1 ≤

σ
SHB

e . Now observe that we must have ¬(e1 ≤
σ
HB

e) (or otherwise e1 ≤
σ
HB

e2, contradicting
our assumption that (e1, e2) is an HB-race). Then, by the definition of ≤

σ
SHB

(Definition 3.2), there are

two events e3 and e4 (possibly same as e1 and e) such that e1 ≤
σ
SHB

e3, e3 = lastWrσ (e4), e4 ≤
σ
SHB

e ,
and ¬(e3 ≤

σ
HB

e4). Then (e3, e4) is an HB-race, and it contradicts the assumption that (e1, e2) is the
first HB-race.

The above argument that Theorem 2.7 follows from Theorem 3.3, establishes that our SHB-based

analysis using Theorem 3.3 does not miss the race detected by a sound HB-based race detection

algorithm.

4 ALGORITHM FOR DETECTING ≤
HB

-SCHEDULABLE RACES
We will discuss our algorithm for detecting races identified by the ≤

SHB
partial order. The algorithm

is based on efficient, vector clock based computation of the ≤
SHB

-partial order. It is similar to the

standard Djit
+
algorithm [Pozniansky and Schuster 2003] to detect HB-races. We will first briefly

discuss vector clocks and associated notations. Then, we will discuss a one-pass streaming vector

clock algorithm to compute ≤
SHB

for detecting ≤
HB

-schedulable races. Finally, we will discuss how

epoch optimizations, similar to FastTrack [Flanagan and Freund 2009] can be readily applied in

our setting to enhance performance of the proposed vector clock algorithm.

4.1 Vector Clocks and Times
A vector time or a vector timestamp V : Threadsσ → Nat maps each thread in a trace σ to a natural

number. Vector times support comparison operation ⊑ for point-wise comparison, join operation

⊔ for point-wise maximum, and update operation V [n/t] which assigns the time n ∈Nat to the

component t ∈ Threadsσ in the vector time V . Vector time ⊥ maps all threads to 0. Formally,

V1 ⊑ V2 iff ∀t : V1 (t) ≤ V2 (t) (Point-wise Comparison)

V1 ⊔V2 = λt : max (V1 (t),V2 (t)) (Join)

V [n/u] = λt : if (t = u) then n else V (t) (Update)

⊥ = λt : 0 (Bottom)

Vector clocks are place holders for vector timestamps, or variables whose domain is the space

of vector times. All the above operations, therefore, also apply to vector clocks. The algorithms

described next maintain a state comprising of several vector clocks, whose values, at specific

instants, will be used to assign timestamps to events. We will use double struck font (C, L, R, etc.,)
for vector clocks and normal font (C , R, etc.,) for vector times.

4.2 Vector Clock Algorithm for Detecting Schedulable Races
Algorithm 1 depicts the vector clock algorithm for detecting ≤

HB
-schedulable races using the ≤

SHB

partial order. Similar to the vector clock algorithm for detecting HB races, Algorithm 1 maintains a

state comprising of several vector clocks. The idea behind Algorithm 1 is to use these vector clocks

to assign a vector timestamp to each event e (denoted by Ce) such that the ordering relation on the

assigned timestamps (⊑) enables determining the partial order ≤
SHB

on events. This is formalized

in Theorem 4.1. The algorithm runs in a streaming fashion and processes each event in the order in

which it occurs in the trace. Depending upon the type of the observed event, an appropriate handler

is invoked. The formal parameter t in each of the handlers refers to the thread performing the event,

and the parameters ℓ, x and u represent the lock being acquired or released, the memory location

being accessed and the thread being forked or joined, respectively. The procedure Initialization

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:11

assigns the initial values to the vector clocks in the state. We next present details of different parts

of the algorithm.

Algorithm 1: Vector Clock for Checking ≤
SHB

-schedulable races

1 procedure Initialization
2 foreach t do Ct := ⊥[1/t] ;
3 foreach ℓ do Lℓ := ⊥ ;

4 for x ∈ Vars do
5 LWx := ⊥;

6 Rx := ⊥;

7 Wx := ⊥;

8 procedure acquire(t , ℓ)
9 Ct := Ct ⊔ Lℓ ;

10 procedure release(t , ℓ)
11 Lℓ := Ct ;

12 Ct (t) := Ct (t) + 1 ; (* next event *)

13 procedure fork(t , u)
14 Cu := Ct [1/u] ;

15 Ct (t) := Ct (t) + 1 ; (* next event *)

16 procedure join(t , u)
17 Ct := Ct ⊔ Cu ;

18 procedure read(t , x)
19 if ¬(Wx ⊑ Ct) then
20 declare ‘race with write’;

21 Ct := Ct ⊔ LWx ;

22 Rx (t) := Ct (t);

23 procedure write(t , x)
24 if ¬(Rx ⊑ Ct) then
25 declare ‘race with read’;

26 if ¬(Wx ⊑ Ct) then
27 declare ‘race with write’;

28 LWx := Ct ;

29 Wx (t) := Ct (t);

30 Ct (t) := Ct (t) + 1 ; (* next event *)

4.2.1 Vector clocks in the State. The description of each of the vector clocks that are maintained in

the state of Algorithm 1 is as follows:

(1) Clocks Ct : For every thread t in the trace being analyzed, the algorithm maintains a vector

clock Ct . At any point during the algorithm, let us denote by et the last event performed by

thread t in the trace so far. Then, the timestamp Cet of the event et can be obtained from

the value of the clock Ct as follows. If et is a read, acquire or a join event, then Cet = Ct ,
otherwise Cet = Ct [(c − 1)/t], where c = Ct (t).

(2) Clocks Lℓ : The algorithm maintains a vector clock Lℓ for every lock ℓ in the trace. At any

point during the algorithm, the clock Lℓ stores the timestamp Ceℓ , where eℓ is the last event
of the form eℓ = ⟨·, rel(ℓ)⟩, in the trace seen so far.

(3) Clocks LWx : For every memory location x accessed in the trace, the algorithm maintains

a clock LWx (LastWrite to x) to store the timestamp Cex , of the last event ex of the form

⟨·, w(x)⟩.
(4) Clocks Rx andWx : The clocks Rx andWx store the read and write access histories of each

memory location x . At any point in the algorithm, the vector time Rx stored in the the Read

access history clock Rx is such that ∀t ,Rx (t) = Cer(x)t
(t) where er(x)t is the last event of thread

t that reads x in the trace seen so far. Similarly, the vector timeWx stored in theWrite access

history clockWx is such that ∀t ,Wx (t) = Cew(x)t
(t) where ew(x)t is the last event of thread t

that writes to x in the trace seen so far.

The clocks Ct , Lℓ , LWx are used to correctly compute the timestamps of the events, while the

access history clocks Rx andWx are used to detect races.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:12 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

4.2.2 Initialization and Clock Updates. For every thread t , the clock Ct is initialized to the vector

time ⊥[1/t]. Each of the clocks Lℓ , LWx , Rx andWx are initialized to ⊥. This is in accordance with

the semantics of these clocks presented in Section 4.2.1.

When processing an acquire event e = ⟨t , acq(ℓ)⟩, the algorithm reads the clock Lℓ and updates

the clock Ct with Ct ⊔ Lℓ (see Line 9). This ensures that the timestamp Ce (which is the value of

the clock Ct after executing Line 9) is such that Ce ′ ⊑ Ce for every ℓ-release event e
′ = ⟨t ′, rel(ℓ)⟩

observed in the trace so far.

At a release event e = ⟨t , rel(ℓ)⟩, the algorithm writes the timestamp Ce of the current event e
to the clock Lℓ (see Line 11). Notice that e is also the last release event of lock ℓ in the trace seen

so far, and thus, this update correctly maintains the invariant stated in Section 4.2.1. This update

ensures that any future events that acquire the lock ℓ can update their timestamps correctly. The

algorithm then increments the local clock Ct (t) (Line 12). This ensures that if the next event e
′
in

the thread t and the next acquire event f of lock ℓ satisfy e ′ ≰SHB f , then the timestamps of these

events satisfy Ce ′ ̸⊑ Cf . This is crucial for the correctness of the algorithm (Theorem 4.1).

The updates performed by the algorithm at a fork (resp. join) event are similar to the updates

performed when observing a release (resp. acquire) event. The update at Line 14 is equivalent to

the update Cu := Ct ⊔Cu and ensures that the timestamp of each event e ′ = ⟨u, ·⟩ performed by the

forked thread u satisfy Ce ⊑ Ce ′ , where e is the current event forking the new thread u. Similarly,

the update performed at Line 17 when processing the join event e = ⟨t , join(u)⟩ ensures that the
timestamp of each event e ′ = ⟨u, ·⟩ of the joined thread u is such that Ce ′ ⊑ Ce .

At a read event e = ⟨t , r(x)⟩, the clock Ct is updated with the join Ct ⊔LWx (Line 21). Recall that

LWx stores the timestamp of the last event that writes to x (or in other words, the event lastWr (e))
in the trace seen so far. This ensures that the timestamps Ce and ClastWr (e) satisfy ClastWr (e) ⊑ Ce .

In addition, the algorithm also updates the component Rx (t) with the local component of the clock

Cx (Line 22) in order to maintain the invariant described in Section 4.2.1.

At a write event e = ⟨t , w(x)⟩, the algorithm updates the value of the last-write clock LWx (Line

28) with the timestamp Ce stored in Ct . The componentWx (t) is updated with the value of the

local component Ct (t) to ensure the invariant described in Section 4.2.1 is maintained correctly.

Finally, similar to the increment after a release event, the local clock is incremented in Line 30.

4.2.3 Checking for Races. At a read/write event e , the algorithm determines if there is a conflicting

event e ′ in the trace seen so far such that (e ′, e) is an ≤
HB

-schedulable race. From Theorem 3.3 and

Theorem 4.1, it follows that it is sufficient to check if Ce ′ ̸⊑ Cpred (e) . However, since the algorithm

does not explicitly store the timestamps of events, we use the access histories Rx andWx to check

for races. Below we briefly describe these checks. The formal statement of correctness is presented

in Theorem 4.2 and its proof is presented in Appendix B. We briefly outline the ideas here.

Recall that, for an event e = ⟨t , ·⟩ if pred (e) is undefined, the Initialization procedure ensures
that Ce = ⊥[1/t]. In this case, we have V ̸⊑ Ce , for any vector-timestamp V with non-negative

entries such that V (t) = 0, ⊥ ⊑ V and V , ⊥. Algorithm 1 correctly reports a race in this case (see

Lines 19-20, 24-27).

On the other hand, if pred (e) is defined, then the clock Ct , at Line 19, 24 or 26, is either the

timestampCpred (e) (if pred (e)was a read, join or an acquire event) or the timestampCpred (e)[(c+1)/t],
where c = Cpred (e) (t) (if pred (e) was a write, fork or a release event). In either case, if the check

Wx ⊑ Ct at Line 19 fails, then the read event e being processed is correctly declared to be in race

with an earlier conflicting write event. Similarly, Algorithm 1 reports that a write event e is in race

with an earlier read (resp. write) event based on whether the check on Line 24 (resp. Line 26) fails

or not.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:13

4.2.4 Correctness and Complexity. Here, we fix a trace σ . Recall that, for an event e , we say that

Ce is the timestamp assigned by Algorithm 1 to event e . Theorem 4.1 asserts that the time stamps

computed by Algorithm 1 can be used to determine the partial order ≤σ
SHB

.

Theorem 4.1. For events e, e ′ ∈ Eventsσ such that e ≤σ
tr
e ′, Ce ⊑ Ce ′ iff e ≤σ

SHB
e ′

Next, we state the correctness of the algorithm. We say that Algorithm 1 reports a race at an

event e , if it executes lines 20, 25 or 27 while processing the handler corresponding to e .

Theorem 4.2. Let e be a read/write event e ∈ Eventsσ . Algorithm 1 reports a race at e iff there is
an event e ′ ∈ Eventsσ such that (e ′, e) is an ≤σ

HB
-schedulable race.

The following theorem states that the asymptotic time and space requirements for Algorithm 1

are the same as that of the standard HB algorithm.

Theorem 4.3. For a trace σ with n events, T threads, V variables, and L locks, Algorithm 1 runs in
time O (nT logn) and uses O ((V + L +T)T logn) space.

The proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3 are presented in Appendix B.

4.2.5 Differences from the HB algorithm. While the spirit of Algorithm 1 is similar to standard HB

vector clock algorithms (such as Djit
+
[Pozniansky and Schuster 2003]), it differs from them in

the following ways. First, we maintain an additional vector clock LWx to track the timestamp of

the last event that writes to memory location x (line 28), and use this clock to correctly update

Ct (line 21). This difference is a direct consequence of the additional ordering edges in the ≤
SHB

partial order—every read event e is ordered after the event lastWr (e), unlike ≤
HB

. Second, the ‘local’

component of the clock Ct is also incremented after every write event (line 19), in addition to after

a release or a fork event (in contrast with Djit
+
). This is to ensure correctness in the following

scenario. Let e, e ′ and e ′′ be events such that e = ⟨t , r(x)⟩ ∈ Reads, e ′ = ⟨t ′, w(x)⟩ = lastWr (e) (t ′

may be different from t), and e ′′ is the next event after e ′ in the thread t ′. Incrementing the local

component of the clock Ct ′ ensures that the vector timestamps of e and e ′′ are ordered only when

e ′′ ≤
SHB

e . Third, our algorithm remains sound even beyond the first race, in contrast to Djit
+
,

which can lead to false positives beyond the first race.

4.3 Epoch Optimization
The epoch optimization, popularized by FastTrack [Flanagan and Freund 2009] exploits the insight

that ‘the full generality of vector clocks is unnecessary in most cases’, and can result in significant

performance enhancement, especially when the traces are predominated by read and write events.

An epoch is a pair of an integer c and a thread t , denoted by c@t . Intuitively, epoch c@t can be

treated as the vector time ⊥[c/t]. Thus, in order to compare an epoch c@t with vector time V , it
suffices to compare the t-th component of V with c . That is,

c@t ⊑ V iff c ≤ V (t).

Therefore, comparison between epochs is less expensive than that between vector times — O (1) as
opposed to O ((|Threadsσ |) for full vector times. To exploit this speedup, some vector clocks in the

new algorithm will adaptively store either epochs or vector times.

Algorithm 2 applies the epoch optimization to Algorithm 1. Here, similar to the FastTrack al-

gorithm, we allow clocks Rx andWx to be adaptive, while other clocks (Ct , Lℓ and LWx) always

store vector times. The optimization only applies to the read and write handlers and thus we omit

the other handlers from the description as they are same as those described in Algorithm 1. We

also omit the Initialization procedure which only differs in that the Rx andWx are initialized

to the epoch 0@0.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:14 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

Algorithm 2: Epoch Optimization for Algorithm 1

1 procedure read(t , x)
2 if ¬(Wx ⊑ Ct) then
3 declare ‘race with write’;

4 Ct := Ct ⊔ LWx ;

5 if Rx is an epoch c@u then
6 if c ≤ Ct (u) then
7 Rx := Ct (t)@t ;

8 else
9 Rx := ⊥[Ct (t)/t][c/u];

10 else
11 Rx (t) := Ct (t);

12 procedure write(t , x)
13 if ¬(Rx ⊑ Ct) then
14 declare ‘race with read’;

15 if (Wx ⊑ Ct) then
16 Wx := Ct (t)@t

17 else
18 declare ‘race with write’;
19 if Wx is an epoch c@u then
20 Wx := ⊥[Ct (t)/t][c/u];

21 else
22 Wx (t) := Ct (t);

23 LWx := Ct ;

24 Wx (t) := Ct (t);

25 Ct (t) := Ct (t) + 1 ; (* next event *)

Depending upon how these clocks compare with the thread’s clock Ct , the clocks switch back

and forth between epoch and vector time values:

• Initially, both Rx andWx are assigned the epoch 0@0. The element 0@0 can be thought of

as the analogue of ⊥.

• The clockWx is fully adaptive — it can switch back and forth between vector and epoch times

depending upon how it compares with Ct . Notice that, in the FastTrack algorithm proposed

in [Flanagan and Freund 2009], the clockWx is always an epoch. The underlying assumption

for such a simplification is that all the events that write to a given memory location are

totally ordered with respect to ≤
HB

. This assumption, however, need not hold beyond the

first HB race. After the first race is encountered, two w(x) events e and e ′ may be unordered

by both ≤
HB

and ≤
SHB

. In Algorithm 2,Wx has an epoch representation if and only if the

last write event e on x is such that e ′ ≤
SHB

e for every event e ′ of the form e ′ = ⟨·, w(x)⟩ in
the trace seen so far. When performing a write event e = ⟨t , w(x)⟩, ifWx satisfiesWx ⊑ Ct
(Line 15), then the event e is ordered after all previous w(x) events, and thus, in this case,Wx
is converted to an epoch representation independent of its original representation (see Line

16). Otherwise, there are at least two w(x) events that are not ordered by ≤
SHB

and thusWx
becomes a full-fledged vector clock (Lines 20 and 22).

• The clock Rx is only semi-adaptive — we do not switch back to epoch representation once

the clock Rx takes up a vector-time value. The clock Rx is initialized to be an epoch. When

processing a read event e = ⟨t , r(x)⟩, if the algorithm determines that there is a read event

e ′ = ⟨t ′, r(x)⟩ observed earlier such that e ′ ≰SHB e , then the clock Rx takes a vector-time

representation. After this point, Rx stays in the vector clock representation forever. The

Rx clock is an epoch only if all the reads of x observed are ordered totally by ≤
SHB

. Thus,

in order to determine if Rx can be converted back to an epoch representation, one needs

to check if (Rx ⊑ Ct) every time a read event is processed. Since this is an expensive

additional comparison and because most traces from real-world examples are dominated by

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:15

read events, we avoid such a check and force Rx to be only semi-adaptive. This is similar to

the FastTrack algorithm.

As with FastTrack, the epoch optimization for ≤
SHB

is sound and does not lead to any loss of

precision — the optimized algorithm (Algorithm 2) declares a race at an event e iff the corresponding

unoptimized algorithm (Algorithm 1) declares a race at e .
One must however note that the new clock LWx does not have an adaptive representation, and

is always required to be a vector clock. One can think of LWx to be similar to, say, the clocks Lℓ .
These clocks are used to maintain the partial order, unlike the clocks Rx orWx which are only

used to check for races. Thus, one needs the full generality of vector times for LWx .

5 EXPERIMENTS
We first describe our implementation to detect ≤

HB
-schedulable races. We then present a brief

description of the chosen benchmarks and finally the results of evaluating our implementation on

these benchmarks.

5.1 Implementation
We have implemented our SHB-based race detection algorithms (Algorithm 1 and Algorithm 2)

in our tool Rapid, which is publicly available at [Mathur 2018]. Rapid is written in Java and

supports analysis on traces generated by the instrumentation and logging functionality pro-

vided by RVPredict [Rosu 2018] to generate traces from Java programs. The traces generated

by RVPredict contain read, write, fork, join, acquire and release events. We assume that the traces

are sequentially consistent, similar to the assumption made by [Huang et al. 2014]. We compare

the performance of five dynamic race detection algorithms to demonstrate the effectiveness of

SHB-based sound reasoning:

HB We implemented the Djit
+
algorithm for computing the ≤

HB
-partial order and detecting

HB-races, in our tool Rapid. As with popular implementations of Djit
+
, our implementation

of Djit
+
discovers all ≤

HB
-unordered pairs of conflicting events. This serves as a base line to

demonstrate how many false positives would result, if one considered all HB-races (instead of

≤
HB

-schedulable races). This algorithm is same as Algorithm 1 except that the lines involving

the clock LWx (Lines 5, 21 and 28) are absent.

SHB This is the implementation of Algorithm 1 in our tool Rapid. The soundness guarantee of Algo-

rithm 1 (Theorem 4.2) ensures that our implementation reports only (and all) ≤
HB

-schedulable

races and thus reports no false alarms. As pointed out in Section 3, ≤
SHB

timestamps can

be used for constructing a witness trace for a given ≤
HB

-schedulable race. We defer this

functionality to future work.

FHB This is the algorithm that mimics a software developer’s strategy when using HB-race

detectors. This algorithm is a slight variant of the Djit
+
algorithm and is implemented in our

tool Rapid. Every time an HB-race is discovered, the algorithm force orders the events in race,

before analyzing subsequent events in the trace. When processing a read event e = ⟨t , r(x)⟩,
if the algorithm discovers a race (that is, if the check ¬(Wx ⊑ Ct) passes), the algorithm
reports a race and also updates the clock Ct as Ct := Ct ⊔Wx . Similarly, at a write event,

the algorithm updates the clock Ct as Ct := Ct ⊔ Rx (resp. Ct := Ct ⊔Wx) if the check

¬(Rx ⊑ Ct) (resp. ¬(Wx ⊑ Ct)) passes. This algorithm is sound — all races reported by this

algorithm are schedulable, but it may fail to identify some races that are schedulable. The

complete description of FHB is presented in Algorithm 3.

WCP WCP or Weak Causal Precedence [Kini et al. 2017] is another sound partial order that can

be employed for predictive data race detection. WCP is weaker than both, its precursor

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:16 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

Algorithm 3: Vector Clock for FHB race detection

1 procedure Initialization
2 foreach t do Ct := ⊥[1/t] ;
3 foreach ℓ do Lℓ := ⊥ ;

4 for x ∈ Vars do
5 Rx := ⊥;

6 Wx := ⊥;

7 procedure acquire(t , ℓ)
8 Ct := Ct ⊔ Lℓ ;

9 procedure release(t , ℓ)
10 Lℓ := Ct ;

11 Ct (t) := Ct (t) + 1 ; (* next event *)

12 procedure fork(t , u)
13 Cu := Ct [1/u] ;

14 Ct (t) := Ct (t) + 1 ; (* next event *)

15 procedure join(t , u)
16 Ct := Ct ⊔ Cu ;

17 procedure read(t , x)
18 if ¬(Wx ⊑ Ct) then
19 declare ‘race with write’;
20 Ct := Ct ⊔Wx ; (* force ordering *)

21 Ct := Ct ⊔ LWx ;

22 Rx (t) := Ct (t);

23 procedure write(t , x)
24 if ¬(Rx ⊑ Ct) then
25 declare ‘race with read’;
26 Ct := Ct ⊔ Rx ; (* force ordering *)

27 if ¬(Wx ⊑ Ct) then
28 declare ‘race with write’;
29 Ct := Ct ⊔Wx ; (* force ordering *)

30 Wx (t) := Ct (t);

CP [Smaragdakis et al. 2012], and HB. That is, whenever HB or CP detect the presence of a

race in a trace, WCP will also do so, and in addition, there are traces when WCP can correctly

detect the presence of a race when neither HB or CP can. Nevertheless, WCP (and CP) also

suffer from the same drawback as HB — the soundness guarantee applies only to the first

race. As a result, races beyond the first one, detected by WCP (or CP) may not be real races.

WCP admits a linear time vector clock algorithm and is also implemented in Rapid.

RVPredict RVPredict’s race detection technology relies on maximal causal models [Huang et al.

2014]. RVPredict is sound and does not report any false alarms. Besides, RVPredict, at least in

theory, guarantees to detect more races than any other sound race prediction tool, and thus

more races than Algorithm 1 theoretically. RVPredict encodes the problem of race detection

as a logical formula and uses an SMT solver to check for races. RVPredict can analyze the

traces generated using its logging functionality, and thus is a natural choice for comparison.

Besides the vector clock algorithms (HB, SHB, FHB, WCP) described above, we also implemented

the epoch optimizations for HB and SHB in Rapid.

5.2 Benchmarks
We measure the performance of our algorithms against traces drawn from a wide variety of bench-

mark programs (Column 1 in Table 1) that have previously been used to measure the performance

of other race detection tools [Smaragdakis et al. 2012; Huang et al. 2014; Kini et al. 2017]. The set of

benchmarks have been derived from different suites. The examples airlinetickets to pingpong are

small-sized, and belong to the IBM Contest benchmark suite [Farchi et al. 2003], with lines of code

roughly varying from 40 to 0.5M. The benchmarks moldyn and raytracer are drawn from the Java

Grande Forum benchmark suite [Smith and Bull 2001] and are medium-sized with about 3K lines

of code. The third set of benchmarks correspond to real-world software applications and include

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:17

Apache FTPServer, W3C Jigsaw web server, Apache Derby, and others (xalan to eclipse) derived

from the DaCaPo benchmark suite (version 9.12) [Blackburn et al. 2006].

In Table 1, we also describe the characteristics of the generated traces that we use for analyzing

our algorithms. The number of threads range from 3-12, the number of lock objects can be as high

as 8K. The distinct memory locations accessed (Column 5) in the traces can go as high as 10M. The

traces generated are dominated by access events, with the majority of events being read events

(compare Columns 6, 7 and 8).

5.3 Setup
Our experiments were conducted on an 8-core 2.6GHz 46-bit Intel Xeon(R) Linux machine, with

HotSpot 1.8.0 64-Bit Server as the JVM and 50 GB heap space. Using RVPredict’s logging func-

tionality, we generated one trace per benchmark and analyzed it with the various race detection

engines: HB, SHB, FHB, WCP and RVPredict.

Our evaluation is broadly designed to evaluate our approach based on the following aspects:

(1) Reducing false positives: Dynamic race detection tools based on Eraser style lockset based

analysis [Savage et al. 1997] are known to scale better than those based on happens-before

despite careful optimizations like the use of epochs [Flanagan and Freund 2009]. One of the

main reasons for the popularity of HB-based race detection tools such as FastTrack [Flanagan

and Freund 2009] and ThreadSanitizer [Serebryany and Iskhodzhanov 2009] is the ability to

produce reliable results (no false positives). However, as pointed out in Section 1, HB based

analysis can report false races beyond the first race discovered. The purpose of detecting

≤
HB

-schedulable races, instead of all HB-races, is to ensure that only correct races are

reported. However, since our algorithm for detecting ≤
HB

-schedulable races tracks additional

vector clocks (namely LWx for every memory location x), we would like to demonstrate the

importance of such an additional book-keeping for ensuring soundness of happens-before

based reasoning.

(2) Prediction power: As described in Section 1, a naïve fix to the standard HB race detection

algorithm is to employ the FHB algorithm — after a race is discovered at an event, order the

event with all conflicting events observed before it. We would like to examine if the use of

≤
SHB

-based reasoning enhances prediction power by detecting more races than this naïve

strategy. Further, we would like to evaluate if more powerful approaches like the use of SMT

solvers in RVPredict give significantly more benefit as compared to our linear time streaming

algorithm.

(3) Scalability:While Algorithm 1 runs in linear time, it tracks additional clocks (LWx for every

memory location x accessed in the trace) over the standard HB vector clock algorithm. Since

this can potentially slow down analysis, we would like to evaluate the performance overhead

due to this additional book-keeping.

(4) Epoch optimization: The standard epoch optimization popularized by FastTrack [Flana-

gan and Freund 2009] is designed to work for the case when all the writes to a memory

location are totally ordered. While this is true until the first race is discovered, this condition

may not be guaranteed after the first race. We will evaluate the effectiveness of our adaptation

of this optimization to work beyond the first race.

5.4 Evaluation
Our experimental results are summarized in Table 1, Table 2 and Table 3. Table 1 describes infor-

mation about generated execution logs. Table 2 depicts the number of races and warnings raised

2
a thread is active if there is an event e = ⟨t, op⟩ performed by the thread t in the trace generated

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:18 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

Table 1. Benchmarks and metadata of the traces generated. Columns 1 and 2 describe the name and the lines

of code in the source code of the chosen benchmarks. Column 3, 4 and 5 describe respectively the number of

active2threads, locks, and memory locations in the traces generated by the corresponding program in Column

1. Column 6 reports the total number of events in the trace. Columns 7, 8, 9, 10 and 11 respectively denote

the number of read, write, acquire (or release), fork and join events.

1 2 3 4 5 6 7 8 9 10 11

Program LOC Thrds Locks Vars Events

Total Read Write Synch. Fork Join

airlinetickets 83 4 0 44 137 77 48 0 12 0

array 36 3 2 30 47 8 30 3 3 0

bufwriter 199 6 1 471 22.2K 15.8K 3.6K 1.4K 6 4

bubblesort 274 12 2 167 4.6K 4.0K 404 121 27 0

critical 63 4 0 30 55 18 31 0 4 2

mergesort 298 5 3 621 3.0K 2.0K 914 55 5 3

pingpong 124 6 0 51 147 57 71 0 19 0

moldyn 2.9K 3 2 1.2K 200.0K 182.8K 17.2K 31 3 1

raytracer 2.9K 3 8 3.9K 15.8K 10.4K 5.3K 60 3 1

derby 302K 4 1112 185.6K 1.3M 879.5K 404.5K 31.2K 4 2

ftpserver 32K 11 301 5.5K 49.0K 30.0K 7.8K 5.6K 11 4

jigsaw 101K 11 275 103.5K 3.1M 2.6M 413.5K 5.9K 13 4

xalan 180K 6 2491 4.4M 122.0M 101.7M 18.3M 1M 7 5

lusearch 410K 7 118 5.2M 216.4M 162.1M 53.9M 206.6K 7 0

eclipse 560K 14 8263 10.6M 87.1M 72.6M 12.9M 765.4K 16 3

Total 430.3M 340.2M 85.9M 2.1M 140 29

by the different race detection algorithms. Columns 3-8 in Table 2 report the number of distinct

pairs (pc1,pc2) of program locations corresponding to an identified data race. That is, for every

event race pair (e1, e2) identified by the different race detection algorithms, we identify the pair

of program locations that give rise to this event pair and report the total number of such program

location pairs (counting the pairs (pc1,pc2) and (pc2,pc1) only once). Since each of the vector clock

algorithms (HB, SHB, FHB and WCP) only report whether the event being processed is in race

with some earlier event, we need to perform a separate analysis step using the vector timestamps,

to determine the actual pair of events (and thus the corresponding pair of program locations) in

race. In Columns 9, 10, 11 and 12 in Table 2 we report the number of warnings raised by the four

vector clock algorithms—HB, SHB, FHB and WCP respectively. A warning is raised when at a

read/write event e , we determine if the event e is in race with an earlier event, counting multiple

warnings for a single event only once. In Table 3, Columns 2, 5, 8, 9, 10 and 11 respectively report

the time taken by different analyses engines — HB, SHB, FHB, WCP and RVPredict— on the trace

generated. We also measure the time taken by the epoch optimizations for both HB and SHB vector

clock algorithms (Columns 4 and 7 respectively) and report the speedup thus obtained over the

naïve vector clock algorithms (Columns 4 and 7 respectively). When analyzing the generated traces

using WCP, we filter out events that are thread local; this does not affect any races. The memory

requirement of a naïve vector clock algorithm for WCP, as described in [Kini et al. 2017] can be a

bottleneck and removing thread local events allowed us to analyze the larger traces (xalan, lusearch

and eclipse) without any memory blowup. We next discuss our results in detail.

5.4.1 Reducing False Positives. First, observe that both the number of races reported (Columns 3, 4

and 5 in Table 2) and the number of warnings raised (Columns 8, 9 and 10) by HB, SHB and FHB

are monotonically decreasing, as expected — HB detects all ≤
HB

-schedulable races but additional

false races, SHB detects exactly the set of ≤
HB

-schedulable races and FHB detects a subset of

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:19

Table 2. Number of races detected and warnings raised. Column 1 and 2 denote the benchmarks and the size

of the traces generated. Columns 3, 4, 5 and 6 respectively report the number of distinct program location pairs

for which there are pair of events in a race, as identified by HB, SHB, FHB and WCP. Columns 7 and 8 denote

the races reported by RVPredict when run with the parameters (window-size=1K, solver-timeout=60s)
and (window-size=10K, solver-timeout=240s). Columns 9, 10, 11 and 12 respectively denote the number

of warnings generated when running the vector clock algorithms for detecting races using HB (unsound),

SHB (sound and complete for ≤
HB

-schedulable races), FHB (naive algorithm that forces an order after every

race discovered) and WCP analyses.

1 2 3 4 5 6 7 8 9 10 11 12

Races Warnings

Program #Events HB SHB FHB WCP RVPredict HB SHB FHB WCP

1K/60s 10K/240s

airlinetickets 137 6 6 3 6 6 6 8 8 5 8

array 47 0 0 0 0 0 0 0 0 0 0

bufwriter 22.2K 2 2 2 2 2 0 8 8 8 8

bubblesort 4.6K 6 6 6 6 6 0 602 269 100 612

critical 55 8 8 1 8 8 8 3 3 1 3

mergesort 3.0K 3 1 1 3 1 2 52 1 1 52

pingpong 147 3 3 3 3 3 3 11 8 8 11

moldyn 200.0K 44 2 2 44 2 2 24657 103 103 24657

raytracer 15.8K 3 3 3 3 2 3 118 8 8 118

derby 1.3M 26 13 11 26 12 - 89 29 28 89

ftpserver 49.0K 35 23 22 35 10 12 143 69 69 144

jigsaw 3.1M 8 4 4 10 4 2 14 4 4 17

xalan 122.0M 16 12 10 18 8 8 86 31 21 98

lusearch 216.4M 160 52 28 160 0 0 751002 232 119 751002

eclipse 87.1M 64 61 31 66 5 0 173 164 103 201

Total 430.3M 384 196 127 390 69 46 776966 937 578 777020

≤
HB

-schedulable races. Next, the number of races reported by HB can be way higher than the actual

number of ≤
HB

-schedulable races (see moldyn and lusearch). Similarly, the number of warnings

raised can be an order of magnitude larger than those raised by either SHB or FHB. Clearly, many

of these warnings are potentially spurious. Thus, an incorrect use of the popular HB algorithm

can severely hamper developer productivity, and completely defies the point of using a sound race

detection analysis technique. Further, in each of the benchmarks, both the set of races as well as

the set of warnings reported by WCP were a superset of those reported by HB. This follows from

the fact that WCP is a strictly weaker relation than HB.

While Theorem 3.3 guarantees that each of the additional race pairs reported by HB (over those

reported by SHB) cannot be scheduled in any correct reordering of the observed trace that respects

the induced ≤
HB

partial order, it does not guarantee that these extra races cannot be scheduled in

any correct reordering. In order to see if the extra races reported by HB (Column 3 in Table 2) can

be scheduled in a correct reordering that does not respect the ≤
HB

order induced by the observed

trace, we manually inspected the traces (annotated with their vector timestamps) of mergesort,

moldyn, derby, ftpserver, and jigsaw. In each of these benchmarks, we found that all the extra

race pairs reported by HB indeed cannot be scheduled in any correct reordering (whether or not

the correct reordering respects the induced ≤
HB

partial order). A common pattern that helped us

conclude this observation has been depicted in Fig. 5a. Here, the trace writes to a memory location

x in a thread t1 (event e1). Then, sometime later, another event e2 performed by a different thread t2
reads the value written by e1. This is then followed by other events of thread t2, not pertaining to
memory location x . Finally, thread t2 reads the memory location x again in event e3. This pattern is

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:20 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

commonly observed when a thread reads a shared variable (here, this corresponds to the event e2),
takes a branch depending upon the value observed and then accesses the shared memory again

within the branch. HB misses this dependency relation thus induced, and incorrectly reports that

the pair (e1, e3) is in race. SHB, on the other hand, correctly orders e1 ≤
SHB

pred (e3), and does not

report a race.

The two extra races reported by WCP but not by HB in jigsaw could not be confirmed to be false

positives. Further, we did not inspect the extra races reported by HB or WCP (over SHB) in xalan,

lusearch and eclipse owing to time constraints.

5.4.2 Prediction Power. The naïve algorithm FHB, while sound, can miss a lot of real races (Column

5 in Table 2) and has a poor prediction power as compared to the sound SHB algorithm. See for

example, lusearch and eclipse where FHB misses almost half the races reported by SHB. Next,

observe that while RVPredict, in theory, is maximally sound, it can miss a lot of races, sometimes

evenmore than the naive FHB strategy (Columns 6 and 7 in Table 2). This is because RVPredict relies

on SAT solving to determine data races. As a result, in order to scale to large traces obtained from

real world software, RVPredict resorts to windowing — dividing the trace into smaller chunks

and restricting its analysis to these smaller chunks. This strategy, while useful for scalability, can

miss data races that are spread far across in the trace, yet can be captured using happens-before

like analysis. Besides, since the underlying DPLL-based SAT solvers may not terminate within

reasonable time, RVPredict sets a timeout for the solver — this means that even within a given

window, RVPredict can miss races if the SAT solver does not return an answer within the set

timeout. All these observations clearly indicate the power of ≤
SHB

-based reasoning.

Again, based on our manual inspection of program traces, we depict a common pattern found in

Fig. 5b. Here, first, a thread t1 writes to a shared variable x (event e1). This is followed by another

write to x in a different thread t2 (event e2). Finally, the next access to x is a read event e3 performed

by thread t2. While FHB correctly reports the first write-write race (e1, e2), it fails to detect the

write-read race (e1, e3) because of the artificial order imposed between e1 and e2. SHB, on the other

hand, reports both (e1, e2) and (e1, e3) as ≤
HB

-schedulable races.

5.4.3 Scalability. First, the size of the traces, that SHB and the other three linear time vector clock

algorithms can handle, can be really large, of the order of hundreds of millions (xalan, lusearch, etc.,).

In contrast, RVPredict fails to scale for large traces, even after employing a windowing strategy.

This is especially pronounced for the larger traces (bufwriter, derby-xalan). This suggests the power

of using a linear time vector clock algorithm for dynamic race detection for real-world applications.

t1 t2

w(x)
...

r(x)
...

r(x)

(a) Incorrect race reported by HB but not by

SHB

t1 t2

w(x)
...

w(x)
...

r(x)

(b) Correct race missed by FHB but detected

by SHB

Fig. 5. Common race patterns found in the benchmarks

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:21

Table 3. Time taken by different race detection algorithms on traces generated by the corresponding programs

in Column 1. Column 2 denotes the taken for analyzing the entire trace with the Djit
+
vector-clock algorithm.

Column 3 denotes the time taken by FastTrack-style optimization over the basic Djit
+
and Column 4 denotes

the speedup thus obtained. Column 5 denotes the times for the vector clock implementation of Algorithm 1.

Column 6 and 7 denote the time and speedup due to the epoch optimization for SHB (Algorithm 2). A ‘-’ in

Columns 5 and 8 denote a downgraded performance due to epoch optimization. Column 8 denotes the time

to analyze the traces using FHB (forcing an order in HB) analysis. Column 9 reports the time to analyze the

traces using WCP partial order. The analysis in Column 9 is performed by filtering out thread local events and

includes the time for this filtering. Column 10 and 11 respectively denote the time taken by RVPredict using

the parameters (window-size=1K, solver-timeout=60s) and (window-size=10K, solver-timeout=240s).
A ‘-’ in Column 11 denotes that RVPredict did not finish within the set time limit of 4 hours.

1 2 3 4 5 6 7 8 9 10 11

HB SHB FHB WCP RVPredict

Program VC Epoch Speed-up VC Epoch Speed-up 1K/60s 10K/240s

(s) (s) (s) (s) (s) (s) (s) (s)

airlinetickets 1.11 1.4 - 2.08 0.25 8.32x 2.33 0.35 1.34 1.33

array 1.13 1.66 - 0.55 0.25 2.2x 1.98 0.77 1.28 1.26

bufwriter 0.54 1.63 - 0.56 0.46 1.22x 0.96 1.3 3.61 1879

bubblesort 0.47 0.29 1.62x 0.78 0.34 2.3x 0.51 0.63 2.46 652

critical 0.68 0.24 2.8x 0.28 0.56 - 0.54 0.94 2.14 0.52

mergesort 0.4 1.58 - 0.43 0.35 1.23x 0.7 0.8 0.67 0.81

pingpong 0.31 0.31 1x 2.15 0.33 6.5x 0.41 0.99 2.3 0.57

moldyn 1.45 2.78 - 1.04 1.49 - 1.77 1.81 2.27 2.94

raytracer 0.95 2.25 - 1.82 0.41 4.44x 2.33 0.77 0.61 8.61

derby 4.27 2.91 1.46x 4.39 3.05 1.44x 5.56 9.24 72 -

ftpserver 0.84 0.84 1x 0.87 1.33 - 2.94 1.64 1.23 164

jigsaw 23 8.1 2.84x 10.04 7.35 1.37x 9.31 11.11 1.66 245

xalan 217 152 1.42x 222 184 1.21x 291 290 44 420

lusearch 362 383 - 444 337 1.32x 325 341 48 47

eclipse 525 200 2.63x 238 188 1.27x 168 512 25 951

The small and medium sized examples almost always finish with a few seconds for each of HB,

SHB, FHB and WCP. The larger examples xalan, lusearch and eclipse can take as much as 4-10

minutes for the vector clock algorithms and 6-15 minutes for RVPredict’s analysis with a window

size of 10K and a solver timeout of 4 minutes.

5.4.4 EpochOptimization. The epoch optimization is indeed effective in improving the performance

of vector-clock algorithms even when all the write events to a memory location may not be totally

ordered. The speedups vary from 1.2x to 8.3x on small and medium sized benchmarks and from

1.2x to 2.9x on larger traces. The speedup obtained for HB race detection is, in general, less than in

the case of SHB algorithm. This is expected since SHB is strictly stronger than HB — every pair of

events ordered by ≤
HB

is also ordered by ≤
SHB

, and not every pair of events ordered by ≤
SHB

may

be ordered by ≤
HB

. As a result, a write event can get ordered after all previous write events more

frequently when using ≤
SHB

than when using ≤
HB

. This means that in the epoch optimization for

SHB, theWx clocks take up epoch representation more frequently than in the HB algorithm, and

this difference is reflected in Columns 5 and 8 of Table 3.

6 RELATEDWORK
The notion of correct reorderings to characterize causality in executions has been derived from [Smarag-

dakis et al. 2012; Kini et al. 2017]. In [Huang et al. 2014] a similar notion, called feasible traces

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:22 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

encompasses a more general causality model based on control flow information. Weak happens-

before [Sen et al. 2005], Mazurkiewicz equivalence [Mazurkiewicz 1987; Abdulla et al. 2014] and

observation equivalence [Chalupa et al. 2017] are other models that attempt to characterize causality.

Many of these models also incorporate the notion of last-write causality, similar to SHB. However,

these algorithms use expensive search algorithms like SAT solving to explore the space of correct

reorderings, unlike a linear time vector clock algorithm like that for SHB. Our experimental evalua-

tion concurs with this observation. Similar dependency relation called reads-from is also used to

characterize weak memory consistency semantics [Alglave et al. 2014; Huang and Huang 2016].

Race detection techniques can be broadly classified as either being static or dynamic. Static race

detection [Naik et al. 2006; Pratikakis et al. 2011; Radoi and Dig 2013; Engler and Ashcraft 2003;

Voung et al. 2007; Musuvathi et al. 2008; Yahav 2001; Zhan and Huang 2016] is the problem of

detecting if a program has an execution that exhibits a data race, by analyzing its source code. This

problem, in its full generality, is undecidable and practical tools employing static analysis techniques

often face a trade-off between scalability and precision. Further, the use of such techniques often

require the programmer to add annotations to help guide static race detectors.

Dynamic race detection techniques, on the other hand, examine a single execution of the program

to discover a data race in the program. A large number of tools employing dynamic analysis are

based on lockset-like analysis proposed by Eraser [Savage et al. 1997]. Here, one tracks, for each

memory location accessed, the set of locks that protect the memory location on each access. If this

lockset becomes empty during the program execution, a warning is issued. Lockset-based analysis

suffers from false positives. Other dynamic race detectors employ happens-before [Lamport 1978]

based analysis. These include the use of vector clock [Mattern 1988; Fidge 1991] algorithms such

as Djit
+
[Pozniansky and Schuster 2003] and FastTrack [Flanagan and Freund 2009] and the

use of sets of threads and locks, as in, GoldiLocks [Elmas et al. 2007]. As demonstrated in this

paper, happens-before based analysis is sound only if limited to detecting the first race. Other

techniques can be categorized as predictive and can detect races missed by HB by exploring more

correct reorderings of an observed trace. These include use of SMT solvers [Said et al. 2011; Huang

et al. 2014; Liu et al. 2016; Huang and Rajagopalan 2016] and other techniques based on weakening

the HB partial order including CP [Smaragdakis et al. 2012] and WCP [Kini et al. 2017]. Amongst

these, WCP is the only technique that has a linear running time and is known to scale to large

traces. The soundness guarantee of partial order based techniques, like WCP and CP, is again,

limited to the first race. Nevertheless, they do detect subtle races that HB can miss. Our approach

complements this line of research. Other dynamic techniques such as random testing [Sen 2008],

sampling [Marino et al. 2009; Erickson et al. 2010], and hybrid race detection [O’Callahan and Choi

2003] are based on both locksets and happens-before relation.

7 CONCLUSION
Happens-before is a powerful technique that can be used to effectively detect for races. However,

the detection power of HB is limited only until the first race is identified. We characterize when an

HB-race, beyond just the first race, can be scheduled in an alternate reordering, by introducing a

new partial order called SHB which identifies all HB-schedulable races. SHB can be implemented in

a vector clock algorithm, which is only slightly different from HB vector clock algorithm, and thus,

existing race detection tools can easily incorporate it to enhance their race detection capability.

Also, standard epoch like optimizations can be employed to improve the performance of the basic

algorithm. We show, through extensive experimental evaluation, the value our approach adds to

sound race detection tools.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:23

In the future, we would like to extend the work for weaker partial orders like CP [Smaragdakis

et al. 2012] and WCP [Kini et al. 2017]. Another promising direction is to further enhance the

prediction power by incorporating data values, control flow and data flow information in the traces.

A PROOF OF THEOREM 3.3
In this section, we prove Theorem 3.3. We begin with a couple of technical lemmas.

Lemma A.1. Let σ be a trace and σ ′ be a correct reordering of σ that respects ≤σ
HB

. For any e, e ′ such
that e ≤σ

SHB
e ′, if e ′ ∈ Eventsσ ′ and e ′ is not the last read event of its thread in σ ′, then e ∈ Eventsσ ′

and e ≤σ
′

tr
e ′.

Proof. Consider any e, e ′ such that e ≤σ
SHB

e ′, e ′ ∈ Eventsσ ′ and e
′ = ⟨t ,op⟩ is not the last read

event of the thread t in the trace σ ′. Then it follows from Definition 3.2 that there is a sequence

e = e0, e1, . . . en = e ′ such that for every i ≤ n − 1, ei ≤
σ
tr
ei+1 and either (a) ei ≤

σ
TO

ei+1 or (b)
ei = ⟨ti , rel(ℓ)⟩, ei+1 = ⟨ti+1, acq(ℓ)⟩, or (c) ei+1 ∈ Readsσ and ei = lastWrσ (ei+1).

We will prove by induction on i , starting from i = n, that ei ∈ Eventsσ ′ and ei is not the last
read event of its thread in σ ′. Observe that these properties hold for e ′ = en — en ∈ Eventsσ ′ and
en is not the last read event of its thread in σ ′. Assume we have established the claim for ei+1.
Now there are three cases to consider for ei . If ei ≤

σ ′
TO

ei+1 then clearly ei ∈ Eventsσ ′ because

ei+1 ∈ Eventsσ ′ . Further, if ei is a read event, then it is not the last event of its thread because

ei+1 is after it. If ei = ⟨ti , rel(ℓ)⟩ and ei+1 = ⟨ti+1, acq(ℓ)⟩ then ei ∈ Eventsσ ′ because σ
′
respects

≤σ
HB

. Further ei is not the last read event because it is not a read event! The last case to consider is

where ei = lastWrσ (ei+1). In this case, by induction hypothesis, we know that ei+1 is not the last
read event of its thread, and therefore by properties of a correct reordering, we have ei ∈ Eventsσ ′ .
Notice that in this case ei is not a read event, and so the claim holds. Thus, we have established

that e = e0 ∈ Eventsσ ′ .
Next, we show that for every i ≤ n − 1, ei ≤

σ ′
tr

ei+1. If ei ≤
σ
TO

ei+1 or ei = ⟨ti , rel(ℓ)⟩ and

ei+1 = ⟨ti+1, acq(ℓ)⟩ with ei ≤
σ
tr
ei+1 then ei ≤

σ ′
tr

ei+1 because σ
′
respects ≤σ

HB
. On the other hand,

if ei = lastWrσ (ei+1) then because σ ′ is a correct reordering of σ and ei+1 is not the last read event

of its thread (established in the previous paragraph), we have ei = lastWrσ (ei+1) = lastWrσ ′ (ei+1).
This establishes the fact that e = e0 ≤

σ ′
tr

en = e ′, which completes the proof of the lemma. □

A slightly weaker form of the converse of Lemma A.1 also holds.

Lemma A.2. For a trace σ , let σ ′ be a trace with Eventsσ ′ ⊆ Eventsσ such that (a) σ ′ is ≤σ
SHB

downward closed, i.e., for any e, e ′ ∈ Eventsσ if e ≤σ
SHB

e ′ and e ′ ∈ Eventsσ ′ then e ∈ Eventsσ ′ , and
(b) ≤σ

′

tr
=≤σ

tr
∩(Eventsσ ′ × Eventsσ ′). Then σ ′ is a correct reordering of σ that respects ≤σ

HB
. Further,

for every read event e ∈ Readsσ ′ , we have lastWrσ ′ (e) ≃ lastWrσ (e), i.e., either both lastWrσ ′ (e)
and lastWrσ (e) are undefined, or they are both defined and equal.

Proof. The trace σ ′ in the lemma is such that the events in σ ′ are downward closed with respect

to ≤σ
SHB

and in σ ′ they are ordered in exactly the same way as in σ . The fact that σ ′ respects ≤σ
HB

simply follows from the fact that ≤σ
HB
⊆≤σ

SHB
and ≤σ

HB
⊆≤σ

tr
. So the main goal is to establish that σ ′

is a correct reordering of σ that preserves the last writes of all read events.

First we show that σ ′ respects lock semantics. Suppose e1 = ⟨t1, acq(ℓ)⟩ and e2 = ⟨t2, acq(ℓ)⟩
are two lock acquire events for some lock ℓ such that e1 ≤

σ
tr
e2 and {e1, e2} ⊆ Eventsσ ′ . Let e

′
1
be

the matching release event for e1 in σ ; such an e ′
1
exists because σ is a valid trace. Then we have

e1 ≤
σ
HB

e ′
1
≤σ
HB

e2, and so e ′
1
∈ Eventsσ ′ and e

′
1
≤σ

′

tr
e2 because σ

′
respects ≤σ

HB
.

Next observe that since ≤σ
TO
⊆≤σ

HB
and σ ′ respects ≤σ

HB
, we can conclude that σ ′ |t is a prefix of

σ |t for any thread t .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:24 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

Finally, consider any e ′ ∈ Readsσ ′ . Suppose lastWrσ (e
′) is defined. Let e = lastWrσ (e

′). Since
e ≤σ

SHB
e ′ and σ ′ is downward closed with respect to ≤σ

SHB
, we have e ∈ Eventsσ ′ . Let e1 =

lastWrσ ′ (e
′). We need to argue that e1 = e . Suppose (for contradiction) it is not, i.e., e , e1. Then

either e1 ≤
σ
tr
e or e ′ ≤σ

tr
e1, because e = lastWrσ (e

′). However, the fact that e1 = lastWrσ ′ (e
′)

contradicts the fact that ≤σ
′

tr
=≤σ

tr
∩(Eventsσ ′×Eventsσ ′). Conversely, if lastWrσ ′ (e

′) is defined then

let e = lastWrσ ′ (e
′). Since ≤σ

′

tr
=≤σ

tr
∩(Eventsσ ′ × Eventsσ ′), we have e ≤

σ
tr
e ′. Thus, lastWrσ (e

′)
is defined. Let e1 = lastWrσ (e

′). Once again, since e1 ≤
σ
SHB

e ′, and σ ′ is downward closed with

respect to ≤σ
SHB

, we have e1 ∈ σ
′
. Just like in the previous direction, we can conclude that e = e1

because otherwise we violate the fact that ≤σ
′

tr
is identical to ≤σ

tr
over Eventsσ ′ . □

We now prove Theorem 3.3 below

Theorem 3.3. Let σ be a trace and e1 ≤σtr e2 be conflicting events in σ . (e1, e2) is an ≤
σ
HB

-schedulable
race iff either predσ (e2) is undefined, or e1 ≰

σ
SHB

predσ (e2).

Proof. Let us first prove the forward direction. That is, let (e1, e2) be an HB-race such that the

event e = predσ (e2) is defined and e1 ≤
σ
SHB

e . Consider any correct reordering σ ′ that contains both
e1 and e2 and respects ≤

σ
HB

. First, since σ ′ is a correct reordering of σ , we must have e ∈ Eventsσ ′ and

e ≤σ
′

tr
e2. Further, since e1 ≤

σ
SHB

e , from Lemma A.1, e1 ≤
σ ′
tr

e . Thus, we have that e1 ≤
σ ′
tr

e ≤σ
′

tr
e1 for

any correct reordering σ ′ of σ that respects ≤σ
HB

. This means, (e1, e2) cannot be a ≤
σ
HB

-schedulable

race.

We now prove the backward direction. Consider an HB-race (e1, e2) such that either predσ (e2) is
undefined, or if it exists, then it satisfies e1 ≰

σ
SHB

predσ (e2). Consider the set S
σ
(e1,e2)

defined as

Sσ(e1,e2) = {e ∈ Eventsσ \ {e1, e2} | e ≤
σ
SHB

e1 or e ≤
σ
SHB

predσ (e2)}

where we assume that if predσ (e2) is undefined then no event e satisfies the condition e ≤σ
SHB

predσ (e2).
First we will show that Sσ

(e1,e2)
is downward closed with respect to ≤σ

SHB
. Consider e, e ′ such

that e ≤σ
SHB

e ′ and e ′ ∈ Sσ
(e1,e2)

. By definition of Sσ
(e1,e2)

, we have e ′ < {e1, e2} and either e ′ ≤σ
SHB

e1
or e ′ ≤σ

SHB
predσ (e2). Observe that if e < {e1, e2}, then it is clear that e ∈ Sσ

(e1,e2)
by definition

since ≤σ
SHB

is transitive. It is easy to see that e , e2 — this is because since e ′ , e2, and ≤
σ
SHB
⊆≤σ

tr
,

e ′ <σ
tr
e2 and so e <σ

tr
e2. So, all we have left to establish is that e , e1. Suppose for contradiction

e = e1. Then it must be the case that e ′ ≤σ
SHB

predσ (e2). Since e1 = e ≤σ
SHB

e ′ ≤σ
SHB

predσ (e2), we
have e1 ≤

σ
SHB

predσ (e2), which contradicts our assumption about (e1, e2).
Let us now consider a trace σ ′′ which consists of the events in Sσ

(e1,e2)
ordered according to

≤σ
tr
. That is, ≤σ

′′

tr
=≤σ

tr
∩(Sσ

(e1,e2)
× Sσ

(e1,e2)
). Since σ ′′ satisfies the conditions of Lemma A.2, we can

conclude that σ ′′ is a correct reordering of σ that respects ≤σ
HB

and preserves the last-writes of

every read event present.

Consider the trace σ ′ = σ ′′e1e2. First we prove that σ
′
respects ≤σ

HB
. To do that, we first show that

for any event e ∈ Eventsσ such that e ≤σ
HB

e1 and e , e1, or e ≤
σ
HB

e2 and e , e2, then e ∈ Sσ
(e1,e2)

.

If e ≤σ
HB

e1 then e ≤σ
SHB

e1 and so e ∈ Sσ
(e1,e2)

. On the other hand, if e ≤σ
HB

e2 (and e , e2), since

(e1, e2) is an HB-race, we must have e , e1 and e ≤
σ
HB

predσ (e2). So e ∈ S
σ
(e1,e2)

. Now the fact σ ′

respects ≤σ
HB

follows from the fact that σ ′′ respects ≤σ
HB

and the claim just proved.

We now prove that σ ′ is a correct reordering. Observe that since σ ′ respects ≤σ
HB

, σ ′ is well
formed (lock semantics is not violated) and preserves thread-wise prefixes (∀t ,σ ′ |t is a prefix of
σ |t). Further, σ

′′
is such that every read event in σ ′′ reads the same last write as in σ . Also, since e1

and e2 are the last events in their threads in σ ′, we conclude that σ ′ is a correct reordering of σ
that respects ≤σ

HB
. □

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:25

B PROOFS FOR ALGORITHM 1
We now prove Theorem 4.1, which states the correctness of Algorithm 1. Before establishing this

claim we would like to introduce some notation and prove some auxiliary claims.

Let us fix a trace σ . Recall that for any event e , Ce is the (vector) timestamp assigned by Algo-

rithm 1. Let us denote by Le
ℓ
the value of clock Lℓ just before the event e is processed. Similarly, let

LW e
x denote the value of clock LWx just before e is processed. It is easy to see that the following

invariant is maintained by Algorithm 1.

Proposition B.1. Let e be an arbitrary event of trace σ . Let eℓ be the last rel(ℓ)-event in σ before
e , and let ex be the last w(x)-event in σ before e (with respect to ≤σ

tr
). Note that eℓ and ex maybe

undefined. Then, Le
ℓ
= Ceℓ and LW

e
x = Cex , where if an event f is undefined, we take Cf = ⊥.

Proof. The observation follows from the way vector clocks Lℓ and LWx are updated. □

Another invariant that follows from the update rules of Algorithm 1 is the following.

Proposition B.2. Let e1 and e2 be events of thread t such that e1 ≤σtr e2, i.e., e1 ≤
σ
TO

e2. Let t ′ be
any thread such that t , t ′. Then the following observations hold.
(1) Ce1 ⊑ Ce2 .
(2) Ce1 (t

′) = Ce2 (t
′) unless there is an event e of thread t that is either an acq-event, or a r-event,

or a join-event such that e , e1 and e1 ≤σtr e ≤
σ
tr
e2.

(3) Ce1 (t) = Ce2 (t) unless there is an event e of thread t that is either a rel-event, or a w-event, or a
fork-event such that e , e2 and e1 ≤σtr e ≤

σ
tr
e2; in this case Ce1 (t) < Ce2 (t).

Proof. Follows from the way Ct is updated by Algorithm 1. □

We now prove the main lemma crucial to the correctness of Algorithm 1, that relates ≤
SHB

to

the ordering on vector clocks.

Lemma B.3. Let e = ⟨t ,op⟩ be an event such that Ce (t
′) = k for some t ′ , t . Let e ′ = ⟨t ′,op ′⟩ be

the last event such that Ce ′ (t
′) = k . Then e ′ ≤σ

SHB
e .

Proof. The result will be proved by induction on the position of e in the trace σ . Observe that if
e is the first event of σ , then Ce (t

′) = 0 for all t ′ , t , no matter what event e is. And there is no

event e ′ = ⟨t ′,op ′⟩ such that Ce ′ (t
′) = 0. Thus, the lemma holds vaccuously in the base case.

Let us now consider the inductive step. Define e1 = ⟨t ,op1⟩ be the last event in σ before e
(possibly same as e) such that op1 is either acq, r, or join; if no such e1 exists then take e1 to be

the first event performed by t . Notice, by our choice of e1 and Proposition B.2(2), for every t ′′ , t ,
Ce1 (t

′′) = Ce (t
′′). If e1 , e , the result follows by induction hypothesis on e1.

Let us assume e1 = e . We need to consider different cases based on what e1 is.

• Case e = e1 = ⟨t , acq(ℓ)⟩: Let f1 be the event immediately before e in σ |t and f2 be the event
such that Cf2 = Le

ℓ
(given by Proposition B.1). Note that both f1 and f2 may be undefined.

Also notice that, for any t ′, either Ce (t
′) = 0, or Ce (t

′) = Cf1 (t
′) , 0 (and f1 is defined), or

Ce (t
′) = Cf2 (t

′) , 0 (and f2 is defined). IfCe (t
′) = 0 then the lemma follows vaccuously as in

the base case because there is no event e ′ = ⟨t ′,op ′⟩ with Ce ′ (t
′) = 0. Let us now consider

the remaining cases. Let t2 denote the thread performing f2, if f2 is defined. Consider the
case when either Ce (t

′) = Cf1 (t
′) , 0 or Ce (t

′) = Cf2 (t
′) with t ′ , t2. In this situation,

the lemma follows using the induction hypothesis on either f1 or f2 since both f1 and f2
(when defined) are ≤σ

SHB
e . The last case to consider is when t ′ = t2 and Ce (t

′) = Cf2 (t
′).

By Proposition B.2(3), f2 is the last event of t
′ = t2 whose t

′
th component is k . Further, by

definition f2 ≤
σ
SHB

e , and so the lemma holds.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:26 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

• Case e = e1 = ⟨t , r(x)⟩: Let f1 be the event immediately before e in σ |t and f2 be the event
such that Cf2 = LW e

x (given by Proposition B.1). Again, both f1 and f2 may be undefined.

Also notice that, for any t ′, either Ce (t
′) = 0, or Ce (t

′) = Cf1 (t
′) , 0 (and f1 is defined), or

Ce (t
′) = Cf2 (t

′) , 0 (and f2 is defined). IfCe (t
′) = 0 then the lemma follows vaccuously as in

the base case because there is no event e ′ = ⟨t ′,op ′⟩ with Ce ′ (t
′) = 0. Let us now consider

the remaining cases. Let t2 denote the thread performing f2, if f2 is defined. Consider the
case when either Ce (t

′) = Cf1 (t
′) , 0 or Ce (t

′) = Cf2 (t
′) with t ′ , t2. In this situation,

the lemma follows using the induction hypothesis on either f1 or f2 since both f1 and f2
(when defined) are ≤σ

SHB
e . The last case to consider is when t ′ = t2 and Ce (t

′) = Cf2 (t
′).

By Proposition B.2(3), f2 is the last event of t
′ = t2 whose t

′
th component is k . Further, by

definition f2 ≤
σ
SHB

e , and so the lemma holds.

• Case e = e1 = ⟨t , join(t1)⟩: Let f1 be the event immediately before e in σ |t and f2 be the last
event of the form ⟨t1,op⟩. Again, both f1 and f2 may be undefined. Also notice that, for any t ′,
either (a) Ce (t

′) = 0, or (b) t1 = t ′, Ce (t
′) = 1, and f2 is undefined, or (c) Ce (t

′) = Cf1 (t
′) , 0

and f1 is defined, or (d) Ce (t
′) = Cf2 (t

′) , 0 and f2 is defined. In cases (a) or (b) above,

the lemma follows vaccuously as in the base case because there is no event e ′ = ⟨t ′,op ′⟩
with Ce ′ (t

′) = k (where k is either 0 or 1 depending on which we case we consider). Let us

now consider the remaining cases. Let t2 denote the thread performing f2, if f2 is defined.
Consider the case when either Ce (t

′) = Cf1 (t
′) , 0 or Ce (t

′) = Cf2 (t
′) with t ′ , t2 (and f2

defined). In this situation, the lemma follows using the induction hypothesis on either f1 or
f2 since both f1 and f2 (when defined) are ≤σ

SHB
e . The last case to consider is when t ′ = t2

and Ce (t
′) = Cf2 (t

′). By definition, f2 is the last event of t
′ = t2 whose t

′
th component is k .

Further, by definition f2 ≤
σ
SHB

e , and so the lemma holds.

• Case e = e1 is the first event: This is the case when the above 3 cases don’t hold. So e = e1
is not an acq-event, nor a r-event, nor a join-event. Moreover, since e is the first event of
thread t and is of the form ⟨t ,op⟩, it must be the the thread t has not been forked by any

thread in σ . Thus, for any t ′ , t , Ce (t
′) = 0. The lemma, therefore, follows vaccuously as in

the base case. □

We are ready to present the proof of Theorem 4.1.

Theorem 4.1. For events e, e ′ ∈ Eventsσ such that e ≤σ
tr
e ′, Ce ⊑ Ce ′ iff e ≤σ

SHB
e ′

Proof. Let us first prove the implication from left to right. Consider e, e ′ such that e ≤σ
tr
e ′. If

e ≤σ
TO

e ′ then e ≤σ
SHB

e ′ since ≤σ
TO
⊆≤σ

SHB
. On the other hand, if e and e ′ are not events of the same

thread, then this direction of the theorem follows from Lemma B.3.

Let us now prove the implication from right to left. Consider events such that e ≤σ
SHB

e ′. Then,
by definition, we have a sequence of events e = f1, f2, . . . fk = e ′ such that for every i , fi ≤

σ
tr
fi+1

and either (i) fi and fi+1 are both events of the form ⟨t ,op⟩, or (ii) fi is a rel(ℓ)-event and fi+1
is a acq(ℓ)-event, or (iii) fi is a fork(t)-event and fi+1 is an event of the form ⟨t ,op⟩, or (iv) fi is
an event of the form ⟨t ,op⟩ and fi+1 is a join(t)-event, or (v) fi = lastWrσ (fi+1). In each of these

cases, Algorithm 1 ensures that Cfi ⊑ Cfi+1 . Thus, we have Ce ⊑ Ce ′ . □

We now prove Theorem 4.2. We first note some auxiliary propositions. Let us denote by Rex
the value of clock Rx just before the event e is processed. Similarly, letW e

x denote the value of

clockWx just before e is processed. It is easy to see that the following invariant is maintained by

Algorithm 1.

Proposition B.4. Let e be an arbitrary event of trace σ . Let er(x)t be the last ⟨t , r(x)⟩-event in σ

before e , and let ew(x)t be the last ⟨t , w(x)⟩-event in σ before e (with respect to ≤σ
tr
). Note that er(x)t and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

What Happens-After the First Race? 145:27

ew(x)t maybe undefined. Then, ∀t ,Rx (t) = Cer(x)t
(t) and ∀t ,Wx (t) = Cew(x)t

(t) where if an event f is
undefined, we take Cf = ⊥.

Proof. The observation follows from the way vector clocks Rx andWx are updated. □

Lemma B.5. Let e1, e2 ∈ Eventsσ performed by threads t1 and t2, respectively, such that t1 , t2.
Then, e1 ≤σ

SHB
e2 iff Ce1 ⊑ Ce2[(Ce2 (t2) + 1)/t2].

Proof. Let c2 = Ce2 (t2). First suppose that e1 ≤
σ
SHB

e2. Then, from Theorem 4.1, we have

Ce1 ⊑ Ce2 and thus Ce1 ⊑ Ce2[(c2 + 1)/t2]. Next, assume that Ce1 ⊑ Ce2[(c2 + 1)/t2]. In particular,

Ce1 (t1) ≤ Ce2 (t1). Then by Lemma B.3, we have e1 ≤
σ
SHB

e2 □

Theorem 4.2. Let e be a read/write event e ∈ Eventsσ . Algorithm 1 reports a race at e iff there is
an event e ′ ∈ Eventsσ such that (e ′, e) is an ≤σ

HB
-schedulable race.

Proof. Let us first consider the case when predσ (e) is not defined. Then, the value of the clock
Ct = ⊥[1/t] at line 19, 24 or 26 (depending upon whether e is a read or a write event). If the check

¬(Wx ⊑ Ct) passes, then there is a t ′ such that Wx (t
′) > Ct and thus the there is an event e ′

(namely the last write event of x in thread t ′) that conflicts with e . Thus, (e ′, e) is a ≤σ
HB

-schedulable

race by Theorem 3.3. On the other hand, if the check fails, thenWx = ⊥[1/t] orWx = ⊥ and in

either case there is no event that conflicts with e . One can similarly argue that the checks on Lines

24 and 26 are both necessary and sufficient for the case when e is a write event and predσ (e) is
undefined.

Next we consider the case when f = predσ (e) is defined. Now let e be a read event. If the

check ¬(Wx ⊑ Ct) passes, then there is a t ′ such thatWx (t
′) > Ct (t

′) and thus there is an event

e ′ = ⟨t ′, w(x)⟩ such thatCe ′ (t
′) > Ct (t

′) and thusCe ′ ̸⊑ Ct ; note that it must be the case that t ′ , t .
Depending upon whether f is a read/join/acquire event or a write/fork/release event, the value

of the clock Ct at Line 19 is Ct = Cf or Ct = Cf [(Cf (t) + 1)/t]. In either case, by Lemma B.5, we

have that e ′ ≰σ
SHB

f . On the other hand if,Wx ⊑ Ct , then ∀t
′ , t ,Cew(x)t ′

(t ′) ≤ Ct (t
′), where ew(x)u

is the last write event of x performed by thread u. This means that for every event e ′ such that e ′

conflicts with, by Lemma B.5, we have e ′ ≤σ
SHB

f and thus (e ′, e) is not an ≤σ
HB

-schedulable race.

The argument for the case when e is a write event is similar. □

We now establish the asymptotic space and time bounds for Algorithm 1.

Theorem 4.3. For a trace σ with n events, T threads, V variables, and L locks, Algorithm 1 runs in
time O (nT logn) and uses O ((V + L +T)T logn) space.

Proof. Observe that for a trace of length n, every component of each of the vector clocks is

bounded by n. Thus, each vector clock takes space O (T logn), where T is the number of threads.

We have a vector clock for each thread, lock, and variable, which gives us a space bound of

O ((V +T + L)T logn). Notice that to process any event we need to update constantly many vector

clocks. The time to update any single vector clock can be bounded by its size O (T logn). Thus, the
total running time is O (nT logn). □

ACKNOWLEDGMENTS
We gratefully acknowledge National Science Foundation for supporting Umang Mathur (grant NSF

CSR 1422798) and Mahesh Viswanathan (grant NSF CPS 1329991).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

145:28 Umang Mathur, Dileep Kini, and Mahesh Viswanathan

REFERENCES
Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal Dynamic Partial Order Reduction.

In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM,

New York, NY, USA, 373–384. https://doi.org/10.1145/2535838.2535845

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and BenWiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06). ACM, New York, NY,

USA, 169–190. https://doi.org/10.1145/1167473.1167488

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-centric Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec. 2017), 30 pages. https://doi.org/10.1145/

3158119

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A Race and Transaction-aware Java Runtime. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’07). ACM, New York,

NY, USA, 245–255. https://doi.org/10.1145/1250734.1250762

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of Race Conditions and Deadlocks. SIGOPS Oper.
Syst. Rev. 37, 5 (Oct. 2003), 237–252.

John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. 2010. Effective Data-race Detection for the

Kernel. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10). USENIX
Association, Berkeley, CA, USA, 151–162. http://dl.acm.org/citation.cfm?id=1924943.1924954

Eitan Farchi, Yarden Nir, and Shmuel Ur. 2003. Concurrent Bug Patterns and How to Test Them. In Proceedings of the 17th
International Symposium on Parallel and Distributed Processing (IPDPS ’03). IEEE Computer Society, Washington, DC,

USA, 286.2–.

Colin Fidge. 1991. Logical Time in Distributed Computing Systems. Computer 24, 8 (Aug. 1991), 28–33. https://doi.org/10.

1109/2.84874

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise Dynamic Race Detection. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’09). ACM, New York,

NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow

Abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 337–348. https://doi.org/10.1145/2594291.2594315

Jeff Huang and Arun K. Rajagopalan. 2016. Precise and Maximal Race Detection from Incomplete Traces. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 462–476. https://doi.org/10.1145/2983990.2984024

Shiyou Huang and Jeff Huang. 2016. Maximal Causality Reduction for TSO and PSO. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2016).
ACM, New York, NY, USA, 447–461. https://doi.org/10.1145/2983990.2984025

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race Prediction in Linear Time. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY,

USA, 157–170. https://doi.org/10.1145/3062341.3062374

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (July 1978),

558–565.

Peng Liu, Omer Tripp, and Xiangyu Zhang. 2016. IPA: Improving Predictive Analysis with Pointer Analysis. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY, USA, 59–69.

Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace: Effective Sampling for Lightweight Data-race

Detection. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’09). ACM, New York, NY, USA, 134–143. https://doi.org/10.1145/1542476.1542491

Umang Mathur. 2018. RAPID: Dynamic Analysis for Concurrent Programs. https://github.com/umangm/rapid. Accessed:

July 30, 2018.

Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What Happens-After the First Race? Enhancing the Predictive

Power of Happens-Before Based Dynamic Race Detection. CoRR abs/1808.00185 (2018). http://arxiv.org/abs/1808.00185

Friedemann Mattern. 1988. Virtual Time and Global States of Distributed Systems. In Parallel and Distributed Algorithms.
North-Holland, 215–226.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2627752
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
https://doi.org/10.1145/1250734.1250762
http://dl.acm.org/citation.cfm?id=1924943.1924954
https://doi.org/10.1109/2.84874
https://doi.org/10.1109/2.84874
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/2983990.2984024
https://doi.org/10.1145/2983990.2984025
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1145/1542476.1542491
https://github.com/umangm/rapid
http://arxiv.org/abs/1808.00185

What Happens-After the First Race? 145:29

Antoni Mazurkiewicz. 1987. Trace theory. In Petri Nets: Applications and Relationships to Other Models of Concurrency,
W. Brauer, W. Reisig, and G. Rozenberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–324.

Arndt Müehlenfeld and Franz Wotawa. 2007. Fault Detection in Multi-threaded C++ Server Applications. In Proceedings of
the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’07). ACM, New York, NY,

USA, 142–143. https://doi.org/10.1145/1229428.1229457

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008.

Finding and Reproducing Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 267–280.

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection for Java. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’06). ACM, New York, NY, USA, 308–319.

https://doi.org/10.1145/1133981.1134018

Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data Race Detection. In Proceedings of the Ninth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’03). ACM, New York, NY, USA, 167–178.

https://doi.org/10.1145/781498.781528

Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-fly Data Race Detection in Multithreaded C++ Programs. In

Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’03). ACM,

New York, NY, USA, 179–190. https://doi.org/10.1145/781498.781529

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCKSMITH: Practical Static Race Detection for C. ACM
Trans. Program. Lang. Syst. 33, 1, Article 3 (Jan. 2011), 55 pages.

Cosmin Radoi and Danny Dig. 2013. Practical Static Race Detection for Java Parallel Loops. In Proceedings of the 2013
International Symposium on Software Testing and Analysis (ISSTA 2013). ACM, New York, NY, USA, 178–190.

Grigore Rosu. 2018. RV-Predict, Runtime Verification. https://runtimeverification.com/predict/. Accessed: 2018-04-01.

Caitlin Sadowski and Jaeheon Yi. 2014. How Developers Use Data Race Detection Tools. In Proceedings of the 5th Workshop
on Evaluation and Usability of Programming Languages and Tools (PLATEAU ’14). ACM, New York, NY, USA, 43–51.

https://doi.org/10.1145/2688204.2688205

Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011. Generating Data Race Witnesses by an SMT-based

Analysis. In Proceedings of the Third International Conference on NASA Formal Methods (NFM’11). Springer-Verlag, Berlin,
Heidelberg, 313–327.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A Dynamic Data

Race Detector for Multi-threaded Programs. SIGOPS Oper. Syst. Rev. 31, 5 (Oct. 1997), 27–37.
Koushik Sen. 2008. Race Directed Random Testing of Concurrent Programs. In Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’08). ACM, New York, NY, USA, 11–21. https:

//doi.org/10.1145/1375581.1375584

Koushik Sen, Grigore Roşu, and Gul Agha. 2005. Detecting Errors in Multithreaded Programs by Generalized Predictive

Analysis of Executions. In Proceedings of the 7th IFIP WG 6.1 International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’05). Springer-Verlag, Berlin, Heidelberg, 211–226.

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data Race Detection in Practice. In Proceedings of
the Workshop on Binary Instrumentation and Applications (WBIA ’09). ACM, New York, NY, USA, 62–71.

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound Predictive Race Detection

in Polynomial Time. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’12). ACM, New York, NY, USA, 387–400. https://doi.org/10.1145/2103656.2103702

Lorna A Smith and J Mark Bull. 2001. A multithreaded java grande benchmark suite. In Proceedings of the third workshop on
Java for high performance computing.

Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static Race Detection on Millions of Lines of Code. In

Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York, NY, USA, 205–214.

Eran Yahav. 2001. Verifying Safety Properties of Concurrent Java Programs Using 3-valued Logic. In Proceedings of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’01). ACM, New York, NY, USA,

27–40. https://doi.org/10.1145/360204.360206

Sheng Zhan and Jeff Huang. 2016. ECHO: Instantaneous in Situ Race Detection in the IDE. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York, NY, USA,

775–786.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 145. Publication date: November 2018.

https://doi.org/10.1145/1229428.1229457
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/781498.781528
https://doi.org/10.1145/781498.781529
https://runtimeverification.com/predict/
https://doi.org/10.1145/2688204.2688205
https://doi.org/10.1145/1375581.1375584
https://doi.org/10.1145/1375581.1375584
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/360204.360206

	Abstract
	1 Introduction
	2 Preliminaries
	3 Characterizing Schedulable Races
	4 Algorithm for Detecting HB-schedulable Races
	4.1 Vector Clocks and Times
	4.2 Vector Clock Algorithm for Detecting Schedulable Races
	4.3 Epoch Optimization

	5 Experiments
	5.1 Implementation
	5.2 Benchmarks
	5.3 Setup
	5.4 Evaluation

	6 Related Work
	7 Conclusion
	A Proof of Theorem 3.3
	B Proofs for Algorithm 1
	Acknowledgments
	References

