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ABSTRACT
Recent improvements in positioning technology make mas-
sive moving object data widely available. One important
analysis is to find the moving objects that travel together.
Existing methods put a strong constraint in defining moving
object cluster, that they require the moving objects to stick
together for consecutive timestamps. Our key observation
is that the moving objects in a cluster may actually diverge
temporarily and congregate at certain timestamps.

Motivated by this, we propose the concept of swarm which
captures the moving objects that move within arbitrary shape
of clusters for certain timestamps that are possibly non-
consecutive. The goal of our paper is to find all discrim-
inative swarms, namely closed swarm. While the search
space for closed swarms is prohibitively huge, we design a
method, ObjectGrowth, to efficiently retrieve the answer.
In ObjectGrowth, two effective pruning strategies are pro-
posed to greatly reduce the search space and a novel closure
checking rule is developed to report closed swarms on-the-
fly. Empirical studies on the real data as well as large syn-
thetic data demonstrate the effectiveness and efficiency of
our methods.

1. INTRODUCTION
Telemetry attached on wildlife, GPS set on cars, and mo-

bile phones carried by people have enabled tracking of al-
most any kind of moving objects. Positioning technologies
make it possible to accumulate a large amount of moving
object data. Hence, analysis on such data to find interest-
ing movement patterns draws increasing attention in animal
studies, traffic analysis, and law enforcement applications.

A useful data analysis task in movement is to find moving
object clusters, which is a loosely defined and general task
to find a group of moving objects that are traveling together
sporadically. The discovery of such clusters has been facili-
tating in-depth study of animal behaviors, routes planning,
and vehicle control. A moving object cluster can be defined
in both spatial and temporal dimensions: (1) a group of
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moving objects should be geometrically close to each other,
and (2) they should be together for at least some minimum
time duration.
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Figure 1: Loss of interesting moving object clusters
in the definition of moving cluster, flock and convoy.

There have been many recent studies on mining moving
object clusters. One line of study is to find moving object
clusters including moving clusters [14], flocks [10, 9, 4], and
convoys [13, 12]. The common part of such patterns is that
they require the group of moving objects to be together for
at least k consecutive timestamps, which might not be prac-
tical in the real cases. For example, if we set k = 3 in
Figure 1, no moving object cluster can be found. But intu-
itively, these four objects travel together even though some
objects temporarily leave the cluster at some snapshots. If
we relax the consecutive time constraint and still set k = 3,
o1, o3 and o4 actually form a moving object cluster. In other
words, enforcing the consecutive time constraint may result
in the loss of interesting moving object clusters.
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Figure 2: Loss of interesting moving object clusters
in trajectory clustering.

Another line of study of moving object clustering is tra-
jectory clustering [20, 6, 8, 17], which puts emphasis on ge-
ometric or spatial closeness of object trajectories. However,
objects that are essentially moving together may not share
similar geometric trajectories. As illustrated in Figure 2,
from the geometric point of view, these two trajectories may
be rather different. But if we pick the timestamps when they
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are close, such as t1, t3, t5 and t9, the two objects should be
considered as traveling together. In real life, there are of-
ten cases that a set of moving objects (e.g., birds, flies, and
mammals) hardly stick together all the time—they do travel
together, but only gather together at some timestamps.

In this paper, we propose a new movement pattern, called
swarm, which is a more general type of moving object clus-
ters. More precisely, swarm is a group of moving objects
containing at least mino individuals who are in the same
cluster for at least mint timestamp snapshots. If we de-
note this group of moving objects as O and the set of these
timestamps as T , a swarm is a pair (O, T ) that satisfies the
above constraints. Specially, the timestamps in T are not re-
quired to be consecutive, the detailed geometric trajectory of
each object becomes unimportant, and clustering methods
and/or measures can be flexible and application-dependent
(e.g., density-based clustering vs. Euclidean distance-based
clustering). By definition, if we set mino = 2 and mint = 3,
we can find swarm ({o1, o3, o4}, {t1, t3, t4}) in Figure 1 and
swarm ({o1, o2}, {t1, t3, t5, t9}) in Figure 2. Such swarms
discovered are interesting but cannot be captured by pre-
vious moving object cluster detection or (geometry-based)
trajectory clustering methods. To avoid finding redundant
swarms, we further propose the closed swarm concept (see
Section 3). The basic idea is that if (O, T ) is a swarm, it is
unnecessary to output any subset O′ ⊆ O and T ′ ⊆ T even
if (O′, T ′) may also satisfy swarm requirements. For exam-
ple, in Figure 2, swarm {o1, o2} at timestamps {t1, t3, t9}
is actually redundant even though it satisfies swarm defini-
tion because there is a closed swarm: {o1, o2} at timestamps
{t1, t3, t5, t9}.

Efficient discovery of complete set of closed swarms in a
large moving object database is a non-trivial task. First,
the size of all the possible combinations is exponential (i.e.,

2|ODB | × 2|OTB |) whereas the discovery of moving clusters,
flocks or convoys has polynomial solution due to stronger
constraint posed by their definitions based on k consecutive
timestamps. Second, although the problem is defined using
the similar form of frequent pattern mining [1, 11], none of
previous work [1, 11, 25, 23, 19, 21] solves exactly the same
problem as finding swarms. Because in the typical frequent
pattern mining problem, the input is a set of transactions
and each transaction contains a set of items. However, the
input of our problem is a sequence of timestamps and there
is a collection of (overlapping) clusters at each timestamp
(detailed in Section 3). Thus, the discovery of swarms poses
a new problem that needs to be solved by specifically de-
signed techniques.

Facing the huge potential search space, we propose an effi-
cient method, ObjectGrowth. In ObjectGrowth, besides the
Apriori Pruning rule which is commonly used, we design a
novel Backward Pruning rule which uses a simple checking
step to stop unnecessary further search. Such pruning rule
could cover several redundant cases at the same time. After
our pruning rules cut a great portion of unpromising candi-
dates, the leftover number of candidate closed swarms could
still be large. To avoid the time-consuming pairwise clo-
sure checking in the post-processing step, we present a nice
Forward Closure Checking step that can report the closed
swarms on-the-fly. Using this checking rule, no space is
needed to store candidates and no extra time is spent on
post-processing to check closure property.

In summary, the contributions of the paper are as follows.

• A new concept, swarm, and its associated concept
closed swarm are introduced, which enable us to find
relaxed temporal moving object clusters in the real
world settings.

• ObjectGrowth is developed for efficient mining closed
swarms. Two pruning rules are developed to efficiently
reduce search space and a closure checking step is in-
tegrated in the search process to output closed swarms
immediately.

• The effectiveness as well as efficiency of our methods
are demonstrated on both real and synthetic moving
object databases.

The remaining of the paper is organized as follows. Sec-
tion 2 discusses the related work. The definitions of swarms
and closed swarms are given in Section 3. We introduce the
ObjectGrowth methods in Sections 4. Experiments testing
effectiveness and efficiency are shown in Section 5. Finally,
our study is concluded in Section 6. The proofs, pseudo
code, and detailed discussions are stated in Appendix.

2. RELATED WORK
Related work on moving object clustering can be catego-

rized into two lines of research: moving object cluster dis-
covery and trajectory clustering. The former focuses on in-
dividual moving objects and tries to find clusters of objects
with similar moving patterns or behaviors; whereas the lat-
ter is more from a geometric view to cluster trajectories.
The related work, especially the ones for direct comparison,
will be described in more details in Appendix C.

Flock is first introduced in [16] and further studied in [10,
9, 2]. Flock is defined as a group of moving objects moving in
a disc of a fixed size for k consecutive timestamps. Another
similar definition, moving cluster [14], tries to find a group of
moving objects which have considerably portion of overlap
at any two consecutive timestamps. A recent study by Jeung
et al. [13, 12] propose convoy, an extension of flock, where
spatial clustering is based on density. Comparing with all
these definitions, swarm is a more general one that does not
require k consecutive timestamps.

Group pattern, defined in [22], is the most similar pattern
to swarm pattern. Group patterns are the moving objects
that travel within a radius for certain timestamps that are
possibly non-consecutive. Even though it considers relax-
ation of the time constraint, the group pattern definition
restricts the size and shape of moving object clusters by
specifying the disk radius. Moreover, redundant group pat-
terns make the algorithm exponentially inefficient.

Another line of research is to find trajectory clusters which
reveal the common paths for a group of moving objects. The
first and most difficult challenge for trajectory clustering is
to give a good definition of similarity between two trajecto-
ries. Many methods have been proposed, such as Dynamic
Time Warping (DTW) [24], Longest Common Subsequences
(LCSS) [20], Edit Distance on Real Sequence (EFR) [6], and
Edit distance with Real Penalty (ERP) [5]. Gaffney et al. [8]
propose trajectory clustering methods based on probabilis-
tic modeling of a set of trajectories. As pointed out in Lee et
al. [17], distance measure established on whole trajectories
may miss interesting common paths in sub-trajectories. To
find clusters based on sub-trajectories, Lee et al. [17] pro-
posed a partition-and-group framework. But this framework
cannot find swarms because the real trajectories of the ob-
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jects in a swarm may be complicated and different. Works
on subspace clustering [15, 3] can be also applied to find
sub-trajectory clusters. However, these works address the
issue how to efficiently apply DBSCAN on high-dimensional
space. Such clustering technique still cannot be directly ap-
plied to find swarm patterns.

3. PROBLEM DEFINITION
Let ODB = {o1, o2, . . . , on} be the set of all moving ob-

jects and TDB = {t1, t2, . . . , tm} be the set of all timestamps
in the database. A subset of ODB is called an objectset O.
A subset of TDB is called a timeset T . The size, |O| and
|T |, is the number of objects and timestamps in O and T
respectively.

Database of clusters. A database of clusters, CDB =
{Ct1 , Ct2 , . . . , Ctm}, is the collection of snapshots of the
moving object clusters at timestamps {t1, t2, . . . , tm}. We
use Cti(oj) to denote the set of clusters that object oj is in
at timestamp ti. Note that an object could belong to several
clusters at one timestamp. In addition, for a given objectset
O, we write Cti(O) =

⋂
oj∈O

Cti(oj) for short. To make

our framework more general, we take clustering as a pre-
processing step. The clustering methods could be different
based on various scenarios. We leave the details of this step
in Appendix D.1.

Swarm and Closed Swarm. A pair (O, T ) is said to be
a swarm if all objects in O are in the same cluster at any
timestamp in T . Specifically, given two minimum thresh-
olds mino and mint, for (O, T ) to be a swarm, where O =
{oi1 , oi2 , . . . , oip} ⊆ ODB and T ⊆ TDB, it needs to satisfy
three requirements:

(1) |O| ≥ mino: There should be at least mino objects.
(2) |T | ≥ mint: Objects in O are in the same cluster for

at least mint timestamps.
(3) Cti(oi1) ∩ Cti(oi2) ∩ · · · ∩ Cti(oip ) 6= ∅ for any ti ∈ T :

there is at least one cluster containing all the objects in O
at each timestamp in T .

To avoid mining redundant swarms, we further give the
definition of closed swarm. A swarm (O, T ) is object-closed if
fixing T , O cannot be enlarged (∄O′ s.t. (O′, T ) is a swarm
and O ( O′). Similarly, a swarm (O, T ) is time-closed if
fixing O, T cannot be enlarged (∄T ′ s.t. (O, T ′) is a swarm
and T ( T ′). Finally, a swarm (O, T ) is a closed swarm iff
it is both object-closed and time-closed. Our goal is to find
the complete set of closed swarms.

We use the following example as a running example in
the remaining sections to give an intuitive explanation of our
methods. We set mino = 2 and mint = 2 in this example.

o1

o1

o2

o1

o4

o3
o1

o3

o4

o2

o4

o2

o2

o3

Cluster 1

Cluster 2

Cluster 2

Cluster 2

Cluster 1

Cluster 2

t3 t4

Cluster 1

o3

t1 t2

o4

Cluster 1

Figure 3: Snapshots of object clusters at t1 to t4.

Example 1. (Running Example) Figure 3 shows the in-
put of our running example. There are 4 objects and 4 times-
tamps (ODB = {o1, o2, o3, o4}, TDB = {t1, t2, t3, t4}). Each
sub-figure is a snapshot of object clusters at each timestamp.
It is easy to see that o1, o2, and o4 travel together for most

of the time, and o2 and o4 form an even more stable swarm
since they are close to each other in the whole time span.
Given mino = 2 and mint = 2, there are totally 15 swarms:
({o1, o2}, {t1, t2}), ({o1, o4}, {t1, t2}), ({o2, o4}, {t1, t3, t4}),
and so on.

But it is obviously redundant to output swarms like ({o2, o4},
{t1, t2}) and ({o2, o4}, {t2, t3, t4}) (not time-closed) since
both of them can be enlarged to form another swarm: ({o2, o4},
{t1, t2, t3, t4}). Similarly, ({o1, o2}, {t1, t2, t4}) and ({o2, o4},
{t1, t2, t4}) are redundant (not object-closed) since both of
them can be enlarged as ({o1, o2, o4}, {t1, t2, t4}). There are
only two closed swarms in this example: ({o2, o4}, {t1, t2, t3, t4})
and ({o1, o2, o4}, {t1, t2, t4}).

Transaction 1 {a, b, c}
Transaction 2 {a, c}
Transaction 3 {a, c, d}
Transaction 4 {b, d}
(a) FP mining problem

t1 {{o1, o2, o4}, {o3}}
t2 {{o1, o3}, {o1, o2, o4}}
t3 {{o1}, {o2, o3, o4}}
t4 {{o3}, {o1, o2, o4}}
(b) Swarm mining problem

Figure 4: Difference between frequent pattern min-
ing and swarm pattern mining

Note that even though our problem is defined in the sim-
ilar form of frequent pattern mining [11], none of previous
work in frequent pattern (FP) mining area can solve exactly
our problem. As shown in Figure 4, FP mining problem
takes transactions as input, swarms discovery takes clusters
at each timestamp as input. If we treat each timestamp as
one transaction, each “transaction” is a collection of “item-
sets” rather than just one itemset. If we treat each cluster as
one transaction, the support measure might be incorrectly
counted. For example, if we do so for the example in Fig-
ure 4, the support of o1 is wrongly counted as 5 because it
is counted twice at t2. Therefore, there is no trivial trans-
formation of FP mining problem to swarm mining problem.
The difference demands new techniques to specifically solve
our problem.

4. DISCOVERING CLOSED SWARMS
The pattern we are interested in here, swarm, is a pair

(O, T ) of objectset O and timeset T . At the first glance, the

number of different swarms could be (2|ODB | × 2|TDB |), i.e.,
the size of the search space. However, for a closed swarm,
the following Lemma shows that if the objectset is given, the
corresponding maximal timeset can be uniquely determined.

Lemma 1. For any swarm (O, T ), O 6= ∅, there is a
unique time-closed swarm (O, T ′) s.t. T ⊆ T ′.

Its proof can be found in Appendix B. In the running ex-
ample, if we set the objectset as {o1, o2}, its maximal corre-
sponding timeset is {t1, t2, t4}. Thus, we only need to search
all subsets of ODB. An alternative search direction based
on timeset is discussed in Appendix E.1. In this way, the
search space shrinks from (2|ODB | × 2|TDB |) to 2|ODB |.

Basic idea of our algorithm. From the analysis above we
see that, to find closed swarms, it suffices to only search all
the subsets O of moving objects ODB. For the search space
of ODB, we perform depth-first search of all subsets of ODB,
which is illustrated as pre-order tree traversal in Figure 5:
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tree nodes are labeled with numbers, denoting the depth-
first search order (nodes without numbers are pruned).

Even though, the search space is still huge for enumer-
ating the objectsets in ODB (2|ODB |). So efficient pruning
rules are demanding to speed up the search process. We de-
sign two efficient pruning rules to further shrink the search
space. The first pruning rule, called Apriori Pruning, is to
stop traversing the subtree when we find further traversal
cannot satisfy mint. The second pruning rule, called Back-
ward Pruning, is to make use of the closure property. It
checks whether there is a superset of the current objectset,
which has the same maximal corresponding timeset as that
of the current one. If so, the traversal of the subtree un-
der the current objectset is meaningless. In previous stud-
ies [19, 25, 21] on closed frequent pattern mining, there are
three pruning rules (i.e., item-merging, sub-itemset pruning,
and item skipping) to cover different redundant search cases
(the details of these techniques are stated in Appendix C.3).
We simply use one pruning rule to cover all these cases and
we will prove that we only need to examine each superset
with one more object of the current objectset. Armed with
these two pruning rules, the size of the search space can be
significantly reduced.

After pruning the invalid candidates, the remaining ones
may or may not be closed swarms. A brute-force solution is
to check every pair of the candidates to see if one makes the
other violate the closed swarm definition. But the time spent
on this post-processing step is the square of the number of
candidates, which is costly. Our proposal, Forward Closure
Checking, is to embed a checking step in the search process.
This checking step immediately determines whether a swarm
is closed after the subtree under the swarm is traversed, and
takes little extra time (actually, O(1) additional time for
each swarm in the search space). Thus, closed swarms are
discovered on-the-fly and no extra post-processing step is
needed.

In the following subsections, we present the details of our
ObjectGrowth algorithm. The proofs of lemmas and theo-
rems are given in Appendix B.

4.1 The ObjectGrowth Method
The ObjectGrowth method is a depth-first-search (DFS)

framework based on the objectset search space (i.e., the col-
lection of all subsets of ODB). First, we introduce the defini-
tion of maximal timeset. Intuitively, for an objectset O, the
maximal timeset Tmax(O) is the one such that (O, Tmax(O))
is a time-closed swarm. For an objectset O, the maximal
timeset Tmax(O) is well-defined, because Lemma 1 shows
the uniqueness of Tmax(O).

Definition 4.1. (Maximal Timeset) Timeset T = {tj}
is a maximal timeset of objectset O = {oi1 , oi2 , . . . , oim} if:

(1) Ctj (oi1) ∩Ctj (oi2) ∩ · · · ∩ Ctj (oim) 6= ∅, ∀tj ∈ T ;
(2) ∄tx ∈ TDB \ T , s.t. Ctx(oi1)∩ · · · ∩Ctx(oim ) 6= ∅. We

use Tmax(O) to denote the maximal timeset of objectset O.

In the running example, for O = {o1, o2}, Tmax(O) =
{t1, t2, t4} is the maximal timeset of O.

The objectset space is visited in a DFS order. When visit-
ing each objectset O, we compute its maximal timeset. And
three rules are further used to prune redundant search and
detect the closed swarms on-the-fly.

4.1.1 Apriori Pruning Rule

The following lemma is from the definition of Tmax.

Lemma 2. If O ⊆ O′, then Tmax(O
′) ⊆ Tmax(O).

This lemma is intuitive. When objectset grows bigger, the
maximal timeset will shrink or at most keep the same. This
further gives the following pruning rule.

Rule 1. (Apriori Pruning) For an objectset O, if |Tmax(O)|
< mint, then there is no strict superset O′ of O (O′ 6= O)
s.t. (O′, Tmax(O

′)) is a (closed) swarm.

In Figure 5, the nodes with objectset O = {o1, o3} and its
subtree are pruned by Apriori Pruning , because Tmax(O) <
mint, and all objectsets in the subtree are strict supersets
of O. Similarly, for the objectsets {o2, o3}, {o3, o4} and
{o1, o2, o3}, the nodes with these objectsets and their sub-
trees are also pruned by Apriori Pruning .

4.1.2 Backward Pruning Rule
By using Apriori Pruning, we prune objectsets O with

Tmax(O) < mint. However, the pruned search space could
still be extremely huge as shown in the following example.

Suppose there are 100 objects which are all in the same
cluster for the whole time span. Givenmino = 1 andmint =
1, we can hardly prune any node using Apriori Pruning .
The number of objectsets we need to visit is 2100! But it is
easy to see that there is only one closed swarm: (ODB, TDB).
We can get this closed swarm when we visit the objectset
O = ODB in the DFS after 100 iterations. After that, we
waste a lot of time searching objectsets which can never
produce any closed swarms.

Since our goal is to mine only closed swarms, we can de-
velop another stronger pruning rule to prune the subtrees
which cannot produce closed swarms. Let us take some ob-
servations in the running example first.

In Figure 5, for the node with objectset O = {o1, o4}, we
can insert o2 into O and form a superset O′ = {o1, o2, o4}.
O′ has been visited and expanded before visiting O. And we
can see that Tmax(O) = Tmax(O

′) = {t1, t2, t4}. This indi-
cates that for any timestamp when o1 and o4 are together,
o2 will also be in the same cluster as them. So for any super-
set of {o1, o4} without o2, it can never form a closed swarm.
Meanwhile, o2 will not be in O’s subtree in the depth-first
search order. Thus, the node with {o1, o4} and its subtree
can be pruned.

To formalize Backward Pruning rule, we first state the
following lemma.

Lemma 3. Consider an objectset O = {oi1 , oi2 , . . . , oim}
(i1 < i2 < . . . < im), if there exists an objectset O′ such that
O′ is generated by adding an additional object oi′ (oi′ /∈ O
and i′ < im) into O such that Ctj (O) ⊆ Ctj (oi′), ∀tj ∈
Tmax(O), then for any objectset O′′ satisfying O ⊆ O′′ but
O′

* O′′, (O′′, Tmax(O
′′)) is not a closed swarm.

Note that when overlapping is not allowed in the clus-
ters, the condition Ctj (O) ⊆ Ctj (oi′), ∀tj ∈ Tmax(O) sim-
ply reduces to Tmax(O

′) = Tmax(O). Armed with the above
lemma, we have the following pruning rule.

Rule 2. (Backward Pruning) Consider an objectset O =
{oi1 , oi2 , . . . , oim} (i1 < i2 < . . . < im), if there exists an

726



The node does not pass Forward Closure Checking

1

12

11 13

3

4 5

6 7

8

9 10

2

The node and its subtree are pruned by Apriori Pruning Rule

The node and its subtree are pruned by Backward Pruning Rule

The node with a closed swarm

O : {o1} O : {o2} O : {o3} O : {o4}
Tmax(O) : {t1, t2, t3, t4} Tmax(O) : {t1, t2, t3, t4} Tmax(O) : {t1, t2, t3, t4} Tmax(O) : {t1, t2, t3, t4}

O : {o1, o2, o3, o4}
Tmax(O) : {}

Tmax(O) : {t1, t2, t3, t4}

O : {o1, o2} O : {o2, o4} O : {o3, o4}O : {o2, o3}O : {o1, o3} O : {o1, o4}
Tmax(O) : {t1, t2, t4} Tmax(O) : {t2} Tmax(O) : {t1, t2, t4} Tmax(O) : {t3} Tmax(O) : {t1, t2, t3, t4} Tmax(O) : {t3}

O : {o2, o3, o4}O : {o1, o2, o3} O : {o1, o3, o4}
Tmax(O) : {t3}Tmax(O) : {}Tmax(O) : {t1, t2, t4}Tmax(O) : {}

O : {o1, o2, o4}

O : {}

Figure 5: ObjectGrowth Search Space (mino = 2, mint = 2)

objectset O′ such that O′ is generated by adding an addi-
tional object oi′ (oi′ /∈ O and i′ < im) into O such that
Ctj (O) ⊆ Ctj (oi′), ∀tj ∈ Tmax(O), then O can be pruned
in the objectset search space (stop growing from O in the
depth-first search).

Backward Pruning is efficient in the sense that it only
needs to examine those supersets of O with one more object
rather than all the supersets. This rule can prune a signifi-
cant portion of the search space for mining closed swarms.
Experimental results (see Figure 8) show that the speedup
(compared with the algorithms for mining all swarms with-
out this rule) is an exponential factor w.r.t. the dataset
size.

4.1.3 Forward Closure Checking
To check whether a swarm (O, Tmax(O)) is closed, from

the definition of closed swarm, we need to check every su-
perset O′ of O and Tmax(O

′). But, actually, according to
the following lemma, checking the superset O′ of O with one
more object suffices.

Lemma 4. Swarm (O, Tmax(O)) is closed iff for any su-
perset O′ of O with exactly one more object, we have |Tmax(O

′)|
< |Tmax(O)|.

In Figure 5, the node with objectset O = {o1, o2} is
not pruned by any pruning rules. But it has a child node
with objectset {o1, o2, o4} having same maximal timeset as
Tmax(O). Thus ({o1, o2}, {t1, t2, t4}) is not a closed swarm
because of Lemma 4.

Consider a superset O′ of objectset O = {oi1 , . . . , oim}
s.t. O′ \ O = {oi′}. Rule 2 checks the case that i′ < im.
The following rule checks the case that i′ > im.

Rule 3. (Forward Closure Checking) Consider an ob-
jectset O = {oi1 , oi2 , . . . , oim} (i1 < i2 < . . . < im), if there
exists an objectset O′ such that O′ is generated by adding
an additional object oi′ (oi′ /∈ O and i′ > im) into O, and
|Tmax(O

′)| = |Tmax(O)|, then (O, T ) is not a closed swarm.

Note, unlike Rule 2, Rule 3 does not prune the objectset
O in the DFS. In other words, we cannot stop DFS from O.
But this rule is useful for detecting non-closed swarms.

4.1.4 The ObjectGrowth Algorithm
Figure 5 shows the complete ObjectGrowth algorithm for

our running example. We traverse the search space in the
DFS order. When visiting the node with O = {o1, o2, o3},
it fails to pass the Apriori Pruning condition. So we stop
growing from it, trace back and visit node O = {o1, o2, o4}.

O passes both pruning as well as Forward Closure Check-
ing. By Theorem 1 that will be introduced immediately
afterwards, O and its maximal timeset T = {t1, t2, t4} form
a closed swarm. So we can output (O, T ). When we trace
back to node {o1, o2}, because its child contains a closed
swarm with the same timeset as {o1, o2}’s maximal timeset,
{o1, o2} will not be a closed swarm by the Forward Closure
Checking. We continue visiting the nodes until we finish the
traversal of the objectset-based DFS tree.

Theorem 1. (Identification of closed swarm in Ob-

jectGrowth) For a node with objectset O, (O, Tmax(O)) is
a closed swarm if and only if it passes the Apriori Prun-
ing , Backward Pruning, Forward Closure Checking, and
|O| ≥ mino.

Theorem 1 makes the discovery of closed swarms well em-
bedded in the search process so that closed swarms can be
reported on-the-fly.

Algorithm 1 presents the pseudo code of ObjectGrowth.
To find all closed swarms, we start with ObjectGrowth({},
TDB, 0, mino, mint, |ODB |, |TDB|, CDB).

When visiting the node with objectset O, we first check
whether it can pass the Apriori Pruning (lines 2-3). Check-
ing the size of Tmax only takes O(1).

Next, we check whether the current node can pass the
Backward Pruning. In the subroutine BackwardPruning
(lines 15-18), we generate O′ by adding a new object o
(o < olast) into O. Then we check whether o is in the same
cluster as other objects in O. If so, current objectset O
cannot pass the Backward Pruning. This subroutine takes
O(|ODB | × |TDB|) in the worst case.

After both pruning, we will visit all the child nodes in
the DFS order (lines 6-12). (i) For a child node with ob-
jectset O′, we generate its maximal timeset in the subrou-
tine GenerateMaxTimeset (lines 19-22). When generating
Tmax(O

′), we do not need to check every timestamp, in-
stead we only need to check the timestamps in Tmax(O)
because we know that Tmax(O

′) ⊆ Tmax(O) by Lemma 2.
So in each iteration, this subroutine takes O(|TDB|) time
in the worst case. (ii) For Forward Closure Checking we
use a variable forward closure to record whether any child
node with objectset O′ has the same maximal timeset size
as Tmax(O). This takes O(1) times in each iteration. In
sum, as a node will have at most |ODB | direct child nodes,
this loop (lines 7-12) will repeat at most |ODB| times, and
take O(|ODB | × |TDB|) time in the worst case.

Finally, after visiting the subtree under current node, if
the node passes Forward Closure Checking and |O| ≥ mino,
we can immediately output (O, Tmax(O)) as a closed swarm
(lines 13-14).
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Algorithm 1 ObjectGrowth(O, Tmax, olast, mino, mint,
|ODB |, |TDB |, CDB)

Input: O: current objectset; Tmax: maximal timeset of O;
olast: latest object added into O; mino and mint: mini-
mum threshold parameters; |ODB |: number of objects in
database; |TDB|: number of timestamps in database; CDB:
clustering snapshots at each timestamp.
Output: (O, Tmax) if it is a closed swarm.
Algorithm:

1: {Apriori Pruning}
2: if |Tmax| < mint then
3: return;
4: {Backward Pruning}
5: if BackwardPruning(olast, O, Tmax, CDB) then
6: forward closure← true;
7: for o← olast + 1 to |ODB | do
8: O′ ← O ∪ {o};
9: T ′

max ← GenerateMaxTimeset(o, olast, Tmax,
CDB);

10: if |Tmax| = |T ′
max| then

11: forward closure ← false; {Forward Closure
Checking}

12: ObjectGrowth(Onew , Tnew , o, mino, mint, |ODB |,
|TDB |, CDB);

13: if forward closure and |O| ≥ mino then
14: output pair (O, T ) as a closed swarm;

Subroutine: BackwardPruning(olast, O, Tmax,
CDB)

15: for ∀o /∈ O and o < olast do
16: if Ct(o) ⊆ Ct(O),∀t ∈ Tmax then
17: return false;
18: return true;

Subroutine: GenerateMaxTimeset(o, olast, Tmax,
CDB)

19: for ∀t ∈ Tmax do
20: if Ct(o) ∩ Ct(olast) 6= ∅ then
21: T ′

max ← T ′
max ∪ t;

22: return T ′
max;

Therefore, it takes O(|ODB |× |TDB|) for each iteration in
the depth-first-search. The memory usage for ObjectGrowth
is O(|TDB| × |ODB |) in worst case.

5. EXPERIMENT
A comprehensive performance study has been conducted

on both real and synthetic datasets. All the algorithms were
implemented in C++, and all the experiments are carried
out on a 2.8 GHz Intel Core 2 Duo system with 4GB mem-
ory. The system ran MAC OS X with version 10.5.5 and gcc
4.0.1.

The implementation of swarm mining is also integrated in
our demonstration system [18]. The demo system is pub-
lic online1. It is tested on a set of real animal data sets
from MoveBank.org2. The data and results are visualized
in Google Map3 and Google Earth4.

1http://dm.cs.uiuc.edu/movemine/
2http://www.movebank.org
3http://maps.google.com
4http://earth.google.com

5.1 Effectiveness

Figure 6: Raw buffalo data.

The effectiveness of swarm pattern can be demonstrated
through our online demo system. Here, we use one dataset as
an example to show the effectiveness. This data set contains
165 buffalo with tracking time from Year 2000 to Year 2006.
The original data has 26610 reported locations. Figure 6
shows the raw data plotted in Google Map.

For each buffalo, the locations are reported about every 3
or 4 days. We first use linear interpolation to fill in the miss-
ing data with time gap as one “day”. Note that the first/last
tracking days for each buffalo could be different. The buffalo
movement with longest tracking time contains 2023 days and
the one with shortest tracking time contains only 1 day. On
average, each buffalo contains 901 days. We do not inter-
polate the data to enforce the same first/last tracking day.
Instead, we require the objects that form a swarm should
be together for at least mint relative timestamps over their
overlapping tracking timestamps. For example, by setting
mint = 0.5, o1 and o2 form a swarm if they are close for at
least half of their overlapping tracking timestamps. Then,
DBSCAN [7] with parameter MinPts = 5 and Eps = 0.001
is applied to generate clusters at each timestamp (i.e., CDB).
Note that, regarding to users’ specific requirements, different
clustering methods and parameter settings can be applied
to pre-process the raw data.

By setting mino = 2 and mint = 0.5 (i.e., half of the
overlapping time span), we can find 66 closed swarms. Fig-
ure 7(a) shows one swarm. Each color represents the raw
trajectory of a buffalo. This swarm contains 5 buffalo. And
the timestamps that these buffalo are in the same cluster
are non-consecutive. Looking at the raw trajectory data
in Figure 6, people can hardly detect interesting patterns
manually. The discovery of the swarms provides useful in-
formation for biologists to further examine the relationship
and habits of these buffalo.

For comparison, we test convoy pattern mining on the
same data set. Note that there are two parameters in con-
voy definition, m (number of objects) and k (threshold of
consecutive timestamps). So m actually equals to mino and
k is the same as mint. (For the details of convoy defini-
tion and algorithm, please refer to Section C.1.) We first
use the same parameters (i.e., mino = 2 and mint = 0.5)
to mine convoys. However, no convoy is discovered. This
is because there is no group of buffalo that move together
for consecutively half of the whole time span. By lowering
the parameter mint from 0.5 to 0.2, there is one convoy
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(a) One of the seven swarms discovered with mino =
2 and mint = 0.5

(b) One convoy discovered with mino = m = 2 and
mint = k = 0.2

Figure 7: Effectiveness comparison between swarm
and convoy.

discovered as shown in Figure 7(b). But this convoy, con-
taining 2 buffalo, is just a subset of one swarm pattern. The
rigid definition of convoy makes it not practical to find po-
tentially interesting patterns. The comparison shows that
the concept of (closed) swarms are especially meaningful in
revealing relaxed temporal moving object clusters.

5.2 Efficiency
To show the efficiency of our algorithms, we generate

larger synthetic dataset using Brinkhoff’s network-based gen-
erator of moving objects5. We generate 500 objects (|ODB | =
500) for 105 timestamps (|TDB| = 105) using the generator’s
default map and parameter setting. There are 5 · 107 points
in total. DBSCAN (MinPts= 3, Eps = 300) is applied to
get clusters at each snapshot.

In the efficiency comparison, we include a new algorithm
ObjectGrowth+, which is an extension of ObjectGrowth to
handle probablistic data. Due to space limit, the details
of ObjectGrowth+ are presented in Appendix A. Here,
we briefly describe the idea of ObjectGrowth+. Object-
Growth+ is designed to handle an important issue in raw
data—asynchronous data collection. Specifically, each ob-
ject usually reports their locations at asynchronous times-
tamps. However, since we assume there is a location for
each object at every timestamp, some interpolation method
should be used to fill in the missing data first. But such

5http://www.fh-oow.de/institute/iapg/personen/brinkhoff
/generator/

interpolation is just an estimation on the real locations. So
each point is associated with a probability showing the confi-
dence of its estimation. While ObjectGrowth assumes every
point is certain, ObjectGrowth+ is a more general version
of ObjectGrowth that can handle the probabilistic data.

We will compare our algorithms with VG-Growth [22],
which is the only previous work addressing the non-consecutive
timestamps issue. To make fair comparison, we adapt VG-
Growth to take the same input as ours but its time com-
plexity will remain the same. This transformation will be
descried in Section C.2. We further create a probabilistic
database by randomly samping 1% points and assigning a
random probability to these points. ObjectGrowth+ takes
this additional probabilistic database as input. The algo-
rithms are compared with respect to two parameters (i.e.,
mino and mint) and the database size (i.e., ODB and TDB).
By default, |ODB | = 500, |TDB| = 105, mino

|ODB |
= 0.01,

mint

|TDB |
= 0.01, and θ = 0.9 (for ObjectGrowth+). We carry

out four experiments by varying one variable with the other
three fixed. Note that in the following experiment part, we
use mino to denote the ratio of mino over ODB and mint

to denote the ratio of mint over TDB.

Efficiency w.r.t. mino and mint. Figure 8(a) shows the
running time w.r.t. mino. It is obvious that VG-Growth
takes much longer time than ObjectGrowth. VG-Growth
cannot even produce results within 5 hours when mino =
0.018 in Figure 8(a). The reason is that VG-Growth tries
to find all the swarms rather than closed swarms, and the
number of swarms is exponentially larger than that of closed
swarms as shown in Figure 9(a) and Figure 9(b). Besides, we
can see that ObjectGrowth+ is slower than ObjectGrowth
because Backward pruning rule is weaker in ObjectGrowth+
due to the strong constraint posed by probabilistic database.

Efficiency w.r.t. |ODB| and |TDB|. Figure 8(c) and Fig-
ure 8(d) depict the running time when varying |ODB| and
|TDB| respectively. In both figures, VG-Growth is much
slower than ObjectGrowth and ObjectGrowth+. Furth-
more, ObjectGrowth+ is usually 10 times slower than Ob-
jectGrowth. Comparing Figure 8(c) and Figure 8(d), we
can see that ObjectGrowth is more sensitive to the change
of ODB . This is because its search space is enlarged with
larger ODB whereas the change of TDB does not directly
affect the running time of ObjectGrowth.

In summary, ObjectGrowth and ObjectGrowth+ greatly
outperforms VG-Growth since the number of swarms is ex-
ponential to the number of closed swarms. ObjectGrowth+
is slower than ObjectGrowth because it considers probabilis-
tic data and thus its pruning rule is weaker. Besides, both
ObjectGrowth and ObjectGrowth+ are more sensitive to
the size of ODB rather than that of TDB since the search
space is based on the objectset.

6. CONCLUSIONS
We propose the concepts of swarm and closed swarm.

These concepts are different from that in the previous work
and they enable the discovery of interesting moving object
clusters with relaxed temporal constraint. A new method,
ObjectGrowth, with two strong pruning rules and one clo-
sure checking, is proposed to efficiently discover closed swarms.
The effectiveness is demonstrated using real data and effi-
ciency is tested on large synthetic data.
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Figure 8: Running Time on Synthetic Dataset
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APPENDIX

A. HANDLING ASYNCHRONOUS DATA
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Figure 10: Asynchronous raw data

When mining swarms, we assume that each moving ob-
ject has a reported location at each timestamp. However,
in most real cases, the raw data collected is not as ideal as
we expected. First, the data for a moving object could be
sparse. When tracking animals, it is quite possible that we
only get one reported point every several hours or even ev-
ery several days. When tracking vehicles or people, there
could be a period of missing data when people turn off the
tracking devices (e.g., GPS or cell phones). Second, the
sampling timestamps for different moving objects are usu-
ally not synchronized. As shown in Figure 10, the recorded
times of objects A and B are different. The recorded time
points of A are 9:00, 11:00, and 14:00; and that of B are
9:00, 12:00, and 13:00. The locations at other timestamps
are an estimation of the real locations.

The raw data is usually preprocessed using linear interpo-
lation. But the moving objects may not necessarily follow
the linear model. Such interpolation could be wrong. Even
though more complicated interpolation methods could be
used to fill in the missing data with higher precision, any
interpolation is only a guessing of real positions. For some
missing points, we could have higher confidence in guess-
ing its location whereas for the others, the confidence could
be lower. So each interpolated point is associated with a
probability showing the confidence of guessing.

To find real swarms, it is important to differentiate be-
tween reported locations and interpolated locations. For
example, if a swarm (O, T ) with most objects in O having
low confidence in interpolated positions at times in T , those
objects in O may not actually move together because the in-
terpolated points have high probability to be wrong. On the
other hand, if we can first find those swarms with high confi-
dence, we can use these swarms to better adjust the missing
points and further iteratively refine the swarms. In this
section, we focus on how to generalize our ObjectGrowth
method to handle probabilistic data. In Appendix D.2, we
discuss how to obtain the probability and leave the iterative
refinement framework as an interesting future work.

A.1 Closed Swarms with Probability
We first define closed swarms in the context of probabilis-

tic data. A probabilistic database is derived from original
trajectory data. Pti(oj) is used to denote the probability of
oj at time point ti. If there is a recorded location of oj at
ti, Pti(oj) = 1. If not, some interpolation method is used to
guess this location and the probability is calculated based
on the confidence of interpolation of oj at ti.

Given a probabilistic database {Pti(oj)}, we define the
confidence of a pair (O, T ) as:

f(O, T ) =
∑

ti∈T

∏

oj∈O

Pti(oj).

Recall that in our definition, a swarm is a pair (O, T ) which
satisfies three additional constraints as listed in Section 3.
To accommodate the probabilistic issue, we propose to sim-
ply replace the second constraint, |T | ≥ mint, with the fol-
lowing generalized minimum timestamp constraint :

(2’) f(O, T ) ≥ θ ×mint: (O, T ) needs to satisfy the con-
fidence threshold θ.

It is easy to see that if Pti(oj) = 1, ∀ti ∈ T and ∀oj ∈ O,
condition (2’) becomes f(O, T ) = |T | ≥ mint when θ = 1.
Meanwhile, the more uncertainty in the original data, the
more difficult this requirement can be satisfied. In other
words, the objects having more reported locations at times-
tamps in T are preferred. Note that the definition of closed
swarms remains the same.

A.2 The ObjectGrowth+ method
The ObjectGrowth+ method is derived from the Object-

Growth method to accommodate the probabilistic data. The
general philosophy of ObjectGrowth+ is the same to that
of ObjectGrowth. We search on the objectset space in the
DFS fashion using the Apriori and Backward rules to prune
the redundant search space and use Closure Checking to re-
port the closed swarms on-the-fly. Such rules are modified
accordingly. In this section, we will formulate the lemmas
and informally describe the rules. The proofs are deferred
in Appendix B.

Lemma 5. If O ⊆ O′, then f(O′, Tmax(O
′)) ≤ f(O, Tmax(O)).

Apriori pruning rule can be naturally derived from Lemma 5.
That is, when visiting node (O, Tmax(O)), if f(O, Tmax(O)) <
θ×mint, we can stop searching deeper from this node. Be-
cause all the objectsets in its children nodes are supersets
of O and thus all the children nodes will also violate this
requirement for closed swarms.

Lemma 6. Consider an objectset O = {oi1 , oi2 , . . . , oim}
(i1 < i2 < . . . < im), if there exists an object O′ generated
by adding an additional object oi′ (oi′ /∈ O and i′ < im)
into O such that Ctj (O) ⊆ Ctj (oi′) and Ptj (oi′) = 1, ∀tj ∈
Tmax(O), then for any objectset O′′ satisfying O ⊆ O′′ but
O′

* O′′, (O′′, Tmax(O
′′)) is not a closed swarm.

Comparing Lemma 6 with Lemma 3, we can see that there
is an additional constraint in Lemma 6. Besides check-
ing whether Ctj (O) ⊆ Ctj (oi′), we need to further check
whether Ptj (oi′) = 1, ∀tj ∈ Tmax(O). As the constraints are
harder to be satisfied, the Backward pruning rule becomes
weaker in ObjectGrowth+. For example, let O = {o2} and
O′ = {o1, o2}. We cannot prune node with (O, Tmax(O)) be-
cause there could exist a child node of O, O′′ = {o2, o3}, such
that f(O′′, Tmax(O

′′)) ≥ θ×mint whereas the child node of
O′, O′′′ = {o1, o2, o3}, does not satisfy f(O′′′, Tmax(O

′′′)) ≥
θ × mint. This is the major reason why ObjectGrowth+
takes longer time to discover swarms than ObjectGrowth as
shown in experiments in Section 5.

Lemma 7. Swarm (O, Tmax(O)) is closed iff for any su-
perset O′ of O with exactly one more object, we have |Tmax(O

′)| <
|Tmax(O)| or f(O′, Tmax(O

′)) < θ ×mint.

When visiting node with O, different from the forward clo-
sure checking rule in ObjectGrowth, we need to check both
“forward” and “backward” supersets of O. If O = {oi1 ,
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oi2 ,. . . , oim}, we need to test each superset O′ by adding
oi′ /∈ O. Once |Tmax(O

′)| < |Tmax(O)| or f(O′, Tmax(O
′)) <

θ×mint, current node with O will pass the closure checking.
Finally, we output the set of nodes (O, Tmax(O)) passing

all the conditions and |O| ≥ mino.

B. PROOFS OF LEMMAS AND THEOREMS

B.1 Proof of Lemma 1
The existence is trivial, since we can always let T ′ = T .

We only need to prove the uniqueness. For the purpose
of contradiction, suppose there are two time-closed swarms
(O, T1) and (O, T2), T1 6= T2 s.t. T ⊆ T1 and T ⊆ T2.
Letting T ′′ = T1 ∪ T2, from the definition, (O, T ′′) is also
a swarm. Because T1 6= T2, we have T1 ( T ′′ and T2 (

T ′′. However, this contradicts with the fact that (O, T1)
and (O, T2) are time-closed. So there is a unique time-closed
swarm (O, T ′) s.t. T ⊆ T ′. 2

B.2 Proof of Lemma 2
∀t ∈ Tmax(O

′), by the definition of maximal timeset, we
have Ct(o

′
i)∩Ct(o

′
j) 6= ∅, ∀o′i, o′j ∈ O′. This implies Ct(oi)∩

Ct(oj) 6= ∅, ∀oi, oj ∈ O since O ⊆ O′. Therefore, t ∈
Tmax(O). 2

B.3 Proof of Lemma 3
We show that (O′′ ∪ {oi′}, Tmax(O

′′)) is a swarm, hence
(O′′, Tmax(O

′′)) cannot be a closed swarm. By construc-
tion, it satisfies conditions (1) and (2) in the definition of a
swarm trivially, so we only need to check condition (3). To
see that (3) holds for (O′′ ∪ {oi′}, Tmax(O

′′)) as well, note
that Ctj (O) ⊆ Ctj (oi′), ∀tj ∈ Tmax(O). Since Tmax(O

′′) ⊆
Tmax(O), we have

Ctj (O
′′) ⊆ Ctj (O) ⊆ Ctj (oi′),∀tj ∈ Tmax(O

′′),

hence,

Ctj (O
′′) ∩ Ctj (oi′) = Ctj (O

′′) 6= ∅, ∀tj ∈ Tmax(O
′′).

Therefore, (O′′ ∪ {oi′}, Tmax(O
′′)) is a swarm and we are

done. 2

B.4 Proof of Lemma 4
The proof of (⇒) is trivial by the definition of closed

swarm. For (⇐), first note that by using Tmax(O), it auto-
matically satisfies the time-closed condition. Second, ∀O′′,
s.t. O ( O′′, choose o′′ ∈ O′′ \ O. Consider the set O+ =
O ∪ {o′′}. Since Tmax(O

+) ⊆ Tmax(O) and |Tmax(O
+)| <

|Tmax(O)| by assumption, we get Tmax(O
+) ( Tmax(O).

By Lemma 2, Tmax(O
′′) ( Tmax(O). Thus, (O′′,Tmax(O))

is not a swarm. Hence (O, Tmax(O)) is object-closed and
therefore closed. 2

B.5 Proof of Theorem 1
Clearly, every closed swarm is derived by Apriori Prun-

ing , Backward Pruning, Forward Closure Checking, and
|O| ≥ mino. Now suppose that a node (O, Tmax(O)) passes
all the conditions. First, Apriori Pruning ensures that
|Tmax(O)| ≥ mint. Also, we explicitly require |O| ≥ mino,
so (O, Tmax(O)) satisfies the swarm requirement. Next, by
definition, (O, Tmax(O)) is guaranteed to be time-closed. Fi-
nally, if (O, Tmax(O)) were not object-closed, it fails the con-
ditions of Backward Pruning or Forward Closure Checking
(Lemma 4). Therefore, (O, Tmax(O)) is a closed swarm. 2

B.6 Proof of Lemma 5
By Lemma 2, we have Tmax(O

′) ⊆ Tmax(O). Therefore,

f(O′, Tmax(O
′)) =

∑

ti∈Tmax(O′)

∏

oj∈O′

Pti(oj)

≤
∑

ti∈Tmax(O)

∏

oj∈O′

Pti(oj)

≤
∑

ti∈Tmax(O)

∏

oj∈O

Pti(oj)

= f(O, Tmax(O)),

where we use the fact that for any ti and oj , 0 < Pti(oj) ≤ 1.
2

B.7 Proof of Lemma 6
Note that since 0 < Pti(oj) ≤ 1 for any ti and oj , the

conditions Ctj (O) ⊆ Ctj (oi′) and Ptj (oi′) = 1 imply:

f(O′, Tmax(O
′)) = f(O, Tmax(O)).

We demonstrate that (O′′ ∪ {oi′}, Tmax(O
′′)) is a swarm,

hence (O′′, Tmax(O
′′)) cannot be a closed swarm. First note

that (O′′ ∪ {oi′}, Tmax(O
′′)) satisfies condition (1) trivially.

For (2’), observe that Ptj (oi′) = 1, ∀tj ∈ Tmax(O
′′) because

Tmax(O
′′) ⊆ Tmax(O), therefore

f(O′′ ∪ {oi′}, Tmax(O
′′))

=
∑

ti∈Tmax(O′′)

∏

oj∈O′′∪{oi′}

Pti(oj)

=
∑

ti∈Tmax(O′′)

∏

oj∈O′′

Pti(oj)

= f(O′′, Tmax(O
′′)).

Finally, since Tmax(O
′′) ⊆ Tmax(O), we have

Ctj (O
′′) ⊆ Ctj (O) ⊆ Ctj (oi′),∀tj ∈ Tmax(O

′′),

hence,

Ctj (O
′′) ∩ Ctj (oi′) = Ctj (O

′′) 6= ∅, ∀tj ∈ Tmax(O
′′).

Therefore condition (3) also holds. 2

B.8 Proof of Lemma 7
The proof of (⇒) is trivial by definition. For (⇐), first

note that by using Tmax(O), it automatically satisfies the
time-closed condition. Second, ∀O′′, s.t. O ( O′′, choose
o′′ ∈ O′′\O. Consider the set O+ = O∪{o′′}. One one hand,
if |Tmax(O

+)| < |Tmax(O)| we get Tmax(O
+) ( Tmax(O).

Therefore,

Tmax(O
′′) ( Tmax(O

+) ( Tmax(O)

by Lemma 2. One the other hand, if Tmax(O
′′) = Tmax(O)

and f(O′, Tmax(O
′)) < θ ×mint, then we get

f(O′′, Tmax(O)) = f(O′′, Tmax(O
′′))

≤ f(O′, Tmax(O
′))

< θ ×mint

by Lemma 5. So we conclude that (O′′, Tmax(O)) is not a
swarm and (O, Tmax(O)) is object-closed. 2

C. RELATED WORKS FOR COMPARISON
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C.1 Moving cluster, flock and convoy
Kalnis et al. propose the notion of moving cluster [14],

which is a sequence of spatial clusters appearing during con-
secutive timestamps, such that the portion of common ob-
jects in any two consecutive clusters is not below a given
threshold parameter θ, i.e.,

ct∩ct+1

ct∪ct+1
≥ θ, where ct denotes

a cluster at time t. A flock [10, 9, 2, 4] is a group of at
least m objects that move together within a circular region
of radius r during a specific time interval of at least k times-
tamps. While flock could be sensitive to user-specified disc
size and the circular shape might not always be appropriate,
Jeung et al. further propose the concept of convoy [13, 12].
A convoy is a group of objects, containing at least m objects
and these objects are density-connected with respect to dis-
tance e during k consecutive time points. Comparing with
moving cluster and flock, convoy is a more flexible defini-
tion to find moving object clusters but it is still confined to
strong constraint on consecutive time. So we compare our
effectiveness with convoy in Section 5.

C.2 Group pattern
Wang et al. [22] further propose to mine group patterns.

The definition of group pattern is similar to that of the
swarm, which also addresses time relaxation issue. Group
pattern is a set of moving objects that stay within a disc
with max dis radius for min wei period and each consec-
utive time segment is no less than min dur. [22] devel-
ops VG-Growth method whose general idea is depth-first
search based on conditional VG-graph. Although the idea
of group pattern is well-motivated, the problem is not well
defined. First, the “closeness” of moving objects is confined
to be within a max dis disk. A fixed max dis for all group
patterns could not produce natural cluster shapes. Second,
since it does not consider the closure property of group pat-
terns, it will produce an exponential number of redundant
patterns that severely hinders efficiency. All these problems
can be solved in our work by using density-based clustering
to define “closeness” flexibly and introducing closed swarm
definition.

To make fair comparison on efficiency in Section 5, we
adapt VG-Growth to accommodate clusters as input. We
set min dur = 1 and min wei = mint. Since the search
space of VG-Growth is the same as our methods to produce
swarms, it is equivalent to compare the latter ones with our
proposed closed swarm methods. To produce swarms, we
can simply omit the Backward Pruning rule and Forward
Closure Checking in ObjectGrowth. So VG-Growth is es-
sentially searching on objectset and using Apriori pruning
rule only.

C.3 Closed frequent pattern mining
In overview of our algorithms in Section 4, we mention

there are three major pruning techniques for closed itemset
mining in previous works [19, 25, 21]. (1) Item merging:
Let X be a frequent itemset. If every transaction contain-
ing itemset X also contains itemset Y but not any proper
superset of Y , then X ∪ Y forms a frequent closed itemset
and there is no need to search any itemset containing X but
no Y . (2) Sub-itemset pruning : Let X be the frequent item-
set currently under consideration. If X is a proper subset
of an already found frequent closed itemset Y and support
of X is equal to that of Y , then X and all of X’s descen-
dants in the set enumeration tree cannot be frequent closed

itemsets and thus can be pruned. (3) Item skipping: If a
local frequent item has the same support in several header
tables at different levels, one can safely prune it from the
header tables at higher levels. It is easy to see that all these
three pruning strategies are all covered by our one simple
Backward Pruning rule. Thus, we consider our Backward
Pruning rule is a novel pruning strategy that is able to de-
tect several redundant cases at the same time.

D. PRE-PROCESSING

D.1 Obtaining clusters
The clustering method is not fixed in our framework. One

can cluster cars along highways using a density-based method,
or cluster birds in 3-D space using the k-means algorithm.
Clustering methods that generate overlapping clusters are
also applicable, such as EM algorithm or using ǫ-disk to de-
fine a cluster. Also, clustering parameters are decided by
users’ requirements or can be indirectly controlled by users’
expectation on the number of clusters at each timestamp.

Usually, most of clustering methods can be done in poly-
nomial time. In our experiment, we used DBSCAN [7],
which takes O(|ODB | × log |ODB | × |TDB |) in total to do
clustering at every timestamp. Comparing with exponen-
tial search space of swarms, such polynomial time in pre-
processing step is acceptable. To speed it up, there are also
many incremental clustering methods for moving object. In-
stead computing clusters from scratch at each timestamp,
clusters can be incrementally updated from last timestamp.

D.2 Estimation of missing points
For a moving object, there could be many interpolation

methods to fill in the missing points based on its own move-
ment history. Among all, linear interpolation is the most
commonly used method. Here, we propose a method based
on linear interpolation to obtain the probability on the esti-
mation of missing points.

For a missing point, we only consider its immediate last
recorded point and immediate next recorded point. Given
two reported locations (x0, y0) at time t0 and (x1, y1) at
time t1, we need to fill in the points for any timestamp
between t0 and t1. We assume the moving object follows
the linear model. The intuition to obtain the probability is
that for the timestamp that is closer to t0 or t1, the linearly
interpolated points have higher probabilities to be correct.
Therefore, the probability at t(t0 ≤ t ≤ t1) can be calcu-

lated as e−λ×min{t−t0,t1−t}, where λ > 0 is used to control
the degree of sharpness in the probability function. In the
extreme cases, when t = t0 or t = t1, the probability equals
to 1.0.

After we obtain an initial estimation of the missing points,
ObjectGrowth+ method can be applied to mine swarms. In
turn, discovered swarms can be further used to adjust the
missing points. Since the initial linear interpolation is a
rough estimation of real locations based on one’s own move-
ment history, swarms can help better estimate the missing
points from other similar movements. The general idea is
that, if we find an object is in a swarm with objectset O
and the position of o at timestamp t is estimated, then this
position can be adjusted towards those reported locations
of O at t and the probability is updated accordingly. We
consider such iterative framework to refine the swarms and
missing points as a promising future work. ‘
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E. EXTENSION

E.1 Search based on timeset
As ObjectGrowth is based on objectset search space, sim-

ilarly, the search could be conducted on timeset space. Apri-
ori Pruning and Backward Pruning in ObjectGrowth can
be easily adapted to prune the unnecessary timeset search
space and Forward Closure Checking can also used to dis-
cover closed swarms during the search space.

The major difference between two search directions is that
if we fix one timeset, there could be more than one maximal
corresponding objectset. For example, in the running exam-
ple, if we fix the timeset as {t1}, there are two maximal cor-
responding objectsets: {o3} and {o1, o2, o4}. However, when
the objectset is fixed, there is only one maximal correspond-
ing timeset. So on the node of DFS tree based on timeset,
we need to maintain a timeset T and set of corresponding
objectsets. Accordingly, the rules need to be modified. For
Apriori Pruning rule, once there is one corresponding ob-
jectset has less than mino objects, it can be deleted. And
for a node with timeset T , there is no more remaining corre-
sponding objectset, it can be pruned. For Backward Pruning
rule, we add one more timestamp ti′ (i′ < im and ti′ /∈ T )
in T = {ti1 , ti2 , . . . , tim}. If every maximal corresponding
objectset remains unchanged, this node can be pruned. Sim-
ilarly, for Forward Closure Checking, if we add ti′ (i′ > im)
into T , and every maximal corresponding objectset remains
unchanged, this node is not closed. Finally, for any node
passed all the rules and |T | ≥ mint, it is a closed swarm.

Comparing two different search methods, ObjectGrowth
is suitable for mining the group of moving objects that travel
together for considerably long time, whereas search based on
timeset is more efficient at finding the large group of objects
moving together. In most real applications, we usually tack
a certain set of moving objects over long time, for example,
tracking 100 moving objects over a year. Therefore, it is
usually the case that we have |TDB| ≫ |ODB |. So search
based on timeset often is less efficient than the one based on
timeset because its search space is much larger. Thus, we
introduce ObjectGrowth as our major algorithm.

E.2 Enforcing gap constraint
In the case that min t is much smaller than |TDB|, there

could be two kinds of swarm discovered with rather different
meanings. For example, if the whole time span is 365 days,
min t is set to be 30 (days), a swarm could be a group of
objects that move together for only one month but keep far
away for the rest 11 months or a set of objects gather in
each month during the whole year.

For the first case, we can specify a range of time period
and then discover swarms. For the latter, it requires more
strategies. One solution could be, for a swarm (O, T ), we
enforce gap constraint on the time dimension T . For ex-
ample, if we set min gap = 7(days) and suppose there are
two objects being together for 14 consecutive days, these 10
days can contribute at most 2 to mint because we require
there should be at least a gap with length 7 between any
two timestamps in T .

To further embed such min gap in our ObjectGrowth
method, we can compute an upper bound for Tmax(O) at
each node of the search tree with objectset O. The upper
bound can be computed using greedy algorithm as shown
Algorithm 2. Accordingly, the size of Tmax(O) is no longer

simply measure by |Tmax(O)|. Instead, it should be mea-
sured by its upper bound. And the pruning rules are all
affected accordingly.

Algorithm 2 Calculate upper bound of Tmax(O)

Input: Tmax(O) = {t1, t2, . . . , tm}(t1 < t2 < · · · < tm) and
min gap.
Output: upper bound of Tmax(O).

1: upper bound← 1;
2: lastt ← tm;
3: for i← m− 1 to 1 do
4: if lastt − ti > min gap then
5: upper bound← upper bound+ 1;
6: lastt ← ti;
7: Return upper bound;

E.3 Sampling
The size of the trajectory dataset has two factors |ODB |

and |TDB |. In animal movements, |ODB | is usually relatively
small because it is expensive to track animals so the number
of animals being tracked seldom goes up to hundreds. When
tracking vehicles, the number could be as large as thousands.
For both cases, |TDB | is usually large. When |TDB | is very
large, we may use sampling as a pre-processing step to re-
duce the data size. For example, if the location sampling
rate is every second, |TDB| will be 86400 for one day. We
can first sample one location in every minute to reduce the
size to 1500. This is based on the assumption that one mov-
ing object will not travel too far away within a considerable
short time.
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