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ABSTRACT
The identification of clusters, well-connected components in a graph,
is useful in many applications from biological function prediction
to social community detection. However, finding these clusters can
be difficult as graph sizes increase. Most current graph clustering
algorithms scale poorly in terms of time or memory. An important
insight is that many clustering applications need only the subset of
best clusters, and not all clusters in the entire graph. In this paper
we propose a new technique, Top Graph Clusters (TopGC), which
probabilistically searches large, edge weighted, directed graphs for
their best clusters in linear time. The algorithm is inherently paral-
lelizable, and is able to find variable size, overlapping clusters. To
increase scalability, a parameter is introduced that controls mem-
ory use. When compared with three other state-of-the art clustering
techniques, TopGC achieves running time speedups of up to 70%
on large scale real world datasets. In addition, the clusters returned
by TopGC are consistently found to be better both in calculated
score and when compared on real world benchmarks.

1. INTRODUCTION
Large amounts of graph data are generated each day from appli-

cations such as social networks, communication graphs, biological
networks, and more. These structures grow from the hundreds to
the millions of nodes and are both useful and important to ana-
lyze [22, 23]. As graphs grow in size, it becomes difficult to use or
inspect them without some form of summarization. Clustering the
nodes of these networks is one technique shown to be of great prac-
tical importance [5, 23]. Not only are the small, dense subgraphs
easier to visualize and analyze, but well-connected groupings of
nodes within graphs have been found to correspond to many real
world problems, like biological function prediction and social or
web community detection [5, 22, 23, 30]. However, finding the
clusters in a graph is difficult as graph sizes grow large. Unfor-
tunately, most current graph clustering algorithms scale poorly in
terms of time or memory with increasing graph size. Several recent
graph clustering (and relatedly, graph partitioning) techniques have
been introduced which improve scalability [10, 25]—however, trade-
offs in clustering quality are made, and these techniques are better
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suited for partitioning graphs into several large pieces rather than
finding small densely connected subgraphs.

An important observation is that all these applications cluster
the entire graph, regardless of whether every cluster from the en-
tire graph is needed or useful. As an example, clusters connected
weakly, if at all, would be useless for biological function prediction.
Applications wishing to find significant social groupings would not
need clusters returned of people loosely connected. In both these
cases, only clusters that are most strongly connected are needed.
An algorithm that finds all the clusters of an entire graph, only to
rank and keep just a few, is extremely inefficient. Instead, it may
be faster and still useful to obtain just the top clusters from a large
network.

In this paper we propose a new algorithm, Top Graph Clus-
ters (TopGC), which probabilistically finds the best well connected,
clique-like clusters within large graphs. It is inherently paralleliz-
able, and runs in linear time on the graph size. In addition, the
memory consumption can be constrained through input parame-
ters. The algorithm works on both directed and undirected edge
weighted graphs, and can also find variable size clusters ranging
from an input minimum cluster size to input maximum cluster size.
The discovered clusters are allowed to overlap up to a given in-
put percentage. The ability to find slightly overlapping clusters is
important in many applications where a single node may be part
of multiple clusters, for example in gene networks or social web
graphs. This importance has been noted and analyzed [23, 28],
however, very few current graph clustering algorithms allow for
this feature.

The TopGC technique is inspired from Locality Sensitive Hash-
ing (LSH) [12]. LSH is a probabilistic method for similarity search,
and TopGC is therefore also probabilistic in nature. Well separated
clusters with strong, clique-like connections between the nodes are
more likely to be found and returned by the algorithm. The basic
idea behind TopGC’s algorithm comes in two parts. First, many
previous clustering techniques and papers have noted that nodes
with similar neighbor sets (neighborhoods) within a graph gener-
ally should cluster together. A perfect clique, for example, would
contain nodes whose neighbor sets would match exactly between
them (all nodes are connected to the same other nodes, if the neigh-
borhood of a node includes itself). Nodes that do not cluster to-
gether would tend to have neighborhood sets that do not overlap.
Fig 1 contains an example which illustrates this graphically. In
this figure, five of the nodes form a perfect clique, and therefore
have identical neighborhoods. The next five nodes do not cluster
as well together, and this is reflected in their neighborhoods. In
addition to the neighborhood, the edge weights among nodes also
make a difference in the strength of a cluster. TopGC takes ad-
vantage of LSH’s fast similarity search to quickly find only those
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F         {F,G,H}

Figure 1: Relationship between neighborhood and clustering.
Here, nodes A,B,C,D, and E form a perfect clique, and contain
matching neighborhoods. Nodes F,G,H,I and J do not cluster
as well, and this is reflected in their neighborhoods.

nodes that have similar neighborhoods. Further, TopGC modifies
the algorithm so that only those sets of nodes connected by high
edge weights are found. It is shown later that the probability of a
cluster being found by TopGC is related to the score of the cluster.

Second, to reduce the memory consumption needed to cluster a
large graph, TopGC takes further advantage of the fact that only the
best clusters in the graph need to be found. The algorithm further
modifies the LSH process, splitting it into two phases: a pruning
phase and a final clustering phase. The pruning phase picks only
those nodes most likely to be part of the best clusters, maximizing
a score function shown to be related to the final clustering score.
These selected nodes are then clustered in the final clustering phase.

Both phases of the algorithm are parallelizable into an arbitrary
number of separate threads. This indicates that parallelization frame-
works such as MapReduce [9] can work efficiently with it, which
would allow for still further scalability of the TopGC algorithm.

The main contributions of this paper include the proposal of a
new algorithm, TopGC, which is able to quickly and effectively find
strong, overlapping clusters within large, directed, edge weighted
graphs. The algorithm is analyzed and shown to probabilistically
return clusters with higher scores. When implemented and com-
pared with three other state-of-the-art clustering techniques, TopGC
is found to achieve running time speedups of up to 70% on large
scale real world datasets. In addition, the memory savings achieved
from TopGC’s pruning algorithm allows it to cluster several mas-
sive graphs that other techniques can not process due to memory
constraints. The clusters returned by TopGC are found to score
higher both in calculated score and when compared on real world
benchmarks. TopGC performs better than the popular clustering
tool MCL on biological datasets.

The rest of this paper is divided as follows. First, in Section 2
several related works in the area of graph clustering are reviewed.
Next, the scoring criteria for judging the strength of a cluster are
discussed in Section 3. After that, the basic TopGC algorithm is in-
troduced in Section 4, and the probability of it discovering a cluster
is shown to relate to the cluster’s score. Finally, the results obtained
from implementing TopGC and comparing its performance on both
generated and real world networks against three current clustering
techniques are analyzed and discussed in Section 5.

2. RELATED WORK
Multiple previous graph clusterings algorithms have been pro-

posed, using techniques from areas such as spectral clustering [26]
and random walks [22, 25, 29]. Some have been found to return
very strong clusters which match well to real world standards and
clusterings. MCL in particular has seen much use in the area of

biological networks, returning highly relevant clusters in several
areas [3, 7]. MCL is a clustering technique based on the simulation
of random walk flows. By alternating between applying two oper-
ators (expansion and inflation) upon the graph matrix of transition
probabilities, a clustering related to the random walk distance be-
tween nodes can be obtained. The difficulty with both MCL and
the majority of other graph clustering techniques is their inability
to scale as graph sizes increase.

Given the complexity of the graph clustering problem on even
small graphs, much less on the massive graphs available today,
there have been several prior approaches proposed to tackle the
scalability bottleneck. One approach is to prune the search space by
analyzing and returning only the local clusterings around a given
seed node. This allows the algorithm to focus only on a limited
subset of the graph to achieve time and space savings. Examples of
such local graph clustering algorithms include the Local Spectral
Algorithm [2] and Nibble [27].

Graph partitioning, which decomposes a graph with a predeter-
mined number of graph cuts, is a separate but related problem to
the graph clustering problem we examine here. Graph partitioning
can be viewed as clustering of a graph into a predefined number of
clusters. Metis [1] is a multi-level graph partitioning program that
achieves scalability by coarsening and performing clustering on a
reduced size graph, then uncoarsening to obtain the final partitions.
This algorithm, however, restricts its partitions to be nearly equal
in size, in addition to the number of partitions being specified in
advance. Graclus [10] is another variant on multi-level graph parti-
tioning. By maximizing a weighted k-means objective shown to be
equivalent to spectral clustering, Graclus reduces time complexity
by avoiding eigenvector computations. In addition, Graclus allows
for its partitions to vary in size, though the number must still be
specified in advance. An obvious problem with such partitioning
approaches is that the number of clusters in a graph is frequently
not known in advance, especially for large, complex networks. Fur-
thermore, these algorithms often are most efficient when the num-
ber of graph cuts is small, which can lead to cluster sizes too large
for practical analysis.

A variation on the MCL algorithm, called RML-MCL [25], that
improves MCL’s scalability has been recently introduced. RML-
MCL replaces the expansion operator with a regularization step.
This step allows for a multi-level graph clustering approach to be
combined with random walk flow simulations. However, the regu-
larization parameter also leads the algorithm to produce larger clus-
terings, an effect confirmed in our experiments in Section 5.3.

Local clustering and graph partitioning can both be viewed as
methods to reduce the complexity of the graph clustering prob-
lem, and allow for a faster, more scalable solution than having to
do the global clustering. A different approach, and one that has
many practical applications, is to return just the smaller, best scor-
ing clusters of the entire graph. One recent paper has focused on
finding the top-k maximal cliques in uncertain graphs [32]. How-
ever, this method of reducing the search space by finding cliques
means many useful real world clusters may be missed, as they may
connect strongly but be missing several edges between their nodes.
Other methods for pruning by finding only the strongest clusters
have not yet been explored fully, and this is the problem we focus
upon in this paper.

3. CLUSTER STRENGTH AND SCORING
To return only the strongest or best clusters in a graph, we need

the notion of a score quantifying the strength of a cluster. Many dif-
ferent cluster scoring methods have been introduced over the years,
each with their own strengths and weaknesses. The specific choice
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often depends on the particular application and type of clustering
desired.

One popular measure of cluster quality is conductance, defined
as the ratio of the number of links within a cluster to the number
of links leaving that cluster [15]. Conductance has been used in
many applications to good results, but it does have several draw-
backs. A cluster containing several internally disconnected com-
ponents within it may score higher than a similarly sized, better
connected cluster of nodes. In addition, conductance as a cluster
score does not work well when there are multiple slightly overlap-
ping, but separate, clusters [23]. In this case, the edges leaving the
cluster will penalize the score, and often cause the separate clusters
to be merged together.

A different measure of score is to maximize how clique-like a
cluster is. One example is the intra-cluster distance [11], defined
as the ratio between the number of edges in a cluster to the number
of possible edges within that cluster. Another related method is the
ratio association [10], a score given to a set of clusters. The ra-
tio association calculates the average link weight within each of its
clusters, then sums these averages. A limitation of both the intra-
cluster distance and the ratio association is that there is no prefer-
ence given to larger cluster sizes (a clique of size 100, for example,
is less probable by chance and intuitively should score higher than
a clique of size 3).

In this paper, since the goal is to find strong, possibly overlapping
clique-like clusters, a variation on both the intra-cluster distance
and ratio association is used. This score has been found to correlate
well with real world clusterings [22]. Here, a cluster’s score is
defined as the average link weight between all nodes in the cluster
(including links with weight 0) multiplied by the square root of the
cluster size (to allow for a bias towards larger cluster sizes).

Score of Cluster C =
p
|C|

P
vi∈C

P
vj∈C wi,j

|C|· (|C| − 1)
(1)

This score is later shown to be related to the probability of TopGC
discovering the cluster.

4. ALGORITHM OVERVIEW
To cluster the nodes in a graph, we wish to find those sets of

nodes whose neighborhoods are most similar, and contain high
edge weights between them.

Let G = {V,E,w} be a weighted, directed graph where V are
the set of vertices, E = {(v1, v2) | v1, v2 ∈ V } are the set of di-
rected edges, and w(v1, v2) (abbreviated w1,2) gives the weight of
the edge going from vertex v1 to vertex v2. We assume that edge
weights have been normalized, such that each link weight is a num-
ber between [0,1], and

P
j∈V,j 6=i wi,j = 1 ∀ i ∈ V . In this case,

wi,j = 0 if (vi, vj) /∈ E. For simplicity in later calculations, let n
be the number of vertices in the graph. Also, let the neighborhood
Ni of vertex vi be defined as:

Definition 1. Ni = {vi} ∪ {vj | wi,j > 0}

The TopGC algorithm we propose here makes use of Locality
Sensitive Hashing (LSH) [12]. LSH has been used as a fast and
efficient method for linear time similarity search in numerous prac-
tical applications [6].

4.1 LSH Applied To Graphs
If we first ignore edge weights, we can use each node’s neigh-

borhood set with a version of LSH that finds similarity based on
the Jaccard index [6] to probabilistically find those nodes with sim-
ilar neighborhoods. The Jaccard index of two nodes, vi and vj ,

is defined as |Ni∩Nj |
|Ni∪Nj |

, and ranges between 0 (no overlap in their
neighborhoods) to 1 (the neighborhoods are identical). In this tech-
nique, each node is represented by a small, length l, probabilistic
“signature” created from its neighborhood. By generating multi-
ple signatures for each node and hashing them, sets of nodes with
matching signatures and similar neighborhoods may be found. In
this section we give a brief overview of this technique. In the two
sections following, we modify and extend the LSH algorithm so
that it may be used quickly and effectively on graphs.

To create an LSH signature, there are two main steps. First, m
random permutations, π1, · · · , πm, of the nodes in the graph are
generated and stored. From this, m “minhash” values, mh1, · · · ,
mhm, are generated for every node. The value of mhi for a vertex
vj is the element in its neighborhood Nj with the lowest ordering
index in πi. So at the end of this step, a node hasmminhash values,
each minhash consisting of one node from its neighborhood. It
can be seen that the probability that two nodes, vi and vj , agree
on their values for some mhk is |Ni∩Nj |

|Ni∪Nj |
, the Jaccard index. In

practice, it is inefficient to generate and store the orderings for all
nodes on the graph. Instead, a previously introduced family of hash
functions, H , is used to approximate the random orderings [14].
Here, Pr[h(vi) = h(vj)] = Jaccard index, where h is a randomly
chosen function of the form h(x) = ax + b mod P , where P is a
prime number larger than n.

Next, a signature of length l is created. A series of l random
numbers is generated, each number ranging from [1, m]. For a
node, its signature will then consist of the concatenation of mhl1 ,
mhl2 , · · · , mhll In this way, the probability of two nodes match-
ing on the same minhash becomes (

|Ni∩Nj |
|Ni∪Nj |

)l.
There are several limitations with using this algorithm to cluster

nodes in a graph. First, if edge weights are added using methods
similar to previously proposed weighting solutions [13], this would
lead to nodes being grouped based on how similar their neighbor-
hood edge weights are, and not on the strength of the weights. In
addition, another weakness is the low probability of all nodes from
a cluster (or even a significant fraction of them) creating the exact
same signature. As more nodes are added to a cluster, the prob-
ability of them all generating the same signature, unless they are
a perfect clique, will decrease. This difficulty has led to different
variants of LSH, such as multi-level LSH [31]. In this paper, we in-
troduce a different solution, modification of the hashwords, which
fits well with the graph clustering problem we are trying to solve.

4.2 Inclusion of Edge Weights
To address edge weights, we first define the weighted neighbor-

hood of vertex. The weighted neighborhood,Nw
i , of a vertex vi is a

probabilistic subset of Ni where every vertex vj ∈ Ni is included
inside Nw

i with a probability proportional to wi,j . For example,
consider a vertex vi which has two edges leaving it, one to vertex
vj with weight wi,j = 0.6 and the other to vertex vk with weight
wi,k = 0.4. Vertex vi will be included in the set always. Ver-
tex vj will be included in the set 60% of the time, and vk will be
in the set 40% of the time. This means Pr[Nw

i = {vi, vj , vk}] =
0.24, Pr[Nw

i = {vi, vj}] = 0.36, Pr[Nw
i = {vi, vk}] = 0.16, and

Pr[Nw
i = {vi}] = 0.24. To approximate a weighted neighborhood

in our algorithm, we draw multiple neighborhood instances from
the weighted neighborhood probability distribution. (The number
of neighborhood instances drawn is a parameter referred to later as
trials.) From this, we can approximate using LSH with a weighted
neighborhood by hashing as described in Section 4.1 with each of
these drawn neighborhood instances.

Given this weighted neighborhood, we wish to relate the sim-
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ilarity of two nodes, vi and vj , with their probability of hashing
together. To do this, we calculate the probability they will pick
the same minhash value. Raising this probability to the power of
the signature length, l, will give their overall chance of hashing
together.

For every vertex, vm ∈ {Ni ∪ Nj}, there is a 1
|Ni∪Nj |

chance
that it will be first among Ni ∪ Nj in ordering, for a particular π.
In addition, there is a wi,mwj,m chance that it will be included in
neighborhoods of both vi and vj . The probability that both these
will occur and node vm will therefore be chosen as the minhash for
both vi and vj is:

Pr[minhashvi,vj = vm] =
wi,mwj,m

|Ni ∪Nj |
(2)

This is the probability that any one, particular vertex vm will
be chosen as the minhash value for both vi and vj . There is also
the possibility that another vertex in Ni ∪ Nj was first in order-
ing, but was not contained in either of the weighted neighborhood
instances, leaving vm to be second in ordering and chosen as the
minhash value. And so on for a third, fourth, etc. minhash values.
However, these following probabilities all involve multiplying both
the likelihood of matching from Eqn. 2 with the likelihood of not
matching, raised to the power of the level. These probabilities de-
crease at an exponential rate. Only the most significant term, listed
in Eqn. 2, is kept here.

The overall probability of vi and vj choosing the same minhash
(represented by Pr[minhashvi,vj ]) will be:

Pr[minhashvi,vj ] =

P
k∈(Ni∪Nj) wi,kwj,k

|Ni ∪Nj |
(3)

Note that we are taking the union in the summation, and there-
fore some weights may be zero. From Eqn. 3, we can already
see intuitively that the probability of two nodes hashing together
is maximized not only when their neighborhoods are similar (both
wi,k and wj,k are nonzero for the same nodes vk), but also when
these weights are maximized. Extending Eqn. 2 to the probability
for a cluster of nodes C = {v1, v2, · · · , vc}, gives the following
probability for all nodes in C to pick a particular node, vk, as a
minhash:

Pr[minhashC = vk] =

Q
i∈C wi,k

|
S

i∈C Ni|
(4)

Equation 4 may be rearranged to solve for
Q

i∈C wi,k, which
gives the following equation:Y

i∈C

wi,k = Pr[minhashC = vk] · |
[
i∈C

Ni| (5)

The left side of this equation is taking the product of a series of
numbers. This product can be related to the sum of the same series
according to the relation observed in [16]:

OBSERVATION. If we are given a positive real number k and
a (fixed) positive integer n, then among all of the real factor sets
of k that consist of n numbers, the real factor set that yields the
minimal sum consists of n copies of k1/n.

This means Equation 5 may be converted to the following rela-
tion:X

i∈C

wi,k ≥ |C|(Pr[minhashC = vk] · |
[
i∈C

Ni|)1/|C| (6)

Examining Equation 1, our equation for scoring a cluster, we can
rearrange the summations in the numerator to form

P
j∈C

P
i∈C wi,j .

From this, we can substitute Equation 6 with the
P

i∈C wi,j term

in Equation 1. This gives the following bound between the prob-
ability of cluster C creating a common minhash, vj ∈ C, and the
score:

Score of C ≥
√
|C|

(|C|−1)
· |

S
i∈C Ni|1/|C|

·
P

vj∈C(Pr[minhashC = vj ])
1/|C| (7)

Because we are only interested in clusters with high score val-
ues, Eqn. 7 leads us to examine only those clusters, C, with a high
probability of their signatures containing many vertices ofC within
them. In other words, those clusters where Pr[minhashC = vj ]
is high for each vertex vj ∈ C. This can be approximated by ex-
amining the hashtable obtained from running LSH on the weighted
neighborhoods of each node. Let M be the set of nodes compos-
ing the signature. By finding those hashbuckets where |C∩M|

|C| is
high among the frequent nodes, we can obtain a good estimate
of Pr[minhashC = vj], and therefore obtain clusters with high
bounds on their scores.

A fortunate byproduct of the bound found in Eqn. 7 is that we are
only concerned with finding clusters where Pr[minhashC ∈ C]
is high. We do not need the extra ordering information contained
within the LSH signatures to estimate this, which allows us to mod-
ify each signature to increase the probability of cluster nodes hash-
ing to the same bucket. By sorting the nodes within the signature
and removing duplicates, we can still find those buckets where both
|C∩M|
|C| , and therefore also Pr[minash ∈ C], are large. The re-

moval of this extra ordering information allows for an increased
probability of cluster nodes hashing together, and is shown experi-
mentally to lead to better clustering results. (For additional details,
an analysis of this effect is included in Appendix 8.1).

Note that it is also possible for overlapping clusters to be found.
After finding all clusters, a post-processing step is run where, if
two clusters overlap more than λ, a given parameter, the cluster
with lower score is removed. Overlapping clusterings are of real
world importance [23, 28], and may lead to more accurate and use-
ful clusterings. Additional details on the effects of λ may be found
in Appendix 8.2.

Pseudocode for the overall hashing algorithm discussed in this
section is contained in Appendix 8.4.

4.3 Pruning of Search Space
A weakness of the above hashing technique is the memory re-

quirement. Every node in the graph will be stored, along with its
hashword, w number of times. With each hashword of length l, the
memory consumed will be O(n·w· l). When working with very
large graphs, it is desirable to decrease memory requirements to
below O(n). Since TopGC need search only for the top clusters in
a graph, this allows for greater pruning of the search space. We can
therefore further modify the LSH process, splitting it into two parts.
First, a smaller low memory version of the modified LSH function
is run on every node to pick out the top p nodes in the graph (nodes
most likely to be part of the best clusters). Next, the full version
of the algorithm described in the preceding sections is run on only
these top p nodes. In this way the memory consumption is now
restrained to O(p·w· l).

This low memory version is based on the idea that a “promising”
node is one most likely to increase the score of a high scoring clus-
ter. To discover this likelihood, we first notice that, given a vertex
va, the nodes of any cluster, C = {v1, v2, · · · , vc} containing va

can be divided into three subsets. Node va itself, the cluster nodes
neighboring va in the set S = C ∩ Na, and the remaining set of
nodes, R such that {va} ∪ S ∪ R = C. An illustration of this
division is shown in Fig 2. For a high scoring cluster, |S| and the
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Figure 2: Illustration of subsets va, S, and R in cluster C

edge weights between va and S must be large. If they are too low,
cluster C would have higher score without va and node va may be
pruned. This divides the function of node va’s likelihood score into
four parts.

First, the set of edge weights connecting va to S (represented
by V S, where V S = {wa,s|s ∈ S}). Second, the set of edge
weights connecting S to va (SV = {ws,a|s ∈ S}). Third, the set
of edge weights between members of S, represented here by SS.
And fourth, the set of remaining edge weights withinC (connecting
the nodesR, as well as the nodes in S withR, represented byRR).
We therefore have:

Score α (V S + SV + SS +RR)

The larger each of these sets are, the better the overall cluster
score. Maximizing all parts of this score would lead to obtaining
clusters with maximum score, and therefore requires clustering the
entire graph. To minimize time complexity, we choose to maximize
just the first three terms as an approximation, obtaining a subscore
related to the maximal scoring of the overall cluster. Experimen-
tal results confirm that this subscore is effective at choosing nodes
likely to participate in strong clusterings, as discussed later in Sec-
tion 5.1.

In addition, the list of possible nodes in S is limited to those
connected to va with highest edge weights. Given that the maxi-
mum size of a cluster was a parameter Smax, we need only to con-
sider some multiple of the Smax top nodes in Na to get a notion
of the likelihood of va being in a top cluster. (If the nodes in S are
not contained within these top neighbors, then either a significant
number of high weighted links leave the cluster and it is not well
separated, or the links are all of low weight and va is not likely to
participate in a high scoring cluster). This will give us a set, Sa, of
nodes.

To maximize SV , we wish to find those nodes from Sa which
have high edge weights to node va. To maximize SS, we wish to
find those nodes within Sa which cluster well (having many links of
high edge weight between them). Putting these two goals together
we find that, in other words, we wish to find the best possible clus-
ters from within the subgraph induced by the nodes in {va} ∪ Sa.
By applying the modified LSH algorithm described Subsection 4.2
to just this small subgraph, the set of best clusters within may be
found in O(Smax) time, with O(Smax · w · l) memory consump-
tion. The cluster score of the best found cluster in this step may
be used as an approximation to the score of va. Given that w and
l are small constants, applying this function to every node in the
graph will find the top p nodes in O(n · Smax) time. In addition,
given that our goal was to find dense, small subgraphs, Smax will
be a small fixed constant relative to n, as well. This pruning step
now allows the memory consumption to be limited to O(p), as the
individual hashtables for each node during pruning may be deleted

Table 1: List of parameter settings
Parameter Setting

p min(0.3n, 50k)
Smax 20
Smin 5
λ 0.2

trials Smax

m min(α, 2Smax)
w 2m
l 2α

after its score is found. Pseudocode for this process is shown in
Appendix 8.4

To allow for a further speedup in the algorithm’s running time, it
can be seen that the pruning process is parallelizable. The score cal-
culations of each node are separate. Thus, TopGC allows the user
to split the pruning into any number of separate, parallel threads,
giving it an approximate time complexity of O(n

t
) (where t is the

number of threads).

5. EXPERIMENTAL RESULTS
In this section, we report our experimental results obtained from

implementing and running the TopGC program on a wide variety of
different networks1. All experiments were run on an AMD Phenom
9750 Quad-Core Processor with 8GB of memory. We compare our
performance to the state-of-the-art graph clustering program MLR-
MCL [25], the scalable graph partitioning program Graclus [10], as
well as to MCL [29], the graph clustering algorithm found to have
the best clustering performance in several recent survey papers [3,
7]. To obtain the top scoring clusters from MLR-MCL, Graclus,
and MCL, the programs were first run on the entire graph. Various
parameter values were experimented with for all programs to obtain
similarly sized clusters. Returned clusters of size s, Smin ≤ s ≤
Smax, were scored according to Eqn. 1 and the top scoring clusters
output. Timing information reported here does not include the time
taken to sort and output the clusters. TopGC was implemented in
Java and all experiments were repeated five times, with the average
results being reported here.

Table 1 lists the default settings used for the various TopGC pa-
rameters, unless otherwise specified. Here, α is shown to represent
the average number of edges per node in the graph. The parameter
values for the LSH hashing m, w, l, and trials were found to affect
running time and cluster quality only slightly as long as they were
within a reasonable threshold. Further details of their effect are dis-
cussed in Appendix 8.2. The values chosen in Table 1 were found
experimentally to work well for a wide variety of graphs, and are
the default values used in this paper.

5.1 Analysis of Pruning
To confirm the effectiveness of our pruning strategy from Sec-

tion 4.3, the effect of varying the pruning parameter p is shown in
Fig 3. The dataset used is a real world network from Amazon [19],
containing ∼400,000 nodes and 3,000,000 edges. As can be seen
in Fig 3, the scores for most values of p cluster tightly, meaning
that using even low values of p (keeping less nodes and achieving
better pruning) still gives clusters with high scores. In fact, from
Fig 3 it can be seen that keeping just 5,000 nodes from pruning
(about 1.2% of the graph) gives top scoring clusters of approxi-

1We have made our implementation of TopGC available for down-
load at http://cs.ucsb.edu/∼kpm/TopGC .
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Figure 3: Varying p on a graph of ∼400,000 nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  100000  200000  300000  400000  500000  600000  700000  800000  900000  1e+06

T
im

e 
(s

ec
)

Number of Nodes

TopGC
MLR-MCL

Graclus

Figure 4: Running times on generated graphs

mately the same score as using the majority of the graph, confirm-
ing that our strategy and scoring method does indeed pick out those
nodes that participate in strong clusters. The memory savings from
using lower values of p is significant as well, with p = 5, 000 lead-
ing to a∼750MB maximum resident set size of memory, compared
to ∼1.82GB for p = 400, 000, a saving of almost 60% (and one
that is magnified still further in larger datasets, as will be seen in
Section 5.4).

5.2 Synthetically Generated Graphs
To illustrate scalability, a series of seven graphs of increasing

size were generated using the Python Web Graph Generator 2. This
graph generator produces power law random, unweighted, undi-
rected graphs using a variant of the R-MAT [8] algorithm. The av-
erage number of edges per node was kept at a constant of five, and
the number of nodes increased from between 10,000 to 1,000,000.
Parameters for the number of partitions in Graclus and coarsening
in MLR-MCL were set so as to give similarly sized clusterings as
TopGC (typically the number of nodes divided by 5). The running
times for MCL are omitted as well, being several orders of magni-
tude slower (2618 seconds for 25,000 nodes). Additionally, results
for Graclus are shown only to 100,000 nodes. Above this, the pro-
gram began thrashing due to memory constraints.

Fig 4 compares the resulting running times of TopGC, MLR-
MCL, and Graclus. It can be seen that TopGC clearly dominates
the other algorithms, its running time varying from 3.7 seconds on
a 10k node graph to ∼40 seconds on a 1,000k node graph. Graclus

2Available at http://pywebgraph.sourceforge.net/
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Figure 5: Top 20 cluster scores on a 100K node graph

performs well on the smaller graphs, but the number of partitions
necessary to allow it to return similarly sized clusters on larger scale
networks contributes to its poor performance in running time here.
Fig 5 compares the scores for the top 20 clusters returned from
the algorithms on the 100,000 node graph. A dramatic difference
in the strength of returned clusters can be seen, with the clusters
returned by both MLR-MCL and Graclus being only loosely con-
nected. This emphasizes their role as graph partitioning algorithms
focused on splitting a graph into a few number of larger sized par-
titions, making them unsuitable for those applications which need
smaller, dense clusters. Figures for other synthetic graphs are omit-
ted here, as they produced similar results.

5.3 Yeast Biological Network
We validated the quality of our clustering algorithm on a real

world network dataset with available ground truth. This dataset,
called YeastNet [17], is a weighted, undirected graph whose∼6,000
nodes represent yeast genes, and ∼100,000 edges are weighted ac-
cording to the likelihood that the two genes participate in the same
biological function. It has been shown that by finding tight, clique-
like clusters within such networks, new functional predictions for
previously uncategorized genes may be found [22]. In addition, it
is known that some genes participate in more than one biological
function, emphasizing the need for a clustering solution that allows
for slightly overlapping clusters.

To obtain a gold standard, Gene Ontology (GO) annotations [4]
for yeast biological functions were obtained, and the GO Biological
process terms used to identify sets of proteins annotated with the
same terms. A list of the 295 significant GO biological process
terms was used, as identified by Myers et al. [24] More details on
this benchmark are contained in Appendix 8.3. To obtain a cluster
“purity” score, the nodes in each cluster were associated with their
GO annotations. For a single cluster, the purity is defined as the
ratio of the maximum number of nodes annotated with the same GO
process to the number of nodes in the cluster. The purity of a cluster
therefore ranges from 1 (all nodes having the same annotation) to 0
(no matching annotations).

Results for the top scoring clusters returned by all algorithms are
shown scored by the GO standard in Table 2, and the calculated
score of the top 20 clusters in Fig 6. An inflation of 4.0 for MCL
and partition size of 1000 for Graclus was found experimentally to
give the highest purity results, and are used here. MLR-MCL had
difficulty separating the clusters from this yeast dataset, and most
parameter settings gave results with too few separate clusters to
be compared. Only the extreme parameter values of 8.9 for g and
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Figure 6: Comparing the top 20 cluster scores in YeastNet

5000 for c gave enough clusters for comparison, though this still
resulted with one super-cluster containing the majority of nodes
in the network. For all algorithms only those clusters of size ≥
five were kept, and an average size of 5-10 nodes per cluster for
all techniques was found. Using the default parameters shown in
Table 1, TopGC returned 67 clusters (with an average size of 9.1
and average score of 2.47).

Fig 6 shows that the calculated scores for the top clusters re-
turned by TopGC again outrank the scores returned from the other
algorithms. The difference is especially pronounced among the top
few clusters. From Table 2, it can be seen that the clusters re-
turned by TopGC have real world relevance as well, outperforming
even the popular biological network clustering algorithm, MCL. In
fact, 74% of the top fifty clusters returned by TopGC contained
nodes with over 0.9 purity when compared to the GO gold stan-
dard, an increase of 11% over MCL. TopGC’s method of weighted
similarity search can be seen to effectively find those clusters that
are strongly connected, leading to both high calculated and real
world scores. The lower purity results for MLR-MCL and Graclus
emphasize their bias towards finding large graph partitions, mak-
ing them inappropriate for finding smaller, tight-knit groupings of
nodes. Both MLR-MCL and Graclus performed faster on this small
yeast dataset than TopGC but, as shall be shown in the next section,
as graph sizes increase, both algorithms scale poorly in comparison.

5.4 Large Scale Real World Networks
To confirm that TopGC produces strong and fast results on large

real world networks, five directed, unweighted, real world graphs
were obtained from the SNAP graph library [18] and TopGC used
to find the highest scoring clusters. These graphs include a so-
cial network graph from LiveJournal [21] consisting of ∼5 mil-
lion nodes and ∼70 million edges, a Wikipedia talk network [20]
between interacting individuals on Wikipedia’s talk pages, a web-
graph representing links between berkely.edu and stanford.edu do-
mains [21], a product co-purchasing network from Amazon [19],
and a social graph from Slashdot’s zoo feature [20]. A comparison
of the results from TopGC and MLR-MCL, with scores from the
top 50 returned clusters, are shown in Table 3. A coarsening value
of 5000 was used MLR-MCL to allow for the return of similarly
sized clusters. The results from both MCL and Graclus are not in-
cluded in this table as they were unable to complete on the majority
of graphs due to time, and memory constraints.

From Table 3, TopGC’s results again confirm its scalability and
strong clustering ability. TopGC consistently performs faster and
returns similar or higher scoring clusters than MLR-MCL on all

Table 2: Comparison of YeastNet results to GO gold standard
Cluster TopGC MCL Graclus MLR-MCL
Purity 8.3 sec. 139 sec. 4.90 sec. 1.3 sec.

0.9 74% 63% 36% 13%
0.8 88% 83% 48% 21%
0.7 98% 92% 58% 25%
0.6 100% 96% 66% 33%
0.5 100% 98% 82% 50%

0.25 100% 100% 100% 100%

datasets, the difference becoming especially clear as graph sizes
increase. On the webgraph dataset, TopGC’s running time is over
3.5 times faster than MLR-MCL, while also returning clusters of
much higher score. For the two largest datasets, the results for
MLR-MCL could not be obtained, due to it running out of mem-
ory. TopGC, conversely, with the use of its pruning process, needed
roughly the same amount of resident set size memory to cluster
each of these graphs (needing, for example, only 1.1GB of memory
to cluster the webgraph dataset, and 1.3GB of memory to cluster the
LiveJournal dataset). This highlights again the need for both time
and memory scalability, and further emphasizes TopGC’s ability to
efficiently find strong clusters within the massive graphs available
today.

6. CONCLUSIONS
Graph clustering is an important tool for the mining and visual-

ization of graphs, especially in those massive graphs that are most
difficult to handle. Though finding all clusters in a massive graph
may take an inordinate amount of time and space, it is possible to
prune the search space by examining just for those clusters with
highest scores. Since many real world applications on large graphs
need only the subset of most strongly connected clusters, this is a
solution that can produce both interesting and relevant results.

In this paper we have introduced and made available a new tool,
TopGC, which allows for the probabilistic search of a graph for its
top scoring clusters in linear time. We also show that the probabil-
ity of TopGC finding a cluster is related to a lower bound on the
cluster score. TopGC works with directed or undirected, weighted
graphs, and finds clusters that overlap to a given percentage. It has
a limited memory consumption, and testing TopGC against other
state-of-the-art graph clustering techniques shows TopGC consis-
tently performing faster, scaling well with graph size, and perform-
ing up to 70% faster on real world datasets. When scaled to massive
real world graphs of up to 5 million nodes and 70 million edges,
all three other previous graph clustering techniques were unable
to run to completion, due to their time and memory constraints.
However, TopGC is able to return high scoring clusterings on these
massive datasets with just ∼1GB-2GB of resident set memory and
completes in a running time of a few minutes. Finally, not only is
TopGC shown to be scalable with respect to running time and mem-
ory, but the top clusters returned by the TopGC algorithm consis-
tently have higher scores than other current clustering techniques,
when compared to both calculated scores and real world bench-
marks. TopGC is shown to return up to 11% more clusters with
higher real world biological relevance than MCL, a popular graph
clustering algorithm in bioinformatics.

These results lead us to conclude that TopGC’s technique for
pruning the search space on large graphs to find top scoring clusters
is an effective solution to this interesting problem, and can allow
the TopGC algorithm to be both useful and relevant as a scalable
clustering solution on massive real world graphs.
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Table 3: Summary of experiments on large real world networks
TopGC MLR-MCL

Graph Nodes Edges Time Avg. Avg. Time Avg. Avg.
(sec) Score Size (sec) Score Size

LiveJournal 4,847,571 68,993,773 199 3.1 13.9 – – –
Wikipedia 2,394,385 5,021,410 37.3 1.4 6.6 – – –
Webgraph 685,230 7,600,595 28.6 2.6 12 102 1.5 9
Amazon 410,236 3,356,824 22.2 2.7 9.1 71.8 2.8 13
Slashdot 82,168 948,464 11.0 2.0 7.7 19.9 0.78 6
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Figure 7: Comparing the top 50 cluster scores with and without
signature modification

8. APPENDICES

8.1 Modification of Signature
Fig 7 shows the effect of the modification of hashword signatures

introduced in Section 4.2. Results shown are from the YeastNet
network. The bottom line displays the results obtained from using
the original, unmodified signatures, while the top line represents
the results obtained from our modification. As expected, there are
far less clusters returned from the original signatures, with on av-
erage approximately 26 clusters being returned, as compared with
over 65 clusters found by the full TopGC algorithm. In addition,
the scores of the resulting clusters are lower, as well, due to the
difficulty of finding clusters using the full signatures. Similar re-
sults were found on other datasets. This helps demonstrate the ef-
fectiveness of the signature modification introduced in the TopGC
technique from Section 4.2.

8.2 Parameter Analysis
In this section we examine the various TopGC parameters, and

how their values effect obtained results. In Table 4, the parame-
ters m (number of minhashes), w (number of signatures), l (length
of a signature), and trials (number of weighted neighborhood in-
stances to draw) are varied and the resulting statistics compared.
All experiments in this table were performed on the Amazon dataset
described in Section 5.4. It can be seen from Table 4 that the results
stay reasonably consistent and high for all values tested here, em-
phasizing the consistency and robustness of TopGC as a clustering
method. The parameter l can be seen to have the most consistent
and significant effect. As the signature length increases, the aver-
age clustering score tends to increase. This agrees with our scoring
method and bound found in Section 4.2. By increasing the length
of the signature, we are able to obtain a better approximation for
Pr[minhashC = vj], and therefore return higher scoring clusters.

The effect of varying the overlap threshold parameter, λ, on the
YeastNet dataset can be seen in Table 5. With a λ of 0.2, on av-
erage there were three sets of clusters, with average size 9, that
overlapped in one or two nodes. From Table 5, it can be seen that
increasing λ gives a small but definite boost to the average score of
returned clusters. In addition, this allows slightly overlapping but
still significant clusters to be returned. No appreciable time or size
differences between the returned clusters were observed.

Table 6 examines the effect of changing the maximum cluster
size, Smax. As Smax increases, the average size of the top scoring
clusters, as well as their score, increase as well. This continues until

Table 5: Effect of varying λ
λ Avg. Score
0 2.4

0.1 2.5
0.2 2.6
0.3 2.6
0.4 2.6

Table 6: Effect of varying Smax

Smax Time Avg. Score Avg. Size
5 25.5 1.3 5.0
10 27.9 2.5 9.8
20 28.6 2.6 12.0
50 31.5 2.6 12.0

100 34.1 2.7 12.3

a maximum is reached, and at this point, no higher scoring larger
clusters within the graph can be found. It is worthwhile to note that
the increase of Smax increases running time only slightly, allowing
for larger values of Smax to be used if necessary on a graph.

8.3 Biological Gold Standard
The yeast biological process annotations used for the Gold Stan-

dard were downloaded (May 23, 2008 version), and those annota-
tions belonging to the 295 significant GO biological process terms [24]
kept. Only those terms annotated to at least 5 proteins were kept,
leaving 158 terms. We accounted for hierarchical information among
the terms by allowing genes with an annotation lower in the tree to
match with their parent annotations. These 158 terms and their as-
sociated genes were then used as the gold standard.

8.4 Pseudocode
Algorithms 1 and 2 show the pseudocode for the basic TopGC

algorithm, as introduced in Sections 4.2 and 4.3
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Table 4: Effect of varying parameters
m w l trials

Time Avg. Avg. Time Avg. Avg. Time Avg. Avg. Time Avg. Avg.
(sec) Score Size (sec.) Score Size (sec.) Score Size (sec.) Score Size

2 21.2 2.7 9.8 18.5 2.9 11.2 22.1 2.8 9.6 20.5 2.7 9.5
3 16.6 2.7 9.4 18.8 2.9 11.2 21.5 2.7 9.4 23.5 2.7 9.8
4 20.3 2.7 9.4 17.4 3.0 10.7 21.7 2.7 9.7 20.1 2.7 9.2
5 21.2 2.8 9.8 19.3 2.7 9.5 22.5 2.9 11.1 22.5 2.7 9.1
6 23.9 2.8 9.8 19.5 2.8 10.5 20.1 3.0 11.2 21.6 2.7 9.6
8 23.2 2.8 10.3 18.9 2.7 9.3 19.6 3.0 11.1 22.1 2.7 9.4
10 26.8 2.7 9.3 22.6 2.7 9.7 23.7 3.0 11.5 21.1 2.8 9.8

Algorithm 1 Graph Hashing
Require: Set of nodes p, m, l, w, k
Ensure: Set of Clusters C

for i = 1 to m do
Initialize minhashes mhi() with random values for a, b, and
p

end for
Initialize s[i][j] {Signature Orderings}
for i = 1 to w do

for j = 1 to l do
s[i][j]← (random value between 1 and m)

end for
end for
Initialize Hashtable H {Create and store signature}
for n ∈ p do

for i = 1 to trials do
c← (random value between 0 and 1)
N← Neighborhood of n where wn,v ≥ c
for j = 1 to m do

minhash[j]←mhj(N)
end for
for j = 1 to w do

Initialize T {Signature}
for k = 1 to l do
T ← T + ”minhash[s[j][k]]“

end for
T ← sort items in T and remove duplicates
Store (T , n) in H

end for
end for

end for
Initialize set C {Retrieve clusters from Hashtable}
threshold← 1
found← 0
while found ≤ k do

for Bin b in Hashtable H do
Score← b(T )∩b(nodes)

|b(nodes)|
if Score ≥ threshold then

Add b to C
found← found+ 1

end if
end for
threshold← threshold− 0.1

end while
return C

Algorithm 2 Graph Pruning
Require: Graph G, m, l, w, k, p, Smax

Ensure: Set of nodes, S, of size p
for i = 1 to m do

Initialize minhashes mhi() with random values for a, b, and
p

end for
Initialize s[i][j] {Signature Orderings}
for i = 1 to w do

for j = 1 to l do
s[i][j]← (random value between 1 and m)

end for
end for
Initialize Heap heap
for n ∈ G do

Initialize Hashtable H
Add (n,Nn) to set nodes
Set topN ← top Smax neighbors in N
for i ∈ TopN do

Add(i,Ni) to set nodes
end for
for a ∈ nodes do

for i = 1 to trials do
c← (random value between 0 and 1)
N← Neighborhood of a where wa,v ≥ c
for j = 1 to m do

minhash[j]←mhj(N)
end for
for j = 1 to w do

Initialize T {Signature}
for b = 1 to l do
T ← T + ”minhash[s[j][b]]“

end for
T ← sort items in T and remove duplicates
Store (T , n) in H

end for
end for

end for
Initialize MaxScore {Go through hashtable to find top
score}
for Bin b in Hashtable H do
Score← b(T )∩b(nodes)

|b(nodes)|
if Score ≥MaxScore then
MaxScore← Score

end if
end for
heap← (MaxScore, n)

end for
S ← Top p nodes from heap
return S
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