
Data Race Detection on Compressed Traces

Dileep Kini
Akuna Capital LLC

USA
dileeprkini@gmail.com

Umang Mathur
University of Illinois, Urbana

Champaign
USA

umathur3@illinois.edu

Mahesh Viswanathan
University of Illinois, Urbana

Champaign
USA

vmahesh@illinois.edu

ABSTRACT

We consider the problem of detecting data races in program traces

that have been compressed using straight line programs (SLP),

which are special context-free grammars that generate exactly one

string, namely the trace that they represent. We consider two clas-

sical approaches to race detection Ð using the happens-before

relation and the lockset discipline. We present algorithms for both

these methods that run in time that is linear in the size of the

compressed, SLP representation. Typical program executions al-

most always exhibit patterns that lead to significant compression.

Thus, our algorithms are expected to result in large speedups when

compared with analyzing the uncompressed trace. Our experimen-

tal evaluation of these new algorithms on standard benchmarks

confirms this observation.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; Formal software verification;

KEYWORDS

Dynamic Program Analysis, Race Detection, Compression

ACM Reference Format:

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2018. Data Race

Detection on Compressed Traces. In Proceedings of the 26th ACM Joint Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE ’18), November 4ś9, 2018, Lake Buena

Vista, FL, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3236024.3236025

1 INTRODUCTION

Dynamic analysis of multi-threaded programs is the problem of

discovering anomalies in a program by examining a single or mul-

tiple traces of a program. While dynamic analysis is sometimes

performed online as the program is running, it is often performed

offline, on a stored trace of the program. The reasons for performing

offline dynamic analysis are many. The overhead of analyzing the

trace as the program is running maybe large, causing undesirable

slowdowns. This is especially true for expensive dynamic analysis

techniques which employ heavy-weight machinery such as the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236025

use of SMT solvers [24, 48], graph based analysis [7, 22] or even

vector clocks [20, 43]. Often, it is desirable to perform multiple,

different analyses on a single trace, and the kinds of analyses to

be performed may even be unknown at the time the program is

being observed. Finally, storing the trace and later replaying it in

a controlled environment, can help in debugging programs, in un-

derstanding performance overheads and in performance tuning.

Trace-driven simulations are used widely in computer architecture

for quantitative evaluations of new ideas and designs [26, 37].

However program traces are often huge, recording millions and

billions of events. When debugging a large software application,

long traces are often necessary to ensure adequate code coverage.

This is especially acute for multi-threaded programs where subtle

concurrency bugs are often revealed only under specific thread

schedules. Therefore, useful traces are those that exercise the same

program fragment multiple times, under different scenarios ; this is

substantiated by the observation that some concurrency bugs only

manifest themselves in traces with millions of events [14]. In such

circumstances, the only way to alleviate the warehousing needs of

storing such traces is to compress them [26, 37].

In this paper, we study the problem of detecting data races in

programs by examining compressed traces. Data races are the most

common symptom of a programming error in concurrent program-

ming. The naïve approach to solving this problem would be to

uncompress the trace and then process it using any one of the

many algorithms that have been developed for dynamic data race

detection [18, 20, 24, 29, 36, 43, 49]. But is this necessary? Is this

naïve algorithm, asymptotically, the best one can hope for? Study-

ing the complexity of problems where the input is represented

succinctly has a long history. Starting from the seminal paper by

Galperin and Wigderson [23], where they studied the complexity

of graph problems when the input graph is represented by a circuit,

it has been observed that typically there is an exponential blowup

in the complexity of problems when they are solved on compressed

inputs [6, 11, 16, 23, 35, 42, 54]. Thus, often the naïve algorithm is

the best algorithm asymptotically.

Our results in this paper, fortunately, are the exception to the

above rule. We consider two classical race detection approaches Ð a

sound 1 method based on computing Lamport’s happens-before rela-

tion [32], and the lightweight lockset-based algorithm of Eraser [49]

Ð and extend them to work directly on the compressed trace with-

out first uncompressing it. Our algorithms run in time that is linear

in the size of the compressed trace. Thus, we show that compres-

sion can in fact be used as an algorithmic principle to speedup the

analysis in this context.

1We say a race detector is sound if it never issues any warning on race-free programs
or executions. This is often referred to as precise [20] in the race detection literature.

26

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236024.3236025
https://doi.org/10.1145/3236024.3236025
https://doi.org/10.1145/3236024.3236025

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA Dileep Kini, Umang Mathur, and Mahesh Viswanathan

public class Test extends Thread{

static final long ITERS = 1000000000L;
static int y;

public void inc() {
y++;

}

@Override
public void run() {

for (long i = 0; i < ITERS; i++) {
inc();

}
}

public static void main(String args[]) throws Exception {
final Test t1 = new Test();
final Test t2 = new Test();
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("y (actual) = " + y);
System.out.println("y (expected) = " + ITERS*2);

}
}

Figure 1: A simple concurrent program in Java

To understand why compression actually speeds up the analysis,

consider the simple program shown in Figure 1. A single execution

of this program generates about 680 million events, taking about 1.3

GB disk space. However, when this trace is compressed using the

Sequitur algorithm [2, 40, 41], the compressed representation only

occupies about 34 MB of disk space. The reason for this effective

compression is that the program has a simple loop structure that

is executed multiple times. Thus the program trace has a łregularž

structure that the compression algorithm exploits. An algorithm

processing the uncompressed trace is agnostic to this regularity,

and is forced to repeat the same analysis each time the sub-trace

corresponding to the loop body is encountered. Compression makes

this regular structure łvisiblež, and an algorithm working on the

compressed representation can exploit it by only performing an

analysis only once for each distinct sub-trace.

We consider compression schemes that compress traces as straight

line programs (SLPs). SLPs are a special class of context-free gram-

mars where the language of the grammar consists of a single string,

namely, the trace being compressed. Several lossless compression

schemes, like run-length encoding and the family of Lempel-Ziv

encodings [62], can be converted efficiently to SLPs of similar

size. Our algorithms on SLPs proceed inductively on the structure

of the grammar, and compute, in a compositional fashion, book-

keeping information for each non-terminal in the grammar. Thus,

a sub-trace generated by a non-terminal that may appear in many

positions in the uncompressed trace, is analyzed only once. For

happens-before-based race detection, our algorithm is inspired by

the Goldilocks method [12], where the book-keeping information

is captured by a set of threads and locks.

We have implemented our algorithms in a tool called ZipTrack.

The traces are compressed using a popular SLP-based compresssion

algorithm called Sequitur [2]. Our experiments on standard bench-

mark examples reveal that the algorithms on compressed traces

perform well, and on large traces, often have an order of magnitude

improvement over algorithms running in the uncompressed setting.

The rest of the paper is organized as follows. After discussing

closely related work, we introduce basic notation and classical

race detection algorithms in Section 2. In Section 3, we briefly

present our happens-before based data race detection algorithm

on compressed traces. Our algorithm for checking violations of

the lockset discipline on compressed traces is presented briefly in

Section 4. Details of these algorithms and their proof of correctness

are presented in our companion technical report [30]. We present

our experimental results in Section 5.

Related Work. Type systems to prevent data races have been de-

veloped [5, 9, 19]. Since the race detection problem is undecidable,

the several static analysis techniques [13, 38, 39, 44, 46, 55, 58, 61]

suffer from two problems Ð they don’t scale and they raise many

false alarms since they are typically conservative. Dynamic race

detection techniques can be classified into three categories. There

are the unsound lockset-based techniques, which may raise false

alarms [49]. Techniques like random testing [50] and static escape

analysis [45] can reduce the false alarms in such algorithms, but

not eliminate them. The second category of dynamic analysis tech-

niques are predictive runtime analysis techniques [24, 25, 34, 48, 56],

where the race detector explores all possible reorderings of the

given trace to search for a possible witness of a data race. Since

the number of interleavings of a given trace is very large, these

do not scale to long traces. The last category of dynamic race de-

tection algorithms are those based on identifying a partial order

on the events of a trace, and then searching for a pair of conflict-

ing data accesses that are unordered by the partial order. These

techniques are sound and scale to long traces since they typically

run in linear time. The simplest, and most commonly used partial

order is happens-before [32]. Early vector-clock based algorithms

to compute happens-before on traces [18, 36] have been subse-

quently optimized [20, 43]. A lockset-based method for computing

the happens-before partial order was proposed in [12]. Structured

parallelism has been exploited to optimize the memory overhead in

detecting happens before [10, 17, 47, 53, 60]. More recently, partial

order that are weaker than happens before have been proposed for

detecting data races, including causal precedence [51] and weak

causal precedence [29]. Sofya [31] and RoadRunner [21] are tools

that provide a framework for implementing dynamic analysis tools.

2 PRELIMINARIES

In the section we introduce basic notation, our assumptions about

concurrent programs, the happens before ordering on events, and

some classical algorithms for race detection.

Traces.We will analyze traces of concurrent programs synchroniz-

ing through locks while accessing shared memory locations (also

referred to as global variables, or simply, variables). Traces are (fi-

nite) sequences of events of the form ⟨t : o⟩, where t is the thread

performing the operation o 2. Operations can be one of the follow-

ing: forking of a new child thread (fork(t)); joining of a child thread

(join(t)); acquiring and releasing a lock (acq(ℓ) and rel(ℓ)); and,

reading and writing to a variable (r(x) and w(x)). We will assume

that a child thread is forked and joined by the same parent thread.

Locks are assumed to be reentrant. That is, a thread t may acquire a

lock ℓ multiple times, as long as t holds ℓ. However, t must release

ℓ, as many times as it was acquired, before ℓ becomes available for

2Formally, each event in a trace is assumed to have a unique event id. Thus, two
occurences of a thread performing the same operation will be considered different
events. Even though we will implicitly assume the uniqueness of each event in a trace,
to reduce notational overhead, we do not formally introduce event ids.

27

Data Race Detection on Compressed Traces ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

Thread 1 Thread 2

1 w(x)

2 fork(2)

3 r(x)

4 acq(ℓ)

5 w(y)

6 rel(ℓ)

7 r(x)

8 acq(ℓ)

9 rel(ℓ)

10 w(y)

11 r(x)

12 acq(ℓ)

13 w(y)

14 rel(ℓ)

15 join(2)

16 w(y)

S → AB

A→ CD

C → EF

E → ⟨1 : w(x)⟩⟨1 : fork(2)⟩

F → ⟨2 : r(x)⟩⟨2 : acq(ℓ)⟩⟨2 : w(y)⟩⟨2 : rel(ℓ)⟩

D → ⟨1 : r(x)⟩⟨1 : acq(ℓ)⟩⟨1 : rel(ℓ)⟩⟨1 : w(y)⟩

B → FG

G → ⟨1 : join(2)⟩⟨1 : w(y)⟩

Figure 2: Example trace σ1 and its SLP representation

being acquired by some other thread. Therefore, with every release

event e = ⟨t : rel(ℓ)⟩, we can associate a unique acquire event

e ′ = ⟨t : acq(ℓ)⟩, which is the last acq(ℓ)-event in thread t before

e that is not matched with any rel(ℓ) event in thread t before e .

This acq(ℓ) event e ′ is said to be the matching acquire of e , and is

denoted by match(e). Similarly, for an acquire event e ′ such that

e ′ = match(e), we will say that e is the matching release of e ′, and

we will also denote this bymatch(e ′). For a trace σ , σ ↾t will denote

the subsequence of events performed by thread t .

Notation. Let us fix a trace σ . For an event e , we will say e ∈ σ to

denote the fact that e appears in the sequence σ . The set of locks

acquired or released in σ will be denoted by Locks(σ). Threads(σ)

will denote the set of threads performing some event in σ ; in the

presence of forks and joins, this is a bit subtle and we define it as

Threads(σ) = {t | ∃e ∈ σ . e = ⟨t : o⟩ for some o, or e = ⟨t ′ : fork(t)⟩

or e = ⟨t ′ : join(t)⟩ for some thread t ′}.

For a variablex , the set of w(x)-eventswill be denoted byWEventsσ (x)

and the set of r(x)-events performed by thread t ∈ Threads(σ) will

be denoted by REventsσ (t ,x). We will use Rd(σ) to denote the set

of pairs (t ,x) for which REventsσ (t ,x) , ∅. Similarly, we will use

Wr(σ) to denote the set of variables x for which WEventsσ (x) is

non-empty. When σ is clear from the context, we may drop it.

For a non-empty subset of events S , we will denote by Lastσ (S)

the (unique) event e ∈ S , that is latest in σ among the events

in S . Similarly, Firstσ (S) is the event e ∈ S that is earliest in σ

amongst the events in S . When S is empty, we say both Firstσ (S)

and Lastσ (S) are undefined.

Example 2.1. We illustrate the above definitions on the exam-

ple trace σ1 shown in Figure 2. We will follow the convention

of representing events of a trace from top-to-bottom, where tem-

porally earlier events appear above the later ones. We use ei to

denote the ith event in σ1. Let S1 = REventsσ1 (2,x) = {e3, e11}

and S2 = WEventsσ1 (y) = {e5, e10, e13, e16}. The set Rd(σ1) =

{(1,x), (2,x)} while Wr(σ1) = {x ,y}. Finally, Lastσ1 (S1) = e11, and

Firstσ1 (S2) = e5.

Orders on Traces. Let us fix a trace σ . If an event e1 appears earlier

in the sequence σ than e2, then we say e1 is trace ordered before

e2 and denote it as e1 <
σ
tr e2. We say e1 is thread ordered before e2,

denoted by e1 <
σ
TO

e2, if e1 and e2 are events performed by the

same thread and e1 <
σ
tr e2. Our race detection algorithm will rely

on computing the happens before strict order, which we define next.

Definition 2.2 (Happens Before). Event e in trace σ said to happen

before event e ′ ∈ σ , denoted e <σ
HB

e ′, if and only if there is a

sequence of events e = e1, e2, e3, . . . en = e ′ such that for every pair

(ei , ei+1) (i < n), ei <
σ
tr ei+1 and one of the following holds.

(1) ei <
σ
TO

ei+1,

(2) ei = ⟨t : rel(ℓ)⟩ and ei+1 = ⟨t
′ : acq(ℓ)⟩ for some t , t ′, ℓ,

(3) ei = ⟨t : fork(t
′)⟩ and ei+1 = ⟨t

′ : o⟩ for some t , t ′,o, or

(4) ei = ⟨t
′ : o⟩ and ei+1 = ⟨t : join(t

′)⟩ for some t , t ′,o.

For any P ∈ {tr, TO,HB}, ≤σ
P
refers to the partial relation <σ

P
∪ =σ , where =σ denotes the identity relation on the events of σ .

When σ is clear from the context we will drop the superscript from

these relations; for example, we will use ≤
HB

instead of ≤σ
HB

.

Finally, we say a pair of events e1, e2 are concurrent (w.r.t. hap-

pens before) if neither e1 ≤HB e2, nor e2 ≤HB e1; we denote this by

e1 | |HBe2.

We now define races identified by the happens-before relation.

A pair of events e1 = ⟨t1 : a1 (x)⟩ and e2 = ⟨t2 : a2 (x)⟩ (for some

variable x) is said to be conflicting, denoted e1 ≍ e2, if t1 , t2 and at

least one out of a1 and a2 is w. A trace σ is said to have a happens

before race (HB-race, for short) if there is a pair of events e1, e2 ∈ σ

such that e1 ≍ e2 and e1 | |HBe2.

Example 2.3. We illustrate the happens before relation through

the trace σ1 in Figure 2. e1 ≤HB e3 because e2 happens before every

event in thread 2 since it forks thread 2. Similarly, we can conclude

that e13 ≤HB e16 because the join event e15 is after every event in

thread 2. Another interesting pair is e5 ≤HB e10. This is because

e4, e5, e6 and e8, e9 are critical sections over the same lock ℓ, and

thus, e6 happens before e8. Therefore, e5 ≤TO e6 ≤HB e8 ≤TO e10.

It is useful to pay attention to a couple of concurrent pairs of events.

Events e3 and e7 are concurrent, but do not constitute an HB-race

because e3 and e7 being read events are not conflicting. However,

there is anHB-race between events e10 and e13; they are concurrent

and a conflicting pair of events.

The standard FastTrack style vector clock algorithm [18, 20,

32, 36, 43] detects if a given trace has a race and runs in time

O (nT logn) and uses space O ((V + L +T)T logn) for a trace with

n events, T threads, L locks and V variables.

Goldilocks Algorithm. Goldilocks algorithm [12] is another al-

gorithm that detects the presence of HB-races. In order to formally

describe the algorithm, let us first fix some notations. Consider the

function Afterσ defined as follows:

Afterσ (e) = {t ∈ Threads(σ) | ∃e ′ = ⟨t : o⟩. e ≤σ
HB

e ′}

∪ {t ∈ Threads(σ) | ∃e ′ = ⟨t ′ : fork(t)⟩. e ≤σ
HB

e ′}

∪ {ℓ ∈ Locks(σ) | ∃e ′ = ⟨t : rel(ℓ)⟩. e ≤σ
HB

e ′}

Thus, informally, Afterσ (e) is the set of all threads and locks that

have an event HB-after e .

Then, for every prefix σ ′ of the trace, and for every thread t

and variable x in σ ′, the Goldilocks algorithm maintains the set

GLSR
σ ′
(t ,x) defined by

GLSRσ ′ (t ,x) = Afterσ ′ (Lastσ ′ (REventsσ ′ (t ,x)))

28

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA Dileep Kini, Umang Mathur, and Mahesh Viswanathan

and for every variable x in σ ′, the set

GLSWσ ′ (x) = Afterσ ′ (Lastσ ′ (WEventsσ ′ (x)))

where, Afterσ ′ (undefined) is assumed to be the empty set.

Finally, a race is declared after observing an event e such that

one of the following hold:

(1) e = ⟨t : w(x)⟩ and either t < GLSW
σ ′
(x) or t < GLSR

σ ′
(t ′,x)

for some thread t ′ ∈ Threads(σ ′)

(2) e = ⟨t : r(x)⟩ and t < GLSW
σ ′
(x).

where σ ′ is the prefix until the event e . This algorithm runs in time

O (n(L+TV)) and uses spaceO (TV (T +L)) for a trace with n events,

T threads, L locks and V variables.

Eraser’s Lockset Algorithm. The lockset algorithm [49] is a low

overhead technique to detect potential races. The basic idea here, is

to maintain, for every variable x , the set of locks that protect each

access to x , and check if this set becomes empty as the execution pro-

ceeds. We recall the details of this technique here. We will assume

that none of the elements in the setD = {Λ}∪{Λt |t is a thread} are

locks used by the program. The elements of the setD are łdummyž

or fake locks introduced by the algorithm to ensure that alarms are

not raised when a (global) variable is only read (and never writ-

ten to), and when a variable is accessed by only one thread [43].

For a read/write event event e = ⟨t : a(x)⟩ (where a is either r

or w) in trace σ , LocksHeldσ (e) is the set of locks held by t when

e is performed. Using this, for an event e = ⟨t : a(x)⟩ we define

LockSetσ (e) to be

LockSetσ (e) =

{

{Λ,Λt } ∪ LocksHeldσ (e) if a = r

{Λt } ∪ LocksHeldσ (e) if a = w

For a variables x and thread t , let Accessσ (t ,x) be the set of all

events in σ ↾t whose corresponding operations are either r(x) or

w(x). Then,

LockSetσ (t ,x) =
⋂

e ∈Accessσ (t,x)

LockSetσ (e).

As per convention, when Accessσ (t ,x) = ∅ (i.e., thread t never

accesses the variable x), the right hand side of the above equation

is assumed to be Locks(σ) ∪ D. A few observations about these

definitions are in order. First LockSetσ (t ,x) is always non-empty

because Λt ∈ LockSetσ (t ,x). Second, if all events in Accessσ (t ,x)

are read events, then Λ ∈ LockSetσ (t ,x). The lockset discipline is

said to be violated in trace σ , if for some variable x ,
⋂

t ∈Threads(σ)

LockSetσ (t ,x) = ∅.

Note that the Eraser algorithm crucially depends upon the accurate

computation of LocksHeldσ (e). To compute this for traces having

reentrant locks, we need to record, for each thread t and lock ℓ,

the number of times ℓ has been acquired, without being released,

which can be maintained using an integer variable.

We briefly highlight the importance of the locks in D that were

introduced. Let LS(x) = ∩t ∈Threads(σ)LockSetσ (t ,x). If the vari-

able x is only accessed by a single thread t1, then LS(x) is non-

empty because it contains Λt1 . And if a variable x is only read and

never written to, then LS(x) is again non-empty because it contains

Λ. The Eraser algorithm [49] checks for violation of the lockset

principle by maintaining the lockset for each thread-variable pair.

Thread 1 Thread 2

1 r(x)

2 acq(ℓ)

3 w(y)

4 rel(ℓ)

5 acq(ℓ)

6 r(x)

7 w(y)

8 rel(ℓ)

9 r(x)

10 w(z)

S → UV

U →WX

W → ⟨1 : r(x)⟩⟨1 : acq(ℓ)⟩

X → ⟨1 : w(y)⟩⟨1 : rel(ℓ)⟩⟨2 : acq(ℓ)⟩

V → YZ

Y → ⟨2 : r(x)⟩⟨2 : w(y)⟩

Z → ⟨2 : rel(ℓ)⟩⟨2 : r(x)⟩⟨1 : w(z)⟩

Figure 3: Example trace σ2 and its SLP representation

It runs in timeO (n(L+ log r)) and uses spaceO (TL log r +V (T +L))

where n, T , L and V are the number of events, threads, locks, and

variables respectively, and r is the maximum number of times a

thread acquires a lock without releasing it.

Example 2.4. We illustrate the lockset algorithm on a couple of

examples. Consider the trace σ2 in Figure 3. The relevant locksets

are as follows.

LockSetσ2 (1,x) = {Λ,Λ1} LockSetσ2 (2,x) = {Λ,Λ2}

LockSetσ2 (1,y) = {Λ1, ℓ} LockSetσ2 (2,y) = {Λ2, ℓ}

LockSetσ2 (1, z) = {Λ1} LockSetσ2 (2, z) = {Λ,Λ1,Λ2, ℓ}

Observe that LockSetσ2 (2, z) is the set of all locks because thread 2

does not access z. The trace σ2 does not violate the lockset discipline.

Informally, the reason for this is because variable x is only read

by both threads, accesses to variable y is always protected by lock

ℓ, and variable z is local to thread 1. Trace σ2 also contains no

HB-race.

For trace σ1 from Figure 2,

LockSetσ1 (1,x) = {Λ1} LockSetσ1 (2,x) = {Λ,Λ2}

LockSetσ1 (1,y) = {Λ1} LockSetσ1 (2,y) = {Λ2, ℓ}.

The lockset discipline is violated on both variables x and y. On

the other hand, there is an HB-race only on variable y (events 10

and 13; see Example 2.3). Thus, the lockset discipline may falsely

conclude the presence of races; it is only a lightweight approximate

approach.

Straight Line Programs (SLP).We consider traces that are com-

pressed using special context-free grammars called straight line

programs (SLP). Recall that a context-free grammar (in Chomsky

Normal Form) is G = (T ,N , S,R), where T is the set of terminals,

N the set of non-terminals, T ∪ N is the set of symbols, S ∈ N

is the start symbol, and R is the set of rules in which each rule

in R is either A → a or A → BC , for A,B,C ∈ N and a ∈ T . A

straight line program is a context free grammar such that (a) for

every non-terminal A, there is exactly one rule where A appears

on the left, and (b) the non-terminals are ranked in such that way

that in every rule, the non-terminals on the right are of larger rank

than the non-terminal on the left of the rule, i.e., for rules A→ BC ,

A ≺ B and A ≺ C . It is easy to observe that the language of the

grammar contains a single string, namely, the one that is being

succinctly represented by the SLP. Without loss of generality, we

will assume that every non-terminal in the SLP is useful, i.e., every

non-terminal in the grammar appears in some sentential form in

the unique derivation in the grammar. Thus, the language associ-

ated with any non-terminal A has a single string. We will call this

29

Data Race Detection on Compressed Traces ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

(unique) string generated by non-terminal A a chunk, and denote it

by JAK. We will often abuse notation and refer to both JAK and A
as łAž. For example, Locks(A) will mean Locks(JAK).

The size of an SLP G = (T ,N , S,R) will be taken to be |T | + |N |;

note that this measure of size is linearly related to other measures of

size one might consider like |R | or sum of the sizes of all the rules in

R. We make a couple of observations about the size of an SLP versus

the size of the trace it represents. First, every trace σ = e1, e2, . . . en
can be represented by a łtrivialž SLP of size O (n) as follows. The

non-terminals are {A[i,i] | 1 ≤ i ≤ n} ∪ {A[1,i] | 1 ≤ i ≤ n} with

start symbolA[1,n]. Intuitively,A[i,i] represents the string ei , while

A[1,i] represents the prefix of length i . This is accomplished by the

rules Ð A[i,i] → ei and A[1,i] → A[1,i−1]A[i,i] for each 1 ≤ i ≤ n.

Second, the SLP representation of a string σ maybe exponentially

smaller than σ itself. For example, take σ = a2
n
. An O (n) SLP

representation for σ is as follows: N = {Ai | 0 ≤ i ≤ n} with

rules A0 → a, and Ai+1 → AiAi . One can inductively observe that

JAi K = a2
i
, and so JAnK = σ .

Example 2.5. Figure 2 describes an SLP representation of trace

σ1. The rules for E, F ,D, and G are not strictly in the format of an

SLP, but it can easily be converted into one; the representation in

Figure 2 is sufficient for our illustrative purposes. We will again

use ei to denote the ith event of σ1. Chunk E represents e1, e2, F

represents e3, e4, e5, e6 and e11, . . . e14, D represents e7, e8, e9, e10,

and G represents e15, e16. The sub-traces represented by the other

non-terminals can be similarly discovered. As mentioned before,

we will confuse the notation distinguishing between a non-terminal

and the string it represents. Thus, for example, Threads(E) = {1, 2}.

Similarly, the SLP for σ2 is shown in Figure 3. The sub-traces rep-

resented by non-terminals need not conform to thread and critical

section boundaries. For example, the chunk JX K has partial critical
sections of different threads.

Several well known algorithms for SLP based compression are

known in the literature. The most basic and popular one is Se-

quitur [40, 41]. Sequitur takes a string as an input, and generates

an SLP representing the trace. It runs in time and space linear in

the size of the input string. The Sequitur algorithm works in an

online incremental fashion; it reads the input string one character

at a time, and updates the SLP generated so-far. It maintains a list

of digrams (symbol pairs) that occur somewhere in the SLP so-far.

On seeing a new character, the algorithm appends it at the end of

the rule corresponding to the start symbol. The new digram formed

(by appending the new character to the last symbol of the rule) is

added to the list of digrams, if it is not already present. Otherwise, a

new rule, with a fresh nonterminal generating the digram, is added

to the SLP, and every occurence of the digram is replaced by the

freshly introduced non-terminal. At every step, non-terminals, that

are not useful, are also removed. Other popular grammar based

compression schemes include Sequential [59], LZ77 [62], LZW [57],

Bisection [28], longest match [27] and Re-Pair [33].

3 HB-RACES IN COMPRESSED TRACES

In this section, we will present our algorithm for detectingHB-races

in compressed traces represented by SLPs. The algorithm’s running

time will be linear in the size of the SLP (as opposed to algorithms

analyzing uncompressed traces with running times at least linear

• e

• ej

t

•ej+1

•e′

(1)

• e

⌣ℓej

t t ′

⌢ej+1
ℓ

•e′

(2)

• e

•ej fork(t ′)

t t ′

•ej+1

•e′

(3)

•e

• ej

t ′t

•ej+1 join(t ′)

• e′

(4)

-

B

-

-

C

-

-

A

-

Figure 4: Illustrating the various scenarios that establish ej <BC
HB

ej+1. In (2), ‘⌢ ℓ’ represents acq(ℓ), ‘⌣ ℓ’ is rel(ℓ).

in the size of the uncompressed trace). While it is very different

from the classical vector clock algorithm, it is similar in flavor to

the Goldilocks Algorithm.

3.1 Detecting Cross-Races

Our algorithm will proceed inductively. Starting from the non-

terminals of largest rank, we will proceed to determine for each

non-terminalA, whether there is an HB-race amongst the events in

the chunk thatA generates. In other words, for each non-terminalA,

we will determine the predicate Race?(A) which is true if and only

if there is an HB-race between events in JAK. For a non-terminal

A, whose (only) rule is of the form A → a, where a is an event,

Race?(A) is clearly false, because JAK, in this case, has only one

event.

Let us now consider the case when the rule corresponding to A

has the form A→ BC , where B and C are non-terminals of higher

rank. If there is a race in chunk JAK between events (say) e and e ′,

then it is one of two kinds. The first case is when e and e ′ both

belong to chunk JBK or both belong to chunk JCK. The existence
of such races can be determined by computing (inductively) the

predicates Race?(B) and Race?(C). The other possibility is that

e ∈ JBK while e ′ ∈ JCK. How we discover the presence of such

cross-races, is the main challenge we need to overcome.

Consider two events e, e ′ such that e ∈ JBK and e ′ ∈ JCK. Suppose

e ≤BC
HB

e ′. Then, there is a sequence e = e1, e2, . . . en = e ′ that

satisfies the conditions in Definition 2.2. Thus, for 1 ≤ i ≤ n− 1, we

have the trace order ei <
BC
tr ei+1. Also, e = e1 ∈ JBK, and en = e ′ ∈

JCK. This means that there exists j such that for all i ≤ j, ei ∈ JBK,
and for all i ≥ j + 1, ei ∈ JCK. In other words, (ej , ej+1) is how

the sequence e1, . . . en łcrossesž the B-C boundary (see Figure 4).

Observe that we have e = e1 ≤
B
HB

ej and ej+1 ≤
C
HB

en = e ′. It is

important to note that the relationship between e and ej (and ej+1
and e ′) only depends on the events in chunk JBK (JCK). Depending
on which of the conditions (1), (2), (3), and (4) of Definition 2.2

hold for the pair (ej , ej+1), we have one of the following: either ej
and ej+1 are events of the same thread, or ej is a release event and

ej+1 is an acquire event on the same lock, or ej is a fork event and

ej+1 is an event of the child thread, or ej is a join event and ej+1
is an event of the parent thread. These scenarios are illustrated in

Figure 4. Thus, if an event e ∈ B happens-before an event e ′ ∈ C

then there is a common thread or a common lock through which the

30

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA Dileep Kini, Umang Mathur, and Mahesh Viswanathan

ordering is łcommunicatedž across the B-C boundary. The converse

of this observation is also true. We now make this intuition precise.

For a trace σ , and event e ∈ σ , recall the function Afterσ :

Afterσ (e) = {t ∈ Threads(σ) | ∃e
′
= ⟨t : o⟩. e ≤σ

HB
e ′}

∪ {t ∈ Threads(σ) | ∃e ′ = ⟨t ′ : fork(t)⟩. e ≤σ
HB

e ′}

∪ {ℓ ∈ Locks(σ) | ∃e ′ = ⟨t : rel(ℓ)⟩. e ≤σ
HB

e ′}

We can, dually, define the set of locks/threads that have an event

HB-before e in σ .

Beforeσ (e) ={t ∈ Threads(σ) | ∃e
′
= ⟨t : o⟩. e ′ ≤σ

HB
e}

∪ {t ∈ Threads(σ) | ∃e ′ = ⟨t ′ : join(t)⟩. e ′ ≤σ
HB

e}

∪ {ℓ ∈ Locks(σ) | ∃e ′ = ⟨t : acq(ℓ)⟩. e ′ ≤σ
HB

e}

The main observation that underlies the algorithm is that After and

Before sets can be used to discover HB ordering between events

across chunks.

Lemma 3.1. Consider events e ∈ JBK and e ′ ∈ JCK. e ≤BC
HB

e ′ iff

AfterB (e) ∩ BeforeC (e
′) , ∅.

Lemma 3.1 suggests that cross races in chunk BC can be discov-

ered by maintaining the after and before sets of data access events.

However, we don’t need to maintain these sets for all access events;

instead, we can do it only for the first and last events. This is the

content of the next lemma.

Lemma 3.2. If there is no HB-race in JBK or in JCK, and if there

is an HB-race between events e ∈ JBK and e ′ ∈ JCK then, there is an

HB-race between laste
B
and firste

′

C
, where

lasteB =

{

LastB (REventsB (t ,x)) if e = ⟨t : r(x)⟩

LastB (WEventsB (x)) if e = ⟨t : w(x)⟩

and

firste
′

C =

{

FirstC (REventsC (t ,x)) if e ′ = ⟨t ′ : r(x)⟩

FirstC (WEventsC (x)) if e ′ = ⟨t ′ : w(x)⟩

Lemma 3.2 suggests that in order to check for cross races, it is

enough to inductively maintain the after sets of the last read/write

events and the before sets of the first read/write events of each

variable and thread. We will denote these sets by ALRd, ALWr,

BFRd and BFWr. Formally,

ALRdD (t ,x) = AfterD (LastD (REventsD (t ,x)))

ALWrD (x) = AfterD (LastD (WEventsD (x)))

BFRdD (t ,x) = BeforeD (FirstD (REventsD (t ,x)))

BFWrD (x) = BeforeD (FirstD (WEventsD (x)))

(1)

where we set both AfterD (undefined) and BeforeD (undefined) to

be ∅.

Based on all of these observations we can conclude that for a

non-terminal A with rule A→ BC , we have,

Race?(A) = Race?(B) ∨ Race?(C)∨
∨

x ∈Wr(B)∩Wr(C) ALWrB (x) ∩ BFWrC (x) = ∅
∨

x ∈Wr(B), (t,x)∈Rd(C) ALWrB (x) ∩ BFRdC (t ,x) = ∅
∨

(t,x)∈Rd(B),x ∈Wr(C) ALRdB (t ,x) ∩ BFWrC (x) = ∅

(2)

Thus, our race detection algorithm will be complete if we can

effectively compute the sets ALRdB (t ,x), ALWrB (x), BFRdC (t ,x),

and BFWrC (x). We embark on this challenge in the next section.

Next we state the correctness of the Race? predicate.

Theorem 3.3. For any non-terminal A, Race?(A) = true if and

only if there are events e1, e2 ∈ JAK such that e1 ≍ e2 and e1 | |HBe2.

Example 3.4. Let us illustrate the ideas presented in this section

through some examples. We will consider traces σ1 and its SLP in

Figure 2, and σ2 with its SLP in Figure 3.

We begin by giving examples of Before and After sets.

AfterE (e1) = {1, 2} AfterC (e1) = {1, 2, ℓ}

BeforeG (e16) = {1, 2} BeforeB (e16) = {1, 2, ℓ}

AfterW (e1) = {1} AfterU (e1) = {1, 2, ℓ}

BeforeX (e3) = {1} BeforeU (e3) = {1, ℓ}

Let us highlight the significant aspects of these examples. 2 ∈

AfterE (e1) because of e2 = ⟨1 : fork(2)⟩ and ℓ ∈ AfterC (e1) be-

cause of event e6 = ⟨2 : rel(ℓ)⟩. On the other hand, ℓ < AfterW (e1)

because there is no rel(ℓ) event in chunk JW K (of σ2). But when
considering the chunk JU K (of σ2), we have ℓ ∈ AfterW (e1) because

of the event e4 = ⟨1 : rel(ℓ)⟩. Next, 2 ∈ BeforeG (e16) because of

the join event e15, and ℓ ∈ BeforeB (e16) because of acquire event

e12. In trace σ2, ℓ ∈ BeforeU (e3) because of acquire event e2.

Now let us consider the computation of cross-races for the

chunks in Figure 2. For M ∈ {D,E, F ,G}, it is easy to see that

Race?(M) = false, because each of these chunks only contain events

of one thread. Let us look at the interesting pairs of events we con-

sidered in Example 2.3. The absence of race between e1 and e3 can

be seen because ALWrE (x) = {1, 2} and BFRdF (2,x) = {2}, both

of which have the thread 2 in common, and thus the intersection

ALWrE (x) ∩ BFRdF (x) is non-empty. In fact, what this reason-

ing demonstrates is that there is no race between any w(x)-event

in E and any r(x)-event in F . Similarly, the absence of a race be-

tween e13 and e16 can be seen because ALWrF (y) ∩ BFRdG (1,y)

= {2, ℓ} ∩ {1, 2} = {2} , ∅. To reason about the events e5 and e10,

observe that ALWrF (y) = {2, ℓ} and BFWrD (y) = {1, ℓ}, both of

which have the ℓ in common. Thus, we can conclude there is no

race between any pair of w(y)-events crossing the chunk FD.

Our reasoning also reveals the existence ofHB-concurrent events.

For example, ALRdF (2,x) = {2, ℓ}, and BFRdD (1,x) = {1}. Since

these sets are disjoint, it reveals that there are a pair of r(x)-events

(namely, e3 and e7) that are HB-concurrent; it is not a HB-race

because these events are not conflicting (none of e3 and e7 is a

write event). The race between e10 and e13 can be seen as follows.

ALWrA (y) = {1}, and BFWrB (y) = {2, ℓ}. We can see that there is

a cross race in chunk AB, because these two sets are disjoint.

3.2 Computing Before and After Sets

Our discussion in Section 3.1 suggests that if we manage to in-

ductively compute the sets ALRd, ALWr, BFRd, and BFWr (Equa-

tion (1)) for each chunk in the grammar, thenwe can use Equation (2)

to determine if a chunk has a race. In this section we present such

an inductive computation for these sets. We will only describe the

computation of sets ALRd and BFRd. The computation of the sets

ALWr and BFWr is similar and is presented in [30].

The base case for non-terminals with rule A → a, where a is

an event, is straightforward. To conserve space, this definition is

skipped here, but presented in [30]. So we focus on the inductive

step when we have a non-terminal with rule A→ BC .

31

Data Race Detection on Compressed Traces ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

First consider the case of ALRdA (t ,x), which is equal to the

set AfterA (e), where e is the last event amongst the read events

REventsA (t ,x). If variable x is never read by thread t in the chunk

A (i.e., REventsA (t ,x) = ∅), we will have ALRdA (t ,x) = ∅. Oth-

erwise, depending upon where the last read event e occurs in

the chunk JAK, we have two cases to consider. In the first case,

this last read event e belongs to the chunk JCK. In this, clearly,

e = LastA (REventsA (t ,x)). Observe that since {e
′ | e ≤C

HB
e ′} =

{e ′ | e ≤A
HB

e ′}, we have AfterA (e) = AfterC (e). Thus, in this

case, ALRdA (t ,x) = ALRdC (t ,x). The interesting case is when

REventsC (t ,x) is empty and REventsB (t ,x) , ∅, i.e., the last read

event e belongs to the chunk B. Since {e ′ ∈ JBK | e ≤B
HB

e ′} ⊆

{e ′ ∈ JAK | e ≤A
HB

e ′}, we have AfterB (e) ⊆ AfterA (e). Consider

e ′ ∈ JCK such that e ≤A
HB

e ′. As in the discussion on cross-races

in Section 3.1, this means there is a pair of events e1 ∈ JBK and

e2 ∈ JCK such that e ≤B
HB

e1, e2 ≤
C
HB

e ′, and either (1) e1, e2 are

events of the same thread, or (2) e1 is a fork event and e2 is an event

of the child thread, or (3) e1 is an event of a child thread and e2 is a

join event, or (4) e1 is a release event and e2 is an acquire event on

the same lock. In each of these cases, e1 witnesses the membership

of some thread/lock u in AfterB (e), and e ′ is HB-after the łfirstž

event (namely e2) of u in chunk C . The definition of what it means

for an event to be łafterž the łfirstž event of a thread/locku is subtle,

and is key in accurately capturing the intuitions just outlined.

For a non-terminal D and thread t , define

AFD (t) = AfterD (FirstD (ThEvents
join
D

(t))) (3)

where ThEvents
join
D

(t) = {e ∈ D | e = ⟨t : o⟩ or e = ⟨t ′ : join(t)⟩}.

Similarly, for a lock ℓ, define

AFD (ℓ) = AfterD (FirstD (AcqEventsD (ℓ))) (4)

where AcqEventsD (ℓ) is the set {e ∈ D | e = ⟨t : acq(ℓ)⟩}. As before,

we set AfterD (undefined) = ∅.

We now formalize our intuitions in the following lemma.

Lemma 3.5. Let A be a non-terminal with rule A → BC and let

e ∈ JBK. Then

AfterA (e) = AfterB (e) ∪
⋃

u ∈AfterB (e)

AFC (u)

The proof of Lemma 3.5 is in our technical report [30]. Its state-

ment gives us the following inductive definition for ALRdA (t ,x).

ALRdA (t ,x) =

ALRdC (t ,x) if ALRdC (t ,x) , ∅

ALRdB (t ,x)∪ otherwise
⋃

u ∈ALRdB (t,x)
AFC (u)

(5)

Notice that the second expression is ∅ if ALRdB (t ,x) = ∅.

To complete the formal definition of ALRdA (x), we need to give

an inductive definition for the sets AF. Again defining AFA for

A → a is straightforward and is deferred to [30]. Consider the

inductive step, of a non-terminal A with rule A → BC and let t

be some thread. If FirstA (ThEvents
join
A

(t)) ∈ JBK then Lemma 3.5

forms the basis of our definition. However, it is possible that the set

ThEvents
join
B

(t) is empty, while FirstA (ThEvents
join
A

(t)) ∈ JCK. In

this case, AFA (t) = AFC (t). A similar reasoning applies for a lock

ℓ as well. Putting all these observations together, we get

AFA (u) = AFB (u) ∪
⋃

u′∈{u }∪AFB (u)

AFC (u
′) (6)

Let us now discuss the inductive definition of the set BFRdA (t ,x)

for thread t and variable x . As before, the first event e ∈ JAK of the
kind ⟨t : r(x)⟩ can either belong to JBK or to JCK. In the former case,

we have BeforeA (e) = BeforeB (e). On the other hand, if e ∈ JCK,
in a manner similar to the case for AfterB (e), we need to łcomposež

BeforeC (e) with the łbeforež sets associated with the last events of

threads/locks in chunk B.

For a non-terminal D, thread t and lock ℓ,

BLD (t) = BeforeD (LastD (ThEventsforkD (t))) (7)

BLD (ℓ) = BeforeD (LastD (RelEventsD (ℓ))) (8)

where ThEventsfork
D

(t) = {e ∈ D | e = ⟨t : o⟩ or e = ⟨t ′ : fork(t)⟩}

and RelEventsD (ℓ) = {e ∈ D | e = ⟨t : rel(ℓ)⟩}.

The dual of Lemma 3.5 is the following lemma.

Lemma 3.6. Let A be a non-terminal with rule A → BC and let

e ∈ JCK. Then

BeforeA (e) = BeforeC (e) ∪
⋃

u ∈BeforeC (e)

BLB (u)

Using Lemma 3.6, the inductive definition of BFRdA (t ,x) is

BFRdA (t ,x) =

BFRdB (t ,x) if BFRdB (t ,x) , ∅

BFRdC (t ,x)∪ otherwise
⋃

u ∈BFRdC (t,x)
BLB (u)

(9)

To complete the algorithm, we need to give the inductive def-

inition of BLA (u) for thread/lock u. Again the interesting case is

the inductive case of a non-terminal Awith rule A→ BC . A similar

reasoning as in the case of AF sets gives the following definition.

BLA (u) = BLC (u) ∪
⋃

u′∈{u }∪BLC (u)

BLB (u
′)

This completes the description of the HB-algorithm on compressed

traces. Its correctness is proved in [30]. For a trace σ compressed as

an SLP of size д, this algorithm runs in time O (д(T + L)2 (L +TV))

and uses space O (д(T + L) (L +TV)), where T , L and V denote the

number of threads, locks and variables in σ .

Example 3.7. We conclude this section by showing that the before

and after sets given in Example 3.4 are computed correctly using

our inductive characterization. We will focus on trace σ1 and its SLP

grammar in Figure 2. Let us consider the computation of ALWrC (x).

Observe that the last w(x)-event in C is e1. Further,

ALWrE (x) = {1, 2} AFF (1) = ∅ AFF (2) = {2, ℓ}

Here AFF (1) = ∅ because there is no event of thread 1 in F . Using

the inductive definition similar to Equation (5), we get ALWrC (x) =

{1, 2, ℓ} which is correct.

Next, consider the computation BFWrB (y). Notice that the first

w(y)-event in B is e13, which is in the chunk F . This immediately

gives BFWrB (y) = BFWrF (y) = {2, ℓ} using a characterization

similar to Equation (9).

32

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA Dileep Kini, Umang Mathur, and Mahesh Viswanathan

t

• e1

⌢ℓ1

• e2

⌣ℓ1

⌣ℓ2

(1)

t

⌢ℓ1

⌢ℓ2

• e1

⌣ℓ1

• e2

(2)

ℓ1 ∈ LocksHeldA (e1), ℓ2 ∈ LocksHeldA (e1)

ℓ1 < LocksHeldA (e2), ℓ2 ∈ LocksHeldA (e2)

t

• e3

⌢ℓ3

⌣ℓ3

⌣ℓ3

(3)

t

⌢ℓ3

⌢ℓ3

⌣ℓ3

• e3

(4)

ℓ3 ∈ LocksHeldA (e3)

-

B

-

-

C

-

-

A

-

Figure 5: Unmatched acquire/release events protect all the events

of the same thread in the neighboring chunk when not matched

in the entire chunk ((1) and (2)). Re-entrant locks protect the neigh-

boring chunkwhen the outermost unmatched acquire/release is un-

matched ((3) and (4)). ‘⌢ ℓi ’ represents acq(ℓi), ‘⌣ ℓi ’ is rel(ℓi).

4 LOCKSET ALGORITHM FOR COMPRESSED
TRACES

Similar to our algorithm for detecting HB-races on compressed

traces, we will formulate an algorithm for detecting violations of

the lockset discipline on SLPs in an inductive fashion. The challenge

here again is similar Ð violations occurring inside a chunk JBK are
also violations of any other chunk that contains JBK, and detecting

łcrossž violations is, therefore, the key challenge. In this section, we

will outline these ideas in detail.

4.1 Cross Violations

Recall that, for a thread t and variable x , LockSetσ (t ,x) is the set

of all the locks (including the dummy locks inD) that protect every

access event of x performed by t , in σ .

In this section, we show how to compute LockSetA (t ,x) for every

non-terminal A and for every pair (t ,x) of thread and variable, by

inducting on the non-terminals in decreasing order of their rank.

Checking if ∩t ∈ThreadsALockSetA (t ,x) = ∅ then follows easily.

The base case for non-terminals with rule A→ a is straightfor-

ward, and is presented in [30]. Now consider the inductive step

for non-terminals having rules of the form A → BC . To under-

stand what LockSetA (t ,x) will be, it is useful to examine what

LocksHeldA (e) for an event e looks like. Consider a data access

event e ∈ JBK performed by thread t . Clearly, LocksHeldB (e) ⊆

LocksHeldA (e). But are they equal? The answer turns out to be no.

Suppose a lock ℓ which is released in JCK by thread t but does not

have a matching acquire in JAK (and hence, neither in JBK). Such a

lock ℓ will protect all the events performed before it in JAK. Thus
trivially, it will enclose all the events performed by t in chunk JBK.
As a consequence, ℓ must be included in the set LocksHeldA (e) for

every event e ∈ B ↾t . Lock ℓ2 in Figure 5(1) illustrates this. Similarly,

for an event e ∈ JCK performed by thread t , the set LocksHeldA (e)

must additionally include locks which have been acquired by thread

t in JBK but have not been matched in JAK (see lock ℓ2 in Figure 5(2)).
However, one must be careful. A lock ℓ which was released by t inC

(at event erel(ℓ)) and whose matching acquire is in B (event eacq(ℓ)),

does not affect the locks held by any event in B Ð for those events

e ∈ B ↾t which were after eacq(ℓ) , ℓ was already in LocksHeldB (e),

while for the events e before eacq(ℓ) , ℓ does not anyway protect e ,

and thus ℓ < LocksHeldB (e). This is illustrated through lock ℓ1 in

Figure 5 [(1) and (2)].

In the presence of re-entrant locks, we need to account for an-

other fact. Since locks can be acquired and released multiple times,

a lock that is released more times in C (by thread t) than it is ac-

quired in B (by thread t) will protect all events of t in B, because

the outermost release is still unmatched in A. The same holds for

locks that have been acquired more times than they are released in

C . Both these scenarios are shown in Figure 5 [(3) and (4)].

To formalize the above notions, we will now introduce some

notation. For a non-terminal D, let us first define the number of

unmatched acquire events of lock ℓ in thread t as

OpenAcqD (t , ℓ) = |{e = ⟨t : acq(ℓ)⟩ ∈ D | match(e) < JDK}| (10)

and the number of release events as

OpenRelD (t , ℓ) = |{e = ⟨t : rel(ℓ)⟩ ∈ D | match(e) < JDK}| (11)

Our intuitions, as discussed above, can then be captured for the

more complex case of re-entrant locks as follows.

Lemma 4.1. Let A be a non-terminal with rule A → BC . Let e ∈

B ↾t and e
′ ∈ C ↾t ′ be read/write events performed by threads t , t ′.

Then,
LocksHeldA (e) = LocksHeldB (e)

∪{ℓ | OpenRelC (t , ℓ) > OpenAcqB (t , ℓ)}

LocksHeldA (e
′) = LocksHeldC (e

′)

∪{ℓ | OpenAcqB (t
′, ℓ) > OpenRelC (t

′, ℓ)}

Building on Lemma 4.1, we can now state the inductive definition

of LockSet in terms of OpenAcq and OpenRel.

LockSetA (t ,x)

=

(

LockSetB (t ,x) ∪ {ℓ | OpenRelC (t , ℓ) > OpenAcqB (t , ℓ)}
)

∩
(

LockSetC (t ,x) ∪ {ℓ | OpenAcqB (t
′, ℓ) > OpenRelC (t

′, ℓ)}
)

(12)

The base case for computing LockSetA (t ,x) (see [30]).

Example 4.2. Consider the SLP for σ2 from Figure 3. OpenAcq

and OpenRel for various non-terminals is given below.

OpenAcqW (1, ℓ) = 1 OpenRelX (1, ℓ) = 1

OpenAcqX (2, ℓ) = 1 OpenRelZ (2, ℓ) = 1

OpenAcqU (2, ℓ) = 1 OpenRelV (2, ℓ) = 1.

The values for all other combinations are 0. Note how the un-

matched acquire inW and the unmatched release in X on thread 1

getmatched in the concatenated chunkU , givingOpenAcqU (1, ℓ) =

OpenRelU (1, ℓ) = 0. This is essentially the insight we will explore

in Section 4.2 to inductively define OpenAcq and OpenRel.

Let us now see how LockSet computation takes place. First,

LockSetW (1,x) = {Λ,Λ1} since the only event of x inW is a read

by thread 1. Also, LockSetX (1,y) = {ℓ,Λ1} as e3 is protected by the

(unmatched) release e4 in X . In chunk Y , LockSetY (2,x) = {Λ,Λ2}

and LockSetY (2,y) = {Λ2}; interestingly, the locksets for Y does

not reveal that both e6 and e7 are enclosed within the critical section

of lock ℓ. On the other hand, using the inductive formulation dis-

cussed above, we can infer that LockSetV (2,y) = (LockSetY (2,y)∪

33

Data Race Detection on Compressed Traces ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

{ℓ}) ∩ ⊤ which evaluates to {Λ2, ℓ} as expected. The universal

set ⊤ is described in [30]. Again, the lock ℓ does not appear in

LockSetU (1,x) eventhough it is unmatched in X , because it gets

matched with e2 inW . This also follows from the inductive defini-

tion of LockSetU (1,x).

Given Equation (12), our inductive formulation will be com-

plete once we can inductively compute the functions OpenAcq and

OpenRel. We describe this next.

4.2 Computing OpenAcq and OpenRel

The base case for non-terminals having rules of the form A →

a is straightforward and can be found in [30]. In the inductive

case we have a non-terminal A with production rule of the form

A → BC . For this case, let us first attempt to characterize the

acquire events in JAK that have not been matched. Notice that if a

lock is acquired (without a matching release) in the chunk JCK, it
would remain unmatched in the bigger chunk JAK. In addition, the

unmatched acquire events acquired in JBK whose matching release

is not present in JCK will also contribute to the unmatched acquire

events in JAK. This reasoning is formalized below.

OpenAcqA (t , ℓ) = OpenAcqC (t , ℓ)

+ max{0,OpenAcqB (t , ℓ) −OpenRelC (t , ℓ)}
(13)

Notice the use of the max operator in Equation (13). If the quantity

OpenAcqB (t , ℓ) − OpenRelC (t , ℓ) is negative, then there are more

unmatched rel(ℓ)-events inC ↾t , which should be accounted for in

OpenRelA (t , ℓ), instead of affecting the contribution of JCK towards
the unmatched acquire events of A↾t .

Similar reasoning gives the inductive formulation for OpenRel

OpenRelA (t , ℓ) = OpenRelB (t , ℓ)

+ max{0,OpenRelC (t , ℓ) −OpenAcqB (t , ℓ)}
(14)

This completes the description of our algorithm for computing lock-

sets and checking violations of lockset discipline for compressed

traces. For a trace σ compressed as an SLP of size д, this algorithm

runs in time O (дTL(log r +V)) and uses space O (дTL(log r +V)),

where T , L and V are the number of threads, locks and variables

respectively in σ , and r denotes the maximum number of times a

thread acquires a lock without releasing it in σ .

5 EVALUATION

In order to gauge the effect of compression on the size of traces, and

the subsequent effect on time taken to analyze these compressed

traces for races, we conducted experiments on a large variety of

benchmarks and evaluated our algorithms empirically. In this sec-

tion, we describe the details of our implementation and experimen-

tal setup, and analyze the results of these experiments.

5.1 Implementation and Setup

Implementation. Our algorithms for detecting races on com-

pressed traces, discussed in Section 3 and Section 4 have been

implemented in our tool ZipTrack, which is publicly available

at [4]. ZipTrack is written primarily in Java and analyzes traces

generated by Java programs. ZipTrack firsts collects trace logs as

sequence of events, which include read/write to memory locations,

acquire/release of locks, and join/fork of threads. For this, we use

the logging library provided by the commercial tool RVPredict [1].

After having generated the trace logs, ZipTrack calls the Sequitur

algorithm (available at [2]) to compress these traces as straight line

programs (see Section 2). ZipTrack then analyzes these SLPs to

detect the presence of HB races and lockset discipline violations.

Optimizations. The SLPs generated using the Sequitur algorithm

are not strictly CNF grammars; production rules in the grammar can

have length > 2 as well. This is similar to the grammar shown in Fig-

ure 2, where both the non-terminals F and D have production rules

of length 4. For detecting an HB-race on SLPs, ZipTrack employs

the following optimizations that rely on existence of such long pro-

duction rules. For a rule of the formA→ a1a2 · · ·ak , where each of

a1, . . . ak are terminals, our tool ZipTrack uses a slight modifica-

tion of the basic HB vector clock algorithm and uses the vector clock

values to (i) determine if Race?(A) holds, and (ii) compute the vari-

ous sets associated with A (such as ALRdA, BFRdA, etc.). Next, for

production rules where the right hand side has both terminals and

non-terminals and has long contiguous sequences (or substrings)

of terminals, we introduce new production rules in the grammar,

with fresh non-terminals corresponding to these long sequences.

For example, for a rule of the form A→ b1 · · ·bkCd1 · · ·dm , where

bi s and di s are terminals, we will introduce two new non-terminals

B and D, with production rules B → b1 · · ·bk and D → d1 · · ·dk ,

and replace the production rule of A by A→ BCD. This allows us

to better exploit the vector-clock optimization.

Setup and Benchmarks. Our experiments were conducted on an

8-core 2.6GHz 64-bit Intel Xeon(R) Linux machine, with 30GB heap

space. To compare against Happens-Before and LockSet based anal-

ysis on uncompressed traces, we use RAPID [3], which implements

the standard Djit+ [43] vector clock algorithm, epoch optimiza-

tions like in FastTrack [20], the Goldilocks algorithm [12], and

Eraser’s lockset algorithm [49], as described in [43]. Our evalua-

tion benchmarks (Column 1 in Table 1) are carefully chosen with

the goal of being comprehensive, and have been primarily derived

from [24]. The first set of small-sized (LOC ∼ 50-300) benchmarks

(account to pingpong) is derived from the IBM Contest benchmark

suite [15]. The second set of medium sized (LOC ∼ 3K) benchmarks

(moldyn to raytracer) is derived from the Java Grande Forum bench-

mark suite [52]. The third set (derby to xalan) of benchmarks (LOC

∼ 30K-500K) comes from the DaCaPo benchmark suite (version

9.12) [8] and large real world software including Apache FTPServer,

W3C Jigsaw web server and Apache Derby. Columns 3, 4 and 5 in

Table 1 report the number of threads, locks and variables in the

traces generated from the corresponding programs in Column 1.

5.2 Results

Compression Ratio. To analyze the effect of compression on the

size of traces, consider the compression ratios (ratio of the size

of the original trace and the size of the grammar representation)

shown in Column 7 in Table 1. The compression ratios are not

significant for the small and medium sized benchmarks, barring

boundedbuffer (compression ratio = 1.74), moldyn (compression

ratio = 1.86) and the most notable bufwriter (compression ratio

34

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA Dileep Kini, Umang Mathur, and Mahesh Viswanathan

Table 1: Columns 1-5 describe the benchmarks and traces. Columns 6 and 7 describe the size of the compressed traces and

the compression ratios achieved. Columns 8-10 describe the performance of various HB-race detection algorithms on uncom-

pressed traces. Column 11-12 reports the performance of ZipTrack’s HB race detection on compressed traces and the resulting

speedup achieved. Column 13, 14 and 15 report the performance of respectively Eraser’s lockset algorithm on uncompressed

traces, ZipTrack’s performance on compressed traces, and the resulting speedup achieved.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Memory Grammar Compr. HB (ms) LockSet (ms)

Program Events Threads Locks Loc. Size Ratio Djit+ F.Track Goldi. Compr. Speedup Eraser Compr. Speedup

account 130 4 3 41 107 1.21 6 5 4 4 1 3 3 1

airline 137 4 0 44 132 1.04 8 4 5 6 0.67 2 1 2

array 47 3 2 30 47 1 5 4 4 3 1.33 3 1 3

boundedbuffer 337 2 2 63 194 1.74 8 8 2 18 0.11 3 2 1.5

bubblesort 4.2K 10 2 167 3.3K 1.29 14 13 12 92 0.13 2 4 0.5

bufwriter 11.8M 6 1 56 293 40238 20s 15.5s 36.3s 6 2600 1 4 0.25

critical 55 4 0 30 55 1 3 4 3 5 0.6 2 1 2

mergesort 3028 5 3 621 2795 1.08 5 7 5 13 0.38 3 6 0.5

pingpong 146 4 0 51 135 1.08 10 9 9 3 3 2 1 2

moldyn 164K 3 2 1197 88K 1.86 53 60 57 6 8.83 2 2 1

montecarlo 7.2M 3 3 876K 6.1M 1.18 317 271 302 87 3.11 300 1 300

raytracer 16.2K 3 8 3879 14.6K 1.11 58 32 32 315 0.1 25 133 0.19

derby 1.3M 4 1112 186K 735K 1.83 1006 1011 26s 592 1.7 848 <1 >1000

eclipse 90.6M 19 8300 11.2M 42.5M 2.13 34.6s 31.5s 3776s 17.4s 1.8 21737 1 21737

ftpserver 49K 11 301 5461 30K 2.13 49 44 91 23 1.9 34 1 34

jigsaw 3M 13 280 103K 908K 3.37 2432 2309 1888 195 9.7 12 4 3

lusearch 216M 7 118 5.2M 66.6K 3.25 1392 968 700 7 100 814 2 407

xalan 122M 6 2491 4.4M 71M 1.7 5183 3008 3709 109 27.6 2779 1 2779

> 40,000). The compression ratios for the large benchmarks are

impressive; as large as 3.25. This can be attributed to the fact that

in large executions, the large amount of redundancies make them

amenable to larger compression. Despite smaller lines of code in

the source code of bufwriter, the size of the execution observed is

quite large, and thus the excellent compression ratio.

HB race detection. Columns 8, 9 and 10 in Table 1 represent the

time taken to detect the presence of an HB race by respectively,

Djit+, FastTrack and Goldilocks. Column 11 denotes the time

taken by our HB race detection algorithm for analyzing the traces

compressed as SLPs and Column 12 reports the speedup achieved

over the best of the three values in Columns 8, 9 and 10.

First, in the smaller examples (account - pingpong), the speed-

up is not significant for most examples. This can be attributed to

the low compression ratios, and significant initial set-up times. In

particular, the bubblesort example has a significant slow-down. One

noteworthy small example that shows the power of compression is

bufwriter where the compression ratio and the resulting speedup

for race detection is very high (> 2500x).

For the medium sized examples, the compression ratios range in

1.1 − 1.86. The speedup for moldyn and montecarlo is about 3 − 8x,

while for raytracer, we encounter a large slowdown. A possible

explanation for the degraded performance in both bubblesort and

raytracer is that, while the first race pair (e1, e2) occurs very early

in the uncompressed trace, the SLP generated is such that, in order

to discover any race, the entire grammar needs to be processed.

The performance improvements for the large benchmarks are

noteworthy and the speed ups shoot to the order of 100x. The Fast-

Track vector clock algorithm [20] is the gold standard for detecting

HB races, and our evaluation indicates that analysis on compressed

traces beats the advantages offered by vector-clocks and further

epoch-like optimizations. In fact our algorithm is, in spirit, closer to

the Goldilocks algorithm, for which the performance degradation

deeply intensifies on larger benchmarks (also noted before in [20]).

The speedups (over FastTrack) achieved by our approach, despite

this similarity, must be attributed to the non-trivial compression

ratios achieved. Overall, the average speed-up is about 2.9x over

FastTrack, and around 200x over the Goldilocks algorithm.

Lockset violation detection. Columns 13 and 14 denote the time

for detecting lockset violations on uncompressed and compressed

traces respectively. Since, the compression on smaller examples

is not large, we can observe that the speedup in such examples is

not extraordinary. However, there is little or almost no slowdown.

For the medium and large examples, ZipTrack detects violations

of lockset discipline on compressed traces much faster than on

uncompressed traces. In fact, the speed-ups shoot upto more than

20, 000x, and the time taken is almost always of the order of a

few milliseconds. The average speed-up achieved over the Eraser

algorithm is around 173x.

Clearly, these large real-world examples illustrate the benefit of

compression; compression can be leveraged not only for smaller

storage spaces, but also for a more efficient race detection analysis.

6 CONCLUSIONS

We considered the problem of detecting races in traces compressed

by SLPs. We presented algorithms that detect HB-races and viola-

tions of the lockset discipline in time that is linear in the size of

the compressed traces. Experimental evaluation of our implemen-

tation of these algorithms in the tool ZipTrack, demonstrated that

analyzing compressed traces can lead to significant speedups.

ACKNOWLEDGMENTS

We gratefully acknowledge National Science Foundation for sup-

porting Umang Mathur (grant NSF CSR 1422798) and Mahesh

Viswanathan (NSF CPS 1329991).

35

Data Race Detection on Compressed Traces ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] 2017. RV-Predict, Runtime Verification. https://runtimeverification.com/predict/.

Accessed: 2017-11-01.
[2] 2017. Sequitur: Inferring Hierarchies From Sequences. http://www.sequitur.info/.

Accessed: 2017-08-01.
[3] 2018. RAPID: Dynamic Analysis for Concurrent Programs. https://github.com/

umangm/rapid. Accessed: July 30, 2018.
[4] 2018. ZipTrack: Race Detection on Compressed Traces. https://github.com/

umangm/ziptrack. Accessed: July 30, 2018.
[5] M. Abadi, C. Flanagan, and S.N. Freund. 2006. Types for safe locking: Static race

detection for Java. ACM Transactions on Programming Languages and Systems 28,
2 (2006), 207ś255.

[6] J.L. Balcázar. 1996. The complexity of searching implicit graphs. Artificial
Intelligence 86, 1 (1996), 171ś188.

[7] Swarnendu Biswas, Jipeng Huang, Aritra Sengupta, and Michael D. Bond. 2014.
DoubleChecker: Efficient Sound and Precise Atomicity Checking. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 28ś39.

[8] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frmpton, S.Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J.E.B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proceedings of the ACM SIGPLA Conference on
Object-Oriented Programming Systems, Languages, and Applications. 169ś190.

[9] C. Boyapati, R. Lee, and M. Rinard. 2002. Ownership types for safe programming:
Preventing data races and deadlocks. In Proceedings of the ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Lanaguages, and Applications.
211ś230.

[10] G.-I. Cheng, M. Feng, C.E. Leiserson, K.H. Randall, and A.F. Stark. 1998. De-
tecting Data Races in Cilk Programs That Use Locks. In Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures. 298ś309.

[11] B. Das, P. Scharpfenecker, and J. Torán. 2014. Succinct encodings of graph
isomorphism. In Proceedings of the Internation Conference on Languages and
Automata Theory and Applications. 285ś296.

[12] T. Elmas, S. Qadeer, and S. Tasiran. 2007. Goldilocks: A Race and Transaction-
aware Java Runtime. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. 245ś255.

[13] D. Engler and K. Ashcraft. 2003. RacerX: Effective, static detection of race
conditions and deadlocks. In Proceedings of the ACM Symposium on Operating
Systems Principles. 237ś252.

[14] M. Eslamimehr and J. Palsberg. 2014. Sherlock: Scalable deadlock detection for
concurrent programs. In Proceedings of the ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. 353ś365.

[15] E. Farchi, Y. Nir, and S. Ur. 2003. Concurrent Bug Patterns and How to Test
Them. In Proceedings of the International Symposium on Parallel and Distributed
Processing.

[16] J. Feigenbaum, S. Kannan, M.Y. Vardi, and M. Viswanathan. 1998. Complexity
of Problems on Graphs Represented as OBDDs. In Proceedings of the Annual
Symposium on Theoretical Aspects of Computer Science. 216ś226.

[17] M. Feng and C.E. Leiserson. 1997. Efficient Detection of Determinacy Races in
Cilk Programs. In Proceedings of the ACM Symposium on Parallel Algorithms and
Architectures. 1ś11.

[18] C.J. Fidge. 1988. Timestamps in message-passing systems that preserve the partial
ordering. In Proceedings of the Australian Computer Science Conference. 56ś66.

[19] C. Flanagan and S.N. Freund. 2000. Type-based race detection for Java. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 219ś232.

[20] C. Flanagan and S.N. Freund. 2009. FastTrack: Efficient and Precise Dynamic
Race Detection. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. 121ś133.

[21] C. Flanagan and S.N. Freund. 2010. The RoadRunner Dynamic Analysis Frame-
work for Concurrent Programs. In Proceedings of the SIGPLAN-SIGSOFTWorkshop
on Program Analysis for Software Tools and Engineering. 1ś8.

[22] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008. Velodrome: A
Sound and Complete Dynamic Atomicity Checker for Multithreaded Programs.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 293ś303.

[23] H. Galperin and A. Wigderson. 1983. Succinct Representations of Graphs. Infor-
mation and Control 56, 3 (1983), 183ś198.

[24] J. Huang, P.O. Meredith, and G. Rosu. 2014. Maximal sound predictive race
detection with control flow abstraction. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. 337ś348.

[25] J. Huang and A.K. Rajagopalan. 2016. Precise and maximal race detection from
incomplete traces. In Proceedings of the ACM SIGPLAN International Conference
on Object-oriented Programming, Systems, Languages, and Applications. 462ś476.

[26] S.F. Kaplan, Y. Smaragdakis, and P.R. Wilson. 2003. Flexible reference trace
reduction for VM simulations. ACM Transactions on Modeling and Computer

Simulation 13, 1 (2003), 1ś38.
[27] J.C. Kieffer and E.-H. Yang. 2000. Grammar-based codes: a new class of universal

lossless source codes. IEEE Transactions on Information Theory 46, 3 (2000),
737ś754.

[28] J.C. Kieffer, E.-H. Yang, G.J. Nelson, and P. Cosman. 2000. Universal lossless
compression via multilevel pattern matching. IEEE Transactions on Information
Theory 46, 4 (2000), 1227ś1245.

[29] D. Kini, U. Mathur, and M. Viswanathan. 2017. Dynamic Race Prediction in Linear
Time. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. 157ś170.

[30] Dileep Kini, UmangMathur, andMahesh Viswanathan. 2018. Data Race Detection
on Compressed Traces. CoRR abs/1807.08427 (2018). http://arxiv.org/abs/1807.
08427

[31] A. Kinneer, M.B. Dwyer, and G. Rothermel. 2007. Sofya: Supporting Rapid Devel-
opment of Dynamic Program Analyses for Java. In Companion to the Proceedings
of the 29th International Conference on Software Engineering. 51ś52.

[32] L. Lamport. 1978. Time, Clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 (1978), 558ś565.

[33] N.J. Larsson and A. Moffat. 2000. Off-line dictionary-based compression. Proc.
IEEE 88, 11 (2000), 1722ś1732.

[34] P. Liu, O. Tripp, and X. Zhang. 2016. IPA: Improving Predictive Analysis with
Pointer Analysis. In Proceedings of the International Symposium on Software
Testing and Analysis. 59ś69.

[35] A. Lozano and J.L. Balcázar. 1986. The complexity of graph problems for suc-
cinctly represented graphs. In Proceedings of the International Workshop on Graph-
Theoretic Concepts in Computer Science. 277ś286.

[36] F. Mattern. 1988. Virtual time and Global states of distributed systems. In Pro-
ceedings of the International Workshop on Parallel and Distributed Algorithms.
215ś226.

[37] A. Milenković and M. Milenković. 2007. An Efficient Single-Pass Trace Compres-
sion Technique Utilizing Instruction Streams. ACM Transactions on Modeling and
Computer Simulation 17, 1 (2007).

[38] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and I. Neamtiu. 2008.
Finding and Reproducing Heisenbugs in Concurrent Programs. In Proceedings of
the USENIX Conference on Operating Systems Design and Implementation. 267ś280.

[39] M. Naik, A. Aiken, and J. Whaley. 2006. Effective static race detection for Java. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. 308ś319.

[40] C.G. Nevill-Manning. 1996. Inferring Sequential Structure. Ph.D. Dissertation.
University of Waikato.

[41] C.G. Nevill-Manning and I.H. Witten. 1997. Identifying hierarchical structure
in sequences: A linear time algorithm. Journal of Artificial Intelligence 7 (1997),
67ś82.

[42] C.H. Papadimitriou and M. Yannakakis. 1986. A note on succinct representations
of graphs. Information and Control 71, 3 (1986), 181ś185.

[43] E. Pozniansky and A. Schuster. 2003. Efficient On-the-fly Data Race Detection in
Multithreaded C++ Programs. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 179ś190.

[44] P. Pratikakis, J.S. Foster, and M. Hicks. 2011. LOCKSMITH: Practical static race
detection for C. ACM Transactions on Programming Languages and Systems 33, 1
(2011), 3:1ś3:55.

[45] C.v. Praun and T.R. Gross. 2001. Object race detection. In Proceedings of the ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications. 70ś82.

[46] C. Radoi and D. Dig. 2013. Practical static race detection for Java parallel loops.
In Proceedings of the International Symposium on Software Testing and Analysis.
178ś190.

[47] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. 2012. Scalable and Precise
Dynamic Datarace Detection for Structured Parallelism. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation.
531ś542.

[48] M. Said, C. Wang, Z. Yang, and K. Sakallah. 2011. Generating Data RaceWitnesses
by an SMT-based Analysis. In Proceedings of the International Conference on NASA
Formal Methods. 313ś327.

[49] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. 1997. Eraser:
A dynamic data race detector for multi-threaded programs. In Proceedings of the
ACM Symposium on Operating Systems Principles. 27ś37.

[50] K. Sen. 2008. Race directed random testing of concurrent programs. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 11ś21.

[51] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. 2012. Sound Predic-
tive Race Detection in Polynomial Time. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. 387ś400.

[52] L.A. Smith, J.M. Bull, and J. Obdrzálek. 2001. A Parallel Java Grande benchmark
suite. In Proceedings of the ACM/IEEE Conference on Supercomputing. 8ś8.

[53] R. Surendran and V. Sarkar. 2016. Dynamic determinacy race detection for task
parallelism with futures. In Proceedings of the International Conference on Runtime
Verification. 368ś385.

36

https://runtimeverification.com/predict/
http://www.sequitur.info/
https://github.com/umangm/rapid
https://github.com/umangm/rapid
https://github.com/umangm/ziptrack
https://github.com/umangm/ziptrack
http://arxiv.org/abs/1807.08427
http://arxiv.org/abs/1807.08427

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA Dileep Kini, Umang Mathur, and Mahesh Viswanathan

[54] H. Veith. 1996. Succinct Representation, Leaf Languages, and Projection Re-
ductions. In Proceedings of the IEEE Conference on Computational Complexity.
118ś126.

[55] J.W. Voung, R. Jhala, and S. Lerner. 2007. RELAY: Static race detection on millions
of lines of code. In Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 205ś214.

[56] C. Wang, S. Kundu, M. Ganai, and A. Gupta. 2009. Symbolic Predictive Analysis
for Concurrent Programs. In Proceedings of the World Congress on Formal Methods.
256ś272.

[57] T.A. Welch. 1984. A Technique for High-Performance Data Compression. Com-
puter 17, 6 (1984), 8ś19.

[58] E. Yahav. 2001. Verifying Safety Properties of Concurrent Java Programs Using
3-valued Logic. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 27ś40.

[59] En-Hui Yang and J. C. Kieffer. 2000. Efficient universal lossless data compression
algorithms based on a greedy sequential grammar transform. I. Without context
models. IEEE Transactions on Information Theory 46, 3 (2000), 755ś777.

[60] A. Yoga, S. Nagarakatte, and A. Gupta. 2016. Parallel Data Race Detection for Task
Parallel Programs with Locks. In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 833ś845.

[61] S. Zhan and J. Huang. 2016. ECHO: Instantaneous in situ race detection in the
IDE. In Proceedings of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 775ś786.

[62] J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory 23, 3 (1977), 337ś343.

37

	Abstract
	1 Introduction
	2 Preliminaries
	3 HB-Races in Compressed traces
	3.1 Detecting Cross-Races
	3.2 Computing Before and After Sets

	4 LockSet Algorithm for Compressed Traces
	4.1 Cross Violations
	4.2 Computing OpenAcq and OpenRel

	5 Evaluation
	5.1 Implementation and Setup
	5.2 Results

	6 Conclusions
	Acknowledgments
	References

