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ABSTRACT
There has been considerable past work studying data integration
and uncertain data in isolation. We develop the foundations for
local-as-view (LAV) data integration when the sources being in-
tegrated are uncertain. We motivate two distinct settings for
uncertain-data integration. We then define containment of uncer-
tain databases in these settings, which allows us to express uncer-
tain sources as views over a virtual mediated uncertain database.
Next, we define consistency of a set of uncertain sources and show
intractability of consistency-checking. We identify an interesting
special case for which consistency-checking is polynomial. Finally,
the notion of certain answers from traditional LAV data integration
does not generalize to the uncertain setting, so we define a corre-
sponding notion of correct answers.

1. INTRODUCTION
Many modern applications such as information extraction, dedu-

plication and data cleaning, sensor deployments, and scientific
databases generate uncertain data. While there has been a flurry of
recent work focusing on modeling and managing uncertain data [4,
5, 6, 8, 19, 32, 35], little work has been done on integrating un-
certain data. Similarly, several decades of research have focused
on the theory and practice of data integration [23], but only con-
sidering integration of certain data. This paper develops theoretical
foundations for local-as-view (LAV) integration [22] of uncertain
data.

The combined study of data integration and data uncertainty is
important for several reasons. The traditional benefits of data in-
tegration still apply when sources are uncertain: Integrating data
from multiple sources allows a uniform query interface to ac-
cess their combined information. In addition, integrating multiple
sources of uncertain data may help resolve portions of the uncer-
tainty, yielding more accurate results than any of the individual
sources. As a very simple example, if one sensor reports that an
object is either in location A or in location B, and a second sensor
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says it is either in location B or in location C, by integrating the
sensor reports we may conclude that the object is in location B.

Even when the sources are certain, data integration may intro-
duce uncertainty. For example, different data capturing redundant
information may disagree on some attributes. Furthermore, data in-
tegration often relies on mappings between sources [23]. One ap-
proach has been to use automatically-generated probabilistic map-
pings, which introduce uncertainty. Reference [12] points out that
uncertainty introduced during data integration can equivalently be
treated as integration of uncertain sources.

Now let us see why models for uncertain data do not adapt di-
rectly to the context of data integration. In general, the semantics
of uncertain databases is based on possible worlds [2]: an uncertain
database represents a set of possible certain databases. (We do not
consider confidence values or continuous probability distributions
over possible worlds in this paper.) Now consider integrating multi-
ple uncertain databases. The natural extension might be to consider
all combinations of all possible worlds across sources, but this ap-
proach can yield undesirable results. Intuitively, we would instead
like to preserve and combine possible worlds that corroborate each
other, while discarding possible worlds that are contradicted. Re-
turning to our very simple sensor example, one source gives the set
of possible worlds {A,B} and the other gives {B,C}. Combin-
ing all possible worlds yields (A,B), (A,C), (B,B), and (B,C).
Since the two sensors are describing the same real-world object,
we prefer to discard all combinations except (B,B). As we will
see, there are several challenges to generalizing and formalizing
this intuition to solve the overall data integration problem.

We consider specifically the local-as-view (LAV) setting of data
integration [22]. In this setting, there is a single logical mediated
database, and each data source is mapped to its mediated schema
by specifying the source as a (logical) view. Queries over the virtual
mediated database are answered using these mappings. Formaliz-
ing LAV data integration over uncertain data requires redefining the
two theoretical foundations of the LAV approach [22]: containment
and certain answers. In addition, uncertain data requires us to in-
troduce a formal notion of consistency of a set of sources. Next we
summarize our contributions in the context of these three building
blocks, with details provided in the subsequent sections.

Containment
LAV data integration typically uses the open world assumption:
Consider a mapping view query Q for a source S. When Q is
applied to the (logical) mediated database, we do not require the re-
sult to be S exactly, but only require it to contain S. For the case of
certain databases, containment is straightforward. To extend LAV
data integration to the uncertain data setting, we need to find an
appropriate definition of containment. We will see that by defin-
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ing containment carefully, we can capture the “contradiction” and
“corroboration” intuition motivated above. (In some sense, defin-
ing containment is the most important and fundamental contribu-
tion of this paper.)

We will see that for uncertain data, two different integration set-
tings require two somewhat different notions of containment. In
one setting, which we call equality-containment, the sources were
derived from an existing but unknown uncertain mediated database
that we are trying to reconstruct. In the other setting, which we call
superset-containment, there is no actual mediated database from
which the sources were derived, so our goal is to come up with a
logical mediated database that captures the information from the
sources. We will give examples to illustrate the differences. This
distinction is new for handling uncertain data. For certain data,
these two settings can be handled identically.

Consistency
When sources contain uncertain data, we need to define what it
means for sources to be consistent. (As an extremely simple exam-
ple, one sensor reporting location A or B and the other reporting
C or D for the same object is inconsistent.) Informally, a set of
sources is consistent if there exists a mediated database that con-
tains all sources. We will formalize this notion and then study the
problem of consistency-checking under both equality-containment
and superset-containment. We show that in general, consistency-
checking is NP-hard in the size of the view schema for both of our
settings.

Next we identify a class of sources where consistency-checking
is polynomial. We describe the construction of a hypergraph for
a set of sources, and we provide a PTIME consistency-checking
algorithm when this induced hypergraph is acyclic. We also show
that the extensional complexity of consistency-checking is PTIME
for both of our settings.

Query Answers
Lastly, we consider the problem of defining correct query answers
over mediated uncertain databases. Once again, the definitions used
for certain databases do not adapt directly to the uncertain case.
The conventional LAV setting uses certain answers (where the use
of the word “certain” here is not to be confused with certain data).
A certain answer is a set of tuples that is guaranteed to be contained
in any mediated database [22]. We define a corresponding notion
for uncertain data, which we call correct answers, that incorporates
possible worlds through our containment definitions. Further, we
seek to find a unique strongest correct answer (SCA) defined us-
ing the partial orders implied by the containment definitions. For
superset-containment, we prove by construction the existence of an
SCA. However, for equality-containment an SCA does not always
exist, and hence we define a relaxed notion for the “best” query
answer.

Discussion
For ease of presentation, we restrict ourselves to identity views and
queries for most of the paper. In Section 7, we extend our tech-
niques for monotonic views with some restrictions, and for mono-
tonic queries over uncertain data.

The results in this paper are independent of the specific repre-
sentation used for uncertain data. (The computational complexity
of certain problems considered may depend on the specific repre-
sentation, and we point out these differences in the relevant places.)
Also, although our results are presented for discrete uncertain data
with a finite set of possible worlds, they can be generalized for
continuous uncertain data with an infinite set of possible worlds.

We emphasize that our foundations are defined in terms of possible
worlds, but we neither rely on nor advocate possible worlds as an
actual representation of uncertain data. Obviously, we would rep-
resent actual uncertain data in more succinct data models, such as
in [2, 4, 5, 8, 10, 19, 24, 32].

Finally, note that the primary goal of this paper is to create a the-
oretical basis for data integration with uncertainty, and to establish
a solid foundation for additional investigation. Section 9 suggests
numerous concrete directions for future research.

2. CONTAINMENT
This section introduces and formalizes the notions of equality-

containment and superset-containment. We begin by reviewing un-
certain databases defined in terms of possible worlds and motivate
some intuition about them (Section 2.1). We then present our con-
tainment definitions (Section 2.2).

2.1 Uncertain Databases
To simplify presentation, we assume possible worlds are sets of

tuples in a single relation; extension to the general multi-relation
case is straightforward.

DEFINITION 1 (UNCERTAIN DATABASE). An uncertain
database U consists of a finite set of tuples T (U) and a nonempty
set of possible worlds PW (U) = {D1, . . . , Dm}, where each
Di ⊆ T (U) is a certain database.

The possible worlds of an uncertain database U contain informa-
tion about the tuples in T (U). Intuitively, one of U ’s possible
worlds captures the true database with respect to the tuples in
T (U). Consistent with traditional information theory [9], an uncer-
tain database with fewer possible worlds contains more information
than an uncertain database with more possible worlds, if they con-
tain information about the same set of tuples. When T is omitted in
the description of an uncertain database U , it is assumed to be the
union of all possible worlds in U .

EXAMPLE 1. Consider tuples A and B, and the four possible
worlds: P1 = ∅, P2 = {A}, P3 = {B}, and P4 = {A,B}.
An uncertain database U1 that contains no information about the
existence and co-existence of tuples A and B consists of all four
possible worlds. An uncertain database U2 with information that
at least one of A or B exists, and that they cannot co-exist, does
not contain either P1 or P4 . U2 contains more information than
U1 since it asserts that P1 and P4 are not possible. An uncertain
database U3 with T (U3) = {A,B} but containing only the pos-
sible world P2 = {A} asserts that the tuple A is contained in the
database and that B cannot be contained in the database since B
is contained in T (U3) but not contained in any possible world of
U3. U3 contains more information than either U1 or U2.

Informally, the information content in an uncertain database U
may be thought of as composed of two components: (1) data-
information, represented by the set of tuples T (U). More tuples
indicate more information. (2) Specificity-information, represented
by the possible worlds PW (U). Fewer possible worlds indicate
more information.

2.2 Containment Definitions
Here we motivate and define the notions of equality-containment

and superset-containment and illustrate them with simple exam-
ples. In Section 3, we give a lengthier example to present further
practical motivation for our two definitions.
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Equality-Containment
Equality-containment integration is relevant in situations where
each source has access only to a portion of an uncertain database
that is existing but unknown. There are many real-world applica-
tions where access is controlled, and only slices of the data may be
visible to various parties (sources). For example, an actual uncer-
tain database may be hidden behind a web service, or people may
only be given access to data depending on what they pay for. The
goal of data integration in this setting is to answer queries using
the best (virtual) reconstruction of the unknown actual uncertain
database. Also, when smaller pieces of sensitive data are given out
to multiple people so that no single piece leaks information, this
reconstruction allows one to detect whether the pieces can be com-
bined to obtain sensitive information. Finally, this setting captures
the problem of answering queries using materialized views over
uncertain data, where each source is a view.

DEFINITION 2 (EQUALITY-CONTAINMENT). Consider un-
certain databases U1 and U2. We say that U2 equality-contains
U1, denoted U1 vE U2, if and only if:

T (U1) ⊆ T (U2)

and

PW (U1) = {W ∩ T (U1) |W ∈ PW (U2)}

Informally, if we remove from any possible world of U2 those tu-
ples not contained in T (U1), then the resulting possible world is a
world of U1, and U1 may not contain additional possible worlds.

Superset-Containment
Superset-containment integration is relevant in settings where we
obtain uncertain data about the real world from different sources,
and the goal is to combine information from these sources to con-
struct a logical “real-world truth” as accurately as possible. The
simplest example of this scenario was given in Section 1, where
one sensor reported A or B for an object and another reported B
or C. When we integrate these sources to obtain our best guess at
the real-world truth, we decide the location is likely to be B.

Superset-containment also arises in information extraction: sev-
eral parties may extract structured data from unstructured data (e.g.,
extracting relations from text, or extracting text in an OCR context)
using different techniques, and integration can be used to resolve
uncertain results from the sources. Another setting where superset-
containment integration is relevant is the combination of informa-
tion from multiple sources that attempt to make predictions, such
as weather forecasts from different websites, or sales projections
using different techniques.

In contrast to equality-containment, under superset-containment
the sources may not have been derived from an actual uncertain
database.

DEFINITION 3 (SUPERSET-CONTAINMENT). Consider un-
certain databases U1 and U2. We say that U2 superset-contains
U1, denoted U1 vS U2, if and only if:

T (U1) ⊆ T (U2)

and

PW (U1) ⊇ {W ∩ T (U1) |W ∈ PW (U2)}

Superset-containment differs from equality-containment in that U1

may contain possible worlds that are not obtained by intersecting a
possible world of U2 with T (U1). While this definition may seem
counter-intuitive at first glance, recall from Section 2.1 our intuition

that an uncertain database with more possible worlds contains less
information.

We shall use v when we refer to either vS or vE .

Power Domains Correspondence
We now discuss how our containment definitions relate to notions
in the theory of Power Domains [3, 20]. Specifically, we demon-
strate that superset-containment and equality-containment corre-
spond to Smyth order and Plotkin order respectively: Smyth and
Plotkin orders are frequently-used in many applications1 as devices
to “lift” a partial order defined over elements of a set S to finite
subsets of S.

Consider a possible world W in an uncertain database with tu-
ple set T . Tuples from T that are absent from W also represent
information, so we consider possible worlds in the context of the
overall tuple set. We define a world pair as the pair (W,T ) such
thatW ⊆ T . Consider the following partial order over world pairs:
(W1, T1) ≤p (W1, T2) iff

(W1 ⊆W2) ∧ ((T1 \W1) ⊆ (T2 \W2))

This partial order captures the intuition that the larger pair contains
more information, with respect to both presence and absence of
tuples.

The Smyth lifting of the partial order above yields the definition
of superset-containment, while the Plotkin lifting yields the defini-
tion for equality-containment. The Plotkin order is stricter than the
Smyth order, and similarly, we have:

(U1 vE U2) =⇒ (U1 vS U2)

3. EXAMPLES
In this section, we use two examples to motivate our definitions

of containment. We start with an abstract but simple example that
illustrates the differences between the two notions of containment.
Then, we present a practical example from a real-world application
to illustrate the utility of our approach. Our example also demon-
strates the notion of consistency, which is formally studied in Sec-
tion 5.

EXAMPLE 2. Recall Example 1 where uncertain databases
over tuple set T = {A,B} were:

PW (U1) = ∅, {A}, {B}, {A,B}
PW (U2) = {A}, {B}
PW (U3) = {A}

Now suppose there is a (logical or actual) mediated uncertain
database M with T (M) = {A,B,C} and:

PW (M) = {A}, {A,C}

Suppose M is an actual database, and a source S obtained from
M doesn’t have the privileges to access tuple C. Then S would be
represented by U3. Intuitively, we should have U3 vE M under
equality-containment, and indeed this is the case according to Def-
inition 2. Notice that U1 6vE M and U2 6vE M , consistent with
the fact that U1 and U2 cannot be obtained as a result of restricting
access on M .

Now consider our other setting, where the sources were not de-
rived from an actual uncertain database, and the job of integration
is to logically construct an uncertain database. Specifically, we
consider the sensor example from earlier, and whether our example

1See [20, 26] for examples.
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uncertain databases would be consistent with logical construction
of M . M states that there is an object in location A, no object in
location B, and location C may or may not have an object. U3

corresponds to a sensor that locates the object in A but may not
have sufficient range to locate the object in C. U2 corresponds
to a less precise sensor, reporting the location to be either A or
B. Although B is not in M , we still permit a source with a pos-
sible world containing B. Thus, we should have U3 vS M and
U2 vS M under superset-containment, and indeed this is the case
(as well as U1 vS M ) according to Definition 3.

EXAMPLE 3. Suppose the FBI maintains a single rela-
tion Suspects(name,age,crime,...) containing information
about suspects in the USA. Most of the information about crimes
and suspects isn’t certain, but is hypothesized based on evidence.

Suppose the Southern California Police Department (SCPD)
and Western California Police Department (WCPD) have ac-
cess to just suspects in their region. Let this informa-
tion be stored in relations SCPD(name,age,crime,...) and
WCPD(name,age,crime,...), respectively. Further suppose

PW(SCPD)={(Henry,...)}, {(George,...)}
PW(WCPD)={(George,...),(Kenny,...)}, ∅

Suppose that the actual FBI database Suspects is:
PW(Suspects)={(Henry,...)},

{(George,...),(Kenny,...)} Note
that Suspects equality-contains both SCPD and WCPD.

Now consider a third source, the San Francisco Police Depart-
ment (SFPD):

PW(SFPD)={(Kenny,...)}
The three sources SCPD, WCPD, and SFPD are inconsistent under
equality-containment; i.e., there can be no actual database that
contains each of these sources. The inconsistencies arise because
SFPD insists that Kenny is present in all possible worlds of FBI’s
Suspects relation, contrary to information in WCPD.

Next consider the three uncertain relations SCPD, WCPD, and
SFPD under superset-containment. In this setting, instead of be-
ing derived from FBI’s Suspects relation, these relations were
obtained by collecting evidence locally. We now have the fol-
lowing mediated uncertain database U that superset-contains the
three sources: T (U) contains all three tuples (George,...),
(Kenny,...), and (Henry,...), while PW (U) contains a
single possible world with two tuples: (George,...) and
(Kenny,...).

Intuitively, the three sources were resolved to conclude that
George and Kenny were suspects while Henry was not: SFPD in-
sists that Kenny is a suspect, while WCPD says that either both Kenny
and George are suspects, or neither is. Since Kenny is a suspect,
we conclude that both Kenny and George are suspects. Finally,
from SCPD we rule out Henry being a suspect, since SCPD says that
exactly one of Henry and George is a suspect.

Recalling the intuition from Section 1, notice that the
(Henry,...) possible world from SCPD and the ∅ possible world
from WCPD are contradicted by a “corroboration” of all other pos-
sible worlds.

4. QUERIES, VIEWS, AND SOURCES
Before proceeding we need a few definitions. Specifically,

we define the semantics of monotonic queries over uncertain
databases, the notion of views under equality-containment and
superset-containment, and how we denote sources.

DEFINITION 4 (QUERIES OVER UNCERTAIN DATABASES).

The result of a monotonic query Q over an uncertain database U
is an uncertain database Q(U). The tuple set of Q(U) is obtained
by applying Q to the tuple set of U , and the possible worlds of
Q(U) are obtained by applying Q to each possible world of U :

T (Q(U)) = Q(T (U))

PW (Q(U)) = {Q(W ) |W ∈ PW (U)}

Notice that for monotonic queries, each possible world in Q(U ) is
a subset of the tuple set of Q(U ), ensuring that Q(U ) is indeed an
uncertain database.

The next definition specifies the semantics of LAV mappings by
defining the notions of view extension and view definition. In this
paper, these definitions are always used in conjunction with an im-
plicit logical mediated database.

DEFINITION 5 (VIEW). Consider an uncertain database V
and a query Q. For a (logical) uncertain database M , V is a
view extension under equality-containment (respectively superset-
containment) with respect to view definition Q if and only if V vE

Q(M) (respectively V vS Q(M)).

Next we formalize the notion of a source for LAV data integra-
tion in terms of views.

DEFINITION 6 (SOURCE). A source S = (V,Q) is specified
by a view extension V and a view definition Q. V contains the
data in the source while Q is the query used to map the source to
the mediated schema. A set of sources S = {S1, . . . , Sm}, where
Si = (Vi, Qi), is denoted as {V,Q}, where V = {V1, . . . , Vm},
andQ = {Q1, . . . , Qm}.

5. CONSISTENCY
In this section, we formally define consistency of a set of un-

certain data sources. We then present complexity results for the
problem of consistency-checking under equality-containment and
superset-containment.

Roughly speaking, a set of sources is consistent if there exists
some mediated database that contains each source.

DEFINITION 7 (CONSISTENCY). The set of sources S =
{S1, . . . , Sm}, where Si = (Vi, Qi), is consistent if and only if
there exists an uncertain database M such that:

• PW (M) 6= ∅

• ∀i∈{1,··· ,m}Vi v Qi(M) (v denotes vE or vS)

M is called a consistent mediated database for S.

Under superset-containment, a set of sources can be “resolved”
if and only if they are consistent. Similarly, under equality-
containment, a set of sources is consistent if and only if there exists
a mediated database from which they could have been derived.

In Section 5.1 we study intensional complexity: the complex-
ity of consistency-checking in the size of the source data. In
Section 5.2 we study extensional complexity: the complexity of
consistency-checking in the size of the data assuming a fixed num-
ber of sources.2 In this entire section, we restrict ourselves to iden-
tity views: Qi is the identity query for every source Si. In Section 7
we show that all of our results carry over to views defined by mono-
tonic queries under some restrictions.
2Note that intensional complexity and extensional complexity cor-
respond to the traditional notions of query and data complexity.
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5.1 Intensional complexity
We now study the complexity of the consistency-checking prob-

lem in terms of the size of the data. This problem is interesting for
applications that may integrate data from a large number of sources.
For instance, web information extraction can involve combining in-
formation from a large number of webpages or websites, where ex-
tractors introduce uncertainty. We start by showing that in general
consistency-checking is NP-hard. We then identify an interesting
PTIME subclass by establishing a polynomial consistency check
for that subclass.

Intractability
Theorem 1 below (proved in Appendix B) establishes the NP-
hardness of consistency checking of a set of sources under both
superset-containment and equality-containment. For both cases we
show reductions from the well-known 3-coloring problem [17],
although the arguments are slightly different. The reductions in
the proof use one source for every node and edge, giving us NP-
hardness in the size of source schemas. In Section 5.2 we will show
that consistency-checking is tractable when the number of sources
is fixed.

THEOREM 1. Checking consistency of a set of sources under
superset-containment and equality-containment is NP-hard.

Tractable subclass
Next we show that for an interesting subclass, the intensional com-
plexity of consistency-checking is PTIME. This subclass is based
on a mapping from sets of uncertain databases to hypergraphs.
First, we formally establish this mapping. We then show that if the
set of uncertain data sources induces an acyclic hypergraph3, then
this set of data sources admits PTIME consistency-checking algo-
rithms for both equality-containment and superset-containment.

Note that the notion of acyclic hypergraphs has been used exten-
sively in database theory to identify polynomial subclasses for hard
problems. See [7, 29, 34] for a few examples.

The nodes in the hypergraph represent tuples from uncertain
databases, and each uncertain database is represented by a hyper-
edge in the hypergraph.

DEFINITION 8. Consider a set of uncertain databases U =
{U1, . . . , Um}. We construct the hypergraph H = (N,E) as fol-
lows:

N =
[
i

T (Ui), E = {T (Ui) | i ∈ {1, . . . ,m}}

The hypergraph H is said to be induced by U .

We argue that practical uncertain databases often satisfy the
acyclic hypergraph structure. Consider, for instance, our FBI data
from Example 3 under the equality-containment setting. In addi-
tion to the zone- and city-level police departments, suppose we
have state-level police departments: states subsuming zones and
zones subsuming cities. The resulting uncertain database yields an
acyclic hypergraph. Under the superset-containment setting, con-
sider a series of sensors monitoring sets of rooms in a hallway;
when the rooms are placed in an “acyclic fashion” (i.e., the hallway
isn’t a circle, but a set of chained rooms), the uncertain database
representing sensor readings gives an acyclic hypergraph.

While we’ve shown practical scenarios where acyclicity arises
in practice, we note that even when an uncertain database does
not exhibit an acyclic hypergraph, we can impose acyclicity by
3See Appendix A for definition reproduced from [29, 34].

“splitting” some sources. The consequence of splitting a source
is that we may lose some specificity-information. (For example,
U with PW (U) = {A}, {B}, {C} may be split to get U1 and
U2 such that PW (U1) = {A}, {B}, ∅ and PW (U2) = ∅, {C}.)
Effectively, our results enable any set of uncertain databases to
have tractable consistency-checking, but with some information
loss when the acyclic hypergraph property isn’t satisfied.

Our results are framed for the possible-worlds representation, but
they also hold for more compact representations that satisfy condi-
tions outlined in the respective theorems (such as the existence of
a polynomial containment check). The following two theorems are
the most technically challenging of the paper. Their proofs appear
in the Appendix B (along with proofs for all subsequent theorems
and lemmas).

THEOREM 2. Consider a set of uncertain sources S =
{S1, . . . , Sm} where each source is a described by the identity
query, i.e., Si = (Vi, I). If the corresponding source extensions
V = {V1, . . . , Vm} induce an acyclic hypergraph, checking con-
sistency of the sources under equality-containment is PTIME for
all representations that allow a PTIME containment check.

THEOREM 3. Consider a set of uncertain sources S =
{S1, . . . , Sm} where each source is a described by the identity
query, i.e., Si = (Vi, I). If the corresponding source extensions
V = {V1, . . . , Vm} induce an acyclic hypergraph, checking con-
sistency of the sources under superset-containment is PTIME for
all representations that allow a PTIME containment operation.

5.2 Extensional complexity
We now turn to extensional complexity of consistency-checking.

We are interested in studying the complexity of consistency-
checking in terms of the total data size when the number of sources
is fixed. The following theorems give the good news that for
both superset-containment and equality-containment, consistency-
checking is PTIME in the size of the data. The constructive proofs
of the theorems also indicate the consistency-checking algorithms
that achieve PTIME complexity. Once again, our results are for the
possible-worlds representation of uncertain data.

THEOREM 4. Checking consistency of m (a constant) num-
ber of sources is PTIME in their total data size, under superset-
containment.

THEOREM 5. Checking consistency of m (a constant) num-
ber of sources is PTIME in their total data size, under equality-
containment.

6. QUERY ANSWERS
In this section, we address the problem of defining correct an-

swers for queries posed over the mediated schema in our uncertain
LAV data integration settings. Since the sources are themselves un-
certain, the answer is typically an uncertain database as well. There
are multiple consistent mediated uncertain databases for a given in-
put, hence the challenge is in defining the notion of “best” query
answers corresponding to certain answers in certain data integra-
tion [22]. Informally, we would like to the best answer to contain
all the information implied by the sources, and nothing more.

Note that query answering only makes sense when the input
sources are consistent. Also, we restrict ourselves to identity
queries; extensions to the class of monotonic views and queries
follows using additional results presented in Section 7.
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6.1 Definitions
We define the notion of correct answer and strongest correct

answer, analogous to the traditional notions of certain answer
and maximal certain answer for data integration without uncer-
tainty [22].

DEFINITION 9 (CORRECT ANSWER). Given a set of sources
S, an uncertain database A is a correct answer to a query Q if it
is contained in the answers over all consistent mediated databases:
∀M∈McA v Q(M), whereMc is the set of all consistent medi-
ated databases for S.

DEFINITION 10 (STRONGEST CORRECT ANSWER (SCA)).
A correct answer C is the strongest correct answer to a query Q if
it contains all correct answers to the query: ∀A∈ACA v C, where
AC is the set of all correct answers to query Q.

Under the superset-containment setting, we show by construc-
tion the existence of a unique SCA. However, under equality-
containment, a nontrivial SCA may not always exist. Hence we in-
troduce a weaker requirement than SCA, and construct the unique
answer that satisfies the new requirement. For the results in this
section, we need the following definitions.

DEFINITION 11 (FICTITIOUS TUPLE). For a set of identity
views {Vi}, a tuple t is said to be fictitious in a consistent me-
diated database M if t is not present in any of the view extensions;
i.e., ∀i, t 6∈ Vi.

DEFINITION 12 (COLLECTED DATABASE). For a set of con-
sistent sources, consider the set of mediated databases Mres =
{M |M ∈ MC , T (M) = ∪iT (Vi)}, whereMc is the set of all
consistent mediated databases. The collected database MC has tu-
ple set T (MC) = ∪iT (Vi) and contains all possible worlds in all
mediated databases inMres:

PW (MC) =
[

M∈Mres

PW (M).

Notice thatMres is the set of mediated databases that do not con-
tain any fictitious tuples.

6.2 Superset-Containment
The following theorem shows how to obtain the SCA to a query

for a set of sources.

THEOREM 6. For a set of consistent sources, where each
source is described by the identity view, there exists an uncertain
database MI that gives the SCA CQ to any query Q:

∃MI∀Q : CQ = Q(MI)

In fact, in the proof we see that the collected database produces the
SCA to all queries.

6.3 Equality-Containment
This section studies query answering under the equality-

containment setting. Unfortunately, a nontrivial SCA may not al-
ways exist for a set of views. However, the construction from the
previous section still gives us good answers to queries in this set-
ting: we show that it yields a unique procedure that satisfies certain
natural properties.

THEOREM 7. There exist sets of view extensions for which even
though there are several nontrivial mediated databases, there is no
SCA for the identity query.

Since an SCA may not always exist, we relax our requirements
from the best answer. We introduce the notion of a “query answer-
ing mechanism”, and we define two desirable properties. We prove
that the query answering mechanism we propose is the only mech-
anism that satisfies these properties.

DEFINITION 13 (QA MECHANISM AND PROCEDURE). A
query answering mechanism P , when initialized with a set of
sources S, yields a query answering procedure PS . Procedure PS
produces an uncertain database A = PS(Q) as the result of a
query Q. We say that mechanisms P 1 and P 2 are distinct if ∃Q,S
such that P 1

S(Q) 6= P 2
S(Q).

The consistency property requires that the results for a query be
obtained from a consistent mediated database. It also asserts that
the query answering mechanism must not add data-information to
the result beyond what is entailed by the sources, hence disallowing
fictitious tuples (Definition 11).

PROPERTY 1 (CONSISTENCY PROPERTY). A mechanism P
satisfies the consistency property if and only if, for all initializa-
tions S, P yields a procedure PS that answers queries using a
consistent mediated database M for S with no fictitious tuples.

The all-possibility property requires that the query answering
mechanism must not add specificity-information to the result be-
yond what is entailed by the sources. It asserts that the mechanism
must answers queries without ruling out any possible world that
could exist in some consistent mediated database.

PROPERTY 2 (ALL-POSSIBILITY PROPERTY). A mechanism
P satisfies the all-possibility property if and only if, for all ini-
tializations S, P yields a procedure PS satisfying the following:
For any possible world W in any consistent mediated database,
Q(W ) ∈ PW (PS(Q)).

The following fairly straightforward theorem states that answer-
ing queries using the collected database (Definition 12) is the only
procedure that satisfies the two properties above.

THEOREM 8. A query answering mechanism P cd that answers
queries using the collected database under equality-containment
for any set of sources S is the only mechanism satisfying the con-
sistency and all-possibility properties.

7. MONOTONIC QUERIES
We now extend our results to view definitions and queries over

the mediated database that are monotonic queries, i.e., composed
of select, project, join, and union. (A straightforward extension to
containment for multi-relation schemas is necessary.) In the exten-
sions presented here, we require that the monotonic queries do not
project away the keys of relations. Intuitively, if a query projects
away the keys, tuples may no longer be equated correctly.

The consequence of this requirement is, essentially, that an entity
resolution (or reference reconciliation) algorithm be used as a first
step of data integration, to identify records that provide information
about the same entity. Entity resolution is well accepted as a part of
the data integration process even in the case of certain data. In fact,
imperfect entity resolution may be one of the sources of uncertainty
in the sources.

For a set of sources whose view definitions are monotonic
queries, the intractability of consistency-checking in the size of the
source schemas follows directly from the corresponding results on
identity views. Consider extensional complexity and the polyno-
mial subclass for intensional complexity. Using inverse rules [13],
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we transform a source defined by a monotonic query to an inverted
skolemized source and an inverted deskolemized source, both de-
fined by the identity query. We then show that these polynomial
transformations preserve consistency, hence our tractability results
generalize to monotonic views for the possible worlds representa-
tion.

DEFINITION 14 (INVERTED SKOLEMIZED SOURCE). For a
source with view extension V and view definition Q, let the inverse
rules be R. Consider the source (V S ,I) over the mediated schema,
where V S is obtained by applying the inverse rules to each possible
world of the source extension.

PW (V S) = {R(W ) |W ∈ PW (V )}

V S is called the inverted skolemized version of the source.

DEFINITION 15 (INVERTED DESKOLEMIZED SOURCE).
When all tuples from the inverted skolemized version (V S) of a
source that contain at least one skolem constant are dropped,
the uncertain database obtained (V D) is called the inverted
deskolemized version of the source.

The following theorems show that the inverted deskolemized
source and the inverted skolemized source are consistency preserv-
ing.

THEOREM 9. A set of inverted deskolemized sources is consis-
tent if and only if the corresponding set of skolemized sources is
consistent.

THEOREM 10. A set of sources with extensions V =
{V1, . . . , Vm} and view definitions Q = {Q1, . . . , Qm} are con-
sistent if and only if the inverted skolemized versions of the sources
VS = {V S

1 , . . . , V
S

m} (all defined by the identity query) are con-
sistent:

{V,Q} is consistent ≡ {VS , I} is consistent

THEOREM 11. A set of sources with extensions V =
{V1, . . . , Vm} and view definitions Q = {Q1, . . . , Qm} is con-
sistent if and only if the set of inverted deskolemized versions of the
sources VD = {V D

1 , . . . , V D
m } (all defined by the identity query)

is consistent:

{V,Q} is consistent ≡ {VD, I} is consistent

The above theorems together show that all of our PTIME re-
sults (for the tractable query-complexity subclass as well as the
extensional complexity results) for both superset-containment and
equality-containment carry over for monotonic views: the consis-
tency checks are now applied on the inverted deskolemized sources.

Next we turn to answering monotonic queries over a a set of
sources with monotonic queries as views definitions. For mono-
tonic views, we use their inverted skolemized versions to construct
the set of mediated databases. Note that, this allows non-fictitious
tuples to have skolem constants. The construction of the collected
database from Section 6 uses the above set of mediated databases.
The result of query over a skolemized relation retains only tuples
with no skolem constants.

The query-answering results for equality-containment presented
in Section 6.3 carry over from the above observations. However,
as described in Section 6.2, extending our superset-containment
results to arbitrary monotonic queries additionally requires us to
show that containment is preserved by our class of queries:

LEMMA 1. For uncertain databases U1, U2 with the same
schema SC, for any monotonic query Q over SC that retains a
key K of SC, we have: U1 vS U2 =⇒ Q(U1) vS Q(U2).

8. RELATED WORK
This paper introduces a theory for LAV integration of uncertain

data. Several decades of work have been done on data integration
(refer to [22, 23] for surveys) as well as on uncertain data (a small
subset of which can be found in [1, 2, 4, 5, 6, 8, 16, 19, 24, 25,
32, 35]), and we do not review this past work here. There has been
little work on integrating uncertain data.

There has been a lot of work in the area of incomplete informa-
tion databases. These are sets of certain global databases that arise
as a result of data integration of certain sources. Reference [18]
presents a good overview. In contrast, in our setting integration of
uncertain sources results in sets of uncertain global databases.

Our theory is based on possible worlds and some of our results
rely on the existence of an efficient containment check over the
model used for representing uncertain databases. In contrast, refer-
ence [2] presents complexity results about representing and asking
questions about sets of possible worlds. This work is in fact com-
plimentary to our work, and provides a natural starting point for
our investigation about compact representations.

There has been a flurry of recent work on using probabilistic
techniques for data integration [15, 27, 28, 30]. This work looks at
uncertain integration of certain data and is not to be confused with
our work, which addresses integration of uncertain data itself.

Recently, data exchange has been studied over probabilistic
databases [14]. In contrast to our work, which combines infor-
mation from multiple sources to a single target, the work in [14]
only considers a single source. However in the context of a sin-
gle source: (1) it allows more general kinds of mappings than just
local-as-view mappings; (2) has probabilities associated with pos-
sible worlds; and (3) it studies some compact representations.

Reference [11] studies the problem of answering queries using
imprecise sources, where the imprecision is captured by a proba-
bilistic database. The paper presents conditions under which view
statistics are sufficient to answer a query over a mediated database
and describes algorithms for computing result-tuple probabilities.
In contrast, the goal of our work is to develop a theory for in-
tegrating uncertain sources starting with the fundamental notion
of containment. To this end, we introduce superset-containment
and equality-containment, and address the problem of consistency,
none of which are the subject of [11].

Finally, several papers [12, 21, 23, 31] mention that the problem
of integrating uncertain data is important, but do not address it.

9. FUTURE WORK
We laid the foundation for uncertain-data integration by in-

troducing the notions of superset-containment and equality-
containment, formalizing consistency-checking, and studying the
notion of query answers. Our work suggests several interesting di-
rections for future work:

• Confidence values. This paper considered non-probabilistic
uncertain data, as we encountered sufficient challenges with
this case itself. We are currently investigating how our def-
initions and results extend to the case of uncertain data with
confidence values or probabilities. Our approach relies on
theories of evidence and belief [33], along with generaliza-
tions of set-containment.

• Inconsistent sources. We defined the notion of consis-
tency of sources in this paper, and studied the complexity
of consistency-checking. An interesting direction of future
research is to devise techniques to deal with inconsistent
sources, possibly providing best-effort answers.

1086



• Efficient representations. Since uncertain databases are tra-
ditionally defined through sets of possible worlds, we de-
veloped the theory in this paper based on possible worlds.
It would be interesting to consider the implications of our
results on compact models for representing uncertain data,
such as those in [2, 4, 5, 8, 10, 19, 24, 32]. We are also ex-
ploring new models that might be less expressive, but permit
efficient consistency checks and query answering.

• Query processing. In this paper, we defined the notion
of strongest correct answers, but did not provide a way to
compute them. An important direction of future work is to
develop efficient query processing techniques over compact
representations.

• Applications. We are currently applying the techniques de-
veloped in this paper to real-world data integration settings,
where uncertainty arises as a result of entity resolution, prob-
abilistic mappings, and noisy data. This investigation cur-
rently is focused on modeling of application data as uncer-
tain sources and quality of answers based on our techniques.
Efficiency is a next step.

• Alternative approach. An alternative to our approach for
uncertain data integration could be to perform probabilis-
tic data exchange [14] followed by imposing some flavor of
functional or equality generating dependencies for uncertain
data. The hope is that this approach is in fact equivalent to
the current approach. While the two approaches provide sim-
ilar utility for integration, our idea is especially appealing
because it can potentially allow us to perform entity resolu-
tion (recall Section 7) after the data from all sources has been
migrated to the mediated schema.
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APPENDIX
A. DEFINITIONS
We reproduce definitions of GYO-reductions and acyclic hyper-
graphs from [29, 34].

DEFINITION 16 (GYO-REDUCTION). The GYO-reduction
repeatedly applies the following two rules to the hypergraph
H = (N,E) until none can be applied further:

• Node Removal If a node t is contained in at most one hyper-
edge e in H , remove t from e, and from N .

• Edge Removal If a hyperedge e is is contained in another
hyperedge f , remove e from E.

DEFINITION 17 (ACYCLIC HYPERGRAPHS). A hypergraph
is acyclic if its GYO-reduction results in a simple (empty) hyper-
edge.

The following preliminary definitions are used to define short-
hand notations used in proofs.

DEFINITION 18. U ↓ S denotes the result of removing a set S
of tuples from an uncertain database U :

PW (U ↓ S) ≡defn {W \ S |W ∈ PW (U)}

T (U ↓ S) ≡defn T (U) \ S

DEFINITION 19 (RESTRICTION). U1 ⇓ U2 denotes the re-
sult of restricting an uncertain database U1 to an uncertain
database U2:

PW (U1 ⇓ U2) ≡defn {W ∩ T (U2) |W ∈ PW (U1)}

T (U1 ⇓ U2) ≡defn T (U1) ∩ T (U2)

The above definitions satisfy the following properties, which we
will use later in proofs:

(U1 vE U2) ≡ (U1 = U2 ⇓ U1)

(U1 vS U2) ≡ (PW (U1) ⊇ PW (U2 ⇓ U1))∧(T (U1) = T (U2 ⇓ U1))

(U1 ⇓ U2) ≡ (U2 ↓ (T (U2) \ T (U1)))

(PW (U1) 6= ∅) =⇒ ∀U2PW (U1 ⇓ U2) 6= ∅

(PW (U1) 6= ∅) =⇒ ∀SPW (U1 ↓ S) 6= ∅

The last two statements indicate that the restriction and removal
operations cannot make the set of possible worlds empty, although
individual possible worlds may become empty.

B. PROOFS
Proof of Theorem 1: Reduction from 3-coloring
Let the mediated schema be a single table with only one column.
For every vertex v, we use 3 symbols v0, v1, v2 corresponding to
its 3 colorings. Given a graph, we construct the following views
(each described by the identity query):

• For every vertex v, construct a view extension Vv with 3 pos-
sible worlds representing its 3 colorings:
PW (Vv) = {{v0}, {v1}, {v2}}.
• For every edge (u, v), construct a view Vuv with 6 possible

worlds representing the 6 allowed colorings of the nodes u, v:
PW (Vuv) = {{u0, v1}, {u1, v0}, {u1, v2},
{u2, v1}, {u2, v0}, {u0, v2}}

Consistent =⇒ 3-coloring: Let W be a possible instance of a
mediated database M . The following shows that it represents a
3-coloring:

• Every vertex v is assigned exactly one color:
W ∩ {v0, v1, v2} ∈ PW (Vv)

• For every edge (u, v), u and v are assigned different colors:
W ∩ {u0, u1, u2, v0, v1, v2} ∈ PW (Vuv)

3-coloring =⇒Consistent (superset-containment): A 3-coloring
can be represented as a possible instanceW with a symbol for each
vertex chosen according to the color assigned to it. Consider the un-
certain databaseM , such that PW (M) = {W}. M is a consistent
mediated database under superset-containment.

3-coloring =⇒ Consistent (equality-containment): There are 6
permutations of the 3 colors, hence if a valid 3-coloring exists, 6
valid 3-colorings exist each derived from one of the 6 permutations
of the 3 colors. Each 3-coloring can be represented as a possi-
ble instance with a symbol for each vertex chosen according to the
color assigned to it. Consider the uncertain database M , such that
PW (M) = {W1, . . . ,W6}. M is a consistent mediated database
under equality-containment.

Proof of Theorem 2: We “reduce” (using polynomial-time) the
set of uncertain databases along with the corresponding GYO-
reduction on the induced hypergraph. Let the uncertain database
corresponding to an edge e be denoted by V (e).

• Node Removal: We remove the tuple corresponding to the
node t from V (e), as the node t is removed. I.e., we replace
V (e) by V (e) ↓ {t}.
• Edge Removal: If V (e) vE V (f), remove the source corre-

sponding to V (e), along with the the edge e. I.e., we replace
V by V \ {V (e)}.

A set of sources inducing an acyclic hypergraph is consistent if
and only if the above reduction results in a hypergraph with just
one hyperedge. The lemmas below complete the proof.

LEMMA 2. Node removal preserves consistency.

PROOF. Let the node removal step remove tuple t from the
source Vi. Recall that t is not contained in any other source. Let
VI = {V1, . . . , Vi, . . . , Vm} denote the view extensions before the
node removal, and let VF = {V1, . . . , Vi ↓ {t}, . . . , Vm} denote
the view extensions after the node removal.

VI is consistent =⇒ VF is consistent: Let MI be a consistent
mediated database corresponding to VI . MF = MI ↓ {t} is a
consistent mediated database for VF .

VF is consistent =⇒ VI is consistent: Let MF be a consistent
mediated database corresponding to VF . We construct MI with
T (MI) = T (MF ) ∪ {t} with PW (MI) given by :

{V | V = W ∪ {t},
if (W ∩ T (Vi ↓ {t}) ∪ {t} ∈ PW (Vi)

V = W, otherwise}

In the above equation, W iterates over possible worlds of Vi. MI

is a consistent mediated database for VI .

LEMMA 3. Edge removal preserves consistency.
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PROOF. Consider the edge-removal step on edge e ⊆ f . Let the
set of view extensions be VI and VF = VI \ V (e) before and after
the edge removal respectively.

VI is consistent =⇒ VF is consistent: A database M that is con-
sistent for VI is also consistent for VF .

VF is consistent =⇒ VI is consistent: A database M that is
consistent for VF is also consistent for VI : the following shows
V (e) vE M .

M ⇓ V (e) = (M ⇓ V (f)) ⇓ V (e) (since e ⊆ f)

= V (f) ⇓ V (e) (since V (f) vE M)

= V (e) (since V (e) vE V (f))

LEMMA 4. For consistent source extensions V , e ⊆ f =⇒
V (e) vE V (f).

PROOF. Let M be a consistent mediated database for V . We
show V (e) vE V (f):

V (f) ⇓ V (e) = (M ⇓ V (f)) ⇓ V (e) (since V (f) vE M)

= M ⇓ V (e) (since e ⊆ f)

= V (e) (since V (e) vE M)

Proof of Theorem 3: The node removal step of the GYO-reduction
is the same as Theorem 2.

• Edge Removal: Remove the source corresponding to V (e),
along with the the edge e, and modify the uncertain database
associated with f to VR(f) by retaining the same tuple set
and making the possible worlds PW (VR(f)) equal to:

{W |W ∈ PW (V (f)),W ∩ T (V (e)) ∈ PW (V (e))}

We require the above operation to be polynomial in the size
of the representation. Note by construction that PW (VR(f))
is the largest subset of PW (V (f) such that V (e) vS VR(f).
We replace V by (V \ {V (e), V (f)}) ∪ {VR(f)}.

The sources are consistent if and only if the above reduction results
in a simple hyperedge. If during an edge removal step we obtain
VR(f) = ∅, we declare the sources inconsistent. Lemma 2 above
continues to hold. Lemmas 5 and 6 complete the proof.

LEMMA 5. Edge removal preserves consistency.

PROOF. Consider the edge removal step on edge e ⊆ f . Let the
set of view extensions be VI and VF = (VI \ {V (e), V (f)}) ∪
{VR(f)}, before and after the removal.

VI is consistent =⇒ VF is consistent: A database M that is
consistent for VI is also consistent for VF . The following shows
VR(f) vS M :

PW (M ⇓ VR(f)) ⊆ PW (M ⇓ V (f))
(since T (VR(f)) = T (V (f)))
⊆ PW (V (f)) (since V (f) vS M)

PW ((M ⇓ VR(f)) ⇓ V (e)) = PW (M ⇓ V (e))
(since T (V (e)) ⊆ T (VR(f)))
⊆ PW (V (e)) (since V (e) vS VR(f))

VF is consistent =⇒ VI is consistent: A database M that
is consistent for VF is also consistent for VI : the following shows
V (f) vS M , and V (e) vS M :

PW (M ⇓ V (f)) = PW (M ⇓ VR(f))
(since T (VR(f)) = T (V (f)))
⊆ PW (V (f)) (since VR(f) vS M

PW (M ⇓ V (e)) ⊆ PW ((M ⇓ VR(f)) ⇓ V (e))
(since T (V (e)) ⊆ T (VR(f)))
⊆ PW (V (e)) (since V (e) vS VR(f))

LEMMA 6. For a consistent set V of source extensions,
PW (VR(f)) 6= φ.

PROOF. Let M be a consistent mediated database for V . By
definition, PW (M) 6= ∅. Since consistency is preserved by an
edge removal step, VR(f) vS M , PW (VR(f)) ⊇ PW (M ⇓
VR(f)).

Proof of Theorem 4: Consider sources with extensions V =
{V1, . . . , Vm}, with n1, . . . , nm possible worlds respectively. We
consider all N =

Q
i∈{1,··· ,m} ni ways of picking one possible

world from each source. In one such instance, let Wi be the pos-
sible world picked from the source Vi. Consider the uncertain
database with one possible world W = ∪i∈{1,··· ,m}Wi. The fol-
lowing lemma completes the proof.

LEMMA 7. The set V of sources is consistent if and only if at
least one of these N uncertain databases, say U , is a consistent
mediated database.

PROOF.
∃ Consistent U =⇒ Consistent V: U is a consistent mediated
database for the set V .

Consistent V =⇒ ∃ Consistent U : Consider a consistent medi-
ated database M for V and let WV be one of its possible worlds.
For each source Vi vS M , hence Wi = (WV ∩ T (Vi)) is a pos-
sible world of Vi. Construct U as the uncertain database with one
possible world ∪i∈{1,··· ,m}Wi. Note that U is consistent, and is
one of theN uncertain databases above.

Proof of Theorem 5: Consider sources with extensions V =
{V1, . . . , Vm}, with n1, . . . , nm possible worlds respectively. We
consider all N =

Q
i∈{1,··· ,m} ni ways of picking one possible

world from each source. In one such instance, let Wi be the pos-
sible world picked from the source Vi. Consider the uncertain
database U(W ) with one possible world W = ∪i∈{1,··· ,m}Wi.
Out of the N candidate W ’s, we construct an uncertain database
M by adding all possible worlds W whose corresponding uncer-
tain database U(W ) is consistent for V . Note that M 6= ∅ iff V is
consistent. The following lemma completes the proof.

LEMMA 8. The set V of sources is consistent if and only if M
is a consistent mediated database.

PROOF.
Consistent M =⇒ Consistent V: M is a consistent mediated
database for V .
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Consistent V =⇒ Consistent M : Consider a consistent mediated
database MV for V and let WV be one of its possible worlds. For
each source Vi vS M , hence Wi = (WV ∩ T (Vi)) is a possi-
ble world of Vi. Notice that W = ∪i∈{1,··· ,m}Wi is a possible
world in M , since W ⊆ WV . For each source, W collapses to the
same possible world as WV , by construction of W . Hence M is a
consistent mediated database for V .

Proof of Theorem 6: We show that answering queries using the
collected database MC (from Definition 12) gives the SCA for all
queries.

Q(MC) is a correct answer : Consider any mediated databaseM ′

in MC . M ′ ⇓ MC is equivalent to eliminating fictitious tuples
from M ′. Hence,

∃M∈MresPW (M ′ ⇓MC) = PW (M)

Note by definition of the collected database:

∀M∈MresPW (M) ⊆ PW (MC)

Hence, all consistent mediated databases are contained in MC :
∀M′∈MC

MC vS M ′. Hence for identity queries, MC gives a
correct answer. Note that to extend our result to monotonic views
and queries, we only need: U1 vS U2 =⇒ Q(U1) vS Q(U2).
This result is provided by Lemma 1 from Section 7.

Q(MC) contains all correct answers : The collected database is
a consistent mediated database; i.e., MC ∈ Mres ⊆ MC . By
definition of correct answers, every correct answer A to the iden-
tity query is contained in the collected database: A is correct =⇒
A vS Q(MC).

Proof of Theorem 7: Consider two views: V1 with possible
worlds W11 = {a} and W12 = ∅, and V2 with possible worlds
W21 = {b} and W22 = ∅. The two views give several consis-
tent mediated databases, such as M1 = {{a, b}, {a}, {b}, ∅} and
M2 = {{a, b}, ∅}. While V1 and V2 themselves are correct an-
swers, any uncertain database A with T (A) = {a, b} is not con-
tained in at least one of the above mediated databases. Hence, there
is no SCA for the identity query.

Proof of Theorem 8: We prove the theorem in three parts.

P cd satisfies the Consistency Property: Recall the construction
of the collected mediated database MC . Since all possible worlds
of at least one consistent mediated database are possible worlds of
MC , MC is also consistent under equality-containment.

P cd satisfies the All-Possibility Property: Follows directly from
the construction of the collected mediated database.

Uniqueness: Consider any other mechanism P ′ 6= P cd. There
must exist S, Q such that P ′S(Q) 6= P cd

S (Q). Therefore, by the
consistency property, P ′ uses some other mediated database M ,
such that PW (M) ⊂ PW (MC). Hence, W ∈ PW (MC) −
PW (M), violating the all-possibility property.

Proof of Theorem 9: Consider a tuple t that contains a skolem
constant. Since skolem constants are unique to the rule applied, the
tuple t can only exist in one deskolemized source. Hence, the tuple

t can be dropped using the node-removal step of Theorem 2, which
preserves consistency.

Proof of Theorem 10: {V,Q} is consistent =⇒ {VS , I} is con-
sistent: Let M be a consistent mediated database for {V,Q}. M
is also a consistent mediated database for {VD, I}. Using this ob-
servation with Theorem 9 shows that {VS , I} is indeed consistent.

{VS , I} is consistent =⇒ {V,Q} is consistent: Let M be a con-
sistent mediated database for {VS , I}. We show that M is a con-
sistent mediated database for {V,Q}. For each view Vi:

Vi = Qi(V
S

i ) (by construction)

v Qi(M) (since V S
i vM,Lemma 1)

Proof of Theorem 11: The result follows directly from Theorems 9
and 10.

Proof of Lemma 1: By definition of U1 vS U2:

∀W2∈PW (U2)∃W1∈PW (U1)W2 ∩ T (U1) = W1

For any W2 ∈ PW (U2), consider any tuple t ∈ W2 \ T (U1). (If
no such t exists, clearly, Q(W2) = Q(W1).) For key-preserving
monotonic queries, t.K 6∈ T (Q(W1).K), hence Q(W2) =
Q(W1). Hence

∀QW2∈PW (Q(U2))∃QW1∈PW (Q(U1))QW2 ∩ T (Q(U1)) = QW1

The above completes the proof.
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