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ABSTRACT
The recent literature has provided a solid theoretical founda-
tion for the use of schema mappings in data-exchange appli-
cations. Following this formalization, new algorithms have
been developed to generate optimal solutions for mapping
scenarios in a highly scalable way, by relying on SQL. How-
ever, these algorithms suffer from a serious drawback: they
are not able to handle key constraints and functional depen-
dencies on the target, i.e., equality generating dependencies
(egds). While egds play a crucial role in the generation of
optimal solutions, handling them with first-order languages
is a difficult problem. In fact, we start from a negative
result: it is not always possible to compute solutions for
scenarios with egds using an SQL script. Then, we identify
many practical cases in which this is possible, and develop a
best-effort algorithm to do this. Experimental results show
that our algorithm produces solutions of better quality with
respect to those produced by previous algorithms, and scales
nicely to large databases.

1. INTRODUCTION
Schema mappings are expressions that specify how an in-

stance of a source database can be transformed into an in-
stance of a target database. In recent years, they have re-
ceived an increasing attention both from the research com-
munity and the tool market.
A schema-mapping system is used to support the process

of generating and executing mappings in practical scenar-
ios. It typically allows users to provide an abstract speci-
fication of the mapping as a set of correspondences among
schema elements, specified through a friendly user-interface.
Based on such specification, the mapping system will first
generate a number of mappings – usually under the form of
tuple-generating dependencies (tgds) [4] that correlate source
tables with target tables; then, based on these mappings, an
executable transformation, i.e., a runtime script in SQL or
XQuery that can be practically used to run the mappings
and generate solutions.
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After the seminal Clio papers [20, 21] introduced the key
algorithmic techniques needed to generate mappings from
correspondences, and executable scripts from mappings, a
solid theoretical foundation for the data-exchange problem
was laid in the framework of data exchange research [10, 12].
More recently, sophisticated algorithms have been propo-
sed [17, 24] to take advantage of the theoretical background
of data exchange and adopt a more principled approach to
the generation of solutions. In fact, a data-exchange prob-
lem may have many different solutions. Universal solu-
tions [10] were first identified as preferred solutions, since
they contain only information that follows from the source
instance and the mapping. Among these, the notion of core
solution [12] was identified as the “optimal one”, since it is
the smallest among universal solutions. Second-generation
mapping systems [17, 24] made a significant step forward
by introducing algorithms that materialize core solutions by
using runtime SQL scripts.

Despite their increasing maturity, these techniques still
suffer from a significant limitation: they provide very limited
support for target dependencies. While target constraints
are recognized as an important feature of data exchange,
they introduce a number of subtleties in the computation of
solutions. Notice that target constraints typically come in
two forms: target tgds, and target equality-generating depen-
dencies (egds) [4]. These two kinds of constraints have re-
ceived an unequal share of attention in schema-mappings re-
search. Target tgds corresponding to foreign key constraints
– by far the most common form – are handled quite nicely
by mapping systems [21, 18]: in fact, the intuition of chasing
foreign keys to generate source-to-target tgds is at the core
of the original Clio mapping-generation algorithm.

On the contrary, state-of-the-art schema-mapping systems
cannot handle target egds, i.e., there is currently no system
to efficiently generate optimal solutions for mapping sce-
narios with key constraints and functional dependencies, as
discussed in the next example.

Motivation Suppose we want to solve the mapping prob-
lem shown in Figure 1. This is a typical data-fusion ex-
ample [5] which requires to merge together data from three
different tables – possibly from three different original data
sources – as shown in Figure 1.a: (i) a table about students
and their birthdates; (ii) a table about employees and their
salaries; (iii) a table about drivers and the cars they drive.
The target schema contains two tables, one about persons,
the second about cars. On these tables, we have two keys:
name is a key for Person, while plate is a key for Car. Based
on these requirements, it is natural to expect the generation
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of a solution as the one shown in Figure 1.b.

Figure 1: Mapping Person Data

However, there is currently no schema-mapping tool ca-
pable of generating an SQL script that materializes this ex-
pected instance.
Notice that the required mapping can be easily expressed

as a data-exchange scenario, i.e., as a set of source-to-target
tgds that specify how data should be moved from the source
to the target, and a set of target egds that encode the re-
quired key constraints on the target, as follows. Note how
the third tgd, m3, “invents” a value to perform a vertical
partition of the Driver source table:

m1. ∀n, bd : Student(n, bd) → ∃Y1, Y2 :Person(n, bd, Y1, Y2)
m2. ∀n, s : Employee(n, s) → ∃Y1, Y2 :Person(n, Y1, s, Y2)
m3. ∀n, plate : Driver(n, plate) →

∃Y1, Y2, Z : (Person(n, Y1, Y2, Z) ∧ Car(Z, plate))
e1. ∀n, b, s, c, b

′, s′, c′ :Person(n, b, s, c) ∧ Person(n, b′, s′, c′)
→ (b = b′) ∧ (s = s′) ∧ (c = c′)

e2. ∀p, i, i
′ : Car(i, p) ∧ Car(i′, p) → (i = i′)

e3. ∀i, p, p
′ : Car(i, p) ∧ Car(i, p′) → (p = p′)

In fact, the tgds above are exactly those that a schema
mapping tool as Clio [21] or +Spicy [18] would generate.
Formally speaking, since the desired solution is a universal
solution for the mappings, it can be materialized by chasing
the dependencies above, possibly with a post-processing step
to minimize the solution. Even though there exist chase
engines [23] that are capable of performing this task, as it
will be shown in our experimental evaluation, they hardly
scale to large databases. This is one of the reasons why
schema-mapping systems generate SQL or XQuery scripts
to perform the translation.
However, by using the script generation algorithms de-

scribed in [17, 24], the best we can achieve is to generate
a pre-solution, i.e., a solution for the tgds only, as shown
in Figure 1.c. It is easy to see how the pre-solution is un-
satisfactory from several points of view. In fact, it violates
the required key constraints, and therefore it is not even a
legal instance for the target. Moreover, it suffers from an
unwanted entity fragmentation effect, in the sense that in-
formation about the same entities (e.g., Jim, Mike or the
car abc123 ) is spread across several tuples, each of which
gives a partial representation of the entity. If we take into
account the usual dimensions of data quality [5], it should

be clear that such an instance must be considered of very
low quality in terms of compactness (or minimality). In fact,
on large source instances, the level of redundancy due to en-
tity fragmentation can seriously impair both the efficiency
of the translation and the quality of answering queries over
the target database.

The reason why state-of-the-art mapping systems perform
so poorly on this example is that handling egds is a com-
plicated task. In fact, we start from an expected negative
result: it is not possible, in general, to enforce a set of egds
using a first-order language such as SQL. This was conjec-
tured first in [24] and is hardly surprising, since, as it can
be seen by looking at Figure 1, chasing egds has the effect
of equating values and merging tuples, effect that in general
requires the power of recursion to be implemented.

Despite this, in this paper we argue that it is actually pos-
sible to generate solutions for egds in many practical cases,
and make several important contributions towards this goal.

Contributions The main technical problem addressed in
this paper is the following: given a mapping scenario con-
taining a set of source-to-target tgds and a set of target egds,
our goal is to generate an executable SQL script that can
be run to generate good solutions for the given scenario. To
do this:

(i) we introduce a best-effort rewriting algorithm that takes
as input a scenario with s-t tgds and egds and, whenever
this is possible, rewrites it into a new scenario without egds
that can be efficiently implemented using an SQL script;
in the paper, we show that our algorithm succeeds in many
practical cases, including the example above; a key intuition
behind the algorithm is that source constraints can be of
high value in order to generate solutions that satisfy the
required target constraints;

(ii) the rewriting takes advantage of a number of novel tech-
niques; among these, a notion of overlap tgds, based on the
idea of chasing egds at the formula level to avoid the intro-
duction of unneeded null values, and a sophisticated skolem-
ization strategy; in this way, we significantly push forward
the expressibility of our SQL scripts;

(iii) then, we investigate the issue of generating optimal
solutions, i.e., core universal solutions; we show that the
rewriting algorithm to handle egds is modular in nature,
since it can be coupled with the core-computation algo-
rithms developed in [17, 24]; this process is definitely non
trivial, due to the complex rewriting that we use for egds; in
this way, we provide a much needed extension to the core-
computation techniques in [17, 24];

(iv) finally, the techniques developed in the paper have been
implemented in the +Spicy mapping system [18]; using the
system, we provide a comprehensive evaluation of the algo-
rithms presented in the paper, to show that they scale very
well to large databases, and that they actually generates so-
lutions that are much more compact than those generated
by current mapping algorithms.

Applications This is the first algorithm that enables the
generation of solutions for mapping scenarios with egds in a
scalable way. To see the relevance of this achievement, con-
sider that schema-mappings have been identified as a key
component of several classes of applications that exchange or
integrate data, for instance ETL [8], object-relational map-
ping [19], data fusion [5], and schema-integration [22]. It
can also be seen that key constraints – and therefore egds
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– play a very important role in all of these applications.
Therefore, we believe that this paper represents a significant
contribution towards the goal of reaching the full maturity
of schema-mappings systems.

Outline The paper is organized as follows. Preliminary
definitions are in Sections 2 and 3. The main algorithms of
the paper are in Sections 4, 5, and 6. Experimental results
are in Section 7. Finally, a discussion of related work is in
Section 8.

2. BACKGROUND
We fix two disjoint sets: a set of constants, const, a set

of labeled nulls, nulls. Labeled nulls are used to “invent”
values according to existential variables in tgd conclusions.
We assume the standard definition of a relational schema,
relational instance over const ∪ nulls [10], functional de-
pendency, and homomorphism [10] between instances, as de-
tailed in Appendix A.

Tgds and Egds Given two schemas, S andT, in the follow-
ing by ∀x : φ(x) we shall denote a conjunction of atomic for-
mulas that may contain relational atoms in S or T and equa-
tions of the form xi = xj . A source-to-target tgd (s-t tgd) [4]
is a first-order formula of the form ∀x(φ(x) → ∃y(ψ(x, y))
where φ(x) ranges over S and ψ(x, y) is a conjunction of
relational atoms over T. An equality generating dependency
(egd) [4] is a formula of the form ∀x(φ(x) → (xi = xj)).
Examples of s-t tgds and egds were provided in Section 1.
In the following, universal quantifiers will be omitted.

The Chase Given a vector of variables v, an assignment
for v is a mapping a : v → const ∪ nulls that associates
with each universal variable a constant in const, and with
each existential variable either a constant or a labeled null.
Given a formula φ(x) with free variables x, and an instance
I, we say that I satisfies φ(a(x)) if I |= φ(a(x)).
Given instances I, J , during the naive chase a tgd φ(x) →

∃y(ψ(x, y)) is fired for all assignments a such that I |=
φ(a(x)); to fire the tgd, a is extended to y by injectively
assigning to each yi ∈ y a fresh null, and then adding the
facts in ψ(a(x), a(y)) to J.
To chase an egd φ(x) → (xi = xj) over an instance J, for

each assignment a such that J |= φ(a(x)), if a(xi) 6= a(xj),
the chase tries to equate the two values. We distinguish
two cases: (i) both a(xi) a(xj) are constants; in this case,
the chase procedure fails, since it attempts to identify two
different constants; (ii) at least one of a(xi), a(xj) is a null
– say a(xi) – in this case chasing the egd generates a new
instance J’ obtained from J by replacing all occurrences of
a(xi) by a(xj). To give an example, consider egd e1:

e1.Person(n, b, s, c) ∧ Person(n, b′, s′, c′)
→ (b = b′) ∧ (s = s′) ∧ (c = c′)

On the two tuples generated by chasing the tgds, Person
(Jim, 1980, N3, N4), Person (Jim,N5, 25, 000, N6), chasing
the egd has two different effects:
(i) it replaces nulls by constants; in our example, it equates
N3 to the constant 25, 000, and N5 to the constant 1980,
based on the same value for the key attribute, Jim;
(ii) on the other side, the chase may equate nulls; in our
example, it equates N4 to N6, to generate a single tuple
Person(Jim, 1980, 25, 000, N4).

Mapping Scenario Given a source schema S and a target
schema T, in this paper we concentrate on mapping scenar-
ios consisting of a set of s-t tgds, Σst, and a set of target

egds Σt that correspond to functional dependencies over T.
We find it useful to consider as part of the input scenario
also a set of source egds, Σs, corresponding to source func-
tional dependencies. In fact, as it will become apparent in
the following sections, reasoning about source dependencies
is a key component of our algorithms. In light of this, we
will often write our scenarios as M = (S,T,Σs,Σst,Σt),
and we will assume that any source instance I is valid with
respect to Σs.

A target instance J is a solution of M and a source in-
stance I , denoted J ∈ Sol(M, I), iff (I, J) |= Σst ∪ Σt. A
solution J is universal [10], denoted J ∈ USol(M, I), iff for
every solution K there is an homomorphism from J to K .
We call a canonical solution a solution obtained by chasing
the dependencies in Σst ∪Σt over I . Canonical solutions are
universal solutions [10].

Given a scenario M, and an instance I, a core [12] of a
universal solution J ∈ USol(M, I), denoted C ∈ Core(M, I),
is a subinstance C⊆ J such that there is a homomorphism
from J to C, but there is no homomorphism from J to a
proper subinstance of C. Cores of universal solutions are
themselves universal solutions [12], and they are all isomor-
phic to each other. It is therefore possible to speak of the
core solution as the “optimal” solution, in the sense that it
is the solution of minimal size [12].

3. COMPUTING SOLUTIONS WITH SQL
We concentrate on mapping scenarios consisting of s-t

tgds and egds. We do not consider target tgds, since in
schema-mapping systems target tgds corresponding to for-
eign key constraints are typically rewritten into the s-t tgds
using the techniques in [20, 21]. To generate solutions by
means of SQL, we rewrite the original scenario as a set of
first-order rules, i.e., essentially s-t tgds with negation in the
premise and Skolem terms in the conclusion. Then, from
these dependencies, we generate the needed SQL script.

First-Order Rules Given a set of variables x, a Skolem
term over x is a term of the form t(x) = f(t1(x), . . . , tk(x))
where f is a function symbol of arity k and {t1(x), . . . , tk(x)}
are either universal variables in x or in turn Skolem terms
over x. Skolem terms are used to create fresh labeled nulls
on the target. Given an assignment of values a for x, with
the Skolem term above we (injectively) associate a labeled
null Nf(t1(a(x)),...,tk(a(x))).

Given a source schema S and a target schema T, an FO-
rule is a dependency of the form ϕ(x) → ψ(x) where ϕ(x)
is a first-order query over S with output tuple x and ψ is a
conjunction of atoms of the form R(t1, . . . , tn) over T such
that each term ti is either a variable ti ∈ {x} or a Skolem
term over x. In our setting, FO-rules will often have the
standard form φ(x) ∧ ¬φ′(x′) → ψ(x), where φ(x) is a con-
junctive query, and φ′(x′) is a disjunction of conjunctive
queries (possibly with equalities and inequalities). We shall
call this a CQ∧¬UCQ rule. Consider the Person-Car ex-
ample in the previous Section; following is an FO-rule from
its rewriting:
r2 :Student(n1, b1)∧Employee(n2, s2)∧n1 = n2∧¬∃n3, p3 :
(Driver(n3, p3) ∧ n1 = n3) → Person(n1, b1, s2, f(n1))

Given a source instance I over S, a set of FO-rules ΣFO
st can

be chased to generate a canonical target instance. The naive
chase straightforwardly generalizes to FO-rules (the pseudo-
code is detailed in the Appendix, Algorithm 1). Given a
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source instance I, we call chaseΣFO
st

(I) the instance obtained
by chasing the FO-rules. Notice that the chase of FO-rules
can be naturally implemented as an SQL script. Consider,
for example, rule r2 above. It can be implemented by the
following SQL statement:

INSERT into Person
SELECT s.n, s.b, e.s, append(‘f(’,s.n,‘)’)
FROM Student s, Employee e
WHERE s.n = e.n AND

s.n NOT IN (SELECT d.n FROM Driver d)

First-Order Implementations Given a mapping scenario
M, our goal is to derive a finite set of FO-rules, ΣFO

st , that
represents an FO-implementation of M. From the rules, we
shall then derive an SQL script to generate solutions. How-
ever, the process of computing solutions has some subtleties.
We want to emphasize an important difference between the
original scenario and its FO-implementation.
The original scenario M includes a set of target egds Σt;

since the chase of egds may fail, as discussed above, for
some source instances there may be no solutions. On the
contrary, an FO-implementation is simply a set of FO-rules,
i.e., it corresponds to a new scenario MFO = (S,T,ΣFO

st )
in which target egds have been dropped, and therefore it
does not have a similar failure condition. To make things
more symmetric, we say that a set of FO-rules fails on I
with respect to a set of target constraints Σt iff it generates
a target instance J that does not satisfy the target egds, i.e.,
J 6|= Σt. Otherwise we say that ΣFO

st succeeds on I wrt Σt.
Based on this, in order to compute solutions for the orig-

inal scenario M, we do as follows: (i) we generate a set of
FO-rules that represents an implementation of M; (ii) we
translate the rules into an SQL script; (iii) we run the script
on the source instance to materialize the resulting instance,
J = chaseΣFO

st
(I), into a temporary database; (iv) we also

generate a number of additional boolean queries to check if
the target egds are actually satisfied by J; if not, the script
fails and rollbacks the overall transaction (v) otherwise, we
return the output as a solution.

Completeness Ideally, we would like to be able to generate
a complete implementation for every given scenario M. We
call a set of FO-rules, ΣFO

st , a complete FO-implementation of
M if, for every valid source instance I: (i) if M has solutions
on I, then ΣFO

st succeeds on I and chaseΣFO
st

(I) is a universal

solution for M over I, i.e., chaseΣFO
st

(I) ∈ USolM(I); (ii) if

M has no solutions on I, i.e., Sol(M, I) = ∅, then ΣFO
st fails

on I wrt Σt.
Complete FO-implementations are desirable since they al-

low computing a universal solution whenever there exists
one and to identify the source instances that, together with
Σst, contradict the target egds in Σt. With this in mind,
a natural question is whether complete FO-implementations
always exist. Unfortunately, this is not the case for scenarios
with target egds. In fact, we can state the following result,
which was first conjectured in [24].1 A sketch of the proof
is reported in Appendix C.

Theorem 3.1. There is a scenario M = (S, T, Σst, Σt)
where Σt is a set of functional dependencies over T such
that no complete FO-implementation exists for M.

1A similar result was reported in [9] for LAV mappings in data
integration systems.

To give an intuition about the intrinsic complexity of han-
dling egds with FO-languages, consider that by progressively
equating nulls during the chase, egds may generate large
blocks of facts that are connected with each other via labeled
nulls. Intuitively, such connected component of unbounded
width in the graph of facts are impossible to capture using
a first-order language such as SQL. Notice also that this be-
havior does not happen without egds, since s-t tgds always
generate fact-blocks of bounded size wrt the size of tgd con-
clusions.

A Best-Effort Approach Theorem 3.1 above leaves us no
hope of defining an algorithm that always returns a complete
implementation for a mapping scenario with target egds. In
spite of this, we have two crucial observations: (i) first, in
practical cases many scenarios do have FO-implementations;
(ii) second, by reasoning on the source constraints we can
find good implementations for these cases. Consider again
the example above. As soon as additional constraints are
imposed on the source – as it typically happens in real-life
mapping scenarios – the emergence of critical cases becomes
less likely.

In our example, since the tgd actually performs a vertical
partition of the Driver table, we might want to consider the
source functional dependency Driver.name → Driver.plate,
stating that each driver drives at most one car, without
which the vertical partition does not make sense (a driver
that drives more than one car would cause a violation of
the key constraint on the car id). If the source functional
dependency holds, it is actually possible to generate a com-
plete implementation, as follows. Notice how the rule makes
use of non-standard Skolem terms in order to capture the
semantics of the target egds (as discussed in Section 5):

r1.Driver(n, p) → Person(n, f(p)) ∧ Car(f(p), p)

In the following sections, we develop a best-effort algorithm
that, given a mapping scenarioM = (S,T,Σs,Σst,Σt), gen-
erates a sound FO-implementation for M. A set of FO-rules,
ΣFO

st , is a sound FO-implementation of M if, for every valid
source instance I, ΣFO

st succeeds on I, then chaseΣFO
st

(I)

is a universal solution for M over I, i.e., chaseΣFO
st

(I) ∈

USolM(I).
Despite the fact that our algorithm does not always return

complete implementations, it has two nice properties that
make it quite effective in order to handle scenarios with egds.

First, our solutions turn out to be complete in most prac-
tical cases. We prove that, given a sound implementation
ΣFO

st for M, it is decidable if it represents also a complete
implementation for M, and provide an algorithm for this
check.

Second, and more important, whenever ΣFO
st turns out to

be complete, we can derive from it an alternative implemen-
tation, ΣFO∗

st , that generates core solutions for M. Notice,
in fact, that complete implementations return universal so-
lutions that are not guaranteed to be minimal. Computing
core solutions adds further complexity to the problem and is
considered here as a separate step (as discussed in Section 6).

The next sections are devoted to the development of the
rewriting algorithm. Recall that chasing egds has the effect
of reducing the number of nulls in the target instance, in two
ways. The first one is by replacing one null by a constant;
the second one is by equating one null to another null. We
simulate these two effects in our FO-rules by two different
techniques:
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(i) the first technique is concerned with discovering overlaps
among tgds in order to properly equate nulls to constants;

(ii) the second technique tries to discover an appropriate
skolemization strategy for the tgds obtained at the previous
step in order to properly equate null values.

4. DISCOVERING OVERLAPS
Two atoms overlap when they may generate facts for a

relation having the same key and different tuple values.
More formally, given a set of atoms ϕ(x, y), we say that
two atoms R(t1, . . . , tn), R(t′1, . . . , t

′
n) in ϕ(x, y) generate

an overlap for a functional dependency R.〈i1 . . . ik〉 → j if,
for each l = 1, . . . , k, either til and t′il are both univer-
sal variables, or they are the same existential variable, i.e.,
til = t′il ∈ y. Given two tgdsm1 : φ1(x1) → ∃y1(ψ1(x1, y1)),
m2 : φ2(x2) → ∃y2(ψ2(x2, y2)), we say that they overlap
whenever there are overlaps in ψ1(x1, y1) ∪ ψ2(x2, y2).
Consider the Person-Car example in Section 1: it can

be seen that mappings m1, m2 generate an overlap on the
Person atoms (in both cases the key, n, is universal). Our
intuition is that it is possible to rewrite the mappings into
a new tgd that directly generates the target atoms that are
produced by chasing the original tgds first and then the egd,
as follows:

o1. Student(n1, bdate) ∧ Employee(n2, salary) ∧ n1 = n2

→ Person(n1, bdate, salary, Y0)

Mapping o1 above is called an overlap tgd. It is interesting
to note that the conclusion of o1 may be constructed using
the following intuitive algorithm: (i) take the conjunction
of the conclusions of the two original tgds; (ii) “chase” the
atoms according to the egd to equate existential and univer-
sal variables. In essence, we are chasing at the formula level
to incorporate the semantics of the egds into a set of new
s-t tgds that are easier to chase at the instance level.
Algorithm 3 in the Appendix generates the actual overlap

tgds. It takes as input a mapping scenario M = (S,T,Σst,
Σt), and generates a new set tgds, Σovl

M , by recursively chas-
ing overlaps. In our example, besides o1 above, the algo-
rithm will also generate the following tgds:

o2. Student(n1, b1) ∧ Employee(n2, s2) ∧Driver(n3, p3)∧
n1 = n2 ∧ n2 = n3 → Person(n1, b1, s2, C3) ∧ Car(C3, p3)
o3. Student(n1, b1) ∧Driver(n3, p3) ∧ n1 = n3 →

Person(n1, b1, S3, C3) ∧ Car(C3, p3)
o4. Employee(n2, s2) ∧Driver(n3, p3) ∧ n2 = n3 →

Person(n2, B3, s2, C3) ∧ Car(C3, p3)

However, the union of the original tgds and these new tgds
is not logically equivalent to the original scenario. To see
why, consider that, by replacing variables, egds do not sim-
ply add new tuples, but typically also remove some exist-
ing ones: consider for example the following two tuples:
Person(Jim, 1980, N0, N1), Person(Jim,N4, 25, 000, N5);
when the chase enforces the key constraint over Person, a
new tuple is generated, Person(Jim, 1980, 25, 000, N1), but
at the same time the original tuples are removed from the so-
lution. Therefore, to correctly simulate the effect of egds by
means of overlap tgds, a further rewriting step is necessary:
we need to rewrite tgds so that they fire only when no over-
lap can be generated. To do this, we use negation in the
premise, as shown in Algorithm 4 in the Appendix. This
generates a set of CQ∧¬UCQ rules, addneg(Σst ∪ Σovl

M ).
To give an example, the procedure above rewrites tgd m1 as

follows:
m′

1. Student(n1, b1) ∧ ¬(Employee(n2, s2) ∧ n1 = n2)∧
¬(Employee(n2, s2) ∧Driver(n3, p3) ∧ n1 = n2 ∧ n2 = n3)
∧¬(Driver(n3, p3) ∧ n1 = n3) → Person(n1, b1, S1, C1)

By doing this, we have obtained a new scenario, with a new
set of s-t tgds, addneg(Σst ∪ Σovl

M ). This new scenario is
logically equivalent [11] to the original one, i.e., the two
scenarios have the same solutions for any source instance,
as stated by the following theorem.

Theorem 4.1. Given a scenario M = (S,T,Σst,Σt), the
scenario Movl = (S,T,addneg(Σst ∪ Σovl

M ),Σt) is logically
equivalent to M.

In light of this, in our rewriting we assume that, as a
first step, M is always rewritten as Movl, and that further
rewritings are performed on Movl. Note that, in the worst
case, the number of new dependencies generated by the al-
gorithm is exponential in the size of the original tgds. In
fact, in the case of n s-t tgds that overlap on the same key,
the algorithm would generate O(2n) overlap tgds.

5. SKOLEMIZATION STRATEGY
Once the original s-t tgds have been rewritten wrt to over-

laps, we need to find an appropriate way to skolemize exis-
tential variables in order to generate the FO-rules that will
be used as a basis for the final SQL script. Recall that the
skolemization strategy must be chosen in such a way to ap-
propriately equate nulls. We know that this is not always
doable. In fact, the algorithm introduced in this Section
may fail.

Given a tgd, the standard skolemization strategy would
generate a Skolem term for each existential variable whose
arguments are all universal variables occurring in the tgd
conclusion. Our goal is to develop a novel skolemization
scheme capable of capturing the semantics of egds.

Determinations In order to find the right skolemization
for an existential variable, our algorithm looks for deter-
minations for that variable. Given a tgd m : φ(x) →
∃y(ψ(x, y)), and an existential variable yi ∈ y, a deter-
mination for yi is a pair [dj , xk], where (i) dj is a func-
tional dependency R.〈i1 . . . ik〉 → j in Σt; (ii) for some atom
R(t1, . . . , tn) in ψ(x̄, ȳ) it is the case that {ti1 , . . . , tik} =
xk ⊆ x, and tj = y. Intuitively, a determination tells us
that, according to the egds, the value of the existential vari-
able yi functionally depends on the values of the universal
variables in xk; in fact, with each determination [dj , xk] we
associate a Skolem term of the form fdj (xk). In order to
take care of variable occurrences for which there is no rel-
evant functional dependency, we also include the standard
determination, [(m, yi), x], to which we associate the stan-
dard Skolem term f(m,yi)(x).

Our algorithm is based on two main intuitions. The first
one is that determinations can be in many cases minimized
by looking at the source functional dependencies, in order
to make them more compact. The second one is that, albeit
an existential variable has multiple determinations, in many
cases it is possible to find a most general determination,
i.e., a determination such that by satisfying it, all other
determinations – i.e., all other functional dependencies –
are satisfied.

We illustrate these ideas by means of the following ex-
ample, where the source table PaperAuthors lists names of
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authors of papers along with the order in which they appear:

m.PaperAuthors(title, name, order) → Author(A, name)
∧AuthorPaper(A,P, order) ∧ Paper(P, title)

d1 : Author.2 → Author.1 d2 : Paper.2 → Paper.1
d3 : PaperAuthors.2 → PaperAuthors.3

The standard Skolem term for the existential variables is
f(m,yi)(title,name, order), which corresponds to the stan-
dard determination [(m, yi), {title,name, order}]. However,
if we consider functional dependency d3 on the source, we
can minimize this as [(m, yi), {title,name}], since the value
of variable order is functionally dependent on name.
Consider now variable A. It has two occurrences and two

determination. One occurrence is in relation AuthorPaper,
for which there are in fact no functional dependencies, and
we take the standard (minimized) determination, [(m,A),
{title,name}]. However, the second occurrence is in relation
Author, for which we have an egd, d1. The egd suggests that
this occurrence should depend on variable name only, which
gives us a determination [d1, {name}]. We need therefore to
reconcile the two determinations in order to uniquely iden-
tify a skolemization strategy for A. However, in this case, we
may easily see that the set of variables {name} functionally
depends on {name, title}. The intuition behind this is the
following: consider two different instantiations of the tgd m;
if the variable A has equal values whenever variable name
has equal values, then it certainly has equal values whenever
both name and title have equal values. We therefore select
[d1, {name}] as the most general determination for A, since
enforcing it guarantees that all constraints on the variable
will be satisfied. Thus, the chosen Skolem term for A will
be fd1(name).

Minimizing Determinations We make extensive use of
the standard implication algorithms for functional depen-
dencies in order to reason about determinations. Recall [1]
that, given a set of functional dependencies over a relation
R, there exists a linear-time algorithm to compute the clo-
sure, Ā+, of set of attributes Ā; Ā+ represents the set of all
attributes that functionally depend on Ā, directly or tran-
sitively.
We extend this algorithm in order to work on the uni-

versal variables of a tgd. More specifically, given a tgd
m : φ(x) → ∃y(ψ(x, y)), consider a subset xi of x. We
compute the closure, xi

+ of xi by the following fixpoint al-
gorithm: (i) initialize xi

+ = xi; (ii) for each source func-
tional dependency R.〈i1 . . . ik〉 → j such that, for some atom
R(t1, . . . , tn) in m, it is the case that {ti1 , . . . , tik} ⊆ xi

+,
and tj ∈ x, add tj to xi

+, until a fixpoint is reached.
We say that a set of variables xj in a tgd m functionally

depends on a set of variables xi if xj ⊆ xi
+. Given a set

of universal variables, xi we may also introduce a notion
of minimization, min(xi), as any minimal subset such that
min(xi)

+ = xi
+.

Skolemization Given an existential variable in a tgd m,
we find all of its determinations, one for each occurrence
in m; in order to find the most general determination, if it
exists, we need a way to compare two (minimized) deter-
minations. To do this, we introduce a partial order among
determinations, as follows. We say that a determination
[d1, x1] ismore general than a determination [d2, x2], in sym-
bols [d1, x1] ≤ [d2, x2], if there exist minimizations min(x1),
min(x2) such that min(x1) functionally depends on min(x2).
Whenever a variable has multiple determinations, our al-

gorithm looks for a greatest lower-bound according to the
partial order defined above. The pseudo-code is reported
in Algorithm 5 in the Appendix. Notice that the algorithm
may fail and return ⊥ whenever it is unable to find a most
general determination for a variable.

Consider again the Driver example in Section 3:
m3. Driver(n, p) → Person(n, Y ) ∧ Car(Y, p)
d1. Person.1 → Person.2 d2. Car.2 → Car.1

In this case, variable Y has two determinations: [d1, {n}],
and [d2, {p}]. But, by the source functional dependency, we
know that the values of the car plate depend functionally on
those of the driver name; thus, the most general determina-
tion for Y is [d2, {p}]. This is what the Skolem function in
the rewriting does.

If the algorithm succeeds, we have identified a sound sko-
lemization strategy, skolemize, that takes a tgd, and asso-
ciates with each existential variable the Skolem term fdj (xk)
corresponding to its most general determination, [dj , xk].

6. GETTING TO THE CORE
We are now ready to introduce our main results. Given a

mapping scenario, M = (S,T,Σs,Σst,Σt), our algorithms
will either fail, or generate a set of FO-rules

ΣFO
st = skolemize(addneg(Σst ∪ Σovl

M ))

Our first result is that ΣFO
st is a sound implementation of M,

as stated below (sketches of the proofs are in Appendix C).

Theorem 6.1. ΣFO
st is a sound implementation of M.

A natural question is whether ΣFO
st is also complete. It

is possible to prove that the property of being complete
is decidable, i.e., once ΣFO

st has been computed, we can
also establish if it is complete. Recall that ΣFO

st is a set
of CQ∧¬UCQ rules. In light of this, we have the following
important decidability result.

Theorem 6.2. The following problem is decidable: given
a sound FO-implementation ΣFO

st of a scenario M where the
body of each FO-rule is in CQ∧¬UCQ, is ΣFO

st complete ?

It is worth noting that sound implementations in most
cases turn out to be complete. In fact, for all examples dis-
cussed in the paper, including those used in the experimental
evaluation, we were able to generate complete implementa-
tions. Even more important, complete implementations can
be used as a basis for the generation of core solutions. Recall
that FO-implementations are guaranteed to return universal
solutions for a mapping scenario with egds, but not neces-
sarily core ones.

We say that a set of FO-rules is a core implementation for
M if it is a complete implementation that always returns
core solutions for M. We show that the core-computation
algorithms developed for scenarios without egds [17, 24] can
be used as building-blocks to turn a complete implementa-
tion ΣFO

st into a core implementation ΣFO∗
st .

Theorem 6.3. Given a complete implementation for M
it is always possible to derive a core implementation for M

The latter result is absolutely non trivial and it is based
on a sophisticated encoding of the egds in the core sce-
nario. The main intuition is that, by relying on a com-
plete implementation ΣFO

st of M, for each source instance
it is possible to “materialize” all functional dependencies
in a universal solution. To do this, we introduce an addi-
tional relation symbol Fd for each functional dependency
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d : R〈i1, . . . , ik〉 → j in Σt; then, for each rule φ(x̄) → ψ(x̄)
in ΣFO

st that contains an atom R(t1, . . . , tn) in its conclusion,
we introduce a tgd of the form φ(x̄) → Fα(ti1 , . . . , tik , tj).
This allows for the treatment of egds using core-oriented
rewritings that were conceived for s-t tgds only. Further
details are reported in Appendix C.

7. EXPERIMENTAL RESULTS
The algorithms introduced in the paper have been imple-

mented in the working prototype of the +Spicy system. In
this section we study the performance of our rewriting al-
gorithm on mapping scenarios of various kinds and sizes.
We show that the rewriting algorithm efficiently computes
solutions of quality for scenarios with egds, even for large
databases and high numbers of tgds.
For our experiments we selected 8 scenarios, called sa, sb,

sc, sd, s25, s50, s75, s100, as detailed in Appendix D.

Figure 2: Size Reduction in Solutions

Quality of Solutions (Figure 2) One of the main claims
of this paper is that egds significantly improve the quality
of solutions with respect to scenarios that do not take them
into consideration. To support this claim, we concentrate on
the compactness dimension of data quality. For experiments
sa–sd, we generated two different SQL scripts. One script
was generated by our rewriting algorithm to generate core
solutions for the egds. The second script was generated to
materialize a core pre-solution, i.e., a core solution for the
s-t tgds only. Differently from the first script, this solution
does not satisfies the egds. Then, we measured the sizes of
the two solutions in terms of tuples and reported the ratio.
Since egds are triggered when equal values are generated

in different target tuples, we are interested in testing how
the size ratio changes in presence of different levels of re-
dundancy in the source instance; here, redundancy means
the probability that the same atomic value appears in more
than one tuple. For each scenario we generated two synthetic
source instances based on a pool of values of decreasing size.
This generates different levels of redundancy (20% and 40%)
in the source database.
Results are in Figure 2. It can be seen that in all exper-

iments the egds brought a significant reduction in the size
of solutions. As it was to be expected, such reduction in-
creases as the redundancy in the source instance increases,
since there is a higher probability that different tuples have
equal values on key attributes and can be merged together.
An obvious question is at what cost this improvement of

quality comes. In the following, we discuss the efficiency
of the rewriting algorithm along two different dimensions.
First, we study the cost of computing solutions for source
instances of increasing size. Then, we study the cost for
scenarios of increasing size.

Scalability wrt Large Source Instances (Figure 3)
To study how the algorithm performs on databases of large
sizes, we considered scenarios sa–sd and generated source

instances of increasing size (100k, 500k, and 1M tuples).
Then, we computed solutions and reported execution times
in Figure 3.

Notice that, while in this paper we restrict ourselves to
SQL, and therefore FO-logic, a number of recent works about
mappings (see, for example [15]) have undertaken the ap-
proach of coupling SQL for database access with a controlled
form of recursive control-logic implemented in a procedural
programming language, typically Java. These works show
that it is possible in some cases to achieve good scalability
even in the execution of recursive queries. Unfortunately,
this is not true in the setting we consider in this paper,
i.e., chasing egds and/or generating core solutions. To show
this, we have compared computing times of the rewriting al-
gorithm to those of a custom chase engine for egds [23] that
uses a combination of SQL and Java to generate solutions.
We fixed a timeout of one hour. If one experiment was not
completed by that time, we stopped it.

Figure 3.a shows computing times for egd-compliant core
solutions generated by our rewriting. Figure 3.b shows com-
puting times for core pre-solutions generated without con-
sidering egds. Finally, Figure 3.c shows computing times for
the chase engine.

It is easy to see that the chase engine hardly scales to
large databases. While execution times for the SQL scripts
scaled nicely to 1M tuples, in order to meet the timeout
with the chase engine we had to reduce the size of instances
to 1k, 5k, 10k. Even so, computing times were significantly
higher. In essence, our experiments show that, using the
custom chase engine, even simply chasing a set of egds –
let alone computing a core solution – may take quite a long
time. To see why, note that during the chase, whenever
a null is mapped to some other value, it must be replaced
everywhere in the database; this may require a high number
of queries. In essence, once the nulls have been generated,
removing them in a scalable way becomes very hard. This
confirms the impression that, whenever this is possible, the
SQL-based approach should be preferred to the actual chase
of the egds.

It is also interesting to note that execution times for the
rewriting on all scenarios were comparable to those needed
to generate the pre-solution, so that we can conclude that
the increased quality discussed in previous paragraph comes
at a very acceptable cost.

Figure 4: Execution Times for Large Scenarios

Scalability wrt Large Scenarios (Figure 4) In the
table in Figure 4, we report several values for scenarios
s25, s50, s75, s100: (a) the number of input tgds; (b) the num-
ber of input egds; (c) the number of final tgds, after overlaps
have been processed. Then, we report two different times.
Since we wanted to study how the rewriting phase scales
with the size of the scenario, we measured the time needed
to generate the SQL script. Finally, we report execution
times in seconds for source databases of 100K tuples.

As it was to be expected, the cost of the script genera-
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Figure 3: Execution Times for Source Instances of Increasing Size

tion phase increased exponentially with the number of tgds.
This is due to the fact that the algorithm has in general to
inspect an exponential number of possible overlaps. On the
contrary, the actual script execution times remained pretty
low, even for scenario s100, where more than 120 tgds were
processed.

8. RELATED WORK
As discussed in the previous sections, the notion of a data

exchange problem was originally introduced in [10] and the
properties of core solutions were first studied in [12]. Sophis-
ticated polynomial algorithms for core computation have
been given in [12] first, and then in [13, 23, 16]. These
algorithms assume that a specialized engine is used to post-
process a canonical solution, find endomorphisms and gener-
ate the core. Rewriting algorithms to generate core solutions
by means of SQL scripts have been given in [17, 24]. As it
was already discussed, these approaches are not applicable
to scenarios with target dependencies.
More recently, a rewriting algorithm for mappings that

also considers target egds [14] has been proposed. However,
in this case the purpose of the rewriting is quite different,
since it aims at optimizing and normalizing the input con-
straints; intuitively, the goal is to minimize the constraints
to make them easier to handle and to improve the quality
of solutions. The rewriting of [14] is therefore independent
from the one proposed in this paper and the two can be
easily combined.
The complexity of dealing with functional dependencies

has also been studied in the context of data integration,
both for LAV [9, 2] and GAV [7] mappings. In that context,
query rewriting techniques were developed to compute query
rewritings in presence of functional dependencies.
The presence of key constraints plays a key role also in

the data fusion literature [5]. However, these works adopt
a different approach: they merge data as a separate step
from the data translation and do not consider the presence
of labeled nulls (i.e., generated values).
An early attempt to partially incorporate key constraints

in mapping systems has been proposed by [6]. There, users
are supposed to provide specialized inputs so that the map-
ping algorithm can handle keys.
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APPENDIX

A. DATA MODEL
In this section we recall some well-known definition about

the relational data model, taken from data-exchange litera-
ture [10].
We fix two disjoint sets: a set of constants, const, a set of

labeled nulls, nulls. We also fix a set of labels {A0, A1, . . .},
and a set of relation symbols {R0,R1, . . .}. With each rela-
tion symbol R we associate a relation schema R(A1, . . . , Ak).
A schema S = {R1, . . . ,Rn} is a collection of relation sche-
mas. An instance of a relation schema R(A1, . . . , Ak) is a
finite set of tuples of the form R(A1 : v1, . . . , Ak : vk), where,
for each i, vi is either a constant or a labeled null.
An instance of a schema S is a collection of instances,

one for each relation schema in S. In the paper, we inter-
changeably use the positional and non positional notation
for tuples and facts; also, with an abuse of notation, we will
often blur the distinction between a relation symbol and the
corresponding instance. A ground instance is an instance I
without labeled nulls.
Given two disjoint schemas, S and T, we shall denote by

〈S,T〉 the schema {S1 . . .Sn,T1 . . .Tm}. If I is an instance
of S and J is an instance of T, then the pair 〈I, J〉 is an
instance of 〈S,T〉.
Given a relation schema R(A1, . . . , Ak), a functional de-

pendency is an expression of the form R.Ā → B̄, where Ā
and B̄ are sets of attributes in {A1, A2, . . . Ak}. Key con-
straints are functional dependencies such that B̄ = {A1, A2,
. . . Ak}. As an alternative, we also write functional depen-
dencies using the positional notation R.[i0, . . . , in] → j.
Given two instances J , J’ over a schema T, a homomor-

phism h : J → J’ is a mapping from dom(J) to dom(J’)
such that for each c ∈ const(J), h(c) = c, and for each
tuple t = R(A1 : v1, . . . , Ak : vk) in J it is the case that
h(t) = R(A1 : h(v1), . . . , Ak : h(vk)) belongs to J’. h is
called an endomorphism if J’ ⊆ J; if J’ ⊂ J it is called a
proper endomorphism.
We say that two instances J , J’ are homomorphically

equivalent if there are homomorphisms h : J → J’ and
h′ : J’ → J. Note that a conjunction of atoms may be
seen as a special instance containing only variables. The
notion of homomorphism extends to formulas as well.

B. PSEUDO-CODE
Chasing FO-Rules Given a source instance I over S, FO-
rules are executed by running the naive-chase procedure to
generate a canonical target instance. The chase essentially
fires rules to generate atoms in the target whenever a rule
premise is satisfied by I, as detailed in Algorithm 1.

Algorithm 1 Chasing FO-Rules

Input: a set of FO-rules, ΣFO
st over 〈S,T〉,

an instance I of S
Output: an instance chaseΣFO

st
(I)

Let chaseΣFO
st

(I) = ∅

For each ϕ(x) → ψ(x) ∈ ΣFO
st

Let Qϕ(I) = {a(x) | a assignment s.t.I |= ϕ(a(x))}
For each a(x) ∈ Qϕ(I)

chaseΣFO
st

(I) = chaseΣFO
st

(I) ∪ {ψ(a(x))}

Computing Overlap Tgds Overlap tgds are computed
by means of a chase procedure that works on formulas, as

detailed in Algorithm 2. The procedure assumes, without
loss of generality, that the s-t tgds are in normal form. A
set of tgds Σ is in normal form if for each mi, mj ∈ Σ,
(xi ∪ yi) ∩ (xj ∪ yj) = ∅, i.e, the tgds use disjoint sets of
variables. Given an attribute Ai and an atom R(v), we use
the notation vR(v),Ai

to denote the variable associated with
attribute Ai in atom R(v).

There are a few observations in order here. First, note
that the definition of overlap above does not require that
mi and mj be distinct tgds. In fact, overlaps may occur
also among atoms in the same tgd, like, for example, in:
A(x, y, z) → R(x,N1, z,N2)∧R(y,N1, N3, z). The algorithm
needs to take care of these cases as well. Second, when an
overlap is processed, the chase algorithm also generates a
number of pre-conditions and a number of consistency con-
ditions. Pre-conditions will be used shortly to construct the
actual overlap tgd. On the contrary, consistency conditions
we will used later on to infer a number of further constraints
that the source instance must comply with.

Algorithm 2 Chasing Formulas with Egds

Input: a collection of atoms, R, over T,
an overlap O for atoms R(v1), R(v2) ∈ R,
and functional dependency Ā → B̄ ∈ Σt

Output: a new set of atoms chaseO(R),
a set of preconditions preconO,
a set of consistency conditions consO

Let chaseO(R) = R
Let preconO = ∅
Let consO = ∅
For i = 0, . . . , |Ā|

Replace all occ. of xR(v1),Āi
in chaseO(R) by xR(v2),Āi

preconO = preconO ∪ {xR(v1),Āi
= xR(v2),Āi

}
Repeat until fixpoint

For each functional dependency Ān → B̄n ∈ Σt

For each pair of atoms R(vh), R(vk) in chaseO(R)
If vR(vh),Ān

i
= vR(vk),Ā

n
i
, for each i = 0, . . . |Ān|

For j = 0, . . . |B̄n|
If vR(vh),B̄n

j
is universal

Replace all occurrences of vR(vk),B̄
n
j

in chaseO(R) by vR(vh),B̄n
j

Else
Replace all occurrences of vR(vh),B̄n

j

in chaseO(R) by vR(vk),B̄
n
j

If both vR(vh),B̄n
j
and vR(vk),B̄

n
j
are univ.

consO = consO ∪ {vR(vh),B̄n
j
= vR(vk),B̄

n
j
}

Based on Algorithm 2, Algorithm 3 generates the ac-
tual overlap tgds. It takes as input a mapping scenario
M = (S,T,Σst,Σt), and generates a new set tgds, Σovl

M ,
by recursively chasing overlaps for tgds; to speed-up the
process while keeping it sound, overlaps are processed only
among tgds that do not have common ancestors. In order
to do this, we keep track of the provenance of overlap tgds.
We say that an overlap tgd mOi,j is derived from mi, mj .
mOh,k

is transitively derived from mi if it is derived from
a tgd mh such that either mh = mi or mh is transitively
derived from mi; in this case, mi is called an ancestor for
mOh,k

.
Algorithm 4 takes care of adding the necessary negations

to generate the final set of CQ∧¬UCQ rules.
As noted above, chasing formulas to generate overlap tgds
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Algorithm 3 Overlap Tgds

Input: a mapping scenario M = (S,T,Σst,Σt)
Output: a set of overlap tgds Σovl

M

Let Σovl
M = ∅

Repeat until fixpoint
For each overlap Oi,j between mi, mj in Σst ∪Σovl

M

Let mi : φi(xi) → ∃yi(ψi(xi, yi))
Let mj : φj(xj) → ∃yj(ψj(xj , yj))
If mi, mj do not have common ancestors
mOi,j : (φi(xi) ∪ φj(xj)) ∧ preconOi,j →

chaseOi,j (ψi(xi, yi) ∪ ψj(xj , yj))

Σovl
M := Σovl

M ∪ {mOi,j}

Algorithm 4 Adding Negated Atoms

Input: a set of tgds Σ = Σst ∪ Σovl
M

Output: a new set of tgds addneg(Σ)
Let addneg(Σ) = ∅
For each tgd mi : φi(xi) → ∃yi(ψi(xi, yi)) in Σ

If there is no tgd mj transitively derived from mi

addneg(Σ) := addneg(Σ) ∪ {mi}
Else

Let m′
i := φi(xi) → ∃yi(ψi(xi, yi))

For each mj : φj(xj) → ∃yj(ψj(xj , yj)) ∈ Σovl
M

transitively derived from mi

Add ¬(φj(xj)) to the premise of m′
i

addneg(Σ) := addneg(Σ) ∪ {m′
i}

may also generates a number of consistency conditions, i.e.,
additional variable equations. In fact, during the chase, it
may be the case that occurrences of a universal variable
are replaced by occurrences of another universal variable; of
course, this makes sense only in those cases in which the two
variables have the same value.
To check these potential failures as early as possible, our

algorithm also infers a number of egds that a source instance
should comply with in order to have solutions for the given
scenario. This is done quite easily: for each overlap tgd
φ(x) → ∃y(ψ(x, y)), we consider all consistency conditions
of the form vi = vj produced during the chase for that tgd,
and generate a source egd of the form φ(x) → (vi = vj).

Most General Determinations We use the notation m :
φ(x) → ∃y(ψ(z, y)) to denote a tgd in which z is the set of
universal variables occurring in the body, with z ⊆ x. The
pseudo-code that looks for most-general determinations is
detailed in Algorithm 5.
Please note that we might also decide to reconsider the

skolemization strategy in such a way that it never fails. The
algorithm may fail during the skolemization phase whenever
it is not possible to find a most general determination for
an existential variable. As an alternative, in order to push
further our best-effort approach, we may as well decide to
pick one of the candidate determinations for that variable
and output the rewriting anyhow. The resulting implemen-
tation would still be sound, since we return a solution only
when it actually satisfies the given target egds. As an ad-
vantage, however, for some scenarios there might be specific
input instances for which a solution can be computed any-
way.

C. SKETCH OF THE PROOFS

Theorem 3.1 There is a scenario M = (S, T, Σst, Σt)

Algorithm 5 Determinations

Input: a tgd m : φ(x) → ∃y(ψ(z, y)),
a set of functional dependencies Σt

Output: a mapping mgdm : y → {[di, xj ]} or ⊥

/* Step 1: Find all determinations */
For each existential variable yi ∈ y

Let detsm(yi) = ∅
For each occurrence R.Bj : yi in some atom of m

Let fds(R,Bj) the set of f.d. for R s.t. Bj ∈ B̄
If fds(R,Bj) is empty

detsm(yi) := detsm(yi) ∪ [(m, yi),min(z)]
Else

For each di : Āi → B̄i ∈ fds(R,Bj)
Let vars(Ā) be the variables associated with Ā
If vars(Ā) are all universal

detsm(yi) := detsm(yi) ∪ [di,min(vars(Ā))]
/* Step 2: Find most-general determinations */
For each existential variable yi ∈ y

If not exists glb(detsm(yi))
return ⊥

mgdm(yi) := glb(detsm(yi))

where Σt is a set of functional dependencies over T such
that no complete FO-implementation exists for M.

Proof. (Sketch) – Consider the following scenario M,
with a single tgd and a single egd:

m1. A(x, y) → ∃N: R(x,N) ∧ R(y,N)
d1. R.1 → R.2

The source instance I can be interpreted as the encoding of
a directed graph G = {(n1, n2)|A(n1, n2) ∈ I}. The final
effect of the egd on a solution J associated with I is that
of assigning the same null values to all target tuples that
originate from arcs belonging to a connected component in
G. To see this, consider the source instance I = {A(a, b),
A(b, c),A(d, e)}.

By chasing the s-t tgd we obtain a pre-solution J’ =
{R(a,N0),R(b,N0),R(b,N1),R(c,N1),R(d,N2),R(e,N2)}.

Chasing the egds produces the effect of equating N0, N1,
that originate from arcs in the same connected component:
J={R(a,N0),R(b,N0),R(c,N0),R(d,N2),R(e,N2)}.

Consider the target query Qt = {(x, y)|∃z : B(x, z)∧
B(y, z)} and let Qs be a source query capturing the cer-
tain answers of Qt, that is, such that for all source instance
I we have Qs(I) =

⋂
{Qt(J)|J ∈ Sol(M, I)}.

Assimilating every instance I with an undirected graph,
we can check that Qs(I) consists of the pair of constants
(c1, c2) such that I contain a path from c1 to c2 and therefore
Qs cannot expressed by a first-order query.

We can finally observe that every scenario M that has
a complete FO-implementation ΣFO

st enjoys the following
property: for every target conjunctive-query Qt there is a
first-order formula Qs capturing the certain answers of Qt

in M. Qs can in fact be obtained from Qt and ΣFO
st by

applying known query rewriting techniques.
It follows that M cannot have complete FO-implementa-

tions.

Theorem 6.1 ΣFO
st is a sound implementation of M.

Proof. (Sketch) – Given an instance I that satisfies Σs,
the solution chaseΣFO

st
(I) satisfies the original s-t tgds. To

see this, consider that for every tgd φ(x̄) → ∃ȳ(ψ(x̄, ȳ)) in
Σst, ΣFO

st contains a rule φ(x̄) → ψ′(x̄). We can observe
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that for all tuple of constant c̄ we have ψ′(c̄) |= ∃ȳ, ψ(c̄, ȳ),
and therefore (I, chaseΣFO

st
(I)) |= Σst.

If ΣFO
st succeeds on I, then ΣFO

st also satisfies Σt, and
therefore is a solution for M. To show that chaseΣFO

st
(I) is

universal, consider that, by construction of the rules in ΣFO
st ,

it only contains sound information. In fact, let F be the set
of function symbols occurring in ΣFO

st ; consider the second-
order formula ΓM = ∃F,

∧
r∈ΣFO

st
∀x̄ φr(x̄) → ψr(x̄). The

property of soundness follows from the fact that this formula
ΓM is (by construction) logically implied by Σs ∧ Σst ∧ Σt.
Therefore, chaseΣFO

st
(I) is a universal solution.

Theorem 6.2 The following problem is decidable: given a
sound FO-implementation ΣFO

st of a scenario M where the
body of each FO-rule is in CQ∧¬UCQ, is ΣFO

st complete ?

Proof. (Sketch) – Given a source instance I such that
I |= Σs we say that I is solvable iff there is a solution for M
and I (in which case there also exists a universal solution for
M and I). Notice that we can easily decide whether a given
instance I is solvable (for instance: by using the standard
chase procedure).
A sound FO-implementation ΣFO

st is complete iff for all
solvable I we have chaseΣFO

st
(I) |= Σt. The key idea of the

proof is then to show that we have the following small-model
property :

Lemma C.1. If a sound FO-implementation ΣFO
st is not

complete, then there exists a small solvable I0 of size ||I0|| ≤
2 · ||M|| such that chaseΣFO

st
(I0) 6|= Σt.

To prove this, let ΣFO
st be a sound FO-implementation of

M and assume that ΣFO
st is not complete. Let I be a (pos-

sibly large) solvable instance such that J = chaseΣFO
st

(I) 6|=

Σt. Let (A1, A2) be a pair of atoms in J violating a func-
tional dependency, that is, {A1, A2} 6|= Σt.
For each atom Ai ∈ {A1, A2} we can find a rule ri : φi(x̄)∧

¬φ′
i(x̄) → ψi(x̄) and a tuple āi such that: Ai ∈ ψi(āi),

I |= φi(āi) and I 6|= φ′(āi).
Since φ1 and φ2 are two conjunctive queries we can easily

construct a subinstance I0 ⊆ I such that I0 |= φ1(ā1)∧φ2(ā2)
while ||I0|| ≤ ||φ1|| + ||φ2||. Since φ′

1 and φ′
2 are two union

of conjunctive queries, and I0 ⊆ I, we have I0 6|= φ′
1(ā1)

and I0 6|= φ′
2(ā2). Therefore, {A1, A2} ⊆ chaseΣFO

st
(I0) and

chaseΣFO
st

(I0) 6|= Σt.

In only remains to observe that solvability is monotonic:
since I is solvable and I0 ⊆ I, the instance I0 is also solvable,
and the Lemma is proven.

Based on the small-model property above, we can finally
decide whether ΣFO

st is complete by (i) enumerating all the
possible source instances I of size ||I|| ≤ 2 · ||M|| (there is
only an exponential number of them up to isomorphism), (ii)
selecting the ones that are solvable, and finally (iii) testing
whether for each remaining solvable instance I it is the case
that chaseΣFO

st
(I) |= Σt.

Before getting to the proof of Theorem 6.3, we need to
introduce some preliminary notions. In the following, for
the sake of space, we will simplify the notation as follows: a
set of FO-rules, ΣFO

st , will be denoted simply by R; given a
source instance I, the canonical instance chaseΣFO

st
(I), will

be denoted simply by R(I).
Given a scenario M = (S,T,Σs,Σst,Σt) and a complete

FO-implementation R for M, Algorithm 6 takes care of gen-
erating a core implementation R∗ for M.
Our algorithm is the composition of two sets of FO-rules.

As a first step, we introduce an additional set of relation

symbols, F, containing one relation Fdi for each functional
dependency di ∈ Σt. Intuitively, based on the complete im-
plementation of M provided by R, these relations are used
to “materialize” the extent of each functional dependency
in an instance R(I). This is done by a first set of rules, RF .

The second set of rules is a core-rewriting, RC . In order
to compute such core rewritings we shall use as a building
block one of the algorithms introduced in [17, 24]. These
algorithms, however, assume a linear order on the active
domain of the source. For example, the algorithm in [24]
assumes that dependencies have premises in FO< and may
contain inequalities < between variables. Since the core-
enforcing script will be composed with another set of FO-
rules, we need to properly define the behavior of a set of
rules R over a non-ground instance I. To do this, we first
extend the partial order on const to Skolem terms in the
natural way by assuming a fixed order <F on the function
symbols. Then, we assume that the canonical solution R(I)
is obtained by chasing the rules in the usual way.

We obtain our core implementation, R∗, by composing
RF and RC . In fact, we can state the following composi-
tion lemma: for every pair of FO-rules, Ra and Rb, we can
compute a set of FO-rules Rab such that, for all ground in-
stances I we have Rab(I) = Rb(Ra(I)). Notice, however,
that this is not even necessary in practice. In fact, in order
to generate the final SQL script, it is sufficient to execute
the two scripts in sequence: first the script derived from RF ,
and then and the one derived from RC on the intermediate
result generated by the first.

It is worth noting that, as a preliminary step, Algorithm 6
rewrites the s-t tgds inM by adding overlap tgds, i.e., it gen-
erates a new, logically equivalent scenario M′ = (S,T,Σs,

Σst ∪ Σovl
st ,Σt). This step has no cost, since it has already

been performed to generate the complete implementation
R, as discussed in Section 4, with a main difference: to
make the resulting dependencies more manageable for core-
computation purposes, here we do not add negated atoms
to tgd premises. This choice is justified by two observations:
(i) in this way, the core rewriting is drastically simplified;
(ii) the needed negations will be added anyway by the core-
rewriting algorithm.

Theorem 6.3 Given a complete implementation M it is
always possible to derive a core implementation for M

Proof. (Sketch) Consider the set of rules R∗ defined in
Algorithm 6. We now show that, given a solvable source
instance I forM, J = R∗(I) is a core solution in Core(M, I).

Part 1: R∗(I) is a universal solution – R∗(I) ∈ USol(M, I)

It is clear that J = R∗(I) is a pre-solution, i.e., (I,R∗(I)) |=
Σst and we can also check that R∗(I) is sound, meaning
that for all K ∈ Sol(I,M) there is an homomorphism from
R∗(I) to K. To show that R∗(I) is a universal solution it
only remains to prove that R∗(I) |= Σt.

We define the set N of affected nulls as the smallest set
of nulls such that, for every d : R〈i1, . . . , ik〉 → j in Σt and
every atom R(t1, . . . , tn) in J , if {ti1 , . . . , tik} ⊆ (N∪const)
then tj ∈ (N ∪ const). We say that an atom R(t1, . . . , tn)
of J is affected when there exists some d : R〈i1, . . . , ik〉 → j
in Σ such that {ti1 , . . . , tik} ⊆ (N ∪ const).

Intuitively, the steps 2 and 4 of the algorithm ensure that
Σt is satisfied by every pair of affected atoms in J while the
steps 3 and 5 ensure that Σt is satisfied by the remaining
atoms.

Consider Σ′′
st = addneg(Σ′

st) = addneg(Σst ∪ Σovl
st ),

and the set of FO-rules R′′ obtained from Σ′′
st by replac-

ing every existential variable in the head of a tgd by its
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Algorithm 6 Core Computation

Input: a scenario M = (S,T,Σs,Σst,Σt),
a complete FO-implementation R for M

Output: a core implementation R∗ for M

/* Step 1: Generate the additional schema F */
Let F be the schema {Fd | d : R〈i1, . . . , ik〉 → j ∈ Σt},
where Fd is a fresh predicate symbol of arity k + 1
/* Step 2: Generate RF from S to F */
Let RF := ∅
For every φ(x̄) → ψ(x̄) in R, every d : R〈i1, . . . , ik〉 → j
in Σt and every atom R(t1, . . . , tn) in ψ

RF := RF ∪ {φ(x̄) → Fd(ti1 , . . . , tik , tj)}.
/* Step 3: Generate Σ′

st by adding overlap tgds to Σst */

Let Σ′
st := Σst ∪ Σovl

st

/* Step 4: Generate ΣF
st from (S ∪ F) to T */

Let ΣF
st := Σ′

st

Repeat until fixpoint
For each r : ∀x̄ φ(x̄) → ∃y, z̄, ψ(x̄, y, z̄) in ΣF

st, each d :
R〈i1, . . . , ik〉 → j in Σt, and each atom R(t1, . . . , tn) in
ψ such that tj = y and {ti1 , . . . , tik} ⊆ {x̄}

Replace r in ΣF
st by the rule

r′ : ∀x̄, y Fd(ti1 , . . . , tik , y) ∧ φ(x̄) → ∃z̄ ψ(x̄, y, z̄).

/* Step 5: Generate a core rewriting RC for ΣF
st */

Considering the scenario MF=((S∪A),T, ∅,ΣF
st, ∅), use

the algorithm in [24] (or that in [17]) to generate a core
implementation RC for MF .
/* Step 6: Generate a core implem. R∗ for M */
Generate the set of rules R∗ as the composition of RF and
RC such that, for every ground instance I of S we have
R∗(I) = RC(I ∪RF (I)).

standard skolemization. We can observe that the instance
J = R∗(I) is contained (up to isomorphism) in the instance
J ′′ = R′′(I ∪RF (I)). Consider now d : R〈i1, . . . , ik〉 → j in
Σt and two atoms R(t1, . . . , tn) and R(t

′
1, . . . , t

′
n) in J

′′ such
that (ti1 , . . . , tik ) = (ti′

1
, . . . , ti′

k
). If these atoms are (both)

affected in J ′′, we can check that RF (I) contains exactly
one atom of the form Fd(ti1 , . . . , tik , t

′′). Then, the term tb
and t′b are both equal to t′′ and d is satisfied.
Otherwise, none of these two atoms is affected and there

is some l ∈ {1, . . . , k} such that tl is of the form fm,y〈. . .〉
for some rule m of R′′ and some existential variable y in the
head of R′′. The two atoms have therefore been produced
by the same rule of R′′ and it follows from the definition of
overlaps (and in particular, the use of the chase) that d is
satisfied.
A crucial observation here is that, even though we refer

to addneg in this proof, it is not needed to (and preferable
not to) use addneg in the algorithm because the step of
core computation already takes care of preventing the in-
troduction of unnecessary atoms in J that may violate Σt.
As an example, consider Σst = {m : S(x, y) → ∃U, V,W,
R(x, U, V )∧R(y, U,W )∧T (V,W )} and Σt={d :R〈1, 2〉→3}.
The overlap algorithm produces a new tgd m′ : S(x′, x′) →
∃U ′, V ′, R(x′, U ′, V ′) ∧ T (V ′, V ′) and addneg adds the in-
equality constraint x 6= y to the body of m. After skolem-
izing the existential variables in a standard way we obtain
R′′ such that, for all instance I0 of {S}, R′′(I0) |= d. Then
for every core solution J0 for ({A}, {R, T}, {m,m′}) and I0,
since J0 is contained in R′′(I0) up to isomorphism, we have
also J0 |= d.

Part 2: R∗(I) is a core solution – R∗(I) ∈ Core(M, I)

When the instance I ′ = I ∪ RF (I) is ground, the step 4 of
the algorithm ensures that the universal solution J = R∗(I)
is a core and therefore J ∈ Core(M, I). The difficulty comes
from the fact that I ′ generally contains some nulls (the
Skolem terms introduced by RF ). We can show however
that the nulls of I ′ that are used by RC can safely be treated
as constants with respect to core computation. More pre-
cisely, if we let N be the set of affected nulls (as defined in
Part 1) we can observe that N coincides precisely with the
set of nulls occurring both in I ′ and J . We can then check
that for every homomorphism h : J → J and every ni ∈ N
we necessarily have h(n1) = ni. This property can finally
be proven by induction after observing that, for every atom
a = R(t1, . . . , tn) in J and every d : R〈i1, . . . , ik〉 → j in Σt,
if h is the identity on {ti1 , . . . , tik} then h is also the identity
on {tj} (because {a, h(a)} ⊆ J and J |= d).

D. DESCRIPTION OF SCENARIOS
For our experiments we selected 8 scenarios. Of these, 3

(denoted as sa, sb, sc) are variants of scenarios taken from
the literature (one from [12], one from [13], one from [3]).
The fourth one (sd) was explicitly constructed in order to
test the behavior of the rewriting in case of an exponential
number of overlaps. For these experiments, the number of
tgds varies between 4 and 10, and the number of egds varies
between 5 and 13.

Four additional synthetic scenarios were used to test the
scalability of the algorithm with respect to larger number
of relations and dependencies. Using the scenario generator
developed for STBenchmark [3], we generated four relational
scenarios (s25, s50, s75, s100) containing 20/50/75/100 tables,
with an average join path length of 3, variance 1. To gener-
ate complex schemas we used a composition of basic cases
with an increasing number between 1 and 15, in particular
we used: Vertical Partitioning (3/6/11/15 repetitions), De-
normalization (3/6/12/15), and Copy (1 repetition). With
such settings we got schemas varying between 11 relations
with 3 joins and 52 relations with 29 joins. The number
of tgds varies between 22 and 93, and the number of egds
between 25 and 100 (corresponding to one key for each re-
lation).

All experiments have been executed on a Intel Core 2 Duo
machine with 2.4Ghz processor and 2 GB of RAM under
Linux. The DBMS was PostgreSQL 8.3.

By looking at Figures 3.a and 3.b it is possible to see that
times for scenario sc were strongly in favor of the rewrit-
ing. The reason for this is related to the Skolem minimiza-
tion procedure. Scenario sc includes existential variables for
which the standard Skolem terms depends on 10 different
universal variables; this means that, for source instances on
which such variables may assume rather long values, the cor-
responding Skolem string may become rather large. It turns
out that generating many large Skolem strings is often a
bottleneck in the execution of the SQL script. This is prob-
ably due to the fact that appending strings is not always a
very optimized operation in a DBMS. As a consequence, the
generation of the pre-solution is rather slow. The rewriting
does not incur this cost, since the skolemization algorithm
minimizes Skolem terms, so that they depend on a single
variable (representing the key value for the corresponding
tuple); this generates much shorter strings that are manip-
ulated more efficiently by the engine. It remains an open
problem to find alternative encodings for Skolem terms that
alleviate these problems.
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