InZeit: Efficiently Identifying Insightful Time Points

Vinay Setty, Srikanta Bedathur, Klaus Berberich, Gerhard Weikum
Max-Planck Institute for Informatics
Saarbriicken, Germany

{vsetty,bedathur,kberberi,weikum@mpi-inf.mpg.de

ABSTRACT

Web archives are useful resources to find out about the tempo-
ral evolution of persons, organizations, products, or other topics.
However, even when advanced text search functionality is avail-
able, gaining insights into the temporal evolution of a topic can be
a tedious task and often requires sifting through many documents.

The demonstrated system named INZEIT' (pronounced “in-
sight”) assists users by determining insightful time points for a
given query. These are the time points at which the top-k time-
travel query result changes substantially and for which the user
should therefore inspect query results. INZEIT determines the m
most insightful time points efficiently using an extended segment
tree for in-memory bookkeeping.

1. INTRODUCTION

Thanks to improved digitization and preservation techniques,
archives accessible on the Web nowadays contain large numbers
of documents published during a long period of time. Promi-
nent examples include the archive of the newspaper The New York
Times [12] containing more than 13 million articles published since
1851 and the Internet Archive [6] that contains 150 billion snap-
shots of webpages with the earliest dating back to 1996. Such
archives on the Web are highly prized for finding out about persons,
organizations, products or topics and establishing their timelines.
Consider, for instance, a social scientist researching key political
developments in relation to an important topic such as same sex
marriage orhealth care reform.

When using standard text search, results for a given query are
returned in the order of their estimated relevance to the query or
in chronological order of their publication date. Choosing either
of these orderings forces the user to sift through a large number
of results in order to gain insights into the temporal evolution of a
topic (expressed by the query). A more sophisticated search feature
such as time-travel query [3] allows the user to retrieve results for
a specific time point. However, it still fails to help in a situation
when the user has no prior knowledge about the right time points
to explore for the given topic. The user may still have to pose many

!Zeit (German): n. Time, temporal, period (die Zeit).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.

Proceedings of the VLDB Endowment, Vol. 3, No. 2

Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

time-travel queries for a large number of time points in order to
learn the timeline of the topic under study.

In this demonstration, we present INZEIT, a system which assists
users by determining insightful time points to obtain quick insights
on the temporal milestones of the topic of the query. This may
also help the user in further examining the archive by posing tar-
geted time-travel queries. Towards this goal, INZEIT analyzes how
the top-k time-travel query result for the topic evolves over time.
Insightful time points are then identified as those where the top-k
query result undergoes significant change. This approach is differ-
ent from existing systems (e.g., Google News Archive search) that
consider merely the number of relevant document published at a
time to identify interesting time points. These systems thus ignore
the estimated relevance of documents to the query, and end up high-
lighting time points even if they contain documents from the “long
tail” with low relevance score as long as there are a large number
of them.

INZEIT reads query results sequentially in the order of their es-
timated relevance and computes insightful time points. In this pro-
cess, quick response times are crucial so that the user can imme-
diately start to learn about the temporal evolution of the topic at
hand. INZEIT achieves efficiency by using two novel techniques:
first, INZEIT uses an early-terminating method that allows it to ter-
minate as soon as the m most insightful time points have been ac-
curately identified — typically long before the entire query result
has been read. Second, a rank-aware dynamic segment tree [14]
is used to perform efficient in-memory bookkeeping, which addi-
tionally also has the benefit of having the top-k time-travel query
results for identified insightful time points ready without needing
any further query processing.

For our demonstration, INZEIT is deployed on the New York
Times Annotated Corpus [12] — a real-world dataset that com-
prises 1.8 million newspaper articles published between 1987 and
2007. Using our own and attendee-suggested queries, we show-
case the usefulness of insightful time points, compare them against
time points determined by a purely frequency-based approach, and
demonstrate the effectiveness of the techniques that INZEIT builds
upon.

Organization. The rest of this paper is organized as follows:
Related research is briefly discussed in Section 2. We lay out the
techniques underlying our system in Section 3, before describing
its architecture in Section 4. Section 5 illustrates the results from
INZEIT and provides an outline of the proposed demonstration of
the system.

2. RELATED WORK

Temporal exploration of results is recently gaining lot of atten-
tion due to the inherent intuitiveness of organizing results along the
timeline [1]. Arguably the most popular of such tools is the timeline
exploration interface of the Google News-archive Search (http:

1605

//news.google.com/archivesearch). Although the de-
tails of how their timelines are constructed are not publicly avail-
able, it seems likely that they use the distribution of result docu-
ments along time to identify interesting time-points. From the re-
search community, there have been a few similar efforts that use
frequency of relevant documents to identify bursty or interesting
times [7, 2]. INZEIT differs from all these previous proposals in
that instead of considering the frequency of results at any time
point, it pays specific attention to qualitative change over time by
computing the variation in the top-k results for the query. Also,
it has significantly lower computational overhead after the back-
end search engine has processed the text query. This is in marked
contrast to sophisticated but computationally expensive techniques
used in news event detection [8, 9].

3. IDENTIFYING
INSIGHTFUL TIME POINTS

In this work we consider a document collection D comprising of
documents which stay valid for an arbitrary period of time. Each
document D € D is represented as a tuple (did, ty,t.) where did
is the unique document identifier, ¢, and t. are the timestamps of
the begin and end time. When a keyword query, g, is processed on
D we obtain a ranked result subset, R C D, where each document
d € R has an associated relevance score d.sq (e.g., determined
using a scoring model such as Okapi BM25[11]) as well as d.r, the
rank of the document d for the given query. We define a top-k result
set for a given query '¢' at time point ¢ as top{ (t). We consider a
time point ¢; € 7 insightful if top{ (¢;) differs significantly from
topk(t;—1) where t;—1 € 7 is predecessor of ¢;. We define the
insightfulness of a time point as the sum of weights of documents
in top-k set difference of two consecutive time points, ¢;—1 and t;
(note that we employ discrete notion of time in our work). It is
formally defined as:

Clt) = S w(d),

d € topl (t;) \ top} (ti—1)

where w(d) is weight based on the relevance rank d.rq defined as

w(d) = #. The frequency based approach, in contrast, counts

the number of relevant documents for a given query which begin at
a given time point ¢ as a measure to show the importance of time
point ¢. It is formally defined as:

ft)y=|{deD A de€R A dt, =t}

Consider an example in which we have six documents in the re-

sult list R for an arbitrary query 'q' as shown in Figure 1. Assuming
we are looking at top-3 (k=3) documents at three consecutive time
points {¢1, t2, t3}, we can see that time point t2 is most insight-
ful with ((t2) = 1 4+ £ = 1.2 even though f(t2) < f(t1) and
f(t2) = f(¢s). An important observation here is that even though
document ds is not starting at time point ¢ it contributes to the in-
sightfulness at ¢ because ds € topf (t2) \ topi (t1). At time point
ts, ¢(t3) = 0 even though f(t3) = 1 because there is no change in
topi(ts) from topl(tz).
Problem Definition. We are given a user query 'q' and the corre-
sponding list of relevant documents R € D is assumed to be ob-
tained in the decreasing order of relevance score in an incremental
fashion. And 7 is a set of all time points occurring as boundaries
of the valid-time intervals in R, i.e., it is defined as:

T = U deD{d~tb, d.te}.

The goal is to read the minimal subset of R and compute V¢ € 7,
topi (t) and at the same time determine the top-m time points with

Insightfulness T(t1)=0.25 C(t2)=1.2 T(t3)=0
Frequency f(t)=2 f(t2)=1 f(t3)=1
top-k set {d2,d3,d4} {d1,d2,d5} {d1,d2,d5}
' 'odl '
o A : : :
o d2] [[
T T T
L}]
<& . :
g4 : :
15 :)
: : -
' L —
t © =] Time

Figure 1: Computation of insightfulness
highest insightfulness value represented as:

topm(q) = {{t1, b2, .tm} [t € T A C(E:) = C(tm)},

where ((t,,) is the insightfulness of the m'™ highest interesting
time point in 7.

Solution. The key idea underlying our solution to the above prob-
lem is that we can exploit the score order of documents to ma-
terialize the topj (t), V¢ € 7. Each document d € R can be
visualized as an interval spanning from, d.t; to d.t. in the time
axis. Assuming we have n documents to be processed, there are
at most 2n unique end points. Since these are the only time points
where there is any change in topj (t), it is clear that only these
2n points can have ((t) > 0. segment tree[4] is a data structure
which efficiently indexes the intervals by partitioning them at their
end points. In segment tree if there are n intervals with 2n dis-
tinct end points then we can have at most 2n + 1 atomic segments
(where no interval starts or ends). The segment tree over these se-
quence of atomic segments is a balanced binary search tree. Each
node N of the segment tree can be described by an extent interval
interval (N) (spanning between lower bound [b and upper bound
ub) which is the union of all atomic segments under N’s subtree.
This property of segment tree can be used to materialize the top-k
results for each atomic segment in the segment tree and also com-
pute insightfulness of consecutive intervals. Unlike the standard
segment tree, we additionally need to dynamically insert and mate-
rialize the top-k results at each node. For this purpose, we make use
of a novel extension of segment tree called Rank Aware Dynamic
Segment Tree (RADST) that was proposed in [14] which supports
dynamic insertions and maintenance of top-k set at these intervals.
In this extended segment tree, the top] (¢) are materialized using a
priority queue, IN.topk, at each node.

Early Termination Algorithm. Even though RADST helps in
dynamically indexing and materializing top-k results for all time
points in 7, in practice not all time points may have k& documents
alive. In such cases we end up reading all the documents in R
making the identification of insightful time points slower. To over-
come this problem, we propose the use of an NRA (“No Random
Access”)[5] style early pruning mechanism to minimize number of
entries read from R. It is easy to see that insightfulness ((¢) is
monotonically decreasing as we go down in the document ranked
list (increasing rank values). Using this property and assuming that
we obtain R incrementally in increasing order of rank, we bound
the best possible insightfulness for any time point. This helps in
early termination of our algorithm.

Algorithm 1 describes the steps involved in dynamically insert-
ing document into RADST (line 5) and updating insightfulness of
node intervals (line 9) whenever a document is not inserted in pre-
vious interval (line 8). After updating the insightfulness we obtain a
bound on best insightfulness that a time point can achieve (line 10).
In each iteration, we compare if the worst insightfulness we have
seen so far is better than best insightfulness that can be achieved

1606

Algorithm 1 Top-m insightful time points identification

Input: Score sorted result list R for keyword query g, m, k
Output: topm (q)
1: top-m < &; min-m < 0;
2: RADST tree « &; PriorityQueue candidates «— &;
3: while R.size !=0 A top-m.size !=m do
4: d«— argmaxg{d.sq|d € R}
5: tree.insert(d)
6: for all nodes NV in tree such that d.t, < N.Ib Ad.te > N.ub A
7
8
9

N.topk.size < k do
N.topk < N.topk U d
ifd¢ N' N N'.ub= N.llithen
C(N.Ib) « ¢(N.Ib) + Torg

10: best-C(N.Ib) « C(N.Ib) + S5 N-tork-size =
11: if ((IN.1b) > min-m then

12: top-m «— top-m - argmin,{{(¢)|t € top-m}

13: top-m «— top-m U N.lb

14: min-m «— min{¢(¢)|t € top-m}

15: else if best-C(t) > min-m then

16: candidates «— candidates U N.lb

17: end if

18: end if

19: end for

20: threshold < max{best-((t)|t € candidates}
21: if threshold < min-m then

22: return top-m

23: endif

24: end while

[INZEIT
server

Text retrieval system ' :

Insightful Time

query
Points Identifier

S ucone)

Web-based GUI _**
H H RADST
Simile ~ B o
— o5
Tnsightful - o el - (T Index
time points o == | resit documents
o = e AL

..ﬂ'

dmestamps

Figure 2: System architecture of INZEIT
(lines 20-23) and we terminate the algorithm and return top-m in-
sightful time points we have seen so far. Due to lack of space,
we omit detailed description of the algorithm’s workings which is
available from [14].

Consider the same example in Figure 1 suppose we are interested
in top-2 insightful time points and we have read the result list R un-
til dy (4*"-rank) from the top. Now we have two time points ¢; and
t2 in the top-m list, we have to decide if time point ¢3 can make it
to top-m. Since t3 already has two documents d; and d2 only one
document can make it to topz (t3), which in the best case is ds. Us-
ing this knowledge we obtain a bound on best insightfulness ¢3 can
achieve best-((t3) = 0.2. However we observe that ((¢1) = 0.25
the worst insightfulness in top-m is better than best-((t3). Now
we can stop reading more documents from R as we have already
obtained the top-2 most insightful time points we are looking for.

o ot
"

4. SYSTEM ARCHITECTURE

In this section we describe INZEIT’s system architecture and its
main components as illustrated in Figure 2. The three main compo-
nents of INZEIT are (1) Web-based GUI, (2) Insightful Time Points
Identifier (ITPI), and (3) Text retrieval system (TRS).

The Web-based GUI is implemented using simple HTML
forms, JavaScript and SIMILE visualization library [15]. A screen-
shot of the interface is shown in Figure 3. As indicated in the fig-
ure, the visualization comprises of the following parts: (a) a text
box where the user can enter the text query using the full Lucene
keyword query syntax [10], (b) an input field where the use can en-
ter the number of insightful time points required (default value set

to 100), (c) an optimal input area to enter the time period to zoom
into, (d) timeline visualization of insightful time points, (e) similar
visualization for the result of the traditional frequency counting ap-
proach, and (f) the ranked list of top-k documents at any time point
along the timeline — shown when the user clicks on the time point.
The Web-based GUI sends the query along with the optional pa-
rameters to the backend Java server. After processing the query, the
backend computes and returns the insightful time points along with
their insightfulness values, (t). For the purpose of this demon-
stration, it also returns the frequency values at all time points f ().
These results are dynamically visualized using timeline plots from
SIMILE. When the user clicks on a specific time point to inspect,
the top-k documents from that time point are retrieved from the
server. The visualization also highlights those documents which
have the same begin time as the time point queried for.

ITPL. This is the core component of the INZEIT system. The inter-
face to this component is via an Apache web server, which forwards
the queries from the GUI to the background Java service that com-
putes the results. This service, passes the user query to the backing
text retrieval system, and starts pulling the relevant results from it
in score order in an incremental fashion, terminating early using
the Algorithm 1. As results are read, ITPI concurrently builds the
RADST and maintains it in memory for the remaining interactions.
In this demonstration, this component also computes the frequency
measure at each time point (without any early termination). The
results are sent back to the GUI for visualization. When the user
selects a time point in the visualization, then the ITPI component
performs a stabbing query on the RADST [14] and returns the cor-
responding top-k documents in their score order.

TRS. The text query is evaluated to obtain a relevance ranked list
of documents by this module. In INZEIT’s implementation we used
Lucene [10] as the text retrieval engine, by extending its inverted
list posting structure to include the publication time stamp of doc-
uments. In practice it can be replaced by any search engine that
can answer keyword queries in relevance order along with times-
tamps of the result documents. We also extended the underlying
relevance scoring model of Lucene to Okapi BM25 using an open
source plug-in [13].

S. DEMONSTRATION DESCRIPTION

To demonstrate the utility of INZEIT in exploring the timelines
of a topic, we make use of a large annotated news corpus recently
made available by The New York Times [12]. This corpus com-
prises of about 1.8 million daily articles published in the New York
Times newspaper during the 20-year period between 1987-2007.
We indexed the New York Times Annotated Corpus using Lucene,
after setting for each document a fixed lifetime of 90-days since its
time of publication. This is done to reflect the real world setting
where the news articles are publicly available only for a limited pe-
riod from their publication, and to coarsely model the commonly
used time-decaying relevance model for news articles.

Figure 3 shows a screenshot of the INZEIT’s GUI, visualiz-
ing the results for the query ‘‘same sex marriage’’ AND
president bill clinton. As we mentioned above, results
from our approach as well as frequency counting approach are vi-
sualized using separate SIMILE timelines. When one compares
the outputs from both the approaches, following observations can
be made: first of all, the INZEIT approach clearly ranks the time
points based on their {(t) value, thus enabling the user to get the
bird’s eyeview of the temporal evolution of the query. On the other
hand, the frequency-based approach generates a large number of
“peaks” thus making it difficult to see the key time points eas-
ily. Secondly, the INZEIT identifies the key real-world event where
President Bill Clinton signed a bill denying the federal benefits to
same sex couples as the most insightful time point for the query.

1607

(B) e _

INZET

s C

Retrict time points () from (yyyymmdd)

INZEIT for "same sex marriage" AND president bill clinton

H 101

09/22/1996

Search for top- 100 | insightful time points for query: “same sex marriage" AND president bill linton

to (yyyymmdd) (Submit Query)

for "same sex marriage" AND president bill clinton

ek e h

2 989

fop-100 results at 22/09/1996

[Gay Rights Groups Attack Clinton on Midnight Signing -

Clinton Signs Bill Denying Gay Couples U.S. Benefits - 21/09/1996

L T [T T UkaMMlIJMWMMmmnmmm\.wmmm WMMMMMHJ l“ﬂ

ay rights activists denounce Pres Clinton's midnight signing of bill to deny Federal recognition and benefits to couples of same sex who might marry, dismissing it as 'historical misjudgment’ that endorses 'needless and mean-spirited bill
M)

Pres Clinton announces that he is signing bill to deny Federal benefits to married people of the same sex and to permit states to ignore such marriages sanctioned in other states (L)7

Show values on the mouse location ¥

U
Pl

Figure 3: INZEIT over the complete history of NYT

On the other hand, the frequency based method highlights a later,
but irrelevant time point due to a large number of documents that
are only marginally relevant for the query.
Temporal Zoom-In. The INZEIT also enables user to zoom into
a relatively smaller time period, in order to unearth insightful time
points better. This functionality also helps to improve the quality
of visualization, which is highly dependent on the resolution of the
screen. Figure 4 illustrates the temporal zoom-in feature, using the
query pentium chip flaw with time period restricted to the
range 1/1/1994-1/1/1996. Once again, our insightfulness based ap-
proach manages to highlight the period when the infamous floating
point bug in the Pentium series of CPUs from Intel were discovered
and reported in the New York Times. Although the frequency based
approach, also identifies this as an important time for the query, it
is buried within a number of other time points that are considered
equally important. In fact, some of these (e.g., the one pointed to
in the bottom timeline) correspond to the introduction of improved
Pentium Pro chips!

Finally, during the demonstration of our system we invite the
participation of all visitors to a hands-on session trying out their fa-
vorite topic for which they seek insightful time points over INZEIT.

6. REFERENCES

[1] Omar Alonso, Michael Gertz, and Ricardo A. Baeza-Yates.
Clustering and exploring search results using timeline constructions.
In Proc. of CIKM, 2009.

[2] Nilesh Bansal and Nick Koudas. BlogScope: A System for Online
Analysis of High Volume Text Streams. In Proc. of VLDB, 2007.

[3] Klaus Berberich, Srikanta Bedathur, Thomas Neumann, and Gerhard
Weikum. A time machine for text search. In Proc. of SIGIR, 2007.

[4] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark

Overmars. Computational Geometry: Algorithms and Applications.

Springer-Verlag TELOS, 2008.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. In Proc. of PODS, 2001.

[6] Internet archive. http://www.archive.org.

[7] Jon Kleinberg. Bursty and Hierarchical Structure in Streams. In
Proc. of KDD, 2002.

[5

—_

INZEIT

Search for top-100 | insightful time points for query: pentium chip flw

Retrict time points @ from (yyyymmdd) 19940101 1o (yyyymmdd) 19560101 (Subimit Query)

INZEIT for pentium chip flaw

u A

|
STV RSPV W SUROY U770 T10 [\ R TR T u‘ll';i‘ ‘ 1

., for pentium chip flaw

NMWWWUWW quk Muwwﬁb

| Il' “”H‘leLz/:s;s“

Show values on the mouse location &

top-100 results at 24/11/1994
Flaw Undermines Accuracy of Pentium Chips - 24/11/1994

| An elusive circuitry error is causing a chip used in millions of computers o generate inaccurate results in certain rare cases, heightening anxiety among

Figure 4: INZEIT with temporal zoom-in

Giridhar Kumaran and James Allan. Text classification and named

entities for new event detection. In Proc. of SIGIR, 2004.

Zhiwei Li, Bin Wang, Mingjing Li, and Wei-Ying Ma. A

probabilistic model for retrospective news event detection. In Proc.

of SIGIR, 2005.

[10] Lucene. http://lucene.apache.org/.

[11] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze.
Introduction to Information Retrieval. Cambridge University Press,
2008.

[12] New York Times Annotated Corpus. http://corpus.nytimes.com/.

[13] Joaquin Pérez-Iglesias, José R. Pérez-Agiiera, Victor Fresno, and
Yuval Z. Feinstein. Integrating the Probabilistic Models
BM25/BM25F into Lucene. CoRR, abs/0911.5046, 2009.

[14] Vinay Setty. Efficiently identifying interesting time points in text
archives. Master’s thesis, Universitéit des Saarlandes, FR Informatik,
2010.

[15] SIMILE timeplot. http://www.simile-widgets.org/timeplot/.

[8

[t}

[9

—

1608

