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ABSTRACT

Web technologies have enabled data sharing between sources but also sim-
plified copying (and often publishing without proper attribution). The copy-
ing relationships can be complex: some sources copy from multiple sources
on different subsets of data; some co-copy from the same source, and some
transitively copy from another. Understanding such copying relationships
is desirable both for business purposes and for improving many key compo-
nents in data integration, such as resolving conflicts across various sources,
reconciling distinct references to the same real-world entity, and efficiently
answering queries over multiple sources. Recent works have studied how to
detect copying between a pair of sources, but the techniques can fall short
in the presence of complex copying relationships.

In this paper we describe techniques that discover global copying rela-
tionships between a set of structured sources. Towards this goal we make
two contributions. First, we propose a global detection algorithm that iden-
tifies co-copying and transitive copying, returning only source pairs with
direct copying. Second, global detection requires accurate decisions on
copying direction; we significantly improve over previous techniques on
this by considering various types of evidence for copying and correlation of
copying on different data items. Experimental results on real-world data and
synthetic data show high effectiveness and efficiency of our techniques.

1. INTRODUCTION

Web technologies have enabled data sources to publish and share
their data, but also made it easy for sources to copy from each
other (and often publish without proper attribution). The copying
relationships can be complex: some sources act as data hubs and
aggregate data from multiple sources; some provide only a small
set of data independently, copying the rest of the data from their
“friend” sources, who may also copy from others; some sources
are well known and widely copied by many other sources.

Understanding the copying relationship between sources and the
data flow has many benefits [1]. First, data are valuable and many
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data providers have put a lot of money and effort in collecting and
cleaning their data, so they may want to understand such relation-
ships for business purposes (and possibly protect their own rights).
Second, in data integration, considering the copying relationship
can help improve truth discovery, entity resolution, schema map-
ping, and further optimize query answering over multiple sources.
Third, identifying provenance of data can be critical for in-depth
data analysis and for the study of dissemination of information.
Finally, independence of sources can form an important criteria
in source (user) recommendation. This paper aims at discovering
complex copying relationships between a set of sources, illustrated
in the following example.

EXAMPLE 1.1. We consider a data set extracted from AbeBooks.
comy, it includes 1263 CS books and 877 online bookstores (sources)".
Our copying-detection model (explained in the paper) predicted
that between 465 pairs of sources the probability of copying is
above .5 (visualized in Appendix Fig. 10, generated by GMap [9]).

First, we can cluster the bookstores by the copying relation-
ship (as GMap does) and obtain some interesting clusters. For
example, cluster Departmentstoria® includes many big department
bookstores, such as A1Books.com, Quartermelon.com, and Pow-
ell’s Books; cluster Textbookistan includes many textbook stores
such as www.textbooksrus.com, LGTextbooks, and brandnewtext-
books.

Second, copying relationships can be complex. Some sources
(e.g., Deepak Sachdeva) seem to copy from multiple sources. Some
sources (e.g., Browns Books) seem to be copied by multiple sources
(and those co-copiers often do not copy from each other). Some
sources seem to transitively copy from other sources, for example,
Gunars Store or Gunter Koppon (one of them is a copier of the
other, but the direction is unclear) transitively copies from World-
OfBooks via Books Down Under. We found that a source can copy
from up to 17 sources and be copied by up to 9 sources; and there
are transitive paths (where the last source indeed copies data pro-
vided by the first) of length up to 9. a

Discovering copying relationships between structured sources
has been studied recently in [6] for static data and in [7] for dy-
namic data (with updates). In particular, [6] makes pairwise de-
cisions based on common mistakes made by the sources, and [7]
considers in addition similarity of update patterns. Such techniques
can detect source dependence and improve truth discovery, but may
generate inaccurate copying relationships in the presence of com-
plex copying. In particular, they have the following limitations.

'We thank the authors of [13] for providing us the data.
2We named the clusters manually.
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First and most importantly, these techniques consider every pair
of sources in isolation of other sources and make local decisions; as
aresult, they cannot distinguish co-copying, transitive copying, and
direct copying from multiple sources. Second, they neglect possi-
ble correlations on copying of data items; for example, a source
that copies the name of a book tends to also copy its author list.
Third, they view common mistakes as important evidence of copy-
ing but neglect other kinds of evidence such as whether the data are
formatted in the same way, and whether two sources provide sim-
ilar sets of real-world objects. Experimental results show that the
second and the third limitations often lead to wrong copying direc-
tions, which in turn can lead to wrong choices among co-copying,
transitive copying, and multi-source copying.

This paper proposes techniques for global copying detection on
static data and these techniques can be extended for dynamic data
following the ideas in [7]. Our detection proceeds in two steps:
the first step locally decides possibility of copying and copying di-
rection between each pair of sources, and the second step globally
identifies co-copying and transitive copying.

This paper makes three contributions. First, for making more
accurate decisions on the copying direction, critical for global de-
tection, we enhance the previous model by gleaning more evidence
such as completeness and formatting of data (Sec.3), and consider-
ing correlated copying on data items (Sec.4). Second, as a key to
global detection, we introduce the techniques for discovering co-
copying and transitive copying, and distinguish them from a source
indeed copying from multiple sources (Sec.5). Third, we experi-
mented on both real-world data and synthetic data, showing effec-
tiveness and efficiency of our techniques (Sec.6 and Appendix E).

2. OVERVIEW

This section defines the problem we solve and describes how we
profile characteristics of data.

2.1 Problem definition

Consider a set of real-world objects in the same domain, denoted
by O. Each object is described by a set of attributes .4, among
which we assume one uniquely identifies the objects (key)®; we
call an attribute A € A of an object O € O a data item and denote
it by O.A. An attribute value can be atomic (e.g., string, numeric
value), or a set or list of atomic values (e.g., a list of authors, a
set of phone numbers), which we consider as a whole. We assume
for each non-key attribute an object has a true value that reflects
the reality, and many wrong values*, but for the key attribute there
cannot be any wrong value (we assume entity resolution is already
performed using known techniques [10]). We assume as input, we
know the probability of each non-key value v being true, denoted
by P(v) (we can compute such probabilities according to [6]).

Consider a set of sources, denoted by S, each describing a sub-
set of objects in O. For each object, each source can provide values
for a subset of attributes in .A and we assume a key value must be
provided. Different sources may format the same value differently
(e.g., “John Smith” and “SMITH, John”); such formatting differ-
ences should be easily detectable according to some standardiza-
tion or normalization rules’. For each attribute there is a set of
formatting elements (e.g., for an author list, the elements can be

Mtis easy to extend our techniques for the case with multi-attribute keys or
the case where some attributes apply to only a subset of objects.

4Some wrong values are partially correct (e.g., misspellings and partial
lists) and we can handle this case by considering value similarity as in [8].
3 A standardization is not necessary; even if it is performed, the formatting
information should not be discarded as it helps in copying detection.

Table 1: Sources in the motivating example.

ISBN | name authors

1 IPV6: Theory, Protocol, and Practice Loshin, Peter

S1 9 Web Usability: A User-Centered Lazar. Jonathan
Design Approach ’

S5 1 IPV6 -

2 Web Usability Jonathan Lazar
S 1 IPV6: Theory, Protocol, and Practice Loshin, Peter

2 Web Usability Jonathan Lazar
S4 1 IPV6: Theory, Protocol, and Practice Loshin

2 Web Usability Lazar
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Figure 1: Formatting of attributes in the AbeBooks data set.

list completeness, name completeness, name component ordering,
capitalization, etc.), each with a set of options (e.g., options for
list completeness can be full author list, only first author, etc.). A
Sformatting pattern is a combination of options of the formatting
elements; such patterns can be pre-defined by observing the data.
Note that some formatting patterns may contain less information
than others (e.g., only first author vs. full author list) and thus they
form a partial order.

EXAMPLE 2.1. Consider the four sources in Tbl.1, each pro-
viding data on the same two books. A book is described by its
ISBN (the key), name, and authors (Sz does not provide authors
for book 1). The sources may provide incorrect values (marked in
italic font); e.g., S2 provides wrong (or partially correct) values for
the name of both books. They may also provide the same value but
Sformat them differently; e.g., S1 and Sz provide the same authors
for book 2 but in different formats.

Fig.1 shows the variety of observed formatting patterns on each
attribute in the AbeBooks data set. We observe much higher variety
on authors than on ISBN and name. a

Among the sources, some are independent and provide data in-
dependently, and some are copiers and copy all or a portion of data
from other sources. A copier may verify some values and modify
them when appropriate; we consider such values as independently
provided, as they reflect independent observation of the real world
by the copier. A copier may also reformat some copied values;
we consider such values still as copied if the new format contains
equal or less information (e.g., copying only the first author), and
as independent if the new format contains more information (e.g.,
add more authors). Note that there is another kind of “dependence”
between sources—negative correlation (e.g., data items provided by
S1 and S» are complementary, or S; chooses to provide different
values or use different formats from .S5); in such cases, we consider
neither source as a copier.

EXAMPLE 2.2. Continue with the motivating example. S1 and
So are independent; S3 copies the first book from S1 and the sec-
ond one from Sa; Sy copies from Ss but has reformatted the values
of authors and provides only their last names. O

This paper aims to solve the following problem.
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PROBLEM STATEMENT 1. Given a set of objects O and a set
of sources S, for each pair of sources S, S’ € S, decide the proba-
bility of S directly copying from S’ and vice versa. a

We make a closed-world assumption on O and S. This assump-
tion on O should not affect the results much. That on .S, however,
can lead to predicting direct copying between co-copiers of a hid-
den source or between a source and its transitive copier when the
direct copier is hidden. We assume there is no mutual copying; that
is, S1 copies from Sz and S copies from S; (on different objects).

2.2 Data and source profiling

A source is more likely to be a copier if the probability that
it provides the observed data independently is very low. Judging
this would require computing the a-priori probability that a partic-
ular source provides some particular data. There are several vari-
ations in data for a particular data item, including, but not lim-
ited to, whether a value is provided, which value is provided, and
in which format the value is provided. We thus profile the data
by completeness, accuracy, and formatting style, respectively, and
one can define other measures similarly. These profiling measures
typically fall in one of the three classes: existence measure mea-
sures whether a piece of data exists (e.g., completeness); correct-
ness measure measures correctness of data (e.g., accuracy); and
distribution measure measures distribution of values, formats, etc.
(e.g., formatting style).

Note that the probability that a source provides a piece of data
can depend both on source-wise statistics and data-item-wise statis-
tics; for example, .S is likely to provide an object O if S has a high
completeness or O is popular. Thus, we need to define each mea-
sure both for each source and for each data item.

Completeness: The object-level completeness of a source S, de-
noted by Co(S), measures the percentage of objects in O that S
provides. The completeness of an object O, denoted by C(O),
measures the percentage of sources in S that provide O. Similarly,
we can define attribute-level completeness.

Note that in the presence of copiers, we want to avoid being bi-
ased by them when computing completeness and other measures;
for example, an object may seem popular, but most of its providers
just copy data for it from a common source. We may wish to con-
sider only independent providers; e.g., we can compute C'(O) by

> ses(o) P(S,0) W
_ Y ses0) P(S,0) + 18 - S(0)[
where S(O) is the set of sources that provide O, P(.S, O) denotes
the probability that S independently provides O (its computation

c(0) =

depends on the result of copying detection), and s0 } S s 50y P(S, O)

computes the “number” of independent providers for O and |S —
S(0)] counts the number of sources that do not provide O.

Formatting style: The formatting style of a source S measures the
distribution of formatting patterns used by S. For each formatting
pattern f for A € A, we compute its popularity, Fa.¢(S), as the
percentage of objects for which S uses f for the value of A. The
Sformatting style of an item O.A measures the distribution of for-
matting patterns on O.A used by different sources. We compute
Fa.7(0.A) as the percentage of sources that use f for the value of
O.A among all providers of O.A.

Accuracy: The accuracy of a source S measures correctness of its
data. We adopt techniques presented in [6] and compute accuracy
by A(S) = Avg, sy P(v), where V (9) is the set of values pro-
vided by S. We can easily refine this measure for each attribute.
The corresponding measure for O.A is the correctness of each of
O.A’s values v and is captured by P(v).

We next illustrate usage of these measures in copying detection.

EXAMPLE 2.3. Consider S1,S2 and Ss in Table 1. “Peter
Loshin” has a misspelling (the correct spelling is “Pete Loshin”)
and has a low value probability, so indicates dependence between
S1 and Ss. Similarly, “Web Usability” is a wrong book name and
has a low value probability, so indicates dependence between So
and Ss. It is more likely that Ss copies from S1 and Sa than the
opposite direction, as S3 keeps the format of the copied data and
thus formats authors differently for the two books, so the popular-
ity of each formatting pattern is low (50%). a

Among these measures, we note that (1) as we show later, source
copying probabilities depend on all measures we have defined; (2)
the copying probabilities affect item-wise measures if we com-
pute them considering only independent sources (e.g., by Eq.(1)),
but do not affect source-wise measures; (3) the item-wise mea-
sure and the source-wise measure are independent of each other for
completeness and formatting styles; however, source accuracy and
value probability are inter-dependent, unless value probabilities are
given upfront as input. Therefore, there is inter-dependence be-
tween data-item-wise measures, source-wise measures, and copy-
ing probabilities; we compute them iteratively until convergence,
as detailed in [6].

3. A BASIC LOCAL-DETECTION MODEL

We now present the basic model for local copying detection as-
suming ifem-wise independence; that is, whether source S copies
an item O.A from S’ is independent of whether it copies O’. A’
from S’, O # O’ or A # A’. We relax this assumption in Sec.4.
Consider two sources S1, 52 € S, 51 # S2. The key in deciding
whether S; copies from Sy (S1 — S2) is to decide if the prob-
ability of S; providing the observed data conditioned on it being
independent of S2 is much lower than that conditioned on it be-
ing a copier of Sz. Intuitively, the former probability will be much
lower than the latter in two cases: first, when the two sources share
low-completeness items, low-probability values, or low-popularity
formats; second, when there is a big difference between the profile
of the overlapping data and that of S;’s self-provided data.

Specifically, according to the item-wise independence assump-
tion, we consider each data item and denote by .4 (S) the data
provided by S on O.A. We say ®o.4(S) = 0if S does not provide
a value for O.A, and ®o(S) = 0 if S does not provide a value for
O.key (and so not for any other attribute either). We denote the
two conditional probabilities by P(®o.4(S1)|S1 # S2) (simpli-
fied hereafter as P(®o.4(S1))) and P(®0.4(51)|S1 — S2) re-
spectively. We next focus on how we compute them according to
our data profiling; our methods can be easily extended when other
measures are present. The complete basic model applies Bayesian
analysis by accumulating evidence from all data items and we give
details in Appendix A; we give proofs of the theorems in [5].

Not copying: We start with P(®0.4(S51)). Here, S1 does not rely
on S> and there are three cases:
1. S1 does not provide O.A and A is the key. Then S1 does not
provide O (i.e., ®o(S1) = 0) and
P(®0.4(51)) =1—P(20(S1) #0). 2
2. Si does not provide O.A and A is not the key. Then
P(20.4(51)|20(51) #0) =1 — P(®0.4(51) #0); (3
P(20.4(51)[20(S1) =0) =1. “
3. Otherwise, suppose S1 provides a value v and formats it in
pattern f. Then,
P(®0.4(51)) = P(20.4(51) # 0) - P(value(®o.4(S1)) = v)
-P(format(®o.4(S1)) = f). 5)
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Computation of P(®o(S1) # 0) depends on the completeness

of S and O (similar for P(®o_4(S1) # 0)), that of P(value(®o. 4(S1))

= v) depends on Si’s accuracy and v’s correctness, and that of
P(format(®o.4(S1)) = f) depends on the formatting styles of
S and O.A. We now present how we compute P(®o(S1) # 0)
and give details for the rest of the probabilities in Appendix A.

Intuitively, a source S provides |O|Co(S) objects, so the prob-
abilities for providing each object should sum up to |O|Co(S);
similarly, the probabilities of each source providing O should sum
up to |S|C(O). We thus shall solve the following equations:

VS €S, Y P(®o(S)#0) =10ICo(S); ©6)
Ooeo

VO € 0, P(20(5) # 0) =1S|C(0). @)
ses

There are |S| - |O| variables but only |S| 4 |O| equations, so an
infinite number of solutions. We choose the one with the maximum
entropy [4], so has the least bias. We can prove that in most cases®
such a solution is obtained when we assume the probability that S
provides each object O is proportional to C'(O); thus,

|0|Co(S1)C(0) _ SIC(0)Co(S1)
>-0pe0 C(00) Y syes Col(So)

Copying: We next compute P(®o.4(S1)|S1 — S2). Note that
even if S copies from S2, S1 may or may not copy a particular
data item. We call the probability of copying a particular item the
selectivity, and denote it by s. Even when Sy copies, it can then
choose to keep the original format, or to reformat it; we assume
the probability of the former is k. We discuss how to set s and k
in Appendix B. The computation requires comparing values and
formats provided by S1 and S2; there are four possible cases.

P(@o(S1) #0) = ®

1. One of S1 and Sa does not provide O.A. We do not penalize
providing a value that the other source does not provide or
vice versa (common for a copier), so

P(®0.4(S1)|S1 — S2) = P(®0.4(51))- ©
For the probability that a copier independently provides a
piece of data, we mark by  and explain in more detail shortly.

2. S1 and S2 provide different values on O.A or Sy uses a for-
mat with richer information. Then, S1 does not copy:

P(®0.4(51)|51 — S2) = (1 = s)P*(®0.4(51)). (10)

3. S provides the same value as S2 but in a different format
f' (f' contains no richer information than that of Sa). Then,
S1 might copy (w. probability s) but reformat:

P(®0.4(51)[S1 — S2) = (1 — s)P(®0.4(51))
+ 5(1 — k)P¢(format(®o.4(S1)) = f). (11
4. Sy provides the same value in the same format f. Then, S1
might copy (w. probability s) and might follow the original
format (w. probability k):
P(20.4(51)[S1 — S2) = (1 — s)P°(®0.4(51))
+ s(k+ (1 — k) P¢(format(®o. 4(S1)) = f)). (12)

We note that we use P°(®o.4(S1)) instead of P(Po.4(51))
under condition of copying. We compute P°(®o.4(S1)) in the
same way as P(®o.4(S1)), except that we use “independent” mea-
sures computed only on S ’s data that are not copied. As we often
do not know in advance which data are copied, and such compu-
tation needs to be performed for every pair of sources so needs to

> 1 for some S7 and

The only exception happens when ‘O‘OCO(M

2ogeo C(0o0)
O; in this case, we can estimate by setting P(®o(S1) # 0) = 1 for such
S1 and O, and compute by Eq.(8) for other sources and objects .

Table 2: Ex. 3.2 and 4.1. Each table describes data provided by
two sources on 5 objects, each with 5 attributes (K is the key).
“S” in the table indicates that the two sources provide the same
value in the same format, and “D” indicates that they provide
different values. Copying seems more likely for (b) than for (a).

K Ay Ay Az Aa K A1 Ay A3 Ay
O1/S S S D D O1/S S S S S
O[S D S S D O[S S S S S
O3S S D S D O3S S S S S
O41S S S D S O4|S D D D D
Os|S D S S S Os|S D D D D

(a) (b)

be very fast, we estimate these measures. As an example, we esti-
mate S1’s “independent” object-level completeness w.r.t. So as its
completeness on objects not provided by Ss:
|0(S1)] = [0(S1) N O(S2)|
Co(S1|=82) = = ) 13)
i} 10— [0(52)]
where O(S) denotes the set of objects provided by S.
Discussion: The following result lists positive evidence for copy-
ing, conforming to our intuitions.
PROPOSITION 3.1. Given sources S1 and S2 and data item O. A,

in the following cases O.A forms positive evidence for S1 — Sa.

e Si provides the same value in the same format as Sz on O. A,
and P(®0.4(S1)) < sk;

e Sy provides the same value but uses a different format f,
and P(20.4(S1)) < s(1 — k)P¢(format(®o.4(51)) = f);

o P¢(Pp.a(S1)) > P(Po.a(S1)) and Sa does not provide
O.A;

o (1-5)P(®0.4(51)) > P(®0.4(51)). O

EXAMPLE 3.2. Consider sources S1 and Sa, each providing 5
objects and 5 attributes for each object (shown in Tbl. 2(a)). As-
sume P(@O,K(Sl)) = Pc(q)o,K(Sl)) = .9, P(q)o,Ai(Sl)) =
PC(CD()_AZ. (51)) = .5,i c [1,4], and Pc(format(Cbo_A(Sl))) =
.8 for each attribute A. We set s = .6,k = .5.

We first compute P(®(S1)|S1 — S2) (P(S1) denotes observa-
tion of S1’s data). There are 5 key items on which the two sources
provide the same value in the same format; the probability is (1 —
.6)%.94.6%(.54+(1—.5)*.8) = .4%.94.6%.9 = .9 (Eq.(12)). There
are 12 non-key items on which the two sources provide the same
value in the same format; the probability is .4 x .5+ .6 x .9 = .74
(Eq.(12)). Finally, there are 8 items on which the two sources pro-
vide different values and the probability is .4 x .5 = .2 (Eq.(10)).
So P(®(S1)|S1 — S2) = .9%  .74"% 28,

On the other hand, it is obvious that P(®(S1)|S1 4 S2) =

9% % 520 So % = .07 and S is unlikely to be
a copier of Sa. This is reasonable because S1 provides a lot of
values differently from Sa, and for the values they share, S1 has a

relatively high probability to provide them by itself. a

Comparison with [6]: There are three differences between our
basic model and the model presented in [6].

1. The basic model allows the flexibility of plugging in evi-
dence of various types, including completeness and format-
ting of data in addition to correctness of data.

2. In addition to source-wise measures, we consider also item-
wise measures when computing P(®o.4(5)).

3. Instead of using P(®0.4(S1)), we use P°(®o.4(S1)) un-
der condition S7 — S>.

Note that difference 3 is a correction of the previous model; how-
ever, our experiments show that it does not necessarily improve the
results when we consider only data correctness. Finally, none of
the techniques in Sec.4-5 is included in [6].
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4. CORRELATED COPYING

The basic model assumes item-wise independence, which sel-
dom holds in reality. For example, the copier may compose a
SQL query and copy all returned objects; when it copies an object,
it often copies all provided attributes or the attributes in its own
schema. This section discusses object copying (the latter); similar
techniques can be applied for query-driven copying (the former).

One can imagine that a copier often copies in one of two modes:
1) it copies a subset of objects on a subset of attributes, called
per-object copying; 2) it copies on a subset of attributes for a set
of independently provided objects (or objects copied from other
sources), called per-attribute copying. The difference is whether
the copier also copies the key values or not. Thus, when we com-
pute P(®o.4(S1)|S1 — S2), we need to consider whether Sy
copies on O or only on A and treat them differently.

Specifically, we denote by S1 <. Sy that S1 copies O from So,
by Si o So that Sy copies O. A from Ss, and simplify P(S; <. Sa|
S1 — S2) as s(0) (s(O) can be viewed as the selectivity on O for
S1 — S2, but we omit .S; — Sa for simplicity). Then, we have

(@]
P(®0.4(51)151 — 52) = s(O)P(®0.4(51)[51 — 52)
(@]
+ (1 - S(O))P(QO‘A(Sl)‘Sl 7= 527 Sl — Sz)) (14)

The computation of P(®o.4(S1)]S1 2 S2) and P(®o.4(S1)]
S1 7‘2 Sg, S1 — SQ) is the same as P(@o,A(51)|S1 — Sg), ex-
cept that we shall set the selectivity differently. We denote the se-
lectivity for an attribute A € A of a copied object by s; and that
of an uncopied object (per-attribute copying) by sf. According to
our definition, s, = 1 and s,f'ey =0.

The next question is how to compute s(O) depending on our ob-
servation of data provided on O. Let sp; be the a-priori probability
that a copier copieos an object. Then, by Bayesian analysis,

5(0) = P(S1 = S2|®0(51),51 — S2)

(0]
506 P(®0(51)[S1 — S2)

= as)

(o] (]
506 P(®0(51)[S1 — S2) + (1 — s0b5) P(®o|S1 #— S2,51 — S2)

We can compute P(Po (S51)]S1 <. S2) from P(®o.4(51)]S1 < S2),

A € A, assuming all attributes are independent (we can relax this
assumption by further grouping the attributes).

One big challenge for applying the enhanced model is parameter
setting. The enhanced model introduces new parameters, Sob;, 5S4 ,
and sf; they are essentially conditional probabilities and can vary
from source pair to source pair. Setting them appropriately is im-
portant in achieving accurate results. We set them for each direction
of each pair of sources in two steps: first, we initialize them empir-
ically according to the data; second, we adjust them later according
to copying-detection results and re-apply our model accordingly.
Appendix B gives the details.

EXAMPLE 4.1. Continue with Ex.3.2 and now consider S and
So in Thl. 2(b). With the same calculations as in Ex.3.2, S1 appears
unlikely to be a copier of Sa. Now consider per-object copying and
we set Sop; = .6 and s = .9, 57: = .1 for each attribute.

For each non-key item in {O1, Oz, O3}, if S1 copies the object,
the probability that it provides the data is .1 * .5 + .9 .9 = .86
(Eq.(12)); otherwise, if S1 copies from S2 but not on the object, the
probability becomes .9 x .5 + .1 % .9 = .54. For each non-key item
in {O4, Os}, if S1 copies the object, the probability is .1 .5 = .05
(Eq.(10)); otherwise, the probability is .9 x .5 = .45. Finally, for
each key attribute, the probability that S provides it is always .9.

Table 3: Three sets of data sources. In each one, S; and S> share 50
values, S1 and S3 share 50 values, and S2 and S3 share 30 values.

Src D1 (Multi-copy) [ D3 (Co-copy) | D3 (Transitive)

S1 v1 ~ v100, Where vg1 ~ v100 are popular values

Sa | w1 ~ v50,v101 ~ V130 V1 ~ V50 V1~ U50

S3 V51 ~ V130 V21 ~ V70 V21 ~ V50, V81 ~ V100

Accordingly, the probability that S1 copies O1, O3 or O3 is

*( D%, 4 o7 .
46*(.9*:26‘(¥)9+ZS(‘)9*,544) = .9(Eq.(15)). The probability that it pro-
vides each non-key value is thus .9 * .86 + .1 x .54 = .83 (Eq.(14)).
Similarly, the probability that S1 copies O4 or Os is .002 and the
probability that it provides each non-key value is .45. Therefore,

P(®(S1)|S1—=52) _ .9%+.83'%x.45% _ (gg 7 S, is likely to be a

P(®(S1)|S1/4S52) .95 %.520
copier of Sa.

To compare, for Tbl.2(a), considering per-object copying obtains
a ratio of 1.37 and still does not strongly imply copying. o

S. GLOBAL COPYING DETECTION

Local detection aims at discovering (positive) dependence be-
tween sources; however, such dependence is not always caused
by direct copying, but can also be due to co-copying or transitive
copying. In the motivating example (Tbl.1), local detection may
conclude with S4 — S and S4 — So, although S4 only tran-
sitively copies from Si1 and S3. Global detection tries to fix this
problem. However, identifying co-copying and transitive copying
is non-trivial, as the following example illustrates.

EXAMPLE 5.1. Consider S1,S2 and Ss, where local detection
decides that So — S1,S3 — Si1, and Ss — Sa. We need to
decide if S5 copies only from S1 (co-copying with S2), only from Sa
(transitively copying from S1), or from both (multi-source copying).

One may consider finding a clue from the copying probabilities,
but this often does not work when each pair of sources share a lot
of values and thus have a copying probability of 1.

One may then consider comparing the numbers of overlapping
values, but this is insufficient. Consider D1 and Dz in Tbl.3. Each
pair of sources share the same number of values for the two cases;
however, because of the different distribution of the shared values,
D1 seems more likely to have multi-source copying, whereas D»
seems more likely to have co-copying.

One may next consider comparing the sets of overlapping values,
but this is still insufficient. Consider D2 and D3 in Tbl.3. Values
that all of S1,S2 and S3 share are the same (v21 ~ vso) in the
two cases;, however, Dy seems more likely to have a co-copying,
whereas Ds seems more likely to have a transitive copying, be-
cause the rest of the 20 values shared between S1 and Ss in D3 are
popular values and Ss may provide them independently. Thus, we
need to reason for each data item in a more principled way. a

Our key intuition is that since co-copying and transitive copy-
ing can often be inferred from direct copying, we first find a set
of copying relationships R that significantly influence the rest of
the relationships, and then adjust the rest accordingly and decide
if each is a direct or indirect copying (the results are denoted by
P(S1 — S2|R), (S1,S2) € R). In this process we need to solve
two problems: (1) how to select the set R; and (2) how to compute
P(S1 — S2|R). The first problem relies on the second, so we start
from our solution for the second problem.

Computing P(S1 — S2|R): As we have illustrated, we cannot
derive this probability directly from the copying probabilities in
R, but have to reason for each data item if .Sy is likely to copy it
from S2 even in the presence of the copying between S; and other
sources. Thus, when we compute P(S; — S2|R), we replace
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P(®0.4(S1)) everywhere with P(®o.4(S1)|R), the probability
that S independently provides the data or copies the data from
other sources according to R. We next illustrate how we compute
P(®0.4(51)|R) using the case of ®o.4(S1) # 0.

Consider the set of sources that are associated with S; by some
copying relationship in R. Consider two subsets: S(O.A), those
providing the same value in the same format on O.A as S1; S, (0. A),
those providing the same value in a different format. The probabil-
ity that Sy does not copy O.A from any source in S¢(0O.A) is

0.4

Pr= Y

5€54(0.4)

(]. — P(Sl — S)P(Sl - S)

(k+ (1= k)P(format(®0.4(51)) = £))}16)

where P(S1 — S) and P(S: o2 S) are inferred from R. Simi-
larly, we can compute the probability that S; does not copy O.A
from any source in S, (O.A) and provide the observed format, de-
noted by P,. Then S; either provides the data by itself (with prob-
ability P, Py), or copies O.A from S,,(O.A) or §;(0.A), so

P(®0.4(S1)|R) = (1 = PyPf) + PPy P(®0.4(51)). (17)

EXAMPLE 5.2. Continue with Ex.5.1. Consider D1 and sup-
pose R = {(S1,S3)}. Foreachv € {vio1,...,v130}, Pu(S3) =
D, (S3|R), so Ss still looks like a copier of Sa.

Consider D> and suppose R = {(S1,S3)}. For each v €
{v21,...,0s50}, Py (S3|R) is much larger than ®,(S3), so Sz looks
much less likely a copier of Sa.

Finally, consider D3 and suppose R = {(S2,53)}. For each
v € {va1,...,Us0}, again P, (Ss|R) is much larger than ®,(Ss);
f()r each v € {’1)81, Ceey 'U10()}, P, (S3|R) =0, (55) but is hlgh
Thus, Ss looks less likely a copier of S1. O

Finding R: Finding a proper set of relationships for R is crucial.
As an example, for Dy in Tbl.3, if we include S5 — Ss in R, we
will not be able to detect the real copying Sz — S1. We wish to
include in R the most influential copying relationships; that is, our
goal is to find the set R that maximizes

YR)= D

(S1,52)¢R

(P(S1 — S2) — P(S1 — S2]R)). (18)

(We shall consider only positive influence and if P(S1 — S2) —
P(S1 — S2|R) < 0, wesetitto0.) We can prove the NP-hardness
of this problem by a reduction from the HITTING SET problem.

THEOREM 5.3. The problem of finding the most influential copy-
ing relationships R is NP-complete. O

We now present several observations, based on which we pro-
pose a fast greedy algorithm. The first observation is that according
to Eq.(17), P(S1 — S2|R) relies on only relationships involving
S1. Thus, we can construct R by finding for each source the most
“influential” sources among those it may copy from.

PROPOSITION 5.4. Ifwe denote by D(S1),S1 € S, the sources
with which S1 has a copying relationship in R, by R(S1) the re-
lationships in R involving S1, and by A(S1 — S2|D(S1)) =
P(S1 — S2) — P(S1 — S2|R(S1)), we have Yy (R) = 3¢ 5

Zszng)(sl) A(S1 — S2|D(S1)). o

The second observation reveals the relationship between the joint
influence of sources in D(S1) and the individual influence of each
of them. Accordingly, we can simplify our algorithm by consider-
ing influence of an individual copying relationship on another.

PROPOSITION 5.5. Ifwe denote by A(Sy — S2|S) = P(S1 —
52) — P(S1 — SQ‘{Sl — S}), then, (]) A(Sl — SQ‘D(Sl)) >
A(S1 — S2|S) foreach S € D(S1); and (2) A(Sy — S2|D(S1))
< ZseD(sl) A(S1 — S2[9). o

Based on Proposition 5.5, we wish to greedily select relation-
ships that have the highest accumulated influence on others. The
next two observations state which relationships should be pruned
(not added to R). The third observation shows that we want to
prune relationships that cause less accumulated changes on others
than being affected by others; its proof is based on Proposition 5.5.

PROPOSITION 5.6. Forany S € S, if there exist S1 and Sa,
S1 # Sa, such that (1) A(S — S1(S2) > 3 g 2s.6,.5, DS —
So|S1), (2) (S,Sz) € R and (3 R = RU {(S, 51)}, then
Y(R) > Pp(R). m

The final observation shows that we should prune a relationship
if it can be significantly influenced by those already selected into
R, because it is more likely to be a co-copying or transitive copying
and its influence on others will be dominated by the relationships
in R.

OBSERVATION 5.7. Forany S € S, if there exist S1 and S2,
S1 # Sa, such that (1) A(S — Si|{S — S2}) > .5, (2)
(S,82) € R, and (3) R = RU{(S, S1)}, then typically 1)(R) >
PH(R). O

Based on these observations, for each source S € S our algo-
rithm proceeds in four steps.

1. Find all sources from which S is likely to copy or copying is
likely but the direction is unclear, denoted by R(S).

2. For each S1, 2 € R(S),S1 # Sa, compute A(S — S1|So)
and A(S — S5|S1) (influence). For each S’ € R(S), compute
o(S") = Ygyss.50 A(S — So|S’) (influence on others) and
A(S') = maxg,zs,5' A(S — S’|So) (max influence by others).

3. Find the source S’ with the highest o(S") (most influential)
and remove it from R(S). If ¢(S”) > A(S’) (affecting others more
than being affected), (1) add (S, S") to R, (2) for each Sp € R(S),
if P(S — So|{S — S’}) < .5, remove Sy from R(S) (pruning);
(3) update o(Sp), So € R(S), by ignoring the removed sources.

4. Go to step 3 until R(S) = 0.

EXAMPLE 5.8. Consider Sy in the motivating example (Tbl.1).
Assume A(S4 — Sl|S3) = .8,A(S4 b 52‘53) = .87A(S4 —
S3|S1) = .5, A(Ss — S3|S2) = .5. Sa — Ss has the highest
accumulated influence (1.6) and is less influenced by others (.5), so
we add it to R. Since both Sy — S1 and S4 — So are significantly
influenced by S1 — Ss, we can prune them and terminate. ]

Appendix C gives the detailed algorithm GLOBALDETECTION
and describes opportunities for further approximation.

PROPOSITION 5.9. Let m = maxges |R(S)| and r be the
maximum number of sources related to a source in R. The com-
plexity of GLOBALDETECTION is O(m?|S||0] 4+ r|S|?|0]). O

6. EXPERIMENTAL RESULTS

We experimented on two real-world data sets: the weather data
(described in Sec. 6.1) and the AbeBooks data (Sec. 6.2). They are
very different in the size of the domain, the number of the sources,
and the characteristics of the data. We have a partial golden stan-
dard for the first but no golden standard for the second; thus, we
focus on the correctness of our results on the first and the efficiency
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Figure 5: Copying between weather sources. There are 18 sources and
2 hidden sources (in dashed box). A solid arrow represents a copying
indicated by the source website (non-crossed ones are “golden” depen-
dencies); a dashed arrow represents a copying associated w. a hidden
source; and a thin line represents a “silver” dependence that we derive.

of our algorithm on the second. Together with synthetic data gen-
erated from the AbeBooks data (Appendix E), we are able to test
various aspects of our models, showing their effectiveness, stabil-
ity, and efficiency.

We implemented the model in [6] (ACCU), the basic model (BA-
SIC), the correlated-copying model (LOCAL), and global detection
(GLOBAL). We set the parameters as described in Appendix B,
with initial values o« = .25 and kg = .8. We did not assume
knowledge of correctness or popularity of values and conducted
truth finding and copying detection iteratively (Sec.2). We used
Java and experimented on a WindowsXP machine with 2.66GHz
Intel CPU and 3.48GB of RAM.

6.1 Results on the weather data

Data: We collected weather data for 30 major USA cities from 18
websites about every 45 minutes. We consider (City, time) as the
key. There are in total 33 collections in a day and thus 990 objects.
‘We manually map the attributes and there are 28 distinct attributes.
Among them, 10 are provided by at least 10 sources and 11 are
provided by only 1 source; on the other hand, a source on average
provides 11 attributes, while the max is 15 and the min is 3.

This data set introduces four new challenges. First, there is
hardly a true or false notion for weather-related data; thus, we need
to consider popularity of provided values and we do so in a simi-
lar way as we consider formatting popularity. Second, the weather
data are often updated frequently and a copier may not have copied
the most up-to-date data at some time of crawling; thus, we need
to be able to detect copying even when the copying percentage is
not high and so setting proper parameters is critical. Third, most
sources have the same object-level completeness and similar com-
pleteness for each attribute, and each source has a consistent for-
matting style for the same attribute (by applying some style sheet);
thus, we lack evidence from completeness and formatting for di-
rection decision. Fourth, there are two hidden sources, WDT’ and
Weather.com, that are co-copied by sources in our data set, but we
cannot crawl them because of commercial or technical reasons.

Golden standard: To find copying between sources, we investi-
gated the websites for explicitly mentioned partnerships, clients,
and resources; in addition, we checked source code of the webpages
for URLSs and citations of other sources. We found 8 copyings be-
tween the crawled sources and 8 from the crawled sources to the
hidden ones (Fig. 5). Accordingly, we created a semi-golden stan-
dard as follows. First, we manually examined every pair of sources

TWDT collects raw data from Weather: gov and applies some aggregation
model, then resells the data to online media agencies.

Table 4: Results of various methods on the weather data.

Accu|Basic |LoCcAL | GLOBAL
Precision 5 1 33 .79
Recall 43 .14 .86 .79
F-measure| .46 25 48 .79

with investigated copying; we removed 3 of them where we ob-
served very small commonality of data with no particular pattern.
The remaining 5 are called golden dependencies. Second, for each
copier of a hidden source, we tried to find its co-copiers with which
it shares a large portion of common data; if such co-copiers exist,
we added a dependence (with no particular direction) with the one
with the largest overlap. We added 5 dependencies in this way and
call them silver dependencies. Third, for each source where we
cannot find any claim from the website, we manually checked if
there exist sources that share a large portion of common data; if
so we added a dependence (without direction) with the one with
the largest overlap. There are 5 such sources and we added 4 de-
pendencies, also called silver dependencies. In total, there are 14
copyings (5 golden and 9 silver) in the semi-golden standard and
we list the reasons for including them in Appendix D.

Measures: Here we focus on whether our model correctly finds
direct copying and defer testing correctness of copying direction
to the synthetic data (Appendix E). This is because as mentioned,
the weather data lack evidence from formatting for direction de-
tection, which is shown to be critical from results on the synthetic
data. Specifically, we measured precision, the proportion of iden-
tified copying that are real (maybe in the wrong direction), and re-
call, the proportion of real copying that are identified. F-measure

is computed as ;}j_’;, where P is the precision and R is the recall.

Results: GLOBAL obtained both precision and recall as .79. (1)
Among the 5 golden dependencies, GLOBAL finds 4 of them, 2 in
the correct direction and 1 with uncertain direction. It misses Her-
ald — WUnderground: among the 8§ common non-key attributes,
they highly overlap only on conditions and visibility, and the shared
values are fairly common also among other sources (especially for
visibility), so the accumulated positive evidence is slightly weaker
than the negative evidence, even with a reasonable parameter set-
ting. (2) Among the 9 silver dependencies, GLOBAL finds 7. It
misses the dependence between Yahoo! and MSN: even though
local detection detects it, global detection removes it because the
common data are covered by those between Yahoo! and USWX.
This decision is reasonable because Weather.com, from which Ya-
hoo! copies, and USWX might derive data from the same source.
GLOBAL also misses the dependence between Climaton and MSN:
it finds copyings from other sources to Climaton in local detection
but eliminates them in global detection. If Climaton is indeed a
copier, then the error is caused by wrong direction decisions in local
detection. (3) Finally, GLOBAL has three false positives (including
Yahoo! — USWX). For each of such pairs there is more or less co-
copying and the global detection does not eliminate it because of
some additional shared data (maybe shared at some crawlings). To
summarize, except the false negative on Herald — WUnderground,
errors are mainly caused by wrong direction decisions (because of
the lack-of-evidence issue) and uneliminated co-copying (because
of the updating issue).

Tbl.4 compares the results of various methods. First, LOCAL
obtains a higher recall (it detects in addition the dependence be-
tween Yahoo! and MSN) but a much lower precision. It returns 38
copyings, among which 38-12=26 are false positives, and GLOBAL
removes 26-3=23 (88.5%) of them. Second, BASIC, in contrast,
finds only 2 correct copyings. It misses a lot of copyings as it ig-
nores evidence from per-object copying (as illustrated in Ex.3.2 and
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of the sources provide less than 5% of the books. values, formats.

Ex.4.1); in addition, it tends to set s (selectivity) to a high value.
Third, ACCU finds 2 golden dependencies (in the correct direction)
and 4 silver dependencies. It finds more copyings than BASIC be-
cause it considers each shared uncommon value as a wrong value
and so accumulates more positive evidence. It has 6 false positives,
all co-copyings and transitive copyings. Note, however, that ex-
periments on the synthetic data show improvement of BASIC over
Accu when the true/false notion does apply and there is extra evi-
dence from completeness and formatting of data.

Finally, on average GLOBAL spent 8 seconds for initialization
(finding overlapping items, shared values and formats), 2.7 min-
utes for local detection, and 10 minutes for global detection (5.9
minutes for finding R and 4.1 minutes for globally adjusting prob-
abilities). Thus, the efficiency of our algorithm is acceptable when
the number of sources is small.

6.2 Results on AbeBooks data

Data: The AbeBooks data set was extracted in 2007 from Abe-
Books.com by searching computer-science books. In the data set
there are 877 bookstores, 1263 books, and 24364 listings, each con-
taining attributes ISBN (key), name, and often authors. Unlike
the weather data set, the true/false notion does apply and there is
much higher variety in formatting and completeness (Fig.1-2).

Results LOCAL finds 1553 pairs of sources with copying. Fig.3
plots the copying probabilities for pairs whose Jaccard distance on
data items (intersection over union) is at least .1. The plot is fairly
semetric from left to right, showing that the numbers of shared
items, values, and formats themselves do not decide the copying
relationship, and our model considers in addition the popularity.
GLOBAL finds only 465 pairs with direct copying, as it eliminates
co-copying and transitive copying. Compared with LOCAL, it finds
that most sources copy from or are being copied by only a few
sources (the max is 17 and 9 for GLOBAL respectively, but 44 and
37 for LOCAL).

On average, GLOBAL took 1.6 minutes for initialization, 3.8
minutes for local detection, and 251.1 minutes for global detection.
As this data set contains a lot of sources, global detection becomes
the bottleneck; especially, between finding R and globally adjust-
ing probabilities, the former is much more expensive (221.2 min).
Fig.4 compares various approximations, including whether to ap-
ply Eq.(16) on only “critical” sources (CRISRC), on only “critical”

objects (CRIOBJ), and to use s.p; instead of P(Sy = S) (DFT-
SEL) (Appendix C). We observe that CRISRC considers only criti-
cal sources (59%) and reduced time in finding R, CRIOBJ consid-
ers only critical objects (6%) and reduced time in both steps, and
DFTSEL simplifies computation of global probability and also re-
duced time in both steps. Finally, CRISRCOBJ_DFTSEL took only
26.8 minutes, fairly acceptable given that dependence detection is
offline.

Figure 4: Execution time of various approxi-
mations for global detection.

7. RELATED WORK AND CONCLUSIONS

This paper studied copying detection between a set of sources.
We first improved previous techniques for pairwise detection by
proposing a framework where we can plug in different types of
copying evidence, and consider correlations between copying. We
then described techniques for global detection where we eliminate
co-copying and transitive copying. Experimental results show high
effectiveness and efficiency of our algorithms. Interesting direc-
tions for future work include visualization of copying, and catego-
rization and summarization of the copied instances.

Existing work on copying detection includes detecting copying
between texts or programs [12, 3], between videos [11], and be-
tween structured data sources [2, 6, 7]. The work most related to
ours is [6], with which we have compared in detail in Sec.3 and in
experiments. Blanco et al. [2] extended [6] by considering multiple
attributes, but assumed a copier must copy all attribute values of
an object, whereas we consider both per-object (allowing copying
only a subset of attribute values) and per-attribute copying.
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APPENDIX
A. DETAILS FOR THE BASIC MODEL

We now give details for the basic model. Consider two sources
S1,52 € §,51 # Sa. As we assume no mutual copying, there
are three possible relationships between them: S; copying from S
(S1 — S2), Sz copying from Sy (S2 — S1), and neither source
copying from the other (S1.LS2). We can compute the probability
for each case (they sum up to 1) by Bayesian analysis based on our
observations of the data, denoted by ®:

P(S1 — S2|P)

_ aP(®|S1 — S2) 49)
aP(®|S1 — S2) + aP(®]S2 — S1) + (1 — 2a)P((I>|SlJ_52\)

Here, 0 < a < .5 is the a-priori probability that a source copies
from another. Thus, we need to compute the probability of ¢ con-
ditioned on different copying relationships.

Observation ® consists of observations on each data item; i.e.,
O = {00.4|0 € O, A € A}. According to the item-wise inde-
pendence assumption, we have

P(®|cond) =Tloco,acAP(Po. 4lcond). (20)

In local detection, we consider only data provided by S; and Sa;
e, ®o.a = {P0.4(S1),Po.a(S2)}. Then, we have (similar for
the condition S — S1)

P(®0.4|511852)

=P(®0.4(51)[S1 # S2)P(®0.4(52)]S2 # S1); 2D
P(®0.4151 — S2)

= P(20.4(51)I51 — S2,20.4(52)) P(®0.4(52)|S2 # S1)22)

Thus, the key to detecting copying is to compute P(®o.4(S1)]
S1 4 S2) and P(®o.4(51)]|S1 — S2,®0.4(S2)), correspond-
ing to P(®o.4(S1)) and P(®o.4(S1)|S1 — S2) respectively
(similar for Sz). Sec.3 has described their computation according
to the data profiling. We now present details in two aspects.

Details for computing P(®o.4(S1)): Here, we need to compute
P(®o(S1) #0), P(®0.4(S1) # ), P(value(®o.4(S1)) = v),
and P(format(®o.4(S1)) = f). Sec. 3 has described how we
compute P(Po(S1) # 0). Similarly we can compute P(®Po.4(S1)
# ) according to attribute-level completeness and P(format
(®0.4(S1)) = f) according to format patterns.

Now consider the probability of providing a particular value v
(i.e., P(value(®o.4(S1)) = v)). If A is the key, the probability
is 1. Otherwise, assume there are m wrong values in the underly-
ing domain. Then, S; provides a true value with probability A(S1)

and a particular wrong value with probability % (we assume
equal probability of providing a wrong value and relaxation of this
assumption is discussed in [6]). Recall that P(v) denotes the prob-
ability of value v being true, so
P(value(®p.4(S1)) =v) = P(v)A(S1) + (1 — P(v))ﬂ
(23)
Distinguishing negative correlation: Recall that our goal is to find
copiers rather than negative correlation, we shall omit evidence for
the latter. There are two types of such evidence. First, S; and S»
providing the same value in the same format but P(®o.4(S51)|S1 —
S2) < P(®0.4(51)) shows that a “dependent” source is less likely
to provide the same data and indeed implies negative correlation;
we set P(®o.4(51)|S1 — S2) = P(®o.4(S1)) in this case. Sec-
ond, Co(S1]|S2) > Co(S1) (similar for O.A) shows that a “de-
pendent” source is more likely to provide an object not provided by
the original source and indeed implies negative correlation; we set
Co(S1|7S2) = Co(S1) in this case.

B. PARAMETER SETTING

The correlated-copying model involves parameters sopj, S4 , sf
and k, which can be different for different pairs of sources. We now
describe how we set them for each possible copying relationship
S1 — Sz (thus, for each pair of sources, we set the parameters
differently for the two different directions).

Initialization: We start with s.;;. We first examine overlapping
objects; for each attribute, we compute the ratio of common values.
Accordingly we generate the histogram for each range of ratio, find
the peak range, and use its middle value as the selectivity for over-
lapping objects, Soveriap—obs. Then, the overall selectivity is
Soverlap—obj * IO(SI) n 0(52)‘

|0(S2)] '
Foreach A € A, we denote by O. A, the items on which the two

sources provide the same \/Oalllie. Then, we compute s, and sf as
Ly
(25)

Sobj = 24

ENE

Soverlap—obj * |O(Sl) N 6(52)| ’
S/.; _ IOAU| - SZ * Soverlap—obj * IO(SI) n 6(52)‘
A (1 - Soverlapfobj)lo(sl) N O(SZ)l
Now consider k£ and we set it for each attribute. Let O.Ay be

the items of A on which the two sources provide the same value in
the same format. For the copied objects, the format keeping rate is

(26)

\g%f I‘ ; for the rest of the objects, we use a default rate ko. So
SA = Soverlap—obj * SZ + (1 - Sove'r‘lap—obj)'??ﬁ? 27
k-A:SA.I%f‘+(1,SA).k-O. (28)
|O.Ay|

Finally, note that we want to avoid extreme values for the param-
eters and so set them only in a certain range. In our experiments
we use range [.1, .9] and truncate values outside this range.

Adjustment: According to our copying detection results, we can
adjust the parameters and re-do the detection. In particular, if Sy
copies from S» (with probability P(S1 — S2)), we shall use the
percentage of copied objects or data items (or preserved formatting)
observed from the data; otherwise, we shall use the initial settings.
Specifically, we adjust the parameters according to the following

’
equations (similar for s;verlap,obj and 37: ):

g _ 220€0(sy) *(0)
o 10(S2)|

O.A o
L 220€0(81)n0(sy) S(O)P(S1 — S2|®0. 4,51 — S2)

P(Sl — Sg) + Sobj(l — P(Sl — Sz)§29)

SA
>-0e0(51)no(sz) 5(0)
“P(S1 — S2) + 54 (1 = P(S1 — S2)); (30)
O.A
W 20.acoa, P(S1 — 52|®0.4,51 — 52)
=

O.A
> 0e6(51)n0(ss) P(S1 — S2|®0.4,51 — S2)
~P(51 —>SQ)+I€(1—P(51 — S2)). 31
O.A

Here, P(S1 — S2|®0.4,51 — S2) denotes the probability
that a copier copies a data item O.A. We compute it in a similar
way as we compute s(O):

0.4 0.4 o

P(S1 = S2|®0.4,51 — S2) =s(O)P(S1 = S2|®0.a,S1 — S2)

0.4 o
+(1—5(0))P(S1 — S2|®0.4,51 7 S2,51 — S2);

O.A o

O.A
s P(®0.4(51)|S1 — S2)
P(S1 — S2|®0.4,51 — S2) = 2 ( (51)]

P(®0.4(51)|51 < S2)
P(®0.4(51)|S1 — S2) — (1 — s7)P*(®0.A(51))
P(®0.4(51)|S1 — S2)
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Algorithm 1: GlobalDetection(S, O)

Input : S sources, O objects
Output : D Copying probabilities between each pair of sources in S
// Pairwise copying detection

1 DY « PairwiseDetection(S, O);
//Find R

2 R0

3 foreach S € S do

4 R « FindOriginals(:S, D°);// Find sources S copies from
5 foreach S; € Rdo
6 L o(S1) « 0; A(S1) < 0;
7 foreach (S1, 52) € R,S; # S2 do
8 A(Sl|52)HP(SHS&)fP(SHSll{SHSQ});
9 if A(S1]S2) < 0 then
10 | A(S1]S2) < 0;
11 o(S2) «— a(S2) + A(S1]S2);
L A(S1) < max(A(S1), A(S1]S52)):
12 while R # () do
13 find S’ with the max o (S’);
14 R—R-{9};
15 if o(S’) > A(S’) then
16 R—RU{(S, S}
17 foreach Sp € R do
18 if P(S — So) — A(So|S") < .5 then
19 R— R—{S0};
20 foreach S; € R do
21 L o(S1) «— a(S1) — A(So|S1);
22 else
23 L O'(So) — O'(So) — A(S/‘So);

// Recompute global copying probabilities
24 foreach S1,S2 € §,51 # Sz do

25 if(Sl,Sg) € R then

26 L 'D(Sl,SQ):'DO(Sl,SQ);

27 else
28 L D(Sl,SQ) = GIobaIPr(Sl,Sg7R);

Discussions: Experimental results show that (1) using Sovertiap—obj
for overlapping objects and s,p; for the rest of the objects obtains
better results than using sqp; everywhere; (2) setting sy, sj: and
k differently for different attributes obtains better results; and (3)
setting the parameters empirically can significantly improve over
setting arbitrary values, but adjusting the parameters does not show
much further benefit.

C. DETAILS FOR GLOBAL DETECTION

Algorithm GLOBALDETECTION shows the detailed algorithm
for global copying detection. We can further simplify in three ways.

1. When we generate R, we can include in R(S) only sources
that are likely to cause significant changes or be significantly
changed; in particular, those that share a lot of common values
with S (not only a high copying probability). In this way,
we can reduce m (see Proposition 5.9). (In experiments we
consider sources with which S shares 20% of its values.)

2. When we compute P(S1 — S2|R), we can compute P(Po. 4
(S1)|R) only on objects that are strong indicators of copying.

Specifically, we start with computing P(®o.4(S1)); then,
ot i B0 > o SieEihc >
we compute P(®o.4(S1)|R) for each attribute of O. Here, 7
is a threshold indicating strong evidence for copying and con-
trols the level of approximation (in experiments we set 7 =
2). In this way, we usually need to compute P(®o.4(S1)|R)

for significantly less data items, but where we do compute
P(®0.4(S1)|R), we also need to compute P(Po.4(S1)).
O.A
3. When we apply Eq.(16), instead of using P(S1 — S), we
can use the default selectivity sopjs4 + (1 — sobj)sj. In this
way, computing P(®o.4(S1)|R) is much cheaper.

D. GOLDEN STANDARD ON WEATHER DATA

Table 5: Generation of the semi-golden standard for the weather data.

Rel Reason

G (D UniSys lists www.nws.noaa.gov (a mirror of Weather.gov)

(0] as a resource.

L 2) USWX links to Weather.gov in source code.

D 3) Herald’s source code has icons, links from WUnderground.

E | (4) | AccuWeather lists CNN as a client.

N (5) | AccuWeather lists WashingtonPost as a client.

R | (6) | WeatherBug lists FoxNews as a partner, but shares only

E 11.4% of the non-key data.

M| D WUnderground lists www.nws.noaa.gov (Weather.gov) but

(6] shares only 2 non-key attributes and 16.5% non-key data.

\Y (8) | WeatherForYou lists www.nws.noaa.gov (Weather.gov) but

E shares only 32% non-key data among attributes and objects.
©) Weather.com lists AOL and Yahoo! as affiliates.

S | (10) | Weather.com lists MSN and Yahoo! as affiliates.

I | (11) | WDT lists CNN and FoxNews as customers.

L | (12) | Potential co-copiers and share a lot of data.

V | (13) | Potential co-copiers and share a lot of data.

E | (14) | No explicit claim from Herald but share a lot of data.

R | (15) | No explicit claim from FindLocalWeather but share a lot of data.
(16) | No explicit claim from Climaton but share a lot of data.
(17) | No explicit claim from NY7imes but share a lot of data.

E. EXPERIMENTS ON SYNTHETIC DATA

To test effectiveness of our models, we also experimented on
synthetic data. To generate a copier C, we chose an original source
S and a copier template 7" from the AbeBooks data set. Copier
C copies from S and independently provides some values or uses
some formats, for which we use those provided by T'; essentially
C is a copier of both S and T, but we discarded 7. We assume
C provides data in three steps: (1) among books in O(S) N O(T),
C copies p, percent on all attribute values from S, then for each
attribute A, modifies m4 percent of the copied values (per-object
copying); (2) for the rest of the books in O(S) N O(T), for p, per-
cent of non-key attributes C' copies all values from S, then modifies
m/, percent of the values for each A (per-attribute copying); (3)
for other data items in O(T), C provides values on its own while
copies ca percent for each A. For ps percent of the copied items, C'
keeps the copied format and for the rest it changes the format. We
believe real-world copiers copy in a more or less similar fashion,
though may skip some steps or change their order. We randomly
decided which data to copy and modify, and generated m .4, m’y
and c4 between [0, 2m] by Gaussian distribution with mean m. By
default we set p, = .8,pa = 0,py = 1,and m = .1.

We considered three cases: (1) transitive copying: five copiers
C1-Cs, where C copies from S and C;41 copies from C;,¢ €
[1,4]; (2) co-copying: five copiers all copying from S; (3) multi-
copying: one copier copying sequentially from S1-S5 (i.e., copy-
ing from S; a random subset of O(S;) N O(T) — U;;llé(Sj),i €
[1,5]). We pre-selected 10 sources S whose object-level complete-
ness ranges from 0.05 to .9 (not necessarily independent). For (1)
and (2), for each S € S we ran the experiments 10 times; at each
time we randomly chose 5 templates that are judged as indepen-
dent of S by local detection (but not necessarily independent be-
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Figure 6: Transitive copying. Figure 7: Specificity vs. #hops.

tween themselves) and differ in completeness by at least .05. For
(3), we ran the experiment 100 times, each time randomly choosing
a sequence of 5 sources from S and trying to® randomly choose 10
templates that are independent of them and differ in completeness
by at least .05; we detected copying for each copier separately. For
all cases, we reported the average results.

We set parameters by (1) setting default values (FIXPARA) where
Sobj = 8 =k = 8,54 = .9, sf: = .4; (2) setting empirical
values (EMPPARA); and (3) first setting empirical values and then
adjusting them (ADJPARA) (Appendix B). By default, we applied
EMPPARA. We used true values decided from the real-world data,
setting p(v) = 1 for true values and p(v) = 0 for false ones.

To better quantify how we detect transitive and co-copying, we
report sensitivity, the proportion of real copying that are identified
with the correct direction (a strict version of recall), and specificity,
the proportion of non-copyings that are identified as such.

Transitive copying: We varied p, from .1 to 1 and examined copy-
ing between sources in {5, C1,...,Cs} (Fig.6). We observe that
while GLOBAL slightly reduces sensitivity (by 3%) compared with

LocAL, it significantly improves specificity (avg .88). Also, GLOBAL

obtains fairly stable results when p, varies: when p, is very small,
the sensitivity is slightly lower because a copier can copy very few
data and is not detectable; when p, is very high, the sensitivity
and specificity are slightly lower because a copier may transitively
copy a lot of data from its transitive ancestor and even share some
additional data (local detection found an average copying proba-
bility of .39 between templates), which is indistinguishable from
direct copying. Finally, ACCU (hereafter we set s = po(1 — m))
performs worst; it assumes item-wise independence and considers
only accuracy, so can often make mistakes about copying direction
(it finds all direct copying but only 18% in the correct direction).

Table 6 compares various approximation methods and Fig.7 gives
more details on specificity w.r.t. #hops between sources (#hops
between C; and Cj,i > j, is ¢ — j and #hops between C; and
S is 4; 1-hop indicates direct copying) when s, = .8. With no
surprise, the more hops, the higher specificity; when #hops> 2,
CRIOB]J obtains a specificity of above .9. Among the approxima-
tions, CRIOBJ spends half of the execution time as NOAPPR but
obtains the best results (as it is not biased by effects on non-critical
objects). CRIOBJ_DEFSEL further cuts the execution time by 70%
but still obtains better results than NOAPPR; however, it reduces
the specificity by 6% compared with CRIOBJ.

Co-copying: Again, we varied p, and examined copying between
{S,C1,...,Cs} (Fig.8). GLOBAL again reduces sensitivity slightly
(by 10%) and improves specificity significantly. However, we ob-
serve two differences from transitive copying. First, specificity

8Sometimes this is impossible when there are insufficient number of
sources independent of S;-S5.

Figure 8: Co-copying. Figure 9: Multi-source copying.

Table 6: Approximation for detecting transitive copying.

NOAPPR | CRISRC | CRIOBJ | DFTSEL | CRIOBJ_DFTSEL
Sensitivity 75 75 7 i 78
Specificity .81 .76 .89 74 .84

Time(s) 99.3 81.8 50.2 324 14.9

is less stable: when p, = 1, the specificity is only .62. When
Do 18 high, co-copiers can share a large number of copied values
and maybe some additional values, so indistinguishable from di-
rect copying. Second, LOCAL obtains higher sensitivity than in
the transitive-copying case (avg .94 vs. .76). Actually, we have
detected all copying in both cases, but did worse in finding the cor-
rect direction in case of transitive copying, as there the randomly
chosen “original” sources are likely to have high completeness and
lead to less precise direction detection.

Multi-copying: We examined copying between the copier and each
original source (sensitivity) (Fig.9). We have five observations.
(1) When a copier really copies from multiple sources, GLOBAL
reduces the sensitivity only very slightly (GLOBAL_ADJPARA by
3%). (2) The sensitivity reduces from S; to Ss, as the copier
tends to copy less (if any) data from sources towards the end of
the sequence. (3) ADJPARA does not necessarily improve over
EMPPARA for LOCAL, but by using it GLOBAL reduces the sen-
sitivity much less (avg 3% vs. 8%) (however, GLOBAL can obtain
lower specificity using ADJPARA in case of co-copying and tran-
sitive copying; details skipped). (4) BASIC does not consider ob-
ject copying so obtains much lower sensitivity; (5) ACCU considers
only accuracy and uses the same selectivity for all source pairs, so
performs the worst.
Finally, we observed similar results for per-attribute copying

(po = 0,pa = .5), and combined copying (p, = .5, ps = .5), and
fairly stable results when we varied p,, pf, mq and pg.

Summary: We summarize our experimental results as follows.

e GLOBAL improves over LOCAL significantly on identifying
complex copying relationships.

e Among various approximations for global detection, CRIOBJ
can cut the execution time by half or more but still obtain the
best results. CRIOBJ_DFTSEL further reduces the execution
time without sacrificing the results too much.

e In local detection, BASIC improves over ACCU significantly
on copying-direction judgment by considering completeness
and formatting in addition to accuracy, using both source-
wise and data-item-wise measures, and using P°(®0.4(51))
in computation of P(®o.4(S1)|S1 — S2). LOCAL im-
proves over BASIC further by considering object copying.

e Setting parameters using EMPPARA beats FIXPARA signifi-
cantly and can obtain quite stable results. ADJPARA does not
show further benefits in either local or global detection.
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Figure 10: Map of AbeBooks data sources: the copying relationships identified by our copying-detection model. Each “node” represents a data
source and the size of the font corresponds to the number of provided books; to avoid cluttering, we show overlapping ones half transparently. An

edge S; — S2 indicates that S copies from Sa; the size of the arrow indicates our confidence of the copying direction; the color indicates the
probability of copying (black for 1, blue for .75, and red for .5, and ofgwbabilities are represented by a blend of these colors; e.g., purple for
modularity clustering (see “Clauset, A., Newman, M.E.J., Moore, C.: Finding

.5-.75.). Each “country” represents a cluster of sources, clustered by
community structure in very large networks. Physical Review E 70, 066111 (2004)”’) based on their copying relationships.





