
Updatable and Evolvable Transforms for Virtual Databases

James F. Terwilliger
Microsoft Corporation

jamest@microsoft.com

Lois M. L. Delcambre
Portland State University

lmd@cs.pdx.edu

David Maier
Portland State University

maier@cs.pdx.edu
Jeremy Steinhauer

Portland State University

jsteinha@cs.pdx.edu

Scott Britell
Portland State University

britell@cs.pdx.edu

ABSTRACT
Applications typically have some local understanding of a database
schema, a virtual database that may differ significantly from the
actual schema of the data where it is stored. Application engineers
often support a virtual database using custom-built middleware be-
cause the available solutions, including updatable views, are unable
to express necessary capabilities. We propose an alternative means
of mapping a virtual database to a physical database that guarantees
they remain synchronized under data or schema updates against the
virtual schema. One constructs a mapping by composing channel
transformations (CTs) that encapsulate atomic transformations —
including complex transformations such as pivoting — with known
updatability properties. Applications, query interfaces, and any
other services can behave as if the virtual database is the imple-
mented schema. We describe how CTs translate queries, DML,
and DDL, and the properties that are necessary for such translation
to be correct. We describe two example CTs in detail, and evaluate
an implementation of channels for completeness and performance.

1. INTRODUCTION
Database virtualization mechanisms present a perspective on per-

sistent data that is different from the actual physical structures in
order to match the model an application presents to a user, mask
certain data for security, simplify the structure to aid in querying,
allow existing programs to operate over a revised physical struc-
ture, and so forth. Various virtualization mechanisms for databases
have been proposed over the decades; the most well-known is rela-
tional views, expressed as named relational queries.

In this work, we seek to support virtual databases that are indis-
tinguishable from a “real” database in the same way that a virtual
machine is indistinguishable from a hardware machine. This ca-
pability requires that the user (e.g., an application developer) be
able to issue queries, DML operations (insert, update, and delete),
as well as DDL operations (to define and modify both schema and
constraints). Our motivation is simple: we want application de-
velopers to benefit from fully supported logical data independence,
using the schema of the virtual database as if it were the schema for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13­17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150­8097/10/09... $ 10.00.

the real, implemented database. We take a fresh look at the problem
of database virtualization and consider the design space. To avoid
confusion with existing mechanisms for database virtualization, we
call the stored structure the native schema, and refer to the schema
of the virtual database as the natural schema.

Query-defined views, e.g., as specified in SQL, are highly ex-
pressive — especially for read-only views — and offer an elegant
implementation where the resulting expression following view sub-
stitution is fully optimizable by the DBMS query evaluator. But
query-defined views fall short of our requirements for several rea-
sons. First, while the view update problem has been well studied,
there is no support for expressing DDL modifications, including
key and foreign key constraints, against a view. If an application’s
demands on its natural schema change, the developer has no re-
course but to manually edit the native schema and mapping.

Second, even if DBMSs in common use supported the full view
update capability described in the research literature, database ap-
plications would still require more. In our experience, we find
that the relationship between an application’s natural and native
schemas often requires discriminated union, value transformation
according to functions or lookup tables, pivoting or unpivoting, and
“auditing”, where data is deprecated instead of deleted. None of
these transformations are supported by updatable views as currently
implemented by database systems; the final two are not considered
by research literature; and Audit is not expressible in SQL without
stored procedures or temporal database capabilities (e.g., [9]).

Because there are not yet tools that support true virtual databases,
applications often have custom-crafted solutions built from SQL,
triggers, and program code. This approach is maximally expres-
sive, using a general-purpose language, but presents an interface of
one or more read/update routines with pre-defined queries — far
from being indistinguishable from a real database. A programming
language-based approach is not well-suited for declarative specifi-
cation, analysis, simplification, and optimization of the virtualiza-
tion mapping. Thus, there is essentially no opportunity to formally
reason about the properties of a database virtualization expressed
in middleware, in particular, to prove that information is preserved
through the virtualization.

Another solution to database virtualization is model manage-
ment, including object-relational mapping tools (e.g., [12]) and
data exchange tools (e.g., [6]). ORM tools expose data that con-
forms to uniqueness and referential integrity constraints, though
not all constraints expressed against the virtual schema translate
into constraints on the physical database. ORM tools have limited
expressive capabilities in their mappings, while data exchange tools
do not typically support updates. With one notable exception [5],
neither category of tool is capable of supporting evolving schemas.

In this paper, we present a new approach to database virtual-

309

ization called a channel. One constructs a channel by composing
atomic schema transformations called channel transforms (CTs),
each of which is capable of transforming arbitrary queries, data
manipulation statements, schema evolution primitives, and refer-
ential integrity constraints addressing the natural (virtual) schema
into equivalent constructs against its native (physical) schema. Our
approach is similar to Relational Lenses [2] in that one constructs
a mapping out of atomic transformations. Lenses use a state-based
approach that resolves an updated instance of a view schema with
a physical schema instance, whereas a channel translates query,
DML, and DDL update statements directly.

Our approach presents several challenges, including closure of
constraints under CTs. The image of a constraint, such as a foreign
key, expressed in the natural schema cannot be represented as an or-
dinary foreign key expressed in the native schema, in the presence
of an unpivot CT, for example. Hence we introduce here a gener-
alized class of constraints that have appropriate closure properties
relative to channels. A second challenge is that some transforms,
common in query-defined views, such as join and union, do not ad-
mit the unambiguous transformation of database operations that we
require. We can, however, define CTs for discriminated union and
a form of join over tables with union-compatible keys.

The major contribution of this paper is the definition of a chan-
nel as a new framework for database virtualization. We define an
initial set of CTs that cover a large number of database restructur-
ing operations seen in practice, including unpivot (and pivot, its
inverse). We show how CTs can be formally defined by describ-
ing how they transform the full range of query, DML, and DDL
statements. Our framework includes a definition of correctness cri-
teria for CTs that guarantees indistinguishability. All operations
must support one-way invertibility where operations issued against
the natural database, after being propagated to the native database,
have the same effect (as observed from all operations issued against
the natural database) as if the operations had been issued against a
materialized instance of the natural database. We make no claim
that the current set of CTs is complete; a definition of completeness
may arise in our future work. Rather, we demonstrate our channel
framework is extensible by showing that even application-specific
transforms can be described as CTs and enjoy the same correct-
ness proofs, closure properties, and efficient implementation. It is
also future work to use a declarative language to specify channels.
It is clear that there are SQL-definable views that channels cannot
express, and vice-versa, but it is not clear that SQL is the best lan-
guage to specify database virtualization.

We have constructed a prototype implementation of channels,
which we analyze for performance using a channel that reconstructs
the middleware for a publicly available application, demonstrating
that the overhead induced by a channel is negligible. While we
use two specific transformations — horizontal merge and pivot —
as running examples through Sections 3–5, any transformation that
can faithfully translate statements issued against its natural schema
into native schema statements can participate in a channel.

Section 2 introduces and formalizes the concept of a CT. Sec-
tions 3, 4, and 5 demonstrate how a CT translates queries, DML,
and DDL statements, respectively. Section 6 presents what it means
for a CT to be correct with respect to its semantics. We provide
details of a prototype implementation of channels and evaluate its
performance in Section 7. Finally, Section 8 analyzes related work
and Section 9 concludes the paper.

2. AN INTRODUCTION TO CHANNELS
A channel transformation (CT) is a uni-directional mapping from

the natural schema S to the native schema S that encapsulates an

instance transformation. A CT represents an atomic unit of trans-
formation that is known to be updatable. A channel is built by
composing CTs. A channel is defined by starting with the natural
schema and applying transformations one at a time until the desired
native schema is achieved, which explains the naming conventions
of the transformations. For instance, HMerge describes a horizon-
tal merging of tables from the natural schema into a table in the
native schema. Examples of CTs include the following transforma-
tions, where all parameters with an overbar represent constructs in
the CT’s output and those with a vector notation (e.g., T⃗) are tuples:

• VPartition(T, f , T1,T2) distributes the columns of table T
into two tables, T1 and T2. Key columns of T appear in both
output tables, and a foreign key is established from T2 to T1.
Non-key columns that satisfy predicate f are in T1, while the
rest are in T2.

• V Merge(T1,T2, T) vertically merges into table T two tables
T1 and T2 that are related by a one-to-one foreign key.

• HPartition(T,C) horizontally partitions the table T based on
the values in column C. The output tables are named using
the domain elements of column C.

• HMerge(f , T ,C) horizontally merges all tables whose schema
satisfies predicate f into a new table T , adding a column C
that holds the name of the table from which each row came.

• Apply(T, C⃗, C⃗, f , g) applies an invertible function f with in-
verse g to each row in the table T . The function input is taken

from columns C⃗, and output is placed in columns C⃗.
• Unpivot(T, A,V, T) transforms a table T from a standard one-

column-per-attribute form into key-attribute-value triples, ef-
fectively moving column names into data values in new col-
umn A (which is added to the key) with corresponding data
values placed in column V . The resulting table is named T .

• Pivot(T, A,V, T) transforms a table T in generic key-attribute-
value form into a form with one column per attribute. Col-
umn A must participate in the primary key of T and provides
the names for the new columns in T , populated with data
from column V . The resulting table is named T .

• Adorn(T, e, A⃗, C⃗) adds columns A⃗ to table T . The columns
hold the output of function e, which returns the state of envi-

ronment variables. Values in A⃗ are initialized with the current
value of e on insert, and refreshed on update whenever any
values in columns C⃗ change.

• Audit(T, B, E) adds columns B and E to table T , correspond-
ing to a lifespan (i.e., valid time) for each tuple. Rows in-
serted at time t have (B, E) set to (t, null). For rows deleted at
t, set E = t. For updates at time t, clone the row; set E = t for
the old row, and set (B, E) = (t, null) for the new row. The
natural schema instance corresponds to all rows from the na-
tive database where E , null.

Note that in this list of example CTs, Apply implements data
transformation, Adorn and Audit encapsulate functions that are com-
monly supported in application middleware, and the others support
classical logical schema restructuring operations.

These informal definitions of CTs describe what each “does”
to a fully materialized instance of a natural schema, but a nat-
ural schema is virtual and thus stateless. Thus, a CT maintains
the operational relationship between natural and native schemas by
translating all operations expressed against the natural schema into
equivalent operations against the native schema.

Formally, a CT is a 4-tuple of functions (S, I,Q,U), each of
which translates statements expressed against the CTs input (natu-
ral) schema into statements against its output (native) schema. Let

310

(a)

(b)

Figure 1: Instances transformed by an HMerge CT (a) and a
Pivot CT (b)

S be the set of possible relational schemas and D be the set of
possible database instances. Let Q be the set of possible relational
algebra queries. LetU be the set of possible database update state-
ments, both data (DML) and schema (DDL), as listed in Table 1.
Let [U] be the set of finite lists of update statements — i.e., an el-
ement of [U] is a transaction of updates. Finally, let ϵ represent an
error state.

• Function S is a schema transformation S : S → S ∪ {ϵ}. A
channel transformation may have prerequisites on the input
schema s, where S(s) = ϵ if those prerequisites are not met.
Function S must be injective (1-to-1) whenever S(s) , ϵ.

• Function I is an instance transformation I : S × D → D,
defined on pairs of input (s, d) where S(s) , ϵ and instance
d conforms to schema s. Function I must be injective on its
second argument, and output a valid instance of S(s).

• Function Q is a query transformation Q : S × Q → Q, de-
fined on pairs of input (s, q) where S(s) , ϵ and query q is
valid over schema s, i.e., the query executed on an instance
of the schema would not return errors. Function Q must be
injective on its second argument, and output a valid query
over S(s).

• Function U is an update transformation U : S×[U]→ [U]∪
ϵ, defined on pairs of input (s, u⃗) where S(s) , ϵ and up-
date transaction u⃗ is valid over schema s, where each update
in the transaction references existing schema elements and
when executed on schema s do not cause errors or schema
conflicts (e.g., renaming a column of a table to a new name
that conflicts with an existing column). Function U must be
injective on its second argument when U(s, u⃗) , ϵ, and out-
put a valid update transaction over S(s). Expression U(s, u⃗)
evaluates to the error state ϵ if u⃗ applied to s produces schema
s′ where S(s′) = ϵ.

The function S (and function I) provides the semantics for a CT
in terms of translating a natural schema (and an instance of it) into a
native schema (and an instance of it). These functions are not used
in our implementation, but allow us to reason about the correctness
of functions Q and U as shown in Section 6. Neither query nor
update functions require a database instance as input; a CT directly
translates the statements themselves. We present two example CTs:
Horizontal Merge and Pivot.1 In this section, we define the action
of the schema and instance functions.

1Additional examples are provided in Appendix D.

2.1 Example: HMerge
The HMerge transformation takes a collection of tables with iden-

tically named and union-compatible primary keys and produces
their outer union, adding a discriminator column C to give each
tuple provenance information. Any table in the input schema that
does not satisfy predicate f is left unaltered2. Figure 1(a) shows an
example of an HMerge CT.

Let the CT for HMerge(f ,T ,C) be the 4-tuple HM = (SHM, IHM,

QHM,UHM). Let T⃗ f be the set of all tables in input schema s that
satisfy predicate f and Cols(t) be the set of columns for table t. We
define SHM on schema s as follows: replace tables T⃗ f with table
T with columns (

∪
t∈T⃗ f Cols(t)) ∪ {C}, the union of all columns

from the source tables eliminating duplicates, plus the provenance
column, whose domain is the names of the tables in T⃗ f . The key of
T is the common key from tables T⃗ f plus the column C. SHM(s) = ϵ
if the keys are not union-compatible and identically named.

We define IHM on schema s and instance d by replacing the in-
stances of T⃗ f in d with

⊎
t∈T⃗ f (t × {(name(t))}), where

⊎
is outer

union with respect to column name (as opposed to column position)
and name(t) represents the name of the table t as a string value.

2.2 Example: Pivot
Recall that a Pivot CT takes four arguments: T (the table to be

pivoted), A (a column in the table holding the data that will be piv-
oted to form column names in the result), V (the column in the
table holding the data to populate the pivoted columns), and T (the
name of the resulting table). Let the channel transformation for
Pivot(T, A,V,T) be the 4-tuple PV = (SPV, IPV,QPV,UPV). An ex-
ample instance transformation appears in Figure 1(b).

Let SPV be defined on schema s by removing table T (which has
key columns K⃗ and non-key columns N⃗, where A ∈ K⃗ and V ∈ N⃗),
and replacing it with T with key columns (K⃗ − {A}) and non-key
columns (N⃗ − {V} ∪ Dom(A)). Dom(A) represents the domain of
possible values of column A (not the values present in any particular
instance); therefore, the output of SPV(s) is based on the domain
definition for A as it appears in schema. The new columns for each
element in Dom(A) have domain Dom(V). If A is not present or
not a key column, or if Dom(A) has any value in common with
an input column of T (which would cause a name conflict in the
output), then SPV(s) = ϵ.

Let IPV be defined on schema s and instance d by replacing the
instance of T in d with ↗�Dom(A);A;V T , where ↗� is an extended re-
lational algebra operator that performs a pivot, detailed in the next
section. Formally, Dom(A) could be any finite domain; practically
speaking, PV would only be applied where Dom(A) is some small,
meaningful set of values such as the months of the year or a set of
possible stock ticker names.

3. TRANSLATING QUERIES
Each CT receives queries, expressed in extended relational al-

gebra addressing the CTs natural schema, and produces queries ex-
pressed in extended relational algebra addressing its native schema.
The query language accepted by a channel includes the eight stan-
dard relational algebra operators (σ, π, ×, Z, ∪, ∩, −, and ÷), the
rename operator (ρ), table and row constants, plus:

• Left outer join (AY) and left antisemijoin (X)
• Pivot (↗�C⃗;A;V): For a set of values C⃗ on which to pivot, pivot

column A, and pivot-value column V (translating a relation
2The predicate parameter for HMerge is described only informally
in this paper. One such example would be “Table has prefix P ”,
which is the predicate in Figure 1(a).

311

Table 1: The DML and DDL statements that the channel transformations support.

Statement Formalism Explanation of Variables
Insert I(T, C⃗,Q) Insert rows into table T into columns C⃗, using the values of C⃗ from the rows in Q. The

value of Q may be a table constant or a query result.
Update U(T, F⃗, C⃗,Q) Update rows in table T that satisfy all equality conditions F⃗ specified on key columns. Non-

key columns C⃗ hold the new values specified by query or constant Q. Query Q may refer
to the pre-update row values as constants. Not all key columns need to have a condition.

Delete D(T, F⃗) Delete rows from table T that satisfy all equality conditions F⃗ specified on key columns.
Not all key columns need to have a condition.

Add Table AT(T, C⃗, D⃗, K⃗) Add new table T , whose columns C⃗ have domains D⃗, with key columns K⃗ ⊆ C⃗.
Rename Table RT(To,Tn) Rename table To to be named Tn. Throw error if Tn already exists.
Drop Table DT(T) Drop the table named T .
Add Column AC(T,C,D) Add to table T a column named C with domain D.
Rename Column RC(T,Co,Cn) In table T , rename the column Co to be named Cn. Throw error if Cn already exists.
Drop Column DC(T,C) In table T , drop the non-key column C.
Add Element AE(T,C, E) In table T , in column C, add a new possible domain value E.
Rename Element RE(T,C, Eo, En) In table T , in column C, rename domain element Eo to be named En. Throw error if En

conflicts with an existing element.
Drop Element DE(T,C, E) In table T , in column C, drop the element E from the domain of possible values.

Add Foreign Key FK(F⃗|T.X⃗ → G⃗|T ′.Y⃗) Add foreign key constraint from columns T.X⃗ to columns T ′.Y⃗ , so that for each tuple t ∈ T ,
if t satisfies conditions F⃗ and t[X⃗] , null, there must be tuple t′ ∈ T ′ such that t′ satisfies
conditions G⃗ and t[X⃗] = t′[Y⃗].

Drop Foreign Key DFK(F⃗|T.X⃗ → G⃗|T ′.Y⃗) Drop the constraint imposed by the enclosed statement.
Add Constraint Check(Q1 ⊆ Q2) Add a check constraint so that the result of query Q1 must always be a subset of the results

of query Q2. This constraint is also called a Tier 3 FK.
Drop Constraint DCheck(Q1 ⊆ Q2) Remove the check constraint between the results of queries Q1 and Q2.

Loop Loop(t,Q, S⃗) For each tuple t returned by query Q, execute transaction S⃗ .
Error Error(Q) Execute query Q, and raise an error if any rows are returned.

from key-attribute-value triples into a normalized, column-
per-attribute form)

• Unpivot (↙�C⃗;A;V), the inverse operation to pivot
• Function application (αI⃗,O⃗, f): Apply function f on input col-

umns I⃗ and place the result in output columns O⃗

The pivot query operator is defined as:

↗�C⃗;A;V Q ≡ (πcolumns(Q)−{A,V}Q) AY (ρV→C1πcolumns(Q)−{A}σA=C1Q)

AY . . . AY (ρV→Cnπcolumns(Q)−{A}σA=CnQ) for C1, . . . ,Cn = C⃗

Note that the pivot (and unpivot) query operators above have an
argument giving the precise values on which to pivot (or columns to
unpivot, respectively); as a result, both query operators have fixed
input and output schemas. This flavor of the pivot and unpivot op-
erator is consistent with implementations in commercial databases
(e.g., the PIVOT ON clause in SQL Server [13]). Contrast this
property with the Pivot CT, where the set of output columns is dy-
namic; we explore the relationship between the pivot query opera-
tor and the Pivot CT later in this section.

Figure 2 shows an example instance transformed by a pivot oper-
ator↗�C⃗;A;V , with the transformation broken down into stages. First,
columns A and V are dropped using the project operator, with only
the key for the pivoted table remaining. Then, for each value C in
the set C⃗, instance ρV→Cπcolumns(Q)−{A}σA=C Q is constructed consist-
ing of all rows in the instance that have value C in the pivot column
A, with the “value” column V renamed to C to disambiguate it from
other value columns in the pivot table. Finally, each resulting table
is left-outer-joined against the key table, filling the key table out
with a column for each value C.

We introduce a pivot operator into the algebra because, like joins,
there are well-known N log N algorithms involving a sort of the
instance followed by a single pass to fill out the pivot table. We
leave some details of the pivot query operator aside, such as what
to do if there exist multiple rows in the instance with the same key-
attribute pair, since the exact semantics of what to do in these cases
have no bearing on the operation of a channel (Wyss and Robertson
have an extensive formal treatment of the Pivot operator [19]).

The unpivot query operator is defined as follows:

↙�C⃗;A;V Q ≡
∪
C∈C⃗

(ρC→Vπcolumns(Q)−(C⃗−{C})σC<>null(Q) × ρ1→A(name(C)))

where name(C) represents the name of attribute C as a constant (to
disambiguate it from a reference to instance data).

Each CT translates a query — including any query appearing as
part of a DML or DDL statement — in a fashion similar to view
unfolding. That is, function Q looks for all references to tables in
the query and translates them in-place as necessary.

As an example, consider QPV, the query translation function for
Pivot, which translates all references to table T into ↙�Dom(A);A;V T .
That is, the query translation introduces an unpivot operator into
the query to effectively undo the action that the Pivot CT performs
on instances. Of particular note is that the first parameter to ↙� is
populated by the CT with the elements in the domain of column
A at the time of translation. Thus, the queries generated by the
Pivot transformation will always reference the appropriate columns
in the pivoted logical schema, even as elements are added or deleted
from the domain of the attribute column in the natural schema, and
thus columns are added or deleted from the native schema. (Pivot
will process the DDL statements for adding or dropping domain

312

Name Period Price

IBM Sp 19

IBM Su 22

MSFT Su 31

MSFT W 35

Apple Su 52

MSFT F 36

Apple F 54

Keys
Name

IBM

MSFT

Apple

(a)

“Sp”
Name Price

IBM 19

(b)

“Su”
Name Price

IBM 22

MSFT 31

Apple 52

(c)

“F”
Name Price

MSFT 36

Apple 54

(d)

“W”
Name Price

MSFT 35

(e)

Pivoted Version
Name Sp Su F W

IBM 19 22

MSFT 31 36 35

Apple 52 54

(f)

Figure 2: An example of an instance transformed by the pivot query operator↗�{Sp,Su,F,W};Period;Price, first broken down into intermediate
relations that correspond to the set of non-pivoted columns (a) and the subsets of rows corresponding to each named value in the
pivot column “Period” (b–e). The pivoted instances are then outer joined with the first instance (Keys) to produce the pivot table (f).

Name Period Price

IBM Sp 19

IBM Su 22

MSFT Su 35

MSFT Sp 31

Apple Su 52

Name Sp Su

IBM 19 22

MSFT 91 35

Apple NULL 52

u = I (Stock, {Name, Period, Price},

 {(MSFT, Sp, 31),

 (Apple, Su, 52)})

UPV(u) =

 Error(σName=MSFT,SP≠NULL Stock)

 U (Stock, Name=MSFT, Sp, 91)

 I (Stock, {Name, Su}, {(Apple, 52)})

Figure 3: An example of inserts translated by a Pivot CT

elements — see Section 5 for an example.)
Because the set of columns in T without V is a superkey, there

can never be two rows with the same key-attribute combination;
thus, unlike the pivot relational query operator in general, the Pivot
CT need not deal with duplicate key-attribute pairs.

4. TRANSLATING DML STATEMENTS
The set of update statements accepted by a channel is shown

in Table 1. A channel transformation supports the insert, update,
and delete DML statements. Update and delete conditions must be
equality conditions on key attributes, and updates are not allowed
on key attributes, assuming that the application will issue a delete
followed by an insert. Channels also support a loop construct, de-
noted as Loop(t,Q, S⃗), similar to a cursor: t is declared as a row
variable that loops through the rows of the result of Q. For each
value t takes on, the sequence of statements S⃗ execute. Statements
in S⃗ may be any of the statements from Table 1 and may use the
variable t as a row constant. Using Loop, one can mimic the ac-
tion of arbitrary update or delete conditions by using a query to
retrieve all of the key values for rows that match the statement’s
conditions, then issue an update or delete for each of the qualifying
rows. Channels support an error statement Error(Q) that aborts the
transaction if the query Q returns a non-empty result.

A complete definition of U includes computation of U(I(T, C⃗,Q)),
U(D(T, F⃗)), etc. for each statement in Table 1 for arbitrary parame-
ter values. The results are concatenated based on the original trans-
action order to form the output transaction. For instance, for an up-
date function U, if U(s, [u1]) = [u1, u2] and U(s, [u2]) = [u3, u4, u5],
then U(s, [u1, u2]) = [u1, u2, u3, u4, u5]. An error either on transla-
tion by U (i.e., U evaluates to ϵ on a given input) or during execution
against the instance aborts a transaction.

As an example, consider UPV(I(T, C⃗,Q)), pushing an insert state-
ment through a Pivot. Each tuple (K⃗, A,V) inserted into the input
schema consists of a key value, an attribute value, and a data value;
the key value uniquely identifies a row in the pivoted table, and
the attribute value specifies the column in the pivoted table. UPV

 P_Admin:

FName LName Pay

Person:

FName LName T Age Cert Pay

Bob Smith P_Client 19

Ted Jones P_Staff T

u = AT (P_Admin,

 {FName, LName, Pay},

 {string, string, int})

UHM(u) = AE (Person, T, P_Admin),

 AC (Person, Pay, int)

Figure 4: An Add Table statement translated by HMerge

thus transforms the insert statement into an update statement that
updates column A for the row with key K⃗ to be value V , if the row
exists. In Figure 3, the inserted row with Name = ‘‘MSFT’’ cor-
responds to a key value already found in the output schema; that
insert row statement therefore translates to an update in the output
schema. The other row, with Name = ‘‘Apple’’, does not corre-
spond to an existing key value, and thus translates to an insert.

The Pivot CT adds an error statement to see if there are any key
values in common between the new rows and the existing values in
the output table, and if so, returns an error, as this situation indicates
that a primary key violation would have occurred in a materialized
input schema. Next, using a Loop statement, for each row in Q
that corresponds to an existing row in the output table, generated
statements find the correct row and column and set its value. A
final insert statement finds the rows in Q that do not correspond to
existing rows in the output table, pivots those, and inserts them.

Let s be the input schema of the CT Pivot(T, A,V,T). We de-
fine the action of the CTs update function UPV on an insert DML
statement I(T, C⃗,Q) as follows:
UPV(s, I(T, C⃗,Q)) =

Error((πKeys(T)Q) ∩ πKeys(T)↙�Dom(A);A;V (πCols(T)(Q Z T))),
(check that inserted rows do not collide with existing data)

∀a∈Dom(A)Loop(t, σA=aQ Z (πKeys(T)T),
U(T ,∀c∈Keys(T)c = t[c], {a}, πV t)),
(update each row whose key is already present)

I(T ,Cols(T),↗�Dom(A);A;V (QX(πKeys(T)T)))
(inserts for non-existent rows)

5. TRANSLATING DDL STATEMENTS
Table 1 includes the full list of supported schema and constraint

update statements. The domain-element DDL statements are unique
to our approach. If a domain element E in a non-key column C is
dropped, then any row that had a C value of E will have that value
set to null. However, if C is a key attribute, then any such row will
be deleted. In addition, the Rename Element DDL statement will
automatically update an old domain value to the new one. Since
renaming an element can happen on any column, key or non-key,
renaming elements is a way to update key values in-place.

313

5.1 Referential Integrity
We have defined three levels — or tiers — of referential integrity,

offering a trade-off between expressive power and efficiency. A Tier
1 foreign key is a standard foreign key in the traditional relational
model. A Tier 3 foreign key Check(Q1 ⊆ Q2) is a containment
constraint between two arbitrary queries. A Tier 2 foreign key falls
between the two, offering more expressiveness than an ordinary
referential integrity constraint but with efficient execution.

A Tier 2 foreign key statement FK(F⃗|T.X⃗ → G⃗|U.Y⃗) is equiv-
alent to statement Check(σF⃗πX⃗T ⊆ σG⃗πX⃗U), where Y⃗ is a (not
necessarily proper) subset of the primary key columns of table U,
and F⃗ and G⃗ are sets of conditions on key columns (for their respec-
tive relations) with AND semantics. The statement FK(true|T.X⃗ →
true|U.Y⃗) is therefore a Tier 1 primary key — a foreign key in the
traditional sense — if Y⃗ is the key for table U.

To translate FK (and DFK) statements, we leverage the insight
that any FK statement can be restated as a Check statement. State-
ments Check (and DCheck) have behavior specified as queries,
so their translation follows directly from query translation. It be-
comes immediately clear why additional levels of referential in-
tegrity are required; if one specifies a standard integrity statement
FK(true|T.X⃗ → true|U.Y⃗) against a natural schema, its image in
the native schema may involve arbitrarily complex queries.3

5.2 HMerge Translation of Add Table
Let UHM be the update function for HMerge(f , T ,C), and let s

be its input schema. We define the action of UHM on an Add Table
statement for a table t that satisfies f as follows:
UHM(s,AT(t, C⃗, D⃗, K⃗)) =

If T exists, then AE(T ,C, t), and for each column c in table t,
(@s|= f c ∈ Cols(s))→ AC(T , c,Dom(c))

If T not yet created, then
AT(T , C⃗ ∪ {C}, D⃗ ∪ {{name(t)}}, K⃗ ∪ {C})

If the merged table already exists in the output schema, the func-
tion adds a new domain element to the provenance column to point
to rows coming from the new table. Then, the function UHM adds
any columns that are unique to the new table. If the new table is the
first merge table, the output table is created using the input table
as a template. An example is shown in Figure 4, assuming tables
“P Client” and “P Staff” already exist in the input schema.

5.3 HMerge Translation of Add Column
Let UHM be the update function for HMerge(f , T ,C), and let s be

its input schema. We define the action of UHM on an Add Column
statement AC(t,C,D) for one of the merged tables t |= f as follows:
UHM(s,AC(t,C,D)) =

If C is not a column in any other merged table besides t, then
AC(T ,C,D)

If C exists in another merged table t′, and t′.C has a different
domain, then ϵ (abort — union compatibility violated)

If C exists in other merged table(s), all with the same domain,
then ∅ (leave output unchanged)

6. CORRECTNESS
The associated functions of a channel transformation must sat-

isfy the following commutativity properties, where q(d) means ex-
ecuting query q over instance d, and u⃗(s) means executing update
transaction u⃗ on schema s:

• For an input schema s, a concrete instance d of s, and a query
q, let q = Q(s, q) (the translated query) and d = I(s, d) (the

3For details on tiered FK statements, see Appendix C.

s

u(s)

s

u(s)

s

u(s)

s

u(s)

u

S

u=U(s, u)

S

Q

u

S

u=U(s, u)

Q(u(s), q
t
)

d d
I

Q(s, q)

Q

q

q
t

(a) (b) (c)

Figure 5: Three commutativity diagrams that must be satisfied
for CTs that have defined instance-at-a-time semantics

translated instance). Then, q(d) = q(d). In other words,
translating a query and then executing the result on the trans-
lated instance will produce the same result as running the
query on an instance of the input schema (Figure 5(a)).

• For an input schema s and a valid update transaction u⃗ against
s, let s = S(s) (the translated schema) and u = U(s, u⃗) (the
translated update). Then, u(s) = S(u⃗(s)). Running a trans-
lated update against a translated schema is equivalent to run-
ning the update first, then translating the result (Figure 5(b)).

• For an input schema s and a valid update transaction u⃗ against
s, for each table t ∈ s, let qt be the query SELECT * FROM
t. Let s = S(s) (the translated schema) and u = U(s, u⃗) (the
translated update). Finally, let qt

u = Q(u⃗(s), qt), the result
of translating query qt on schema s after it was updated by u⃗.
Then, qt

u(u(s)) ≡ qt(u⃗(s)). Running a translated query against
a translated schema that has been updated by a translated up-
date is equivalent to running the query locally after a local
update (Figure 5(c)).

We abuse the notation slightly in the last commutativity property
by allowing queries to run on a schema instead of a database in-
stance, but the semantics of such an action are straightforward. If s
is a schema and qt is the query SELECT * FROM t for t ∈ s, then
qt(s) ≡ t, and more complicated queries build on that notion recur-
sively. The notation allows us to reason about queries and updates
without referring to database instances by treating a single update
statement as interchangeable with the effect it has on an instance:

• If u = I(t, C⃗,Q), then qt(u(s)) ≡ t ∪ Q (all of the rows that
were in t plus the new rows Q added)

• If u = D(t, F⃗), then qt(u(s)) ≡ σ¬F⃗ t (all of the rows that were
in t that do not satisfy conditions F⃗)

• If u = AC(t,C,D), then qt(u(s)) ≡ t × ρ1→C{null} (a new
column has been added with all null values)

• If u = DE(t,C, E) for a key column C, then qt(u(s)) ≡ σC,E t
(delete rows that have the dropped element for column C)

In addition to the commutativity properties, function U must
have the following properties:

• U(s, u⃗) = ϵ ⇐⇒ S(u⃗(s)) = ϵ. Function U returns an er-
ror if and only if applying the update transaction to the input
schema results in the schema no longer meeting the transfor-
mation’s schema preconditions.

• If U(s, u⃗) , ϵ and d is an arbitrary instance of schema s,
U(s, u⃗)(I(s, d)) = ϵ ⇐⇒ u⃗(d) = ϵ. Applying a transaction to
an instance returns an error in case of a primary or foreign
key violation. This property ensures that a violation occurs
on the native instance if and only if a violation would occur if
a materialized instance of the natural schema were updated.
Note that such a violation occurs when the transaction is ex-
ecuted rather than when it is translated.

314

7. EVALUATION
We constructed a prototype implementation of channels and chan-

nel transformations, including all of the transformations listed in
Section 2. Our implementation uses a provider model, a common
method of representing statements in an internal, DBMS-indepen-
dent format in the channel before invoking a provider that translates
the statements into implementation-specific SQL.

We implemented a representative sample of a publicly-available
clinical application.4 Tables not covered by our sample all map to
the native schema using the same sequences of CTs as tables in
our sample. Our sample represented over 40 of the hundreds of
tables in the application’s natural schema. We are evaluating the
channel and not the application’s specific native schema, so we do
not consider alternative native schemas. The capabilities required
by the application of its natural schema are: single-row inserts, key-
based row update and deletion, and queries for rows based on key
values or equality or range conditions. A channel, both formally
and in our implementation, provides those capabilities.

The constructed channel comprised 38 CTs: 7 Unpivots, 7 VPar-
titions, 22 VMerges, and 2 HMerges. This channel was able to fully
represent the mapping between the natural and native schemas,
with one exception. The real application merges together tables
with non-union-compatible keys that are only loosely semantically
related. For completeness, we defined said transformation formally
as a CT similar to HMerge, but did not implement it for the test.

We measured how much time was spent in the channel compared
to the amount of time required to perform the native database oper-
ations. The tests that we ran are representative of the typical work-
load of a business application in general, and our target application
in particular. We ran tests corresponding to create, retrieve, update,
and delete operations, one test that represents typical user queries
for data of a particular range, and two schema evolution tests:

1. Insert a new colonoscopy procedure record
2. Update data entries for a procedure with a specified ID
3. Delete a colonoscopy with a specified ID
4. Retrieve a particular procedure from the database based on its

key value — in other words, a query of the form, “SELECT
* FROM Colonoscopy WHERE proc id = X”

5. Retrieve all colonoscopies performed in a specific date range,
returning ˜5% of rows

6. Add a new column to a the Colonoscopy table
7. Drop a column from the Colonoscopy table

We measured time spent translating the operation within the chan-
nel, time spent in the provider generating DBMS-specific SQL, and
time spent within the database executing the statement. Experi-
ments were run on a Windows 7 64-bit PC with a 3 GHz, dual-
core processor and 4 GB of RAM, using a commercially available
DBMS. The database instance was 70 MB in size covering 25,000
artificially-generated clinical procedures, representative of a small
database. Table 2 shows the results of our test runs in terms of
milliseconds and percentage of total execution time (from when
a statement is issued against the natural schema until processing
completes). We manually checked channel output to verify no un-
necessary work was being done to inflate database execution time,
e.g., self-joins when none were needed or pivots on data that would
eventually be projected away. We also verified that the generated
statements were equivalent to the ones used by the application.

We ran statements in groups of 100, and ran each group 100
times. The standard deviation in recorded times was not statisti-
cally significant. Ignoring the row marked with an asterisk for a
4See Appendix B for a description of the application.

Table 2: Performance of statements against a natural schema,
averaged over 100 executions of 100 runs each of the test case.

Time in milliseconds Percent of total time
Scenario Chan. Prov. DB Chan. Prov. DB

Insert 44.97 66.00 8933.23 0.50% 0.74% 98.8%
Update 41.96 47.67 2295.21 1.77% 2.00% 96.2%
Delete 5.10 1.16 1023.05 0.57% 0.13% 99.3%
Key Query 2.18 549.15 3000.39 0.06% 15.5% 84.5%
Key Query* 2760.02 548.27 3013.18 43.7% 8.67% 47.6%
Range Query 12.85 552.14 2.4 ×105 ˜0% 0.23% 99.7%
Add Column 3.85 0.34 186.92 2.30% 0.18% 97.5%
Drop Column 4.13 0.01 354.61 1.80% ˜0% 98.2%

moment, database execution time is substantially larger than trans-
lation and provider time combined. For DML and DDL statements,
translation and provider time comprise less than 4% of total time.

Recall from Section 3 that a CT translates a query by search-
ing for table references in a query and replacing them in place.
Our first (naı̈ve) implementation of a channel had each CT traverse
each query tree looking for table references, even when none were
found. Thus query translation time increased linearly with the num-
ber of CTs in the channel. The row in Table 2 marked with an
asterisk (“Key Query *”) shows the performance result of running
key-based queries through this naı̈ve implementation.

Our solution to this problem was to pre-process a channel. For
each table t in the natural schema, we translate the query “SELECT
* FROM t”, and save the result. The query tree is then traversed
once only looking for table references and replacing with the saved
results. Note that the provider and database time for key-based
queries is virtually the same for the optimized and non-optimized
versions, since the generated queries are the same, but that the time
required by channel translation drops from 43.7% to only 0.06%.
The provider has reasonable but sometimes significant execution
time for queries due to the sheer size of the SQL output text gener-
ated from a large number of columns. Though not the main focus
of our work, we are investigating ways to optimize the provider.

Because a channel is stateless, the translation time and provider
time of a channel are not dependent upon the size of the database.
To verify this hypothesis, we ran all tests on a database with 250,000
generated procedures (700 MB). In all cases, the channel overhead
remained the same as in Table 2 while database execution time
went up corresponding to the larger size. A channel can scale to
databases of larger size without incurring additional overhead.

8. RELATED WORK
There is a wealth of research available on schema evolution [15],

but little research has been done on propagating schema evolution
through a mapping. MeDEA allows a developer to manually write
policies that describe what physical actions to take on a database
per change per mapping [5].

Both Relational Lenses [2] and PRISM [3] attempt to create an
updatable schema mapping out of components that are known to be
updatabale. Instead of translating update statements, a lens trans-
lates database state, resolving the new state of the view instance
with the old state of the logical instance. PRISM maps one version
of an application’s schema to another using discrete steps, allow-
ing DML statements issued by version X of an application to be
rewritten to operate against version Y of its database. While more
complex transformations such as pivot have not been explored in
either language, it may be possible to construct such operators in
those tools; like channels, the key contribution of those tools is not

315

the specific set of operators, but rather the abstractions they use and
the capabilities they offer. The key difference between channels and
these approaches is that neither Lenses or PRISM can propagate
schema modifications or constraint definitions through a mapping.

An alternative approach to mapping schemas is a declarative
specification, compiled into routines that describe how to transfer
data from one schema to the other. Some tools compile mappings
into a one-way transformation as exemplified by data exchange
tools (e.g., Clio [6]). In data exchange, data flow is uni-directional,
so updatability is not generally a concern, though recent research
has attempted to provide a solution for inverting mappings [1].
Schema evolution has been considered in a data exchange setting
[20]; the focus in such research is on repairing a mapping while
leaving the source data instance unaltered rather than evolving it,
thus new target columns or tables can be added without existential
quantifiers. Pivot and unpivot are especially rare in data exchange
(Clio is the exception [8]) because of the difficulty in expressing
such transformations declaratively.

An extract-transform-load workflow is a composition of atomic
data transformations (called activities) that determine flow of data
through a system [18]. Papastefanatos et al. addressed schema
evolution in a workflow by attaching policies to activities. Poli-
cies semi-automatically adjust each activity’s parameters based on
schema evolution primitives that propagate through activities [14].

Both-as-View (BAV) [10], describes the mapping between global
and local schemas in a federated database system as a sequence of
discrete transforms that add, modify, or drop tables according to
transformation rules. Because relationships in these approaches are
expressed using views, processing of updates is handled in a sim-
ilar fashion as in the materialized view [7] and view-updatability
literature [4]. The ability to update through views, materialized or
otherwise, depends on the query language. Unions are considered
difficult, and pivots are not considered. Schema evolution has also
been considered in the context of BAV [11], though some evolu-
tions require human involvement to propagate through a mapping.

9. CONCLUSION AND FUTURE WORK
We have introduced the channel as an abstraction that, like a tra-

ditional view, provides logical data independence by allowing ap-
plications access to a schema that is isolated from the native or
implemented schema. A channel further permits schema modifica-
tions and integrity constraint declarations against a natural schema.
Thus applications that employ a channel may treat a natural schema
as indistinguishable from a native schema, so developers may ex-
press schema evolution against the natural schema knowing that all
updates to data and schema will propagate to the database through
the same mechanism. Performance results indicate that channel
overhead is dominated by database execution time.

We have developed a technique for handling incremental changes
to the channel itself that involves translating the difference between
the old channel and the new one into its own “upgrade” channel.
An alternative possibility is to transform each inserted, deleted, or
modified CT in a channel into DML and DDL. For instance, an
inserted Pivot transformation would generate a Create Table state-
ment (to generate the new version of the table), an insert statement
(to populate the new version with the pivoted version of the old
data), and a Drop Table statement (to drop the old version), each
pushed through the remainder of the channel [16].

To fully support indistinguishability, a channel must encapsulate
all of the data and query transformations that occur between an ap-
plication’s natural schema and its native schema. Such transforma-
tions may include business logic that is typically found in data ac-
cess layers or stored procedures. The Adorn and Audit transforma-

tions introduced in Section 2 are examples of such transformations.
While the other CTs in Section 2 are defined on materialized in-
stances, a business logic CT may be non-deterministic, e.g., Adorn,
whose output depends on the state of environment variables. Such
a CT has semantics defined in terms of its effects on queries and
updates rather than on instances, but can still be validated against
all of the correctness properties except Figure 5(a).

10. REFERENCES
[1] M. Arenas, J. Peréz, and C. Riveros. The recovery of a

schema mapping: bringing exchanged data back. PODS
2008, 13–22.

[2] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational
lenses: a language for updatable views. PODS 2006,
338–347.

[3] C. Curino, H. Moon, and C. Zaniolo. Graceful Database
Schema Evolution: the PRISM Workbench. VLDB 2008,
761–772.

[4] U. Dayal and P. Bernstein. On the Correct Translation of
Update Operations on Relational Views. ACM Transactions
on Database Systems, September 1982, 8(3):381–416.

[5] E. Domı́ngueza et al. MeDEA: A database evolution
architecture with traceability. Data and Knowledge
Engineering, 65(3) (2008).

[6] R. Fagin et al. Clio: Schema Mapping Creation and Data
Exchange. Conceptual Modeling: Foundations and
Applications, 2009, 198–236.

[7] A. Gupta and I. S. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE Data
Engineering Bulletin, 1995, 18(2):3-18.

[8] M. Hernández, P. Papotti, and W. Tan. Data Exchange with
Data-Metadata Translations. VLDB 2008, 260–273.

[9] D. B. Lomet et al. Immortal DB: transaction time support for
SQL server. SIGMOD 2005, 939–941.

[10] P. McBrien and A. Poulovassilis. Data Integration by
Bi-Directional Schema Transformation Rules. ICDE 2003,
227–238.

[11] P. McBrien and A. Poulovassilis. Schema Evolution in
Heterogeneous Database Architectures, a Schema
Transformation Approach. CAiSE ’02, 484–499.

[12] S. Melnik, A. Adya, and P. A. Bernstein. Compiling
Mappings to Bridge Applications and Databases. SIGMOD
2007, 461–472.

[13] Microsoft SQL Server 2005.
http://www.microsoft.com/sql/default.mspx.

[14] G. Papastefanatos et al. What-if analysis for data warehouse
evolution. DaWaK 2007, 23–33.

[15] E. Rahm and P. A. Bernstein. An Online Bibliography on
Schema Evolution. SIGMOD Record, 35(4):30–31.

[16] J. F. Terwilliger. Graphical User Interfaces as Updatable
Views. PhD thesis, Portland State University, 2009.

[17] D. Tsichritzis and A. C. Klug. ANSI/X3/SPARC DBMS
Framework. Report of the study group on data base
management systems, AFIPS Press, Arlington, Va., 1977.

[18] P. Vassiliadis et al. A generic and customizable framework
for the design of ETL scenarios. Information Systems,
30(7):492–525.

[19] C. M. Wyss and E. L. Robertson. A Formal Characterization
of PIVOT/UNPIVOT. CIKM 2005, 602–608.

[20] C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings When Schemas Evolve. VLDB 2005, 1006–1017.

316

Patient(P-Id, Gender, Race, …)

Staff(Id, LastName, FirstName, …)

Medications(M-Id, MedName, …)

Colonoscopy(Proc-id, P-Id, Date, Pulse, Weight, Aspirin, Smoking, …)

With many additional tables – in 1-to-1 relationship to Colonoscopy:

 SurgicalHistory(Proc-Id, KidneyTransplant, gastrectomy, …)

 IndicationsConstipation(Proc-Id, Frequency, …)

 IndicationsFamHistory(Proc-Id, PolypChild, PolypSibling, …)

 …

Each Colonoscopy may have zero or more findings:

Finding(F-Id, Proc-Id, x, y, kind, …)

One kind of finding:

Polyp(F-Id, Proc-Id, ImageTaken, SnareWCautery, …)

Polyps can have zero or more therapies:

TherapyHemostatic(F-Id, Proc-Id, Laser, Injection, …)

With additional tables in 1-to-1 relationship to TherapyHemostatic:

 BandingHem(F-Id, Proc-Id, Device, Placed, …)

 HeatProbe(F-Id, Proc-Id, Instrument, Watts, …)

 …

Figure 6: The view schema for a real-world application captur-
ing data from clinical endoscopies

 Patient(P-Id, Gender, Race, …)

Staff(Id, LastName, FirstName, …)

Medications(M-Id, MedName, …)

ProcedureMain(Proc-Id, P-Id, Proc-Type, Date, ..)

Procedure-Text(Proc-Id, Proc-Att, Finding-Att, Textvalue)

Procedure-String(Proc-Id, Proc-Att, Finding-Att, Stringvalue)

Procedure-Real(Proc-Id, Proc-Att, Finding-Att, Realvalue)

Procedure-Bool(Proc-Id, Proc-Att, Finding-Att, Booleanvalue)

Figure 7: The logical schema for the application from Figure 6

APPENDIX
A. ACKNOWLEDGEMENTS

This work was supported in part by NSF grant #0534762, grant
#1R21LM009550 from the National Library of Medicine (NLM),
and a grant from the Collins Medical Trust. Its contents are solely
the responsibility of the authors and do not necessarily represent
the official views of the National Library of Medicine, National
Institutes of Health or the National Science Foundation.

B. SAMPLE APPLICATION
To motivate this work, consider a real-world application5 that

supports data entry and retrieval for medical reports, e.g., colono-
scopies. The application has a complex user interface, operating
on a natural schema with tables for patients, staff, and central ta-
bles for the main reports with 178 descriptive attributes, along with
dozens of weak entities corresponding to the various findings, ther-
apies, indications, and other details of the report. Figure 6 shows a
fragment of the application’s natural schema (which is far too large
to fit in a single figure).

The native schema uses a generic structure for all procedure-
related data where each non-null attribute value from the natu-
ral schema is represented in a separate row with the procedure
ID, the attribute, and the value, broken into four tables based on
the value’s data type. Figure 7 shows a fragment of the native
schema. Anecdotally, such a generic schema frequently occurs in
business applications, especially medical records software, because
the columns in the natural schema may be substantial in number

5www.cori.org

 CREATE VIEW Colonoscopy AS

SELECT Proc-id, P-Id, Date, Pulse, Weight, Aspirin, Smoking, …

FROM ProcedureMain LEFT JOIN (Proc-Text PIVOT (MAX(textvalue) ON VALUES …) LEFT JOIN

 (Proc-String PIVOT (MAX(stringvalue) ON VALUES …) LEFT JOIN …

 INSERT INTO Proc-Main (Proc-id, P-Id) VALUES (101, 1)

INSERT INTO Colonoscopy INSERT INTO Proc-Real (Proc-id, Proc-attr, Find-id, realvalue)

(Proc-id, P-Id, Weight, Aspirin) VALUES (101, Weight, 0, 180)

VALUES (101, 1, 180, true) INSERT INTO Proc-Bool (Proc-id, Proc-attr, Find-id, boolvalue)

 VALUES (101, Aspirin, 0, true)

ALTER TABLE Colonoscopy No schema changes necessary, but note that the new value

ADD COLUMN Coumadin Bool “Coumadin” is a possible value for Proc-Bool.Proc-attr

(a)

(b) (c)

(d) (e)

Figure 8: For the application from Figure 6, the query that
defines the Colonoscopy table in the natural schema, along
with how to translate an insert and a column addition speci-
fied against the natural schema

and frequently changing, the data values are often sparsely pop-
ulated, and schema updates would otherwise break the interface
between the many software artifacts and the database.

Figure 8(a) shows the skeleton of the query that would serve as
the SQL view definition for natural schema table Colonoscopy.
The query is not considered updatable by any current DBMS or re-
search effort, yet the insert shown in Figure 8(b) against the natural
schema is unambiguously equivalent to the sequence of inserts in
Figure 8(c) against the logical schema. To query and manipulate
data through the natural schema, the application employs a custom
data transformation layer in the form of stored procedures and pro-
gram code, which is a common solution. The result is, effectively,
to make the view updatable through manual means.

When the time comes to modify the natural schema of the appli-
cation — say, if new columns or tables are required — the devel-
oper must update the database to accommodate the new changes,
as well as change the data transformation code, a manual and error-
prone process. For this application, the Add Column statement
specified in Figure 8(d) against the natural schema is unambigu-
ously equivalent to allowing a new possible value that can appear
in a column in the logical schema, shown in Figure 8(e).

C. TRANSLATING FOREIGN KEYS
A foreign key constraint in the standard relational model is a

containment relationship between two queries, πC⃗T ⊆ πK⃗T ′, where
C⃗ is the set of columns in T comprising the foreign key and K⃗ is the
key for T ′. Figure 9(a) shows a traditional foreign key between two
tables. Figure 9(b), shows the same two tables and foreign key after
the target table of the foreign key has been horizontally merged
with other tables. The foreign key now points to only part of the
key in the target table and only a subset of the rows, a situation that
is not expressible using traditional relational foreign keys. Figure
9(c) shows the same tables as Figure 9(a), but this time, the target
table has been pivoted. Now, the “target” of the foreign key is a
combination of schema and data values.

Thus, propagating an ordinary foreign key through a CT may re-
sult in a containment query involving arbitrary extended relational
algebra. It is possible to translate a foreign key constraint Q1 ⊆ Q2

through a CT simply by translating queries Q1 and Q2. However,
we observe that in many cases, the translated query is in the form
πC⃗′σF⃗′T

′ or even πC⃗′T
′, though not necessarily covering a table’s

primary key. A containment constraint using these simple queries
may be enforced by triggers with reasonable and predictable per-

317

formance.
Table 1 lists the two statements that can establish integrity con-

straints, FK and Check. The update function U for a CT translates
a Check statement by translating its constituent queries via the CTs
query translation function Q. Note that as a consequence, if a CT
translates an FK statement into a Tier 3 foreign key requiring a
Check statement, it will stay as a Check statement through the rest
of the channel.

There are two additional statements listed in Table 1 that drop
referential integrity constraints — DFK and DCheck. A CT trans-
lates these statements in the same fashion as their “add” analog, so
we do not discuss them further here.

C.1 Tiered Foreign Keys
A Tier 1 foreign key defined from columns T.X⃗ to table T ′ with

primary key Y is equivalent to the following logical expression:

∀t∈T t[X⃗] , null→ ∃t′∈T ′ t[X⃗] = t′[Y⃗].

A Tier 2 foreign key statement FK(F⃗|T.X⃗ → G⃗|T ′.Y⃗) is equiva-
lent to the following logical expression:

∀t∈T∃t′∈T ′ (t |= F⃗ ∧ t[X] , null) −→ (t[X] = t′[Y] ∧ t′ |= G⃗).

where Y⃗ is a (not necessarily proper) subset of the primary key
columns of table T ′, and F⃗ and G⃗ are sets of conditions on key
columns (for their respective relations) with AND semantics. Fig-
ure 9(b) shows an example of a Tier 2 foreign key enforced on table
instances, and the statement used to create the foreign key.

The foreign key FK(true|T.X⃗ → true|T ′.Y⃗) is precisely a Tier 1
foreign key when Y⃗ is the primary key for T ′. We represent Tier
1 FKs using Tier 2 FK syntax FK(F⃗|T.X⃗ → G⃗|T ′.Y⃗) because it
simplifies the description of a CT, and because it is trivial to check
at runtime whether F⃗ and G⃗ are empty and Y⃗ is a key for T ′. Thus,
our implementation can determine at runtime when a Tier 2 FK can
be implemented in a database as a Tier 1 FK (a standard relational
foreign key).

A Tier 3 foreign key is a containment constraint between two
queries Q and Q′ in arbitrarily complex relational algebra over a
single schema, expressed as Check(Q ⊆ Q′).

The example in Figure 9(c) can be expressed as a Tier 3 foreign
key, where the target of the foreign key is a pivoted table. Since
Tier 3 FKs may be time-consuming to enforce, a channel designer
should take note of when a CT demotes a Tier 1 or 2 foreign key
to Tier 3, i.e., any time a Check statement appears in the logic for
translating an FK statement and consider the tradeoff.

C.2 Tier 2 FK as a Trigger
A Tier 2 foreign key FK(F⃗|T.X⃗ → G⃗|T ′.Y⃗) can be enforced in

a standard relational database using triggers — specifically, insert
and update triggers on the source table T and a delete trigger on the
target table T ′:

begin insert trigger (T)
if new tuple satisfies conditions F
for each tuple t in T
if t[Y] = new tuple[X] and t satisfies G
accept insert

reject insert
end trigger
(update trigger follows same pattern as insert)

begin delete trigger (T’)
if deleted tuple satisfies conditions G
for each tuple t in T
if t[X] = deleted tuple[Y] and t satisfies F

 Sales:
ID Buyer Item Vendor

1 101 Soup A

2 224 Bread B

 Sales:
ID Buyer Item Vendor

1 101 Soup A

2 224 Bread B

 Sales:
ID Buyer Item Vendor

1 101 Soup A

2 224 Bread B

Food:
Item Vendor Stock

Bob Smith 19

Bob Jones 44

Sue Jones 95

AllItems:
Item Vendor Type Stock

Soup A Food 19

Soup B Food 44

Bread B Food 95

Yarn B Textile 34

Food:

Item A B

Soup 19 44

Bread NULL 95

FK(true | Sales(Item, Vendor) true | Food(Item, Vendor))

FK(true | Sales(Item, Vendor) Type=Food | AllItems(Item, Vendor))

Note: cannot insert row (3, 645, Yarn, B) into Sales, since qualifying row in

AllItems does not meet condition Type=Food specified in FK.

(a)

(b)

(c)

Check (πItem,Vendor Sales ⊆ πItem,Vendor {A,B},Vendor,Item Food)

Figure 9: Examples of Tier 1 (a), Tier 2 (b), and Tier 3 (c)
foreign keys

delete tuple t
end trigger

The worst-case performance for enforcing a Tier 2 foreign key is
that tables T and T ′ must be scanned once. The best-case scenario
is that there is an index on T.X⃗ and T ′.Y⃗ , and the triggers may be
able to operate using index-only scans.

C.3 HMerge Translation of Tier 2 FK
Let UHM be the update function for the CT HMerge(f ,T ,C), and

let s be its input schema. We define the action of UHM on a Tier 1
or 2 foreign key as follows:
UHM(s,FK(F⃗|T.X⃗ → G⃗|T ′.Y⃗)) =

If T |= f and T ′ ̸|= f , then
FK(F⃗ ∧ (C = T)|T .X⃗ → G⃗|T ′.Y⃗)

Else, if T ̸|= f and T ′ |= f , then
FK(F⃗|T.X⃗ → G⃗ ∧ (C = T ′)|T .Y⃗)

Else, if T |= f and T ′ |= f , then
FK(F⃗ ∧ (C = T)|T .X⃗ → G⃗ ∧ (C = T ′)|T .Y⃗)

Else, FK(F⃗|T .X⃗ → G⃗|T ′.Y⃗)
This result follows from query translation — one can translate

the fragment into its Tier 3 equivalent, translate the two constituent
queries through QHM, then translate the result back to an equivalent
Tier 2 fragment to arrive at the result above. Note that the transla-
tion of a Tier 2 FK through a Horizontal Merge results in a Tier 2
foreign key.

C.4 Pivot Translation of Tier 2 FK
Let UPV be the update function for the CT Pivot(Tp, A,V, Tp),

and let s be its input schema. The action of UPV has several cases
based on the tables, columns, and conditions in a Tier 1 or 2 foreign
key definition; for brevity, we describe two of the interesting cases:
Case 1: T = Tp, T ′ , Tp, and A ∈ X⃗. One of the source columns
is pivoted — this is the case demonstrated in Figure 9).

318

 P_Staff:

FName LName Cert

Gail Brown T

Person:

FName LName T Age Cert

Bob Smith P_Client 19

Ted Jones P_Staff T

Gail Brown P_Staff T

 u = I (P_Admin,

 {FName, LName, Pay},

 {(Gail, Brown, T)})

UHM(u) = I (Person,

 {FName, LName, T, Age, Cert, Pay},

 {Gail, Brown, P_Admin, null, null, 3})

Figure 10: An example of an insert statement translated by an
HMerge CT

UPV(s,FK(F⃗|T.X⃗ → G⃗|T ′.Y⃗)) =
Check(πX⃗σF⃗↙�Cols(Tp)−Keys(Tp);A;V Tp, πY⃗σG⃗T ′)

Figure 9(c) is such a case, where the target of the foreign key ref-
erences the pivot attribute column, so a Check statement is needed
to describe the integrity constraint over the logical schema.
Case 2: T = Tp, T ′ , Tp, ∃(c=v)∈F⃗c = A, V ∈ X⃗ and A < X⃗. The
source table is pivoted, there is a condition on the pivot attribute
column, and the value column V participates in the foreign key.
UPV(s,FK(F⃗|T.X⃗ → G⃗|T ′.Y⃗)) =

FK(F⃗ − {(c = v)}|Tp.(X⃗ − {V} ∪ {v})→ G⃗|T ′.Y⃗)
The result is a single FK involving only one pivoted column v in

the source table, matching the original condition on column A.

D. ADDITIONAL EXAMPLES

D.1 HMerge Translation of Queries
Function QHM translates all references to a table t |= f into the

expression πCols(t)σC=tT . That is, QHM translates a table reference t
into a query that retrieves all rows from the merged table that be-
long to input schema table t as a selection condition on the prove-
nance column, and a projection down to the columns in the input
schema for t.

To prove that function QHM respects the commutativity prop-
erties, one must show that the translation effectively undoes the
outer-union operation, which follows from relational algebra equiv-
alences.

D.2 HMerge Translation of Inserts
Let UHM be the update function for the CT HMerge(f , T ,C), and

let s be its input schema. We define the action of UHM on an Insert
statement I(t, C⃗,Q) where t |= f as follows:

UHM(s, I(t, C⃗,Q)) = I(T , C⃗ ∪ {C},Q × {name(t)})

where name(t) is the string-valued name of table t. The translation
takes all rows Q that are to be inserted into table t and attaches
the value for the provenance column in the output. An example
is shown in Figure 10. Since the output consists entirely of insert
statements, proving that UHM respects the commutativity properties
for insert statements reduces to showing that the newly added rows,
when queried, appear in the input schema in their original form. In
short, we must show that πCols(t)σC=t(Q × {name(t)}) = Q, which
can be shown to be true by relational equivalences.

D.3 Pivot Translation of Drop Element
Let UPV be the update function for the CT Pivot(T, A,V,T), and

let s be its input schema. We define the action of UPV on Drop
Element DDL statements as follows:

UPV(s,DE(T,C, E)) =
If C = A, then DC(T , E)
Else if C = V , then ∀c∈Dom(A)DE(T , c, E)

Name Period Age

IBM Sp 19

IBM Su 22

MSFT Su 35

Name Sp Su

IBM 19 22

MSFT NULL 35

u = DE(Stock, Period, Sp)

(Equivalent to DELETE WHERE PERIOD = “Sp”)

UPV(u) = DC(Stock, Sp)

Figure 11: An example of a Drop Element statement translated
by a Pivot CT

Else, DE(T ,C, E)
If dropping an element from the attribute column, translate into

a Drop Column. If dropping an element from the value column,
translate into Drop Element statements for each pivot column. Oth-
erwise, leave unaffected (also leave unaffected for any Drop Ele-
ment statement on tables other than T). An example of Drop Ele-
ment translation is in Figure 11.

E. EXAMPLE PROOF
To demonstrate how to prove the correctness properties of a CT,

we offer as an example a proof for translating the Drop Element
statement DE(T, A, E) through a Pivot CT Pivot(T, A,V,T) — drop-
ping an element from the attribute column, an example of which
appears in Figure 11. We need to prove the second and third com-
mutativity properties. To prove the second commutativity prop-
erty, we demonstrate that the schema that results from adding the
pivot table with the element still present through the pivot followed
by dropping the element has the same result as pushing the table’s
schema through without the element.
Proposition: Let s be a schema with T undefined. Then:
UPV(s, {AT(T, C⃗ ∪ {A}, D⃗ ∪ {D′ − {E}}, K⃗ ∪ {A})})
= UPV(s, {AT(T, C⃗ ∪ {A}, D⃗ ∪ {D′}, K⃗ ∪ {A}), (DE(T, A, E0))}).

Proof: UPV(s,AT(T, C⃗ ∪ {A}, D⃗ ∪ {D′ − {E}}, K⃗ ∪ {A}))
= AT(T , (C⃗ − {V}) ∪ D′ ∪ {E0},

D⃗ − {Dom(V)} ∪ {∀a∈D′−{E}Dom(V)}, K⃗)
(Push the Add Table statement through the Pivot)

= AT(T , (C⃗ − {V}) ∪ D′, D⃗ − {Dom(V)} ∪ {∀a∈D′Dom(V)}, K⃗),
DC(T , E,Dom(V))

(DDL equivalence)
= UPV(s, {AT(T, C⃗ ∪ {A}, D⃗ ∪ {D′}, K⃗ ∪ {A}),DE(T, A, E)})

(View the statements in their pre-transformation image)
�

Next, we need to prove the commutativity property from Figure
5(c):
Proposition: Let s be a schema with T defined. Then:
QPV(DE(T,C, E)(s), qT)(DC(T, E)(SPV(s))) ≡ qT (DE(T,C, E)(s))
Proof: QPV(DE(T,C, E)(s), qT)(DC(T, E)(SPV(s)))
= (↙�Dom(A)−{E};A;V T)(DC(T , E)(SPV(s)))

(Transforming the query qT , but on a schema where column A
has lost element E)
=↙�Dom(A)−{E};A;VπCols(T)−{E}T

(Dropping a column has the effect of projecting it away)
= σA,E↙�Dom(A);A;V T

(Extended relational algebra equivalence for unpivot)
= σA,EqT (s)

(Pull query back through transformation on original schema)
= qT (DE(T,C, E)(s))

(Effect of Drop Element statement on a key column is to delete
all rows with that value)
�

319

