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ABSTRACT
Mashups are situational applications that join multiple sources to
better meet the information needs of Web users. Web sources can
be huge databases behind query interfaces, which triggers the need
of ranking mashup results based on some user preferences.

We present MashRank, a mashup authoring and processing
system building on concepts from rank-aware processing, prob-
abilistic databases, and information extraction to enable ranked
mashups of (unstructured) sources with uncertain ranking at-
tributes. MashRank is based on new semantics, formulations and
processing techniques to handle uncertain preference scores, repre-
sented as intervals enclosing possible score values.

MashRank integrates information extraction with query pro-
cessing by asynchronously pushing extracted data on-the-fly into
pipelined rank-aware query plans, and using ranking early-out re-
quirements to limit extraction cost. To the best of our knowl-
edge, both the technical problems and target applications of
MashRank have not been addressed before.

1. INTRODUCTION
The Web is today’s most convenient medium for finding infor-

mation. Web search has evolved from simple keyword lookup to
advanced search that integrates data from multiple sources on de-
mand. The recent proliferation of ad-hoc mashup tools [1, 2, 3,
20] allows Web users to build data integration applications with
data coming from multiple sources. Due to Web interactive and
dynamic nature, building mashups at Web scale triggers the need
to rank large volumes of constantly-changing search results with
respect to some preference measures. Ranking acts as an effective
and intuitive data exploration tool in this scenario.

Traditionally, ranking queries compute the top-k query results
based on a given scoring function. A join query augmented with
ranking specifications (i.e., a scoring function and a parameter k),
usually referred to as “rank join query” [12, 13, 17], reports the
top-k join results based on the computed scores. The central idea
of rank join is to allow for early query termination by making use
of sorted inputs and scoring function monotonicity to upper bound
the scores of non-materialized join results.
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1.1 Motivation and Challenges
Consider a Web user planning to spend a vacation in New

Zealand. The user would like to find a hotel with a good reputa-
tion and reasonable prices. For credibility, The user has decided
to obtain hotel pricing and rating information from two indepen-
dent sources: www.vianet.travel, a source that provides pricing
information and online booking, and www.tvtrip.com, a source
that provides hotel ratings from travelers’ reviews. The search sce-
nario is thus (1) extracting hotel records from both sources; (2)
matching records based on hotel name; and (3) ranking matched
results based on some function of price and rating. We refer to
such process as extract-match-rank.

Figure 1 shows actual snapshots of the two sources. Manual pro-
cessing of the extract-match-rank task requires navigating through
many pages, while memorizing and ranking interesting matches,
which is clearly infeasible. The problem is far more complicated if
matching across more sources is involved. An automated extract-
match-rank system can probably formulate the task in the following
SQL-like rank join query, which prefers hotels with low prices and
high ratings, and reports only the top-k hotels.
SELECT *
FROM vianet, tvtrip
WHERE vianet.HotelName ∼ tvtrip.HotelName
ORDER BY 500-vianet.Price+ 100* tvtrip.Rating
LIMIT k

However, such formulation raises challenges on multiple levels:

1. Data Extraction. Web sources often lack schema and at-
tribute annotations, since their contents are mainly given as
unstructured HTML. Structured records need to be extracted
from such sources to apply rank join techniques.

2. Interleaving Extraction with Processing. Users do not tol-
erate long waiting times, where expensive extraction must
complete before query processing starts. Moreover, exhaus-
tive extraction does not leverage early-out nature of ranking.
We thus need to interleave asynchronous data retrieval and
extraction with query processing, and avoid unnecessary ex-
traction operations based on ranking requirements.

3. Handling Uncertainty. Web data can contain missing/inexact
values (e.g., in Figure 1(a), price is a range). This can
be attributed to privacy concerns, (e.g., exact price is only
known when initiating a purchase transaction), and presen-
tation formats (e.g., a range of prices for all room types of
a hotel). When such uncertainty impacts queried/ranked at-
tributes, query processing becomes problematic. Mashing up
arbitrary sources further complicates the problem by magni-
fying uncertainty effect as more sources are joined.

While many studies address the first challenge (extraction) from
various perspectives (e.g., supervised/unsupervised learning [8,
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Uncertain Price: $85 - $179 

Exact Rating: 3.8 

(a) Hotel prices on www.vianet.travel (b) Hotel ratings on www.tvtrip.com

Figure 1: Hotel search mashup
14]), a limited attention has been given to interleaving extraction
with rank-aware query processing, as well as handling extracted
results with uncertainty. In this paper, we aim at integrating data
extraction with rank join processing under uncertainty.
Interleaving Extraction with Processing. Many Web sources
provide interfaces for sorted data access. For example,
vianet.travel in Figure 1(a) provides hotel records ordered
on highest prices by adding a parameter sort by=highest price
to the URL. This allows pushing sorted records on-the-fly into
mashup execution. Moreover, by avoiding the need to sort extracted
records, extraction can be done on demand, which limits extraction
cost based on ranking requirements (e.g., do not extract records that
will get low scores).
Handling Score Uncertainty. In Figure 1, applying the scoring
function given in the query produces the following join results (we
show how to compute score ranges in Section 4.2):

Hotel Price Rating Score
Sudima Hotel ... $85 - $179 3.8 701 - 795
Kingsgate Hotel ... $79.33 - $250 3.7 620 - 790.67

The scoring models adopted by current rank join techniques as-
sume that all scores are exact, which yields a unique top-k answer
(score ties are resolved using a tie-breaking criterion). In situa-
tions where the underlying data do not conform to these assump-
tions, similar to the results above, the semantics and processing
techniques of current rank join methods become inapplicable.

Possible approaches to rank-join multiple inputs with uncertain
scores include the following:
(1) Fall back to exact scores. For example, we use expected
score values. While suitable in some settings, this approach
can be quite unreliable due to the inability to reflect variance
of score ranges. Exact score representation of multiple ranges
may coincide, or become very close to each other, even though
ranges are considerably different. For example, assume 3 records,
t1, t2, and t3 with uniform score ranges [0, 100], [40, 60], and
[30, 70], respectively. All expected scores are equal to 50, and
hence all orderings are equally likely. However, based on how
score distributions overlap, the likelihood of different orderings
can be computed as nested integrals [22], which results in differ-
ent probabilities: Pr(〈t1, t2, t3〉) = .25, Pr(〈t1, t3, t2〉) = .2,
Pr(〈t2, t1, t3〉) = .05, Pr(〈t2, t3, t1〉) = .2, Pr(〈t3, t1, t2〉) =
.05, and Pr(〈t3, t2, t1〉) = .25. That is, some orderings are more
likely than the others, even though score ranges are uniform with
equal expectations.
(2) Compute all, then rank. The problem of ranking with uncer-
tain scores coming from a single input has been addressed in [22].
However, when scores are computed online (e.g., by aggregating
scores of joined Web sources), applying the techniques in [22] re-
quires computing all uncertain scores before ranking. Moreover,
[22] assumes the independence of the random variables represent-
ing tuples’ scores, which does not apply to join results’ scores that
are intrinsically correlated. We give more details in Section 4.4.

Other Applications. While our main driving application is
mashups, we believe that our study is relevant to other contexts as
well. For example, in sensor networks [10], sensor readings can be
represented as intervals with associated density functions due to the
inability to continuously maintain the latest readings. An example
rank join query is to find the locations with the best temperature and
light settings by joining streams of sensor readings based on loca-
tion. In location tracking [5, 6], the distance between two moving
objects is modeled as an interval enclosing the accurate distance
based on location history. An example rank join query is to find the
closest pairs of similar moving objects by joining the moving ob-
jects based on their types. Finally in information aggregation (e.g.,
airfare aggregators), the values of aggregated attributes are often
modeled as sets/ranges of possible values. An example rank join
query is to join the output of an airfare aggregator service with ho-
tel costs in destination cities to find the cheapest vacation packages.

1.2 Contributions
We introduce MashRank†, a system that provides an integrated

solution addressing the aforementioned challenges, and allowing
for novel use of mashup and ranking tools for unstructured uncer-
tain data. Our key contributions are summarized as follows:
• We give an architecture for a new mashup authoring and pro-

cessing system leveraging early-out capabilities of ranking,
and integrating on demand extraction with relational query
processing (Section 3).

• We introduce the first formulation of rank join under uncer-
tainty, and give new query definitions that can be adopted in
various application scenarios (Sections 4.1 and 4.2).

• We extend rank join methods to handle uncertain scores,
and provide a pipelined query operator implementation of
uncertainty-aware rank join algorithm. The implementation
can be integrated into relational query plans (Section 4.3).

• We present a new infrastructure for probabilistic rank join
based on Monte-Carlo simulation. The infrastructure han-
dles correlations among join results using a novel join-aware
sampling method, and incrementally rank joins results under
multiple probabilistic ranking semantics (Section 4.4).

We also conduct an experimental study on real data to evaluate
the scalability and efficiency of our methods (Section 5).

2. BACKGROUND AND RELATED WORK
Rank join methods [12, 13, 17, 18] build on using sorted inputs

to incrementally report ranked join results by bounding the scores
of non-materialized join results. The proposed techniques mainly
differ in the maintained state of partial joins (i.e., joins that may
lead to valid join results), which can either be a lightweight state
that gives loose score bounds (e.g.,[12]), or a dense state, of all
partial joins, that gives tight score bounds (e.g.,[18]). The scoring
†Prototype is accessible at: http://prefex.cs.uwaterloo.ca/MashRank/.
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Figure 2: MashRank architecture

model in all of these methods is deterministic (i.e., each record has
a single score), and hence they cannot be applied to settings with
uncertain scores. We discuss in Sections 4.3 and 4.4 how to ex-
tend rank join algorithms to handle uncertain scores, and integrate
joining with probabilistic ranking.

Information extraction techniques approach unstructured data
from different perspectives. Supervised learning methods (e.g., [4,
14]), learn extraction rules from a set of user-specified examples
by generalizing common properties in these examples. On the
other hand, unsupervised learning methods (e.g.,[8, 19]) focus on
learning a grammar/template describing the schema of the underly-
ing source by exploiting repeated structure and domain knowledge.
The learned template can be used to populate relational tables out of
the unstructured sources. MashRank provides a mashup authoring
tool (cf. Section 3) that builds on supervised extraction methods,
namely wrapper induction. We allow users to annotate and refine
examples, during mashup data flow creation, and use these exam-
ples to learn extraction rules. We elaborate on our adaptation of
wrapper induction in Appendix D.

Current mashup systems (e.g.,[1, 2, 3, 20]) allow creating data
flows involving services, sources, and operators. Most systems as-
sume data in the form of pre-computed structured feeds, with the
exception of [21], which integrates text extractors into enterprise
mashups. However, ranking is mostly overlooked in these works
by generating non-optimized plans (e.g., materialze-sort plans) for
ranked mashups. Moreover, although uncertainty is ubiquitous on
the Web (e.g., missing/inexact values), current systems do not allow
querying/reasoning about such uncertainty. Our work integrates
concepts from information extraction, rank-aware processing, and
probabilistic databases domains to address these problems.

3. SYSTEM ARCHITECTURE
We describe the details of different components in MashRank ar-

chitecture (given in Figure 2).
Mashup Editor builds a mashup data flow, by interacting with

the user, to identify source schemas, join/filter conditions, and scor-
ing function. A mashup data flow is a tree whose leaves are the
sources, and internal nodes are three primary logical operators: ex-
tractors, joins, and filters†. The edges between tree nodes are pipes

†Our framework is extensible, which allows other logical operators such as
union and intersection.

Mashup Data Flow 

Mashup Physical Plan 

Figure 3: A Screenshot from MashRank prototype

indicating the flow of tuples from one logical operator to its parent.
Mashup Planner maps the mashup data flow into a rank-aware

and uncertainty-aware physical plan. A mashup physical plan
needs to be rank-aware if the user provides a scoring function to
order mashup results. The physical plan needs to be uncertainty-
aware if the scoring function involves at least one uncertain at-
tribute (e.g. price in Figure 1(a)).

Mashup Planner exploits sorting capabilities of input sources to
offload sort to source side. For example, if the scoring function
involves an attribute that has sorted access (as provided by its cor-
responding source), the created mashup plan pushes source records
directly (i.e., without a sorting phase) into rank-aware mashup ex-
ecution. This also allows limiting extraction on pages that are not
required to compute the top-ranked results (by upper bounding the
scores of records not yet extracted).

Figure 3 shows a mashup data flow, constructed using
MashRank editor, and a corresponding nested-loops join physical
plan. We elaborate on planning and sort offloading in Appendix E.

Content Wrappers bridge different data models to the relational
model. Mashups may involve data sources of different models (e.g.,
XML generated by Web API’s, raw HTML, and relational data).
MashRank adopts a simple relational model in which mashup (in-
termediate) results are represented as tuples.

Wrapping HTML into relational tuples is complicated by the
lacking of schema information (Challenge 1 in Section 1.1). We
build HTML wrappers based on the concepts of wrapper induc-
tion [14] in information extraction. The idea is to request user to
provide a number of labeled examples of different attributes in a
sample of source pages. A wrapper inductor learns a rule that cor-
rectly extracts all of the given examples. For example, the rule can
be maximal strings in HTML source that delimit all of the exam-
ples. Applying the rule to other source pages, with the same struc-
ture of labeled pages, produces the required tuples. We elaborate
on wrapper induction details in Appendix D

Grabber Threads grab data from mashup sources. When
sources are accessible through URLs, MashRank initiates a thread
for each URL to grab contents. Each thread forwards source
response, once ready, to the appropriate wrapper. This allows
MashRank to process multiple requests in parallel, and avoid get-
ting blocked on slow sources. When sources are relational, a
database connection is used to retrieve tuples from remote database.

Mashup Executor executes the physical plan generated by
the Planner against live data sources, and incrementally reports
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Figure 4: Orderings space for tuples with uniform scores

mashup results to the user. We build on the iterator model (OPEN-
GETNEXT-CLOSE), used in most DBMSs, for mashup execution.
OPENING the root operator in a query plan tree recursively initial-
izes all tree operators. Processing the query is done by calling the
GETNEXT method of the root operator repeatedly until it returns an
empty result. Finally, CLOSING the root operator recursively shuts
down all operators in the tree.

However, in contrast to relational plans that read data from tables
with known sizes residing on disks, a mashup plan may read data
from remote sources of unknown sizes filling up asynchronously
as more tuples are extracted. Hence, mashup execution needs to be
(1) synchronized: to guarantee correct reads/updates, sources are
locked when wrappers attempt to append new extracted tuples, or
when parent nodes in the mashup plan attempt to read next tuple;
and (2) push-based: an operator requesting tuples waits if no new
tuples are currently available, and wrappers are not done processing
source contents. Once new records are available, they are pushed
into plan execution by notifying all waiting requesters.

Each mashup source has a dedicated synchronized buffer satisfy-
ing these two requirements. Synchronized buffer owns a monitor
(lock) to prevent concurrent reads and updates. Wrappers writing
to the buffer, as well as mashup plan nodes, reading from the buffer,
must obtain buffer’s lock before accessing its data. If a read/write
request is being served, all other requests are forced to wait until the
request being served completes. As soon as the request completes,
a notification message is issued to wake up all waiting requests to
re-attempt accessing the buffer.

MashRank executor interleaves extraction with query processing
such that none of the two tasks blocks the other (Challenge 2 in Sec-
tion 1.1). Moreover, variance in source response times is tolerated
by allowing asynchronous updates as soon as source responds with
contents, as opposed to blocking until source responds. Hence, the
execution is geared toward early-out of mashup results, if possible,
while extraction and query processing are in progress.

4. UNCERTAIN RANK JOIN
Based on MashRank relational model, we show how to support

rank join queries on uncertain scores (Challenge 3 in Section 1.1).
We describe our scoring model (Section 4.1), problem definition
(Section 4.2), and proposed solution (Sections 4.3 and 4.4).

4.1 Scoring Model
Without loss of generality, we model the score of tuple ti as a

random variable with possible values in the interval [loi, upi] ⊆
[0, 1]. We adopt the convention that higher score values are pre-
ferred. Single-valued scores are represented as score intervals with
equal bounds. The score random variable of tuple ti has a PDF Pi

encoding the likelihood of possible scores of ti. We assume that the
random variables representing the scores of base tuples are inde-
pendent. The score densities Pi’s can be computed by sampling the
scores of tuples similar to ti in their attribute values [23], or con-
structed from histories and value correlations as in sensor nets [10]

and location tracking [5, 6]. We mean by “uncertain score” the
interval-based score representation described above.

The authors in [16] assume a similar model, where generating
functions are used to formulate and compute ranking queries ef-
ficiently on continuous score distributions. Our work mainly ad-
dresses consequences of assuming such model in the case of joins.

The scoring model leads to an intuitive way to rank tuples with
uncertain scores, as formalized by the following definition:

DEFINITION 1. [Score Dominance] We say that tuple ti dom-
inates another tuple tj , denoted (ti � tj), iff loi ≥ upj . 2

When ti � tj , we rank ti on top of tj . However, when ti � tj
and tj � ti, the relative order of ti and tj needs to be defined
using additional means, as we propose in Section 4.2. Furthermore,
for two different tuples ti and tj with equal single valued scores
(i.e., loi = upi = loj = upj), we assume a tie-breaker τ(ti, tj)
that gives a deterministic relative order. That is, τ(ti, tj) decides
whether ti � tj or tj � ti. We assume that the tie-breaker τ is
transitive, and hence no cycles can arise when applying Definition 1
to tuples with equal single-valued scores. One example for such
tie-breaker is ordering based on unique tuples IDs.

Our adoption of score dominance as a comparison criterion is
supported by intuitive properties for meaningful comparison: It is
straightforward to see that score dominance is non-reflexive (i.e.,
ti � ti), transitive (i.e., ((ti � tj), (tj � tk)) ⇒ (ti � tk)), and
asymmetric (i.e., (ti � tj) ⇒ (tj � ti)). It follows that a partial
order holds on tuples with uncertain scores [22].

Uncertain scores induce a space of tuple orderings. Specifi-
cally, given a relation R = {t1, . . . , tn}, let ω be an ordering
of R tuples, where ω[ti] is the rank of ti in ω. We say that ω
is a valid ordering of R iff (ω[ti] < ω[tj ]) ⇒ (ti � tj) or
(ti � tj ∧ tj � ti). The valid orderings are equivalent to possible
linearizations (topological sorts) of a partial order. The number of
possible orderings is exponentially large in general. The orderings
space is generated by a probabilistic process that draws, for each
tuple ti, a score si ∈ [loi, upi] based on the density Pi. Ranking
the drawn scores gives an ordering whose probability is the joint
probability of drawn scores. That is, the probability of an ordering
ω = 〈t1, t2, . . . tn〉 is computed as follows:

Pr(ω) =

Z up1

lo1

Z x1

lo2

...

Z xn−1

lon

P(x1, x2, . . . , xn) dxn... dx1 (1)

where P(.) is the PDF of the joint distribution of P1, . . . , Pn.
When the score random variables are independent, we have
P(x1, . . . , xn) = Πn

i=1Pi(xi).
Figure 4 shows a relation R with uniform uncertain scores. The

relation R has 7 possible orderings {ω1, . . . , ω7}. The probabili-
ties of ωi’s are computed by evaluating Equ 1 using Monte-Carlo
integration (cf. Appendix A), while assuming independence of
score densities. We discuss the computation of the measures E[t]
and ER[t], shown in Figure 4, in Section 4.2.

4.2 Problem Definition
We assume a monotone user-defined scoring function F to be

the source of the scores of join results (i.e., F(x1, . . . , xn) ≥
F(x́1, . . . , x́n) whenever xi ≥ x́i for every i). Typical scoring
functions, such as summation, multiplication, min, max, and aver-
age, are monotone functions.

DEFINITION 2. [Uncertain Rank Join (URANKJOIN)] Let R
be a set of relations {R1, . . . , Rm}, F : R1 ./ . . . ./ Rm → I be
a monotone scoring function, where I is the domain of all possible
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Figure 5: URANKJOIN example
sub-intervals of [0,1], and k be an integer ≤ |R1 ./ . . . ./ Rm|.
The query URANKJOIN(R,F , k) computes a total order ω∗ under
some probabilistic ranking semantics (described below) of tuples in
the set Jk ⊆ R1 ./ . . . ./ Rm, where |Jk| ≥ k, and
∀ti ∈ Jk: |{tj ∈ R1 ./ . . . ./ Rm : tj � ti}| < k, and
∀tj /∈ Jk: |{ti ∈ Jk : ti � tj}| ≥ k. 2

That is, URANKJOIN returns an ordering of tuples that have less
than k other dominating tuples. To illustrate, consider Figure 5.
URANKJOIN({R,S}, (R.a1 + S.a1)/2, 3), where the join condi-
tion is equality of attribute ‘jk’, returns a total order of join tuples
in J3 = {(r1, s2), (r3, s1), (r2, s2)}, since all join tuples in J3

are dominated by less than 3 join tuples, and all join tuples not in
J3 (only (r4, s3) in this example) are dominated by at least 3 tu-
ples. Based on the monotonicity of F , the lo and up scores of join
tuples are given by applying F to the lo and up scores of the cor-
responding base tuples. For example, the score of (r1, s2) is given
by [F(.7, .3),F(.8, .4)] = [ .7+.3

2
, .8+.4

2
] = [.5, .6].

Computing Jk does not require knowledge of Pi’s of base or
join tuples, since Jk is based on score dominance only. However,
computing ω∗ requires knowledge of Pi’s.

We view computing ω∗ as a sophisticated tie-breaking rule that
maps tuples with overlapping score distributions to a total order.
Total order is a widely accepted means for presenting a ranking
(e.g., on the Web, results are usually totally ordered based on rele-
vance to user’s query). We thus assume total order as an easier to
grasp presentation of results. Nevertheless, computing a total order
is an added feature of the techniques we propose, since we can stop
at computing Jk if results incomparability is not a concern.
Probabilistic Ranking Semantics. Let Ω be the set of all possible
orderings of tuples in Jk, and ω[t] be the rank of t in an ordering
ω ∈ Ω (Section 4.1). An intuitive requirement in the total order
ω∗ is that it complies with score dominance (i.e., (ti � tj) ⇒
(ω∗[ti] < ω∗[tj ])). Multiple semantics can be adopted to satisfy
this requirement, as formalized in the following:
(1) Expected Scores. Let E[ti] =

R upi

loi
x · Pi(x)dx. Then,

ω∗[ti] = 1 + |{tj : E[tj ] > E[ti]}|, while resolving ties deter-
ministically. For example in Figure 4, based on expected scores,
ω∗ = 〈t5, t1, t2, t3, t4, t6〉, assuming that the tie between t1 and t2
is resolved in favor of t1.
(2) Expected Ranks. Let ER[ti] =

P
ω∈Ω ω[ti] · Pr(ω). Then,

ω∗[ti] = 1 + |{tj : ER[tj ] < ER[ti]}|, while resolving ties
deterministically. In Figure 4, based on expected ranks, ω∗ =
〈t5, t2, t1, t3, t4, t6〉. The same definition is used in [7] with the
addition that tuples can be excluded from some orderings due to
their membership uncertainty.
(3) Most Probable Ordering. In [22] ω∗ is defined
as argmaxω∈ΩPr(ω), where Pr(ω) is computed us-
ing Equ 1. For example in Figure 4, ω∗ is the ordering
ω1 = 〈t5, t1, t2, t3, t4, t6〉.

Contrasting the properties of different semantics of ω∗, and
studying their potential applications have been addressed in recent

works [7, 22, 24, 26]. Our focus in this paper, however, is build-
ing an infrastructure that incrementally computes both Jk and ω∗

under multiple semantics in the context of URANKJOIN queries.

4.3 Computing the Top-k Join Results
Tuples dominated by less than k tuples can be computed based

on Theorem 1:

THEOREM 1. Let R = {t1, . . . , tn} be a set of tuples with un-
certain scores. Let T be the set of tuples in R, where each tuple
in T is dominated by less than k tuples. Let t(k) ∈ R be the tuple
with the kth largest score lower bound. Then, ∀ti ∈ R we have:
(1) (upi > lo(k)) ⇒ ti ∈ T , and (2) [(up(k) = lo(k) = upi =
loi) ∧ (τ(ti, t(k)) = ti)]⇒ ti ∈ T . 2

That is, tuples in Jk are obtained by pruning all join result dom-
inated by t(k); the join results with the kth largest score lower
bound. We include the proof of Theorem 1 in Appendix B.

We describe how to compute and sort join results incrementally
(as needed) using a rank join algorithm to early prune all dominated
tuples.

A common interface to most rank join algorithms, is to assume
input relations sorted on per-relation scores, while output (join) re-
lation is generated incrementally in join scores order. We show how
to use a generic rank join algorithm RJ, complying with the previ-
ous interface, as a building block to compute Jk incrementally.

Our algorithm COMPUTE-Jk assumes two sorted inputs (e.g.,
indexes) Li

lo and Li
up, for each input relation Ri, giving relation

tuples ordered on lo and up scores, respectively. By processing
the lo and up inputs simultaneously, COMPUTE-Jk incrementally
computes Jk. This is done by using two instances of RJ, denoted
RJlo and RJup, where RJlo rank-joins tuples on their overall lo
scores to find exactly k join results, while RJup rank-joins tuples
on their overall up scores to find all join results with up scores
above the kth largest score reported by RJlo (cf. Theorem 1). The
execution of RJlo and RJup is interleaved, such that, at any point
during execution, RJup reports all tuples whose up scores are above
the last lo score reported by RJlo. Tuples in Jk are reported in up
scores order to allow for incremental ranking (cf. Section 4.4).
More details on COMPUTE-Jk are included in Appendix B.

Pipelined Operator. MashRank Planner generates pipelined
URANKJOIN query plans by wrapping COMPUTE-Jk into a query
operator. For clarity of presentation, we focus on 2-way joins
plans. However, our techniques can also handle multi-way joins. A
pipelined operator implementation of COMPUTE-Jk requires mak-
ing the algorithm independent of k. The knowledge of k is only
available to the query plan root that drives plan execution, while
the operator only responds to incoming requests of join results or-
dered on either lo or up scores.

A URANKJOIN plan is rooted by ULIMIT, a new operator we
propose to drive URANKJOIN plan execution. The operator takes
two inputs Ilo and Iup representing two streams of query output
tuples ordered on their lo scores and up scores, respectively. One
GETNEXT implementation is to consume k tuples from Ilo and to
report tuples in Iup with scores above the kth score in Ilo. An al-
ternative GETNEXT implementation is to interleave drawing tuples
from Ilo and Iup, similar to Algorithm COMPUTE-Jk. We give the
details of ULIMIT in Appendix B.

A URANKJOIN operator is a logical operator that accepts two
inputs each has two sorted access paths, corresponding to the lo and
up score orders of the two input relations. The operator produces
two output tuple streams corresponding to sorted join results based
on lo and up scores.
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ULIMIT
(k)

URankJoin
R.JK=S.JK

IdxScan 
R.xup

IdxScan 
R.xlo

IdxScan 
T.zlo

URankJoin
T.JK=S.JK

loup

IdxScan 
S.yup

IdxScan 
S.ylo

lo1 up1 lo2 up2

IdxScan 
T.zup

lo1 lo2up1 up2

Figure 6: A logical URANKJOIN query plan

Figure 6 gives an example logical URANKJOIN query plan. The
shown plan rank-joins three relations R,S, and T with uncertain
scores x, y, and z, respectively. The bottom URANKJOIN operator
uses indexes on the lo and up scores in Relations R and S as its in-
put access paths, while the top URANKJOIN operator uses indexes
on Relation T and the output of the bottom URANKJOIN operator
as its input access paths. The ULIMIT operator consumes both lo
and up inputs from the top URANKJOIN operator.

URANKJOIN operator can have different physical implementa-
tion. One implementation is to use two regular rank join operators
wrapped within a physical operator with 4 inputs (the lo and up
orders of the two input relations) and 2 outputs (the lo and up or-
ders of the join results). This implementation requires, however,
making other query operators aware of the URANKJOIN operator
input/output interface.

An alternative implementation is to use two separate rank join
operators, which allows building URANKJOIN plan as two paral-
lel plans that can be optimized independently based on available
data access paths. We use this implementation in MashRank pro-
totype. The algebra proposed in [15] can be used in these settings
to exploit properties like associativity and commutativity of rank
join operators while searching for the query plan with least esti-
mated cost. The logical design of URANKJOIN operator does not
restrict the physical rank join algorithm. Hence, an arbitrary rank
join algorithm can be plugged in physical URANKJOIN plans. Such
flexibility raises interesting query optimization and cost modeling
issues, which are part of our future work.

4.4 Ranking the Top-k Join Results
A major challenge for ordering tuples with uncertain scores is

managing the exponentially large space of possible orderings (Sec-
tion 4.1). We tackle this challenge using a sampling-based infras-
tructure for computing ω∗ under multiple semantics based on two
novel techniques: Join-aware Sampling and Incremental Ranking.

Join-aware Sampling. Join induces correlations among join re-
sults. For example in Figure 5, (r1, s2) and (r2, s2) are corre-
lated, since they originate from one tuple s2 ∈ S and different
tuples in R. Such correlation means that the joint score density of
(r1, s2) and (r2, s2) (which produces the probability of any order-
ing involving (r1, s2) and (r2, s2)) is not given by multiplying the
marginal score densities of (r1, s2) and (r2, s2). That is, the score
random variables of (r1, s2) and (r2, s2) are dependent.

We handle score correlations by associating join results with lin-
eage representing the keys of their origin base tuples. The main
idea is to use the space with independent score random variables
(i.e., base tuples) as a generator of the space with correlated score
random variables (i.e., join results). Hence, the probability of an
ordering of (possibly correlated) join results is computed using in-
dependent samples drawn from the space of base scores.

[.5,.6] r1,s2
[.45,.5] r3,s1
[.35,.6] r2,s2

F Lineage
t1
t2
t3

J3 

r1 r2 r3 s1 s2 t1 t2 t3
1 .73 .5 .3 .65 .4 .565 .475 .45
2 .78 .42 .3 .6 .35 .565 .45 .385
3 .72 .72 .3 .67 .33 .525 .485 .525
4 .75 .78 .3 .62 .31 .53 .46 .545
5 .77 .45 .3 .64 .38 .575 .47 .415

✔ 

✔ 

✔ 

Source Base Tuples Join Tuples

Monte-Carlo sampling to compute Pr(〈t1,t2,t3〉)

Sa
m

pl
es


Avg(.73,.4)

Figure 7: Handling score correlations in Monte-Carlo sampling

Figure 7 illustrates our approach. The set J3 is produced by the
URANKJOIN query in Figure 5. Each join result inJ3 is associated
with the keys of its origin base tuples. To compute Pr(〈t1, t2, t3〉),
we independently sample a score value in each origin base tuple of
J3 (i.e., a score value in each of {r1, r2, r3, s1, s2}). We simply
call such vector of base tuples’ score samples a base sample. Since
base tuple scores are independent, the probability of each base sam-
ple is the product of the probabilities of its constituent score val-
ues†. Applying F (the average) to score values in a base sample
gives a score sample for each join results in J3. We mark in Fig-
ure 7 the base samples that correspond to the ordering 〈t1, t2, t3〉.
Such base samples are called hits.

We use Monte-Carlo integration to estimate the probability of an
ordering of join results based on the proportion of its corresponding
hits with respect to the number of samples. We describe Monte-
Carlo integration in more detail in Appendix A, and elaborate on
the details of our probability computation method in Algorithm 3
in Appendix B.

We show how to use the previous infrastructure to compute the
total order ω∗ of tuples in Jk under expected ranks semantics. We
discuss other semantics in Appendix C.

The expected rank of a tuple ti (ER(ti)) is computed asP
ω∈Ω Pr(ω) · ω[ti] (cf. Section 4.2). Computing ER(ti)

can be done efficiently in our settings by rewriting ER(ti) asP|Jk|
r=1 r · Pr(ti, r), where Pr(ti, r) is the probability of ti to

be at rank r in the possible orderings of Jk. The correctness
of the previous rewrite follows from the fact that Pr(ti, r) =P

ω(ti,r)∈Ω Pr(ω(ti,r)), where ω(ti,r) has ti at rank r.

We compute Pr(ti, r) by considering as a hit each sample of
base scores that results in the join tuple ti being at rank r. For
example in Figure 7, to compute Pr(t3, 1), we consider sample 3
and sample 4 as hits.

Incremental Ranking. The size of Jk can be much larger than k
due to score uncertainty. In many Web application scenarios, users
only inspect a small prefix of the ranked answers list (e.g., inspect-
ing only a few top hits returned by a search engine). Computing
a full ranking of all answers in advance may not thus be always
required. We make use of the incremental computation of Jk (cf.
Section 4.3) to incrementally compute an approximation of ω∗.

The main idea is computing bounds on Pr(ti, r) for each join
result ti produced by a URANKJOIN plan. The bounds of Pr(ti, r)
are used to approximate a prefix of ω∗, and are progressively tight-
ened as more tuples are produced by the URANKJOIN plan.

Figure 8 shows a URANKJOIN plan that produces tuples in Jk

ordered on their up scores. The last produced tuple at this step is
t3. Assume that we need to compute Pr(t2, r). We identify two
extreme cases:

• Case (i): the scores of all non-retrieved tuples are determin-

†For a continuous Pi, a sample score value vi is an interval in [loi, upi]
with a small predefined width ε, and Pi(vi) is the integration of Pi over vi.
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URankJoin Plan 

t1:[0.5, 0.9]
t2:[0.6, 0.8]�
t3:[0.4, 0.7]

x x x 

…. 

t1 t2 
t3 

t1 t2 
t3 

Case (i) Case (ii)

Lower-bounding Pr(t2,r) Upper-bounding Pr(t2,r)

Unseen tuples 

Unseen tuples …. 

Figure 8: Bounding Pr(t2, i)

istic values (shown as ‘×’ symbols in Figure 8) located at the
largest possible unseen score (i.e., up3).

• Case (ii): the up scores of all non-retrieved tuples are below
lo2 (shown as shaded intervals in Figure 8).

Each case gives a possible configuration of unseen tuples in Jk.
By applying Monte-Carlo sampling to each configuration, we ob-
tain a bound on Pr(t2, r). Specifically, Case (i) gives a lower
bound on Pr(t2, r), denoted Pr(t2, r), since the scores of all un-
seen tuples are maximized, while Case (ii) gives an upper bound on
Pr(t2, r), denoted Pr(t2, r), since the scores of all unseen tuples
are minimized. By seeing more tuples in Jk, computed bounds are
tightened (i.e., Pr(t2, r) increases and Pr(t2, r) decreases) since
the maximum score of an unseen tuple decreases. When the max-
imum score of an unseen tuple is below lo2, both bounds coincide
at Pr(t2, r). Note that this bounding method is valid only if tuples
in Jk are retrieved in up score order.

The bounds of Pr(ti, r) can be used to compute rankings under
multiple probabilistic ranking semantics. For example, in Global
top-k [26] (rank by tuple’s probability to appear within the top k
ranks), we bound Prk(ti) as Prk(ti) =

Pk
r=1 Pr(ti, r), while

Prk(ti) = min(1,
Pk

r=1 Pr(ti, r)). The Global top-k ranking of
retrieved tuples from Jk can thus be approximated as follows. We
set ω∗[ti] < ω∗[tj ] if Prk(ti) > Prk(tj) − ε, where ε ∈ [0, 1)
is a given acceptable error in tuples relative order. The underlying
URANKJOIN plan is incrementally requested for new join results
until the computed ω∗ prefix satisfies the previous error constraint.

5. EXPERIMENTS
MashRank is a Web-accessible system (demonstrated in [25]),

with client-side query processing, and server-side data retrieval and
extraction. All experiments are conducted on a 2.2GHz client ma-
chine with 2GB RAM, and 80GB hard disk. While many mashup
examples are implementable using MashRank, we use 4 examples
to show effectiveness and scalability. Figure 9 gives details of in-
volved Web sources, while Figure 10 shows (in SQL-like syntax)
the mashup examples we build. Join conditions and scoring func-
tions are selected based on source schemas. We assume uniform
score distributions for all uncertain scores (in general, uncertain
join scores can be non-uniform even if base scores are uniform).
While MashRank handles other source types (e.g., relational and
XML sources), our experiments focus on unstructured HTML to
expose the full spectrum of problem challenges.

Our performance metrics are (1) latency: time before returning
first result, (2) overall time, (3) e-cost: average extraction time per

page, and (4) quality: prec./recall of information extraction. We
control values of three parameters: (1) k: number of tuples domi-
nating any produced result is < k (default is 1), (2) npages: max-
imum number of pages per source, (default is 10), (3) nsamples:
number of Monte-Carlo samples, (default is 10,000). When chang-
ing one parameter value, we keep other parameters at their defaults.

5.1 Scalability with respect to Source Size
We evaluate MashRank performance as npages increases. In

general, processing time increases sub-linearly with npages. Fig-
ure 11 shows that overall time has increased by an average of 5.5
times, as npages increased by 10 times. Since MashRank com-
putes mashups out of records extracted on-the-fly, most of process-
ing time is consumed in grabbing data from online sources. Fig-
ure 12 shows the average get time consumed in grabbing a source
page. Since grabbing data from multiple pages is parallelized in
MashRank (cf. Section 3), as npages increased by 10 times, get
time increased by an average of 4.5 times, due to the added over-
head of grabber threads synchronization. We also measured e-cost,
which had a value below 0.5 seconds in all sources.

5.2 Push-based Mashup Execution
We compare push-based execution (cf. Section 3) to pull-based

execution, where extraction from all sources needs to finish be-
fore query processing starts. We removed ranking requirements
of mashups in this experiment to maximize the chances of results
pipelining. Figure 13 compares the latency of the two models
for different mashups, while Figure 14 compares the overall time.
Push-based execution improves latency over pull-based with an av-
erage of 69%, and improves overall time with an average of 41%.
The savings are due to the ability of conducting query processing
on extracted records, while other extraction operations are undergo-
ing, as opposed to blocking until all extraction completes, or wait-
ing on slow sources to respond.

5.3 Sort Offloading in Rank-aware Processing
We evaluate the performance impact of sort offloading (cf. Ap-

pendix E). In M1, we exploit sorted access of the Vianet source
to avoid sorting its records, and pipeline them into plan execution.
We compare the generated plan to the conventional materialize-sort
plan (i.e., compute all mashup results then sort) that does not ex-
ploit pre-sorted records. Figure 15 shows that sort offloading and
rank-aware processing improved latency by an average of 66% over
different npages values, while Figure 16 shows that the average la-
tency improvement is 56% over different k values.

5.4 Monte-Carlo Sampling
Figure 18 illustrates convergence of ω∗ under expected ranks se-

mantics (cf. Section 4.4). We use normalized Kendall tau distance
as our convergence measure. Kendall tau distance between two or-
derings is the number of pairs of items with disagreeing relative
orders in the two orderings. We measure Kendall tau distance be-
tween each two orderings produced using two consecutive sample
sizes. As nsamples increases, the distance decreases indicating that
ω∗ approaches stability. Figure 17 shows the time consumed in
generating MC samples of join tuples. The sampling algorithm
shows linear increase in time with respect to nsamples.

6. CONCLUSION
To the best of our knowledge, MashRank is the first system to

address integrating information extraction with joining and ranking
under uncertainty in the context of Web mashups. Our proposal ini-
tiates a study of the integration of information extraction, relational
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Source  Base URL  Schema  Descrip3on 

Vianet  www.vianet.travel/search/list  Hotel, City, Price  Hotel booking 

TvTrip  www.tvtrip.com  Hotel, City, Ra>ng  Hotel reviews 

Menus  www.menus.co.nz/wining‐dining  Restaurant, City, Ra>ng  Restaurant reviews 

Epinion  www.epinions.com/
Digital_Cameras 

Brand, MegaPixels, Price  Camera offers 

Flickr  www.flickr.com/cameras  Brand, nUsers, Rank  Camera usage info 

Pubs  www.cs.uwaterloo.ca/~ilyas/
publistC.html 

PaperTitle  A publica>ons page 

GScholar  scholar.google.com/scholar?
q=author:ihab‐ilyas 

Paper, nCita>ons  Cita>ons count 

Apartments  www.apartments.com  Price  , Zip, Info, Tel  Apartment search 

Restaurants  www.restauran>ca.com  Name, Cusine, Tel, Zip  Restaurant search 

Figure 9: Web sources used in experiments (boxes indicate uncertain attributes)

SELECT *  
FROM Vianet v, TvTrip t,  
            Menus m  
WHERE v.Hotel ≈ t.Hotel 
              AND v.City=m.City 
ORDER BY 500-v.Price+ 100* 
(t.Rating+m.Rating)  
LIMIT k 

SELECT *  
FROM Epinion e, Flickr f 
WHERE e.Brand contains 
f.Brand 
ORDER BY e.Price+ 
                   (100-f.Rank)  
LIMIT k 

SELECT *  
FROM Pubs p, GScholar g 
WHERE p.PaperTitle ≈ g.Paper 
ORDER BY nCitations 
LIMIT k 

SELECT *  
FROM Apartments a, 
Restaurants r 
WHERE a.Zip = r.Zip 
ORDER BY a.Price 
LIMIT k 

M1  M2 

M4 M3 

Figure 10: Mashup examples used in experiments
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Figure 14: Execution models time
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Figure 15: Sort offloading
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Figure 16: Sort offloading with k
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optimizations (e.g., rank join), and the concepts of probabilistic
databases towards building a relational+probabilistic query engine.
We design an architecture that integrates information extraction
with query processing within a push-based execution model. We
give an implementation of probability and rank-aware join opera-
tors, and an infrastructure for uncertain rank-join under multiple
probabilistic ranking semantics using Monte-Carlo simulation.
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APPENDIX
A. MONTE-CARLO INTEGRATION

We show how to compute the probability of a tuple ordering us-
ing Monte-Carlo integration. For an ordering ω = 〈t1, t2, . . . , tn〉,
let Γ be the n-dimensional hypercube that consists of all possible
combinations of tuple scores in ω. That is, Γ = ([lo1, up1] ×
[lo2, up2] × · · · × [lon, upn]). Let v be the volume of Γ, and s
be the number of drawn samples from Γ, where each sample is
an n-dimensional vector composed of a random score value drawn
from each Pi. Let x1 . . . xm be the samples among such s samples
whose score ordering gives the same tuple ordering of ω. Then,

Pr(ω) ≈ m

s
· v ·

Pm
i=1 Pr(xi)

m
(2)

The main idea is using Γ, in which uniform sampling is easy, to
estimate the volume to be integrated on in Equ 1. The expected
value of the above approximation is the true integral value with an
O( 1√

s
) approximation error. That is, the error is independent of

the size of the orderings space, and depends only on the number of
samples.

By assuming independence of score random variables, [22] com-
putes sample probability (Pr(xi) in Equ 2) by multiplying the
marginal probabilities of samples’ constituent scores. Moreover,
if the tuple score densities Pi’s are uniform, Equ 2 reduces to
Pr(ω) ≈ m

s
. That is, Pr(ω) is the proportion of samples that

conform to the tuple ordering given by ω.

B. PROOFS AND ALGORITHMS PSEU-
DOCODE

Proof of Theorem 1. If (upi > lo(k)), then the number of score
intervals with lo scores ≥ upi is less than k. Then, ti ∈ T , and
hence (1) follows.

If ti and t(k) have equal single-valued scores and the tie breaker
τ favors ti to t(k), then ti must appear before t(k) in the order of
R on lo scores. Hence, there are less than k tuples with lo scores
≥ upi , and hence (2) follows. 2

We next give the pseudocode and more details of the algorithms
we present in this paper.

Algorithm 1 gives the details of our method to compute the set
of top-k join results Jk (cf. Section 4.3).

Algorithm 2 gives the details of the ULIMIT operator that we
use to drive the execution of ranked mashup plans with score un-
certainty (cf. Section 4.3).

Algorithm 3 shows how to use Monte-Carlo integration method
to compute Pr(ω), where ω is an ordering of join results (cf. Sec-
tion 4.4). The union of the lineage of join results in ω is first com-
puted. Independent samples are drawn from the score distributions
of base tuples included in the lineage. The drawn scores produce
an ordering of join results. If such ordering agrees with ω, then the
sample is a hit. The probabilities of hits corresponding to a join re-
sults ordering ω are averaged when using Monte-Carlo integration
method to compute Pr(ω).

Algorithm 1 Compute Top-k Join Results

COMPUTE-Jk(L1
lo, L

1
up, . . . , L

m
lo , L

m
up:Ranked Inputs, k:Answer

Size, F :Scoring Function)

1 RJlo← an instance of RJ (L1
lo, . . . , L

m
lo , k,F)

2 RJup← an instance of RJ (L1
up, . . . , L

m
up,∞,F)

3 activelo ← TRUE ; activeup ← TRUE
4 Tup ← 1 {initialize score upper bound in RJup}
5 count← 0 {number of results reported by RJlo}
6 while (activelo OR activeup) do
7 if (activelo) then
8 t← get next result from RJlo

9 count← count+ 1
10 if (count = k) then activelo ← FALSE
11 Tlo ← score of t
12 while ( Tup > Tlo) do
13 Report results available in RJup with scores > Tlo

14 Tup ← score upper bound in RJup

15 if (NOT activelo AND Tup < Tlo) then
16 activeup ← FALSE

C. COMPUTING AN ORDERING OF JOIN
RESULTS UNDER OTHER SEMANTICS

We extend our discussion in Section 4.4 by describing how to
compute an ordering ω∗ of join results under other probabilistic
ranking semantics:
(1) The Most Probable Ordering. [22] proposed using Markov
Chains Monte-Carlo (MCMC) methods to approximate the most
probable ordering by drawing samples from the orderings space
biased by probability. The main idea is that for a current sample
(ordering) ωi, and a newly proposed sample ωi+1, we always ac-
cept ωi+1 if Pr(ωi+1) > Pr(ωi), otherwise we accept ωi+1 with
probability proportional to Pr(ωi+1)/Pr(ωi). The MCMC method
provably converges to the target distribution of possible orderings,
and hence it can be used as a generator of orderings biased by their
probabilities. Algorithm 3 allows computing Pr(ω), where ω is an
ordering of join results, and hence applying the MCMC method to
approximate the most probable ordering.
(2) Other Semantics. Computing Pr(ti, r) allows computing ω∗

under other probabilistic ranking semantics. For example, tuple’s
probability to appear at the top ranks only (Global Top-k [26]) is
computed as Prk(ti) =

Pk
r=1 Pr(ti, r). Similarly, pruning tu-

ples whose probabilities to appear at the top ranks is below a given
threshold (probabilistic Top-k threshold [11]) can be done by test-
ing if Prk(ti) < T , for a given threshold T . A third example is
finding the ordering with the minimum disagreements with other
orderings in the space (Uncertain Rank Aggregation [23]), which
can be done in polynomial time using Pr(ti, r) values as shown
in [23].

D. INFORMATION EXTRACTION
MashRank uses wrapper induction techniques to transform un-

structured sources into relational (structured) sources. The details
of the wrapper induction algorithm are orthogonal to mashup plan-
ning and processing in MashRank. We assume an interface to the
wrapper inductor with three main functions: (1) addExample: adds
a new training example (e.g., a text node representing the value of
some attribute); (2) learn: processes the training examples using
the induction algorithm to compute an extraction rule; and (3) ex-
tract: applies the learned extraction rule to a given page, and returns
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Algorithm 2 ULIMIT Operator

OPEN(Ilo: lo input stream, Iup: up input stream, k: Answer Size)
1 Ilo.OPEN()
2 Iup.OPEN()
3 Flo ← 1.0
4 count← 0

GETNEXT()
1 while (count < k) do
2 t← Ilo.GETNEXT()
3 count← count+ 1
4 if (count = k) then Flo ← lo score of t
5 t← Iup.GETNEXT()
6 if (up score of t > Flo) then return t else return null

CLOSE()
1 Ilo.CLOSE()
2 Iup.CLOSE()

Algorithm 3 Compute Probability of Join Results Ordering

MC-PROBABILITY(ω: Join results ordering, s: Number of
samples)

1 sources←
S

t∈ω t.sources {compute lineage of ω}
2 hits← 0 {no. of samples matching ordering given by ω}
3 sum← 0 {summation of hits probabilities}
4 for i = 1 to s do
5 sample← [ ] {sample of base tuples scores}
6 for each tuple ti ∈ sources do
7 sample[ti.key]← random score value based on Pi

8 ώ ← ordering of join tuples based on base scores in sample
9 if (ώ agrees with the tuple ordering given by ω) then

10 hits← hits+ 1
11 sum← sum+ Πz∈sample(Pr(z))
12 v ← volume of hypercube enclosing score combinations in ω
13 return hits

s
· v · sum

hits

a set of extracted records.
The previous interface is generic, and applies to multiple wrap-

per induction proposals (e.g.,[4, 9, 14]). We elaborate on the imple-
mentation of the interface in our adaptation of [14]. We emphasize,
however, that information extraction is a blackbox in MashRank,
and hence other techniques can be integrated with MashRank to
conduct more sophisticated extraction.

The inductor in [14] treats each HTML page as a sequence of
characters, and learns extraction rules in the form of string pat-
terns. The learned rule extracts attributes from the page source in a
round-robin fashion, and binds them into records. This method can
generate erroneous records when some attribute values are miss-
ing. Since missing values are common on the Web, we adapt this
method by learning extraction rules on attribute level, and then bind
extracted values into records based on their proximity in the HTML
source. We describe our technique in the following.

For a schema 〈a1, . . . , an〉 of n attributes, the function addEx-
ample receives as input a triple (ai, s, e), where ai is a schema
attribute, while s and e are the start and end character positions of

Source  Precision  Recall  F1 

Vianet  1.0  1.0  1.0 

TvTrip  1.0  0.92  0.95 

Menus  0.97  0.96  0.97 

Epinion  1.0  1.0  1.0 

Flickr  0.92  1.0  0.96 

Pubs  1.0  1.0  1.0 

GScholar  1.0  0.94  0.97 

Apartments  1.0  1.0  1.0 

Restaurants  0.975  0.97  0.972 

Figure 19: Information extraction precision/recall

one example value of ai in the HTML source. In MashRank editor,
this is enabled by allowing the user to highlight pieces of text inside
the page as examples for each required attribute.

The function learn computes an extraction rule for each attribute
ai in the form of a pair of strings (li, ri). The rule is interpreted
as follows: all values of attribute ai appearing in the underlying
page are enclosed between two strings li and ri. For example, one
possible extraction rule for hotel name could simply be (“ < b >′′

, “ < /b >′′). The strings li and ri are computed by scanning
the characters appearing before and after all training examples, and
appending these characters to li and ri, respectively, as long as all
examples agree on the scanned character. We stop when finding
maximal patterns in the sense that by appending more characters to
any of li and ri, at least one training example is not matched.

The function extract applies the extraction rule of each attribute
to extract a set of attribute values. We align extracted values to form
records based on their proximity in the page. We process attributes
in the order in which they appear in the HTML source (e.g., name
appears before price), and within each attribute, we process ex-
tracted values in the order of their appearance in the HTML source.
We start by assigning each extracted value in the first attribute to a
new record. For each subsequent attribute ai, we assign attribute
value v to the record that has an attribute aj , with j < i, whose
value is the closest value preceding v. If such record cannot be
found, v is assigned to a new record with empty values in all at-
tributes aj for j < i, and value v in attribute ai.

In our experimental study we evaluate extraction accuracy by
counting as an error any extracted record with wrong information
(e.g., missing values that should be non-missing, or wrongly linked
values of different attributes). We manually computed a ground
truth of all correct records to be extracted, and compared the output
of our extraction technique to ground truth. Figure 19 shows ex-
traction quality in precision, recall, and F1 measures, computed on
a sample of 50 pages of each Web source used in our experiments
(cf. Figure 9). We achieve perfect extraction in almost half of the
sources, and very high accuracy on the rest. We note that the ex-
traction method we adapt depends on regularity in HTML source,
which may limit its applicability to some sources. However, as we
discuss in Section 3, we treat information extraction as a blackbox,
and hence other variants of extraction methods can also be plugged
in MashRank framework.

E. MASHUP PLANNING
Query optimizers use statistics collected on queried relations,

and query predicates, to prune query plans that are expected to per-
form poorly. In our settings, we usually have no prior knowledge
about data sources, as they may be remote sources given by the user
in an ad-hoc fashion. We thus resort to exploiting the configuration
of mashup data flow to build a feasible mashup physical plan. Nev-
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ertheless, building mashup planning on a cost model can be quite
important in many other scenarios (e.g., mashing up sources that
the system has prior knowledge on, asking for user input to charac-
terize cost factors of mashed up sources, or sampling the sources to
compute estimates on their cost factors). We leave cost modeling
as an important future extension of this work.

Given a ranked mashup with a scoring dunction F ,
MashRank Planner starts by labeling each node in the mashup
data flow with its corresponding ranking attributes (attributes that
appear in F). The labeling starts with leaves (data sources), where
each source is labeled with the ranking attributes it covers. Then,
moving up in the data flow tree, the union of the ranking attributes
of all children of a node p gives the ranking attributes of p.

After labeling is done, the Planner processes the labeled data
flow starting from the root, mapping each node to one or more
physical operators, and then recursing on nodes’ children.

A source node is mapped to a synchronized buffer (cf. Sec-
tion 3). An extractor node with empty ranking attributes is mapped
to a scan operator. An extractor node with non-empty ranking at-
tributes is mapped to sort operator, on top of a scan operator, so that
all source tuples are sorted based on the scoring function (ranking
attributes not belonging to the source assume the largest possible
score). Since we assume monotone scoring functions, using such
sort expression guarantees tuples flowing out of the source in the
right order. A join node with empty ranking attributes is mapped
to either a nested-loops join operator, or a hash join operator if
the join condition is non-equality or equality, respectively. Simi-
larly, a join node with non-empty ranking attributes is mapped to
a nested-loops rank join operator, or a hash rank join operator† if
the join condition is non-equality or equality, respectively. Finally,
a filter node is mapped to a filter operator with the node’s Boolean
condition. We also implemented techniques to push down filtering
operations to their relevant sources, as typically done in relational
query optimizers.

When the scoring function includes one or more uncertain at-
tributes, the Planner generates a URANKJOIN plan (cf. Sec-
tion 4.3). The above procedure is followed to generate two identical
rank join plans, where one plan rank-joins tuples on their lo scores,
while the other plan rank-jons tuples on their up scores. A ulimit
operator is used as the parent operator of the two plans, and a pro-
branker operator (implementing our MC-based sampling methods)
is added as the parent of ulimit.

We describe our plan generation algorithm using the rank join
query given in Section 1.1:
SELECT *

FROM vianet, tvtrip
WHERE vianet.HotelName ∼ tvtrip.HotelName
ORDER BY 500-vianet.Price+ 100* tvtrip.Rating
LIMIT k

The scoring function includes two attributes price, and rating,
where price is an uncertain attribute. The join condition is ap-
proximate equality of hotel names (implemented in MashRank as
a thresholded edit distance similarity function). Figure 20 shows
the data flow nodes after being labeled with ranking attributes. The
generated physical plan is a nested-loops rank join plan (since join
condition is non-equality). The Planner adds a ulimit operator to

†The Hash Rank Join (HRJN) algorithm [12] iteratively selects an input
relation to read its next tuple. Each new tuple is hashed on its join attribute
in a per-relation hash table to facilitate creating join results. The join results
are created by finding, for each new tuple, the joinable tuples currently read
from other relations. Join results are stored in a priority queue ordered on
score. The scores of non-materialized join results are upper-bounded by
assuming best-case joins, where tuples with the highest scores in all inputs,
but one, join with the last retrieved tuple from the excluded input.

Vianet  TVTrip 

Extractor  Extractor 

Join 

{price} {rating} 

{rating} {price} 

{price, rating} 

Sync Buffer1 

Sort 
(expr1) 

NL‐RankJoin 

Sort 
(expr2) 

Sync Buffer2 

Sort 
(expr3) 

NL‐RankJoin 

Sort 
(expr2) 

ULimit (k) 

ProbRanker 

expr1: 500-price[lo]+100*5 
expr2: 500-1000+100*rating 
expr3: 500-price[up]+100*5 

Data flow labeled with  
ranking attributes 

Mashup physical plan 

Scan Scan Scan Scan 

Figure 20: Generating mashup plan

drive the execution of the lo and up rank join plans, and a pro-
branker operator to conduct probabilistic ranking. The sort expres-
sions (expr1, expr2, and expr3) are created by replacing ranking
attributes not covered by the underlying source with their largest
possible scores.

Offloading Sort to Web Sources. In rank-aware query process-
ing, the existence of sorted access methods on ranking attributes is
crucial for pipelining ranked results efficiently. Implementing such
access methods as a sort operator per input (e.g., as in Figure 20)
introduces a bottleneck in query execution due to the blocking na-
ture of sort. When an index on a ranking attribute already exists, a
rank-aware plan can benefit from such cheap sorted access method
to pipeline ranked query results efficiently.

In our settings, we build mashups on arbitrary sources selected
by the user, and hence we cannot generally assume the existence
of indexes on these sources. However, many Web sources provide
sorting capabilities to view query results ordered on some attribute.
Such information is obtained from the user in the form of a spe-
cial sorting parameter that can be appended to page requests (cf.
Section 1). By offloading sort to source side, we allow rank-aware
mashup plan to pipeline sorted results, as they are extracted from
the sources.

For example, assume the following mashup query, where Vianet
is declared by the user as a source that can produce records ordered
on Price up (the highest prices):
SELECT *
FROM vianet, tvtrip

WHERE vianet.HotelName ∼ tvtrip.HotelName

ORDER BY vianet.Price up+ tvtrip.Rating

LIMIT k

Fiigure 21 shows the mashup data flow labeled with rank-
ing attributes, and the corresponding physical plan generated by
MashRank Planner. Note that the Planner did not add a sort on
top of the scan of Vianet, since it leveraged the fact that records of
Vianet are pre-sorted, and hence they can be directly pipelined into
the NL-RankJoin operator.

We discuss how we modify our data grabbing module (cf. Sec-
tion 3) to exploit the existence of sorted access methods. Our multi-
threaded architecture spawns a grabber thread per page to avoid
blocking on slow sources. When each thread grabs data from one
of the pages in a sorted retrieval, some of the pages can be ready
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Vianet  TVTrip 

Extractor  Extractor 

Join 

{price_up} {rating} 

{rating} {price_up} 

{price_up, rating} 

Sync Buffer1  Sync Buffer2 

NL‐RankJoin 

Sort 
(expr1) 

expr1: 1000+rating 
Data flow labeled with  
ranking attributes 

Mashup physical plan 

Scan Scan 

Sort is avoided here 

Figure 21: Generating mashup plan with offloaded sorting

for extraction before others, due to differences in source response
time. We thus need to an maintain a page-level order to guarantee
pipelining records into mashup execution in the right order. This
is done by associating each thread with an order reflecting the po-
sition of the thread’s page in the ordered retrieval of source pages.
Tuple requests are answered while respecting such page-level or-
der. That is, a tuple is not reported from page p unless all tuples in
pages with orders preceding p have been already reported.
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