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Abstract. We introduce a technique for component-based program syn-
thesis that relies on searching for a target program and its proof of cor-
rectness simultaneously using a purely constraint-based approach, rather
than exploring the space of possible programs in an enumerate-and-check
loop. Our approach solves a synthesis problem by checking satisfiability
of an ∃∃ constraint φ, whereas traditional program synthesis approaches
are based on solving an ∃∀ constraint. This enables the use of SMT-
solving technology to decide φ, resulting in a scalable practical approach.
Moreover, our technique uniformly handles both functional and nonfunc-
tional criteria for correctness. To illustrate these aspects, we use our
technique to automatically synthesize several intricate and non-obvious
cryptographic constructions.

1 Introduction

Automated program synthesis has a rich history in computer science. This prob-
lem has been studied from several perspectives, and currently lies at the in-
tersection between logic, artificial intelligence, and software engineering. The
seminal work by Manna and Waldinger [23], commonly referred to as deductive
synthesis, is based in the observation that a program with input x and output
y, specified by a formula φ(x, y), can be extracted from a constructive proof of
∀x∃y : φ(x, y), as this formula is equivalent to a second-order formula of the
form ∃f ∀x : φ(x, f(x)).

More recently, program synthesis has taken the form of inductive synthesis,
where programs are not deduced, but synthesized iteratively by finding candidate
programs that work correctly on an ever-increasing input space. In practice,
this search is implemented using powerful constraint solvers, typically Boolean
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Satisfiability (SAT) solvers and Satisfiability Modulo Theory (SMT) solvers.
The various choices in the synthesis approach, correctness specification, and
restrictions on the program search space, have been explored extensively [2, 16,
19,28,29].

Manna and Waldinger [23] foresee the possibility that the user could suggest
program segments, i.e. snippets, to the synthesizer, which it could use to con-
struct a full solution. This idea was pursued in the work on component-based
program synthesis [16, 32], where the target program is constructed from a set
of predefined components (library calls). The component-based synthesis prob-
lem is also naturally encoded as an ∃∀ problem: there exists some placement of
components on the different program lines such that for all inputs, the function
computed by the resulting program satisfies the given property.

Although it comes in many flavors, a synthesis problem is essentially pa-
rameterized by a target language, i.e. the language of the target program to be
synthesized, and a specification language, i.e. the formalism in which the func-
tionality of the target program is expressed. Moreover, synthesis may be subject
to nonfunctional constraints, such as optimizing for certain metrics like program
size or power consumption, or enforcing security properties. Examples of target
languages include MapReduce-style programs [27], bit-vector manipulations [16],
recursive programs [20], high-level circuit descriptions [13], and domain-specific
languages for cryptographic constructions [18,22]. On the other hand, examples
of specification languages include formulas in several modal temporal logics,
input-output examples [19, 27], flattened verilog circuits given as SMT/Boolen
formulas [13], and assertions in imperative program sketches [29].

Generally speaking, the synthesis problem seeks to find a program P in the
target language, such that P satisfies the specification φ given in the specifica-
tion language. As φ is often a relation between input-output pairs, this naturally
corresponds to an exists-forall check. In fact, inductive synthesis algorithms of-
ten consist of two procedures: a procedure to generate candidate programs from
the target language, and a procedure for checking φ on a given candidate. In
that setting, synthesis consists of an enumerate-and-check feedback loop, similar
to a Counterexample-Guided Abstraction Refinement (CEGAR) loop, that con-
tinues until a valid candidate, i.e. a candidate satisfying φ, is found, or no more
candidates can be generated. Note that, to achieve scalability, the verification
check is often conservative, i.e. φ is replaced by a sufficient, but not necessary
condition. This is often the case with security properties, as they are costly to
check in a sound and complete way.

The paradigm of “enumerate-and-check” for solving synthesis problems is
fairly widespread in literature [13, 16, 22, 27]. In this context, the general idea
of looking for a program and its proof simultaneously has been also considered
in previous work on type-directed synthesis [12, 26], where program candidates
that are not type correct are pruned early in the enumerate-and-check. Also, the
deductive phase of the Leon synthesizer [20] is also based on proof search.

In this paper, we pursue a framework that enables synthesis using a sin-
gle search, and avoids quantifier alternation. Inspired by the challenge posed
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by Manna and Waldinger [23] pertaining to incorporation of user-defined proof
systems in synthesis, and building on the framework of component-based synthe-
sis [16], we present an approach for synthesis that allows users to define simple
proof systems, in the form of constraint-generation rules for the components of
the synthesized program. This framework, which we call decorated-component-
based synthesis, provides a way for the user to not only easily encode nonfunc-
tional properties, as in [32], but also replace the validity check in the synthesis
process by a search for a proof in the provided proof system. This effectively
removes a quantifier alternation and hence turns the enumerate-and-check ap-
proach into a search problem in which, intuitively, the space of target programs
and their corresponding correctness proofs are explored simultaneously, resulting
in a much more scalable approach.

Contributions. We make three key contributions in this work. First, we for-
mulate the decorated-component-based program synthesis problem, which allows
users to encode a bounded search for proof (in a user-picked proof system) in the
synthesis problem. Second, we show that decorated-component-based synthesis
problem reduces to an exists-forall constraint in general, just as the component-
based synthesis problem [16]. However, the additional “decorations” enable users
to either augment a synthesis constraint with additional existential parts (similar
to the work in [32]), or entirely replace the forall by a existential in the synthesis
constraint. This second application of decorations is appealing because solving
a purely existential constraint is significantly faster than solving an exists-forall
constraint. Third, we demonstrate that security is an ideal domain for appli-
cation of automated program synthesis technology, thus solidifying preliminary
evidence in this regard [3, 7, 18, 22, 32]. Decorated-component-based synthesis
eases the task of specifying security requirements. Our synthesizer and all the
examples mentioned in this paper, as well as instructions for running them, are
available at the SYNUDIC project’s public repository [14].

Outline. We start by illustrating our approach (with complete details) on
an example synthesis problem (Section 2). We then formally define decorated-
component-based synthesis (Section 3), and show that it reduces to an ∃∀ con-
straint (Section 4). We then present our main result that enables conservative
replacement of the ∀ by an ∃ in the synthesis constraint (Section 5). Finally, we
show its application to synthesis of cryptographic schemes (Section 6).

2 An Illustrative Example

Secure Multi-party Computation (MPC) is a subfield of cryptography with the
goal of creating protocols for multiple parties to jointly compute a function over
their inputs without disclosing the inputs to each other. Here we consider the
problem of designing an information secure two-party multiplication protocol,
which is a basic component in many privacy-preserving algorithms [5, 10].

Our problem is as follows: find a protocol for Alice and Bob to compute an
additive share of the product of Alice’s and Bob’s private input values. Let Alice’s
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(private input) value be input(A) ∈ Zq, and Bob’s value be input(B) ∈ Zq, for
some natural q, say 232. For correctness, our functional requirement is that

output(A) + output(B) = input(A) ∗ input(B)

In other words, each party computes a share of the result. We assume that Alice
and Bob can rely on a third untrusted party Carol that aids in the computation.

Now that we have the functional correctness requirement, let us consider the
nonfunctional security requirement. Informally, the main security requirement is
that Alice and Carol should not learn the value input(B), and Bob and Carol
should not learn the value input(A). In the static honest-but-curious adversary
model, one assumes that the parties – Alice, Bob, and Carol – have an incentive
to deduce as much information as possible from the transcripts of the protocol,
but they do not deviate from it nor collude. (Formally, the security requirement
is formulated in the so-called “simulation paradigm”, see [21] for details.)

How do we use our new decorated-component-based synthesis technique to
discover a secure multiplication protocol? We first identify the components that
we could use in the protocol. These are the three arithmetic operations plus,
minus, and times, along with a few calls to a pseudo-random generator, say
genx, geny, genr, and genu (that generate random numbers x, y, r, u), and the
identity function identity.

C
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output(A) output(B)
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(v6, v7)

(v1, . . . , v4) = Pc();

v5 = PA,1(v1, v2, input(A));

(v6, v7) = PB,1(v3, v4, input(B));

output(A) = PA,2(v1, v2, v6, v7, input(A));

output(B) = PB,2(v1, v2, v5, input(B));

Fig. 1. High-level synthesis sketch for secure multiplication. The diagram (left) shows
the structure of the protocol to be synthesized. Solving the corresponding template
(right) involves finding programs PC , PA,1, PB,1PA,2, PB,2, built out of components
genx, geny, genr, genu, identity, plus, minus, times in the library, satisfying (i) the
functional requirement, i.e. output(A) + output(B) = input(A) ∗ input(B)), and (ii)
the security requirement. Moreover, PC , PA,1, PB,1PA,2, PB,2 must have no more than
5, 1, 3, and 2 operations, respectively.

Next, let us fix a communication schedule between the parties. The structure
of the protocol, depicted in Figure 1(left) is as follows: (1) C computes some
values (v1, . . . , v4) first (5 lines), (2) C sends (v1, v2) to A and (v3, v4) to B, (3)
A computes v5 (1 line) and sends it to B, (4) B computes some values (3 lines),
sends a pair (v6, v7) to A and picks one value as its output, (5) A computes
its output (2 lines). Note that instances of this template are constant-round
protocols, as opposed to approaches to secure multiplication based on Oblivious
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Transfer [15]. Our tool [14] takes a description of the library and a template of
a straight-line program similar to the one in Figure 1(right) as input.

If we give each of the components its natural interpretation (that is, all vari-
ables are integer valued, plus is arithmetic addition, and so on), then the cor-
rectness requirement is simply the arithmetic equality output(A)+output(B) =
input(A) ∗ input(B). Now, synthesis can be performed as in [16] or [32] – the
synthesis problem is reduced to an ∃∀ formula over a suitable theory, where the
∃ quantifier searches over the space of possible programs, and the ∀ quantifier
checks correctness over the space of all possible inputs.

Our new decorated-component-based synthesis framework allows us to (a)
conservatively turn the validity check above into a satisfiability check over an
alternate theory, and (b) provide a natural way of also specifying a nonfunc-
tional security requirement. The key idea behind our approach is associating a
constraint with each use of a component in the (yet to be discovered) program,
by defining a decoration, or a constraint generation rule, for every component.

genx {θ} v := genx {θ ◦ {v 7→ pol2vec(“x”)}} vx = 1 ∧
∧
i 6=x

vi = 0

plus {θ} x := plus(y, z) {θ ◦ {x 7→ θ(y) + θ(z)}}
∧
i∈I

xi = yi + zi

times
[θ(y) ∗ θ(z) is quadratic]

{θ} x := times(y, z) {θ ◦ {x 7→ θ(y) ∗ θ(z)}}
∧

i,j∈L

xij = yizj + yjzi ∧
∧

i∈NL

yi = zi = 0

compose
{θ0} P1 {θ1} {θ1} P2 {θ2}

{θ0} P1;P2 {θ2}

check
{θ0} P {θ} θ(v) + θ(w) = θ(a)θ(b)

{θ0} P {assert(v + w = a ∗ b)} vab + wab = 1 ∧
∧
i6=ab

vi + wi = 0

Fig. 2. Selected proof rules and generated constraints for the secure multiplication
example. Essentially, the rules perform symbolic execution of the program. The third
column shows (some of the) constraints that are generated on the dual variables.

As a first step in defining the decorations, consider an abstract domain A
that consists of symbolic polynomial expressions of degree at most 2 over the six
variables: the two inputs a, b and the four random numbers x, y, r, u.

A = {p(a, b, x, y, r, u) | p is quadratic with no constant term}
where polynomials in A are represented in canonical form as a sum of ordered
monomials.

Let us say we wish our program (that is yet to be discovered) to have a
functional correctness proof in this abstract domain. We can design proof rules
that essentially perform symbolic execution to check the correctness assertion.
Let θ : V 7→ A map a program variable v ∈ V to the symbolic polynomial value
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of v. We can compute θ by starting with any substitution, and updating it using
the rules in Figure 2. For example, the rule genx says that after execution of
v := genx, we get a new substitution that maps v to the symbolic polynomial
x. Similarly, the rule plus handles program lines of the form v := plus(x, y)
by setting θ(v) to the polynomial (θ(x) + θ(y)) ∈ A. In Figure 2 we omitted
rules for minus, geny, genr, genu, and identity. Once we have computed the
substitution θ at the end of the program, we use the rule check to prove an
assertion v+w = a∗ b by checking if θ(v)+θ(w) and θ(a)∗θ(b) are syntactically
equal (recall elements of A are represented in canonical form). The proof rule
for times in Figure 2 has a condition that allows multiplication to be used only
on linear polynomials (so that the result is atmost quadratic).

Note that this proof system for checking correctness turns the validity ques-
tion over integers into an evaluation over A. Our goal now is to have our synthe-
sizer use this proof system to, instead of searching for a program satisfying the
postdondition output(A)+output(B) = input(A)∗input(B), search for a pro-
gram while simultaneously searching for its correctness proof. To see how this is
done, first note that the elements in the chosen abstract domain can be uniquely
identified by 27 parameters – namely, the coefficients of all degree 1 and degree
2 monomials over the six variables (C(6, 1)+C(6, 2)+C(6, 1) = 6+15+6 = 27).
Let L = {x, y, r, u, a, b} and NL = {ij | i 6= j, i ∈ L, j ∈ L}∪ {ii | i ∈ L}. Hence,
every program variable v is associated with 27 new variables, namely, vi, where
index i ranges over the set I = L∪NL of all indices. If variable v gets a symbolic
value p ∈ A and p is quadratic, then the new variables vi’s get the value of the
coefficient of the monomial i in p. Now, let us say we could prove our functional
requirement using quadratic symbolic values. Then, there exists a value of the
new variables that witnesses this proof. The converse is even more important
for our goal: if we find a consistent valuation for the new variables, then we
would establish our functional requirement. Restricting A to contain quadratic
polynomials makes the set of new variables, and the proof search, finite.

A sound proof rule application (on the abstract values) induces certain con-
straints on the new variables. Hence, as mentioned above, we associate to every
component a constraint generation rule, also called a decoration, that produces
the suitable constraint to encode the corresponding proof rule. The generated
constraint essentially says what combinations of the 27 parameters for its inputs
and outputs are consistent with the proof rule. For example, the Column 3 in
Figure 2 shows such constraints for selected components.

Note that the correctness requirement was an equivalence of polynomial ex-
pressions, and in our abstract domain A, this maps to equality of coefficients (see
right column on last row in Figure 2). Thus, ignoring the security requirement,
the synthesis problem is reduced to finding 27 ∗ l values, where l is the length of
the program, that satisfy some big constraint generated using decorations. This
is an ∃∃ problem: we are finding a program (first ∃) and a proof of its correctness
over the chosen abstract domain (second ∃). Decorations have enabled us to re-
place the ∀ check by an ∃ check. Note that, although the task of finding a proof
system requires human intuition, the process of designing constraint generation
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rules, i.e. parameterizing the abstract domain and building the constraint for
every component of the library, is systematic (Section 5.1).

We have not yet solved our original problem because we still need to in-
clude the security requirement. The formal security requirement, which is based
on showing a simulation of the ideal functionality in the actual functionality
(see [21] for details on this proof technique), is difficult to capture precisely.
We take a very practical approach here: we replace the security requirement by
another easily checkable requirement that is sufficient (but not necessary) for
security. The new check can itself be described by proof rules, and we can again
search for a bounded-size proof to establish security. The sufficiency of the proof
rules may itself be proved as a meta-theorem by hand. In our example, we use
ideas from [32], which were in turn inspired by [22], to synthesize block cipher
modes of operation. Essentially, the decorations rely on a simple type system
that propagates a qualifier stating whether a variable always has a “random”
value on any program line, in a sound, and possibly incomplete, way.

Using this encoding of the security requirement, our sketch is complete, we
run our synthesis tool, and it returns the following protocol:
1. C generates random numbers x, y, r, and computes xy and r − xy.
2. C sends (x, r) to A and (r − xy, y) to B.
3. A computes input(A)− x and sends it to B.
4. B computes output(B) = (input(A)−x)b+(r−xy) and sends y+input(B)

to A.
5. A computes output(A) = (y + input(B))x− r.

We were not aware of this protocol before it was synthesized by our tool.
Note that the protocol did not use the fourth random number (u), whereas we
were expecting the synthesized protocol to need it.

3 Decorated-Component-Based Program Synthesis

We define the component-based synthesis problem in this section, as intro-
duced in [16]. We then extend it to decorated-component-based synthesis, where
components are additionally allowed to be associated with certain constraint-
generation rules.

A component library Σ is a set of symbols. Each symbol is associated with
an arity, but without loss of generality and for simplicity, we will often implicitly
assume that the arity of each symbol in Σ is two. The symbols in Σ should be
regarded as functions that can be invoked by a program.

The functions in Σ compute over some values. For simplicity again, let us
say these values come from a domain Domp of all values. The semantics of the
functions in Σ is given over the domain Domp by Semp.

Semp : Σ 7→ 2Domp
3

(1)

That is, if f ∈ Σ, then Semp(f) is a ternary relation on Domp. Intuitively, c =
f(a, b) iff (a, b, c) ∈ Semp(f).

We want to synthesize straight-line programs (SLPs) using calls to functions
in Σ. A generic template of such a 9-line program is shown in Figure 3. The
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l0 : x0 := input

l1 : x1 := f1(a11, a12);
l2 : x2 := f2(a21, a22);

...
l9 : x9 := f9(a91, a92);

Variables: Domain
f1, . . . , f9 : Σ
a11, . . . , a92 : 0..8
vx0, . . . , vx9 : Domp
tx0, . . . , tx9 : Domd

Fig. 3. A template for an arbitrary straight-line program with 9 lines.

semantics Semp of one component can be extended to semantics of a straight-
line program P (such as the one shown in Figure 3) that takes one input x0 and
produces one output x9 so that Semp(P ) ⊆ Domp2 contains all pairs (a, b) where
x9 = b is reachable starting with x0 = a.

A specification, φfspec, of a program P that takes one input and produces
one output is given as binary relation on Domp.

Definition 1 (Component-based Synthesis, or CoS [16]). A CoS problem
is a tuple (Σ, Domp, Semp, φfspec, n) consisting of a library Σ of functions, a do-

main Domp of values, a semantics function Semp : Σ 7→ 2Domp
3

, a specification
relation φfspec ⊆ Domp2, and an integer n. The goal is to find a straight-line
program P of length n that only calls functions in Σ to compute a function that
refines φfspec; that is, ∀x, y : Semp(P )(x, y)⇒ φfspec(x, y).

3.1 Decorated-Component-based Synthesis

We now allow the library components f ∈ Σ to be associated with additional
constraint-generation rules, and introduce the problem of synthesizing straight-
line programs (SLPs) that use such decorated components.

Let V denote all program variables. The semantics Semp interpreted V as
elements in Domp. Now, let Domd be an alternate domain of values, and consider
valuations σ : V 7→ Domd that interpret V in this new domain Domd. Each
function f ∈ Σ is given an alternate meaning:

Semd : Σ 7→ 2Domd
3

(2)

That is, if f ∈ Σ, then Semd(f) is a ternary relation on Domd. Intuitively, if we use
the statement z = f(x, y) in a Program P , then we would require the existence
of three values in Domd – one value tx associated with x, a value ty associated
with y, and a value tz associated with z – such that (tx, ty, tz) ∈ Semd(f). The
alternate meaning of a SLP P is simply the conjunction of the alternate meaning
of each statement.

Semd(P ) = {σ ∈ DomdV | (σ(x), σ(y), σ(z)) ∈ Semd(f) ∀(z := f(x, y) ∈ P )} (3)

Definition 2 (Decorated-CoS, or DCoS). A DCoS problem is an 8-tuple
(Σ, Domp, Semp, φfspec, n, Domd, Semd, φdspec), where (Σ, Domp, Semp, φfspec, n) is a
CoS problem, Domd is an alternate domain of values, Semd is a mapping Σ 7→
2Domd

3

, and φdspec ⊆ Domd2 is an additional constraint on input x and output y.



9

The goal is to synthesize both a straight-line program P and a valuation σ : V 7→
Domd such that P solves the component-based synthesis problem and σ is a model
of Semd(P ) and (σ(x), σ(y)) ∈ φdspec.

In a DCoS problem, the Semp part could be redundant (if φfspec = Domp2),
or the Semd part could be redundant (if Semd(f) = Domd3 and φdspec = Domd2).
Hence, DCoS generalizes CoS, and supports Semd-only problem formulations too.

Note that decorations are useful to enforce nonfunctional constraints on the
target program, such as a bound on the number of a component function to use.

4 Solving the Synthesis Problems

We solve the synthesis problems by converting them to an ∃∀ constraint and
using an off-the-shelf ∃∀ SMT solver to solve the constraint. This approach was
used in earlier work on component-based synthesis [16]. We note here that the
decorated components introduce additional existential constraints, and hence,
the overall synthesis constraint continues to be an ∃∀ formula.

4.1 Component-based Program Synthesis as ∃∀
Consider an instance of the CoS problem, depicted in Figure 3, where, for nota-
tional convenience, we fixed n = 9. Synthesizing the program amounts to finding
values for the 9 variables f1, . . . , f9 from the set Σ, and values for the 18 vari-
ables a11, a12, . . . , a91, a92 from the set {0, 1, . . . , 8}. If the value of aij is k, then
it means the j-th argument of the function call on Line i is equal to xk.

We have the following well-formedness constraint on the aij variables, which
guarantees that the synthesized programs will indeed be a SLP.

φ1 =
∧
i∈1..9

(ai1 < i ∧ ai2 < i). More generally, φ1 =
∧
i∈1..9

∧
j∈1..arity(fi)

aij < i

With each left-hand side variable x1, . . . , x9 in the program sketch in Figure 3,
we associate one first-order variable vxi, which denotes the value in Domp of xi.
The following constraint imposes consistency of vxi values with respect to the
semantics Semp.

φ2 =
∧

i,j,k∈1..9
f∈Σ

(ai1 = j ∧ ai2 = k ∧ fi = f) ⇒ (vxj , vxk, vxi) ∈ Semp(f)

The constraint above says that if the first argument of the functional call on Line
i comes from Line j, the second argument comes from Line k, and the function on
Line i is f ∈ Σ, then the value vxi should be such that (vxj , vxk, vxi) ∈ Semp(f).

We are now ready to write our ∃∀ synthesis constraint Φ∃∀:

∃f1, . . . , f9 ∈ Σ ∃a11, . . . , a92 ∈ [0..8] (φ1 ∧
∀vx0, . . . , vx9 ∈ Domp (φ2 ⇒ φfspec(vx0, vx9)))

The satisfiability of Φ∃∀ is equivalent to the existence of an instance of the
sketch in Figure 3 that satisfies the functional requirement fspec. Thus, we can
solve the CoS problem by generating the above formula and solving it using an
∃∀ solver, as described in [16].
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4.2 Decorated-Component-Based Program Synthesis as ∃∀

Let tx0, tx1, . . . , tx9 denote new variables (interperted over Domd) corresponding
to the 10 lines in the program sketch shown in Figure 3. (We assume program
P does not assign twice to the same variable, so there is a 1-1 correspondence
between program variables and program lines.) The following constraint imposes
consistency of the Domd values (assigned to the new variables) with respect to
the semantics Semd.

φ3 =
∧

i,j,k∈1..9
f∈Σ

(ai1 = j ∧ ai2 = k ∧ fi = f) ⇒ (txj , txk, txi) ∈ Semd(f)

Now, the decorated-component-based synthesis problem reduces to satisfia-
bility of the following exists-forall formula Ψ∃∀:

∃f1, . . . , f9 ∈ Σ ∃a11, . . . , a92 ∈ [0..8]
∃tx0, . . . , tx9 ∈ Domd (φ1 ∧ φ3 ∧ φdspec(tx0, tx9) ∧
∀vx0, . . . , vx9 ∈ Domp (φ2 ⇒ φfspec(vx0, vx9)))

where φfspec(vx0, vx9) captures the functional requirement and φdspec(tx0, tx9)
captures the alternate requirement.

The following claim follows from definition of the two synthesis problems and
noting that φ2 captures Semp(P ) and φ3 captures Semd(P ).

Proposition 1. The CoS problem, respectively DCoS problem, has a solution
(a desired program) iff the constraint Φ∃∀, respectively Ψ∃∀, is satisfiable.

5 Component-based Synthesis Using ∃ Solving

Our main result is that, in some cases, given a CoS problem, one can design a
decoration for the components that is an “abstraction” of its primary semantics.
Such a decoration allows us to completely ignore the main functional specifica-
tion while performing synthesis. Since the function specification was the only
source of ∀ in the synthesis constraint, the synthesis constraint simplifies to an
∃ constraint, which can be solved using standard SMT solvers [24,30].

Consider any program P . Let V be the set of program variables in P , and
let V be partitioned into I ] O, where I are the input variables, and O are the
variables defined in P . Let PSp denote the set of all program states DompV , and
let PSd denote the set of all alternate states DomdV . A concretization function γ
is a mapping from the set PSd to the powerset 2PSp.

Definition 3. A set Sd ⊆ PSd is an abstraction of a set Sp ⊆ PSp with respect
to a concretization function γ and a subset W ⊆ V of variables, if

Sp|W ⊆
⋂
θ∈Sd

γ(θ)|W

where X|Y denotes the projection of the set X onto the Y components (that is,
we consider assignments to the variables in Y and ignore the other variables).

Remark 1. In sharp contrast to Definition 3, recall that in the usual notion of
abstraction, we say Sp2 is an abstraction of Sp1 if Sp1 ⊆

⋃
s∈Sp2 γ(s).
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Definition 4. The alternate semantics Semd is an abstraction of the primary
semantics Semp in a program P if there exists a concretization function γ : PSd→
2PSp such that for every Sp ⊆ PSp, for every Sd ⊆ PSd, if Sd is an abstraction
of Sp w.r.t γ and I, then Semd(P )(Sd) is an abstraction of Semp(P )(Sp) w.r.t γ
and I ]O.

Remark 2. The definition of abstraction of programs given in Definition 4 is
similar to the usual notion of abstraction: if we start with an abstraction of initial
states, and apply the abstract transformer, we should get back an abstraction of
the concretely transformed initial states. Definition 4 says the same thing, but
with the difference that we restrict to the set I when checking abstraction on the
initial states, and use the new notion of when a set of alternate program states
is said to abstract a set of primary program states (Definition 3).

We note that Definition 4 allows us to compose programs while preserving
abstractions if the composed programs modify a disjoint set of variables. More
precisely, if the decoration of P1 is an abstraction, and the decoration of P2 is
an abstraction, then the decoration of P1;P2 is an abstraction too, under the
assumption that P2 does not change the value of any variable in P1 (and only
treats those values as its inputs).

The main point of having a decoration that is an abstraction is that now, if
we can find an interpretation for the program in the alternate semantics, then
we know the program is functionally correct in its primary semantics.

Theorem 1. Let φfspec and φdspec be primary and alternate specifications such
that γ({σ | (σ(x0), σ(x9)) ∈ φdspec}) ⊆ {σ | (σ(x0), σ(x9)) ∈ φfspec}. If Semd

is an abstraction of Semp (as in Definition 4) with respect to the concretization
function γ, then, whenever φdspec holds in P , then φfspec holds in P .

The main consequence of Theorem 1 is that now we can solve a CoS problem,
which is an ∃∀ problem, by checking satisfiability of an existentially quantified
constraint (no quantifier alternation). We can do this only if we have a decoration
Semd that is an abstraction of Semp. Given such an Semd, we can solve the CoS
problem by checking satisfiability of the following existential formula Φ∃∃:

∃f1, . . . , f9 ∈ Σ ∃a11, . . . , a92 ∈ [0..8]
∃tx0, . . . , tx9 ∈ Domd (φ1 ∧ φ3 ∧ φdspec(tx0, tx9))

This formula is the same as Ψ∃∀, but with all references to vx0, . . . , vx9 removed.
Since these were the only universally quantified variables, we get rid of the ∀
and get the above quantifier-alternation-free synthesis constraint, which can be
solved using existing Satisfiability Modulo Theory (SMT) solvers [24,30].

Theorem 1 can be viewed a “weak” form of duality because it constructs
an ∃ formula that implies a ∀, but not vice-versa. Also, it must be understood
as a template for meta-theorems that argue that a given decoration enables ∃∃
synthesis, such as the one that we used in our example of Section 2.

If we use enumeration over all possible values to check a ∀ verification condi-
tion, we may find a violation of the ∀ formula after some finite search and thus,
we may find a bug. If we use enumeration over all possible values to check the
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sufficient ∃ formula, we may find a suitable valuation of the exists-variables after
some finite search, and thus we may find a proof (for the ∀ formula). Hence, our
notion of abstraction here, and the resulting weak duality in Theorem 1 has an
interesting use in program verification: it replaces a “search for bugs” approach
(violation of ∀) by a “search for proofs” approach (satisfiability of the dual ∃).

One may wonder if program analysis community has ever implicitly used
Theorem 1 to perform verification. The answer is yes: template-based methods
for verification, also called constraint-based verification [17, 31], are an instance
of the weak duality principle. We next outline a template-based technique to
construct abstract decorations, which can be used to solve CoS problems.

5.1 Constructing Abstract Decorations

We describe a generic approach for constructing abstract decorations. Note that
we followed this recipe when constructing the decoration for our secure mul-
tiplication example in Section 2. Let us assume we have an abstract domain
PSa; for example, one over which we could have created an abstract interpreter,
or performed predicate abstraction. Let us see how we would generate decora-
tions from PSa. Let us say we have proof rules that generate valid Hoare triples
{φ1}P{φ2} over the abstract states, where P is a program, φ1, φ2 are elements
of PSa. Now, to define the decoration Semd, we first parameterize the elements
of PSa. Say, we have a template Φ(u) that contains parameters u such that

PSa = {Φ(c) | c ∈ Domd}, for some set Domd

In other words, we can generate all abstract program states by instantiating
the parameters u from the set Domd. The set Domd forms our alternate domain.
If l1, l2, . . . are all the program locations (nodes in the program graph), then
ul1,ul2, . . . are our new program variables that are interpreted over Domd. Finally,
we need to define the alternate meaning Semd for each program statement. This
is achieved by considering proof rules comprising of valid Hoare triples {φ1}z :=
f(x, y){φ2}, and trying to generate a constraint ψf (u,v) such that

∀u,v : ψf (u,v) ⇒ {Φ(u)}z := f(x, y){Φ(v)}
If we can find such a ψf (not equivalent to false) forall f ∈ Σ, then (ψf )f∈Σ
defines Semd. By construction, Semd is an abstraction of Semp. An example of
this process of constructing an abstract Semd can be found in Figure 2.

We would like to emphasize two points here. First, the task of constructing
an abstract decoration Semd will not succeed always, because we may not find
such ψf . Second, while abstract decorations are a powerful concept, decorations
that are not abstractions of Semp also prove to be immensely useful, especially
in the application to synthesis, where they can be used to capture nonfunctional
properties. This latter use of decorations was explored in [32], and reused here.

6 Cryptographic Schemes

In this section, we present some examples of cryptographic schemes that we
synthesized using the DCoS framework. These are summarized in Table 1. Our
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synthesis tool takes as input a program sketch, such as the one in Section 2, mul-
tiple primal semantics (Semp), and multiple decorations (Semd) on components,
along with requirements specified on these semantics. It solves the synthesis
problem by generating and solving either the Φ∃∀ formula (in case there are
some primal semantics) or the Φ∃∃ formula (in case there are only decorations
on components). Our tool, along with all the examples and corresponding SMT
instances, is available at [14].

Synthesis
problem

Search space
size

Solution
size

Decorations Synthesis
time

BC modes ∼1× 109 11 lines DEC + SEC ∼1s
Secure multiplication ∼2× 1013 21 lines SPOLY + RAND ∼50s
Oblivious transfer ∼2× 107 9 lines SARITH ∼1s
Du-Atallah multiplication ∼3× 1019 11 lines SPOLY + RAND ∼1s
Dining Cryptographers ∼2× 1025 12 lines RAND + SBOOL ∼1s

Table 1. Summary of examples of synthesized cryptographics schemes. Details on the
BC modes, secure multiplication, and oblivious transfer examples are given in Sec-
tions 6.1, 6.2, and 6.3, respectively. The sketches of all examples are available at [14].
The decorations SPOLY and RAND are the ones introduced informally in Section 2,
DEC and SEC are described in Section 6.1 and were inspired by the work of [22],
SARITH corresponds to symbolic arithmetic expressions (used to approximate opera-
tions in a group), and SBOOL corresponds to symbolic Boolean expressions.

u = f(v, w), know(v), know(w)

know(u)
if f is known

u = v ⊕ w, know(u), know(w)

know(v)

Fig. 4. Decryptability check: Assuming that initially only the encrypted message is
“known”, we can apply the above rules to check if message m can be “known”. A
k-step (bounded size) proof search can be encoded using decorated components by
having k-length arrays of alternate values for each program variable.

6.1 Block Cipher Modes

Block ciphers are keyed, invertible functions that map a fixed length bit string
(say 128 bits) to a random bit string of the same length. A block cipher mode Enc
uses a block cipher to encrypt messages longer than this fixed length. We have
two requirements: correctness of Enc, which is captured by the existence of a
decryption algorithm Dec such that ∀k,m : Deck(Enck(m)) = m, and security,
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which is expressed by the fact that no adversary with oracle access to Enc is
able to learn anything about random ciphertexts.

Malozemoff et al. [22] proposed an algorithm for synthesis of block cipher
modes that follows the enumerate-and-check paradigm. The algorithm proceeds
by carefully enumerating candidate straight-line programs and checking correct-
ness and security for each of them. The security property is approximated using a
labeling system that guarantees that if a candidate straight-line program can be
labeled satisfying certain constraints, then it implements a secure block cipher.
The search for the existence of a correct labeling is then implemented using an
SMT solver. Regarding correctness, the authors propose a fix-point algorithm
analogous to our encoding of decryptability check as a decoration; see Figure 4.

We used both the ∃∀ and the ∃∃ approach to synthesize block cipher modes,
which highlights the flexibility of the DCoS framework. Our formulation of the
problem is analogous to the one in [22]; that is, our sketches do not provide ad-
ditional “hints” to the synthesis tool. In the ∃∀ approach, we specify correctness
directly using a primal semantics; that is, we synthesize (∃) both an encryption
scheme Enc and a decryption scheme Dec such that for all (∀) input messages
m, Dec(Enc(m)) = m. By having a primal semantics for specifying correctness,
and a decoration for specifying security, we solved the synthesis problem by gen-
erating and solving the Ψ∃∀ formula shown in Section 4. The ∃∀ approach has two
main drawbacks: first, solving Ψ∃∀ turned out to be expensive because it required
us to synthesize two programs at once, Dec and Enc. Moreover, it requires us
to specify primal semantics for the block cipher function itself. This is not ideal,
since a bad choice might be a source of unsoundness in the decryptability check.

The new ∃∃ approach, enabled by Theorem 1, addresses both these issues.
The crucial observation is that the correctness check used in [22] is in fact an
instance of the weak duality of Theorem 1, and hence it can be encoded as a
second decoration. Hence, to ensure correctness, it is not necessary to synthesize
a decryption scheme, but instead check for “decryptability” (Figure 4). The new
∃∃ approach resulted in a reduction in running time from ∼100 seconds (using
the Ψ∃∀ approach) to ∼ 1 second, to synthesize well-known encryption schemes
such as CBC, OFB, CFB, OFB, and PCBC. Moreover, another benefit is that we
can leverage the incremental solving capabilities of SMT solvers, such as Yices
and Z3, to efficiently find hundreds of variants of block cipher modes. Our ∃∃
approach found hundreds of correct modes of operation in less than 5 minutes
on a regular laptop, including all the common ones mentioned above.

6.2 Secure Multiplication

In Section 2, we presented an application of our synthesis methodology to syn-
thesize a secure 2-party computation multiplication protocol. The synthesis time
for the sketch described in Section 2 is ∼ 50 seconds. As explained above, our
synthesis tool takes as input a sketch of the solution, i.e. a description of a fi-
nite family of protocols F in this case, and searches for a protocol P ∈ F that
satisfies the requirements.



15

Figure 5 reports running times and approximated search space size, i.e. |F|,
for 30 variants of our sketch presented in Section 2.

The first 15 variants of our sketch are satisfiable (blue trace in the plot),
and were obtained in the following way: we started from a sketch whose only
completion is the solution reported in Section 2; that is, |F| = 1, and then
increasingly relaxed it until we obtained a most general one.

Hence, the leftmost data point of the satisfiable instances corresponds to sim-
ply a verification check. The second one corresponds to a sketch where everything
is fixed but the first line of A’s program. In subsequent data points (3)-(15), the
part of the protocol to be determined is (3) messages from C, (4) messages from
C and B, (5) arithmetic operations in A and B, (6) arithmetic operations in
C, and messages from C and B, (7) arithmetic operations, (8) arithmetic op-
erations and messages from B, (9) arithmetic operations and messages from C
and A, (10) arithmetic operations and messages from C and B, (11) arithmetic
operations in A and B, and program for C, (12) arithmetic operations in A,
and programs for C and B, (13) everything but first line of A’s program, and
programs for C and B, (14) programs for A, B, and C, (15) programs for A, B,
and C, letting A have a total of 4 lines.

The unsatisfiable instances are obtained from (1)-(15) by adding the addi-
tional restriction that C cannot use multiplication. This prevents C from generat-
ing appropriately correlated random data, which results in unsatisfiable sketches.

Although it is difficult to make definitive statements about the behaviour of
SMT solvers, the plot in Figure 5 confirms a tendency that we have often ob-
served: our approach scales well for satisfiable instances, and hence using general
sketches spanning a large F is fine as long as F contains a solution. On the other
hand, if the synthesis problem is not realizable, proving so for large families of
programs may not scale well.
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Fig. 5. Running times for satisfiable and unsatisfiable variants of the secure multipli-
cation sketch. The experiments were run using Yices as backend solver on a 2.30GHz
machine with 8Gb of memory.
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6.3 Oblivious Transfer

In the two-party version of oblivious transfer (OT), one party, the Sender, has
two messages m0 and m1, and the other party, the Chooser, can pick which
message she wants to receive. The goal of oblivious transfer is to achieve this
transfer of message from Sender to the Chooser, but with the requirements
that (a) the Sender does not learn the choice made by the Chooser, and (b) the
Chooser does not learn the content of the other message (that was not chosen).

We wish to base the protocol on the decisional Diffie-Hellman (DDH) as-
sumption [6]: given a cyclic group with generator g, the DDH assumption states
that (ga, gb, gab) is computationally indistinguishable from (ga, gb, gc) for ran-
domly and independently chosen elements a, b, c from Z. We provide a sketch to
the synthesis tool that consists of four blocks of straight-line code (executed by
Sender, Chooser, Sender, Chooser in turns), where the Sender and the Chooser
are allowed use of upto 3 random numbers each.

While approches based on ∃∀ paradigm timed out due to the complexity
of the protocol, we were able to perform ∃∃ synthesis by using only suitably
designed decorations. We synthesized two different OT protocols: the first one
was also recently reported in [8], and the second one is the well-known Naor-
Pinkas protocol [25]. The solutions were obtained in about 1 and 100 seconds,
respectively, on a regular laptop using Yices as backend solver.

Due to technical difficulties in formalizing the security requirements, we used
approximate requirements that eliminated a large number insecure protocols, but
not necessarily all of them. Consequently, there is a need here for a posteriori
verification of security of the synthesized scheme (using other verification tools;
such as, Easycrypt [4]). Program synthesis, however, remains a fast and effective
tool to quickly generate plausible schemes.

7 Conclusion

We formulated the decorated-component-based synthesis framework and showed
how component decorations can be used to enable a weak duality principle,
which allows us to replace a desired ∀ check by a stronger ∃ check. Besides its
applications to speed up program synthesis, it is important to recognize the use of
this duality principle in different verification techniques, such as constraint-based
verification [17, 31]. Decorations can abstract the concrete meaning, and thus
provide sufficient checks for functional properties. They can also be unrelated to
the concrete meaning, and encode nonfunctional properties of programs.

It is worth emphasizing that decorations are not abstract interpreters [9]: in
abstract interpretation, assertion checking is still a “forall” check (just over ab-
stract values). In contrast, decorations on components behave as constraints, and
hence our extension of primal semantics with decorations has flavors of constraint
programming [11] and combining inductive and co-inductive constructs [1].

Exploring extension of DCoS to programs with loops, designing decorations
to encode more sophisticated proof systems, and studying algebraic properties
of decorations remain future challenges.
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